Merge tag 'sched-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / arch / x86 / mm / mem_encrypt.c
blobc79e5736ab2b7ebf43182e773c9c35457edcf366
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
10 #define DISABLE_BRANCH_PROFILING
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
23 #include <asm/tlbflush.h>
24 #include <asm/fixmap.h>
25 #include <asm/setup.h>
26 #include <asm/bootparam.h>
27 #include <asm/set_memory.h>
28 #include <asm/cacheflush.h>
29 #include <asm/processor-flags.h>
30 #include <asm/msr.h>
31 #include <asm/cmdline.h>
33 #include "mm_internal.h"
36 * Since SME related variables are set early in the boot process they must
37 * reside in the .data section so as not to be zeroed out when the .bss
38 * section is later cleared.
40 u64 sme_me_mask __section(".data") = 0;
41 u64 sev_status __section(".data") = 0;
42 u64 sev_check_data __section(".data") = 0;
43 EXPORT_SYMBOL(sme_me_mask);
44 DEFINE_STATIC_KEY_FALSE(sev_enable_key);
45 EXPORT_SYMBOL_GPL(sev_enable_key);
47 bool sev_enabled __section(".data");
49 /* Buffer used for early in-place encryption by BSP, no locking needed */
50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
53 * This routine does not change the underlying encryption setting of the
54 * page(s) that map this memory. It assumes that eventually the memory is
55 * meant to be accessed as either encrypted or decrypted but the contents
56 * are currently not in the desired state.
58 * This routine follows the steps outlined in the AMD64 Architecture
59 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
61 static void __init __sme_early_enc_dec(resource_size_t paddr,
62 unsigned long size, bool enc)
64 void *src, *dst;
65 size_t len;
67 if (!sme_me_mask)
68 return;
70 wbinvd();
73 * There are limited number of early mapping slots, so map (at most)
74 * one page at time.
76 while (size) {
77 len = min_t(size_t, sizeof(sme_early_buffer), size);
80 * Create mappings for the current and desired format of
81 * the memory. Use a write-protected mapping for the source.
83 src = enc ? early_memremap_decrypted_wp(paddr, len) :
84 early_memremap_encrypted_wp(paddr, len);
86 dst = enc ? early_memremap_encrypted(paddr, len) :
87 early_memremap_decrypted(paddr, len);
90 * If a mapping can't be obtained to perform the operation,
91 * then eventual access of that area in the desired mode
92 * will cause a crash.
94 BUG_ON(!src || !dst);
97 * Use a temporary buffer, of cache-line multiple size, to
98 * avoid data corruption as documented in the APM.
100 memcpy(sme_early_buffer, src, len);
101 memcpy(dst, sme_early_buffer, len);
103 early_memunmap(dst, len);
104 early_memunmap(src, len);
106 paddr += len;
107 size -= len;
111 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
113 __sme_early_enc_dec(paddr, size, true);
116 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
118 __sme_early_enc_dec(paddr, size, false);
121 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
122 bool map)
124 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
125 pmdval_t pmd_flags, pmd;
127 /* Use early_pmd_flags but remove the encryption mask */
128 pmd_flags = __sme_clr(early_pmd_flags);
130 do {
131 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
132 __early_make_pgtable((unsigned long)vaddr, pmd);
134 vaddr += PMD_SIZE;
135 paddr += PMD_SIZE;
136 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
137 } while (size);
139 flush_tlb_local();
142 void __init sme_unmap_bootdata(char *real_mode_data)
144 struct boot_params *boot_data;
145 unsigned long cmdline_paddr;
147 if (!sme_active())
148 return;
150 /* Get the command line address before unmapping the real_mode_data */
151 boot_data = (struct boot_params *)real_mode_data;
152 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
154 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
156 if (!cmdline_paddr)
157 return;
159 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
162 void __init sme_map_bootdata(char *real_mode_data)
164 struct boot_params *boot_data;
165 unsigned long cmdline_paddr;
167 if (!sme_active())
168 return;
170 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
172 /* Get the command line address after mapping the real_mode_data */
173 boot_data = (struct boot_params *)real_mode_data;
174 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
176 if (!cmdline_paddr)
177 return;
179 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
182 void __init sme_early_init(void)
184 unsigned int i;
186 if (!sme_me_mask)
187 return;
189 early_pmd_flags = __sme_set(early_pmd_flags);
191 __supported_pte_mask = __sme_set(__supported_pte_mask);
193 /* Update the protection map with memory encryption mask */
194 for (i = 0; i < ARRAY_SIZE(protection_map); i++)
195 protection_map[i] = pgprot_encrypted(protection_map[i]);
197 if (sev_active())
198 swiotlb_force = SWIOTLB_FORCE;
201 void __init sev_setup_arch(void)
203 phys_addr_t total_mem = memblock_phys_mem_size();
204 unsigned long size;
206 if (!sev_active())
207 return;
210 * For SEV, all DMA has to occur via shared/unencrypted pages.
211 * SEV uses SWIOTLB to make this happen without changing device
212 * drivers. However, depending on the workload being run, the
213 * default 64MB of SWIOTLB may not be enough and SWIOTLB may
214 * run out of buffers for DMA, resulting in I/O errors and/or
215 * performance degradation especially with high I/O workloads.
217 * Adjust the default size of SWIOTLB for SEV guests using
218 * a percentage of guest memory for SWIOTLB buffers.
219 * Also, as the SWIOTLB bounce buffer memory is allocated
220 * from low memory, ensure that the adjusted size is within
221 * the limits of low available memory.
223 * The percentage of guest memory used here for SWIOTLB buffers
224 * is more of an approximation of the static adjustment which
225 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
227 size = total_mem * 6 / 100;
228 size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
229 swiotlb_adjust_size(size);
232 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
234 pgprot_t old_prot, new_prot;
235 unsigned long pfn, pa, size;
236 pte_t new_pte;
238 switch (level) {
239 case PG_LEVEL_4K:
240 pfn = pte_pfn(*kpte);
241 old_prot = pte_pgprot(*kpte);
242 break;
243 case PG_LEVEL_2M:
244 pfn = pmd_pfn(*(pmd_t *)kpte);
245 old_prot = pmd_pgprot(*(pmd_t *)kpte);
246 break;
247 case PG_LEVEL_1G:
248 pfn = pud_pfn(*(pud_t *)kpte);
249 old_prot = pud_pgprot(*(pud_t *)kpte);
250 break;
251 default:
252 return;
255 new_prot = old_prot;
256 if (enc)
257 pgprot_val(new_prot) |= _PAGE_ENC;
258 else
259 pgprot_val(new_prot) &= ~_PAGE_ENC;
261 /* If prot is same then do nothing. */
262 if (pgprot_val(old_prot) == pgprot_val(new_prot))
263 return;
265 pa = pfn << page_level_shift(level);
266 size = page_level_size(level);
269 * We are going to perform in-place en-/decryption and change the
270 * physical page attribute from C=1 to C=0 or vice versa. Flush the
271 * caches to ensure that data gets accessed with the correct C-bit.
273 clflush_cache_range(__va(pa), size);
275 /* Encrypt/decrypt the contents in-place */
276 if (enc)
277 sme_early_encrypt(pa, size);
278 else
279 sme_early_decrypt(pa, size);
281 /* Change the page encryption mask. */
282 new_pte = pfn_pte(pfn, new_prot);
283 set_pte_atomic(kpte, new_pte);
286 static int __init early_set_memory_enc_dec(unsigned long vaddr,
287 unsigned long size, bool enc)
289 unsigned long vaddr_end, vaddr_next;
290 unsigned long psize, pmask;
291 int split_page_size_mask;
292 int level, ret;
293 pte_t *kpte;
295 vaddr_next = vaddr;
296 vaddr_end = vaddr + size;
298 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
299 kpte = lookup_address(vaddr, &level);
300 if (!kpte || pte_none(*kpte)) {
301 ret = 1;
302 goto out;
305 if (level == PG_LEVEL_4K) {
306 __set_clr_pte_enc(kpte, level, enc);
307 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
308 continue;
311 psize = page_level_size(level);
312 pmask = page_level_mask(level);
315 * Check whether we can change the large page in one go.
316 * We request a split when the address is not aligned and
317 * the number of pages to set/clear encryption bit is smaller
318 * than the number of pages in the large page.
320 if (vaddr == (vaddr & pmask) &&
321 ((vaddr_end - vaddr) >= psize)) {
322 __set_clr_pte_enc(kpte, level, enc);
323 vaddr_next = (vaddr & pmask) + psize;
324 continue;
328 * The virtual address is part of a larger page, create the next
329 * level page table mapping (4K or 2M). If it is part of a 2M
330 * page then we request a split of the large page into 4K
331 * chunks. A 1GB large page is split into 2M pages, resp.
333 if (level == PG_LEVEL_2M)
334 split_page_size_mask = 0;
335 else
336 split_page_size_mask = 1 << PG_LEVEL_2M;
339 * kernel_physical_mapping_change() does not flush the TLBs, so
340 * a TLB flush is required after we exit from the for loop.
342 kernel_physical_mapping_change(__pa(vaddr & pmask),
343 __pa((vaddr_end & pmask) + psize),
344 split_page_size_mask);
347 ret = 0;
349 out:
350 __flush_tlb_all();
351 return ret;
354 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
356 return early_set_memory_enc_dec(vaddr, size, false);
359 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
361 return early_set_memory_enc_dec(vaddr, size, true);
365 * SME and SEV are very similar but they are not the same, so there are
366 * times that the kernel will need to distinguish between SME and SEV. The
367 * sme_active() and sev_active() functions are used for this. When a
368 * distinction isn't needed, the mem_encrypt_active() function can be used.
370 * The trampoline code is a good example for this requirement. Before
371 * paging is activated, SME will access all memory as decrypted, but SEV
372 * will access all memory as encrypted. So, when APs are being brought
373 * up under SME the trampoline area cannot be encrypted, whereas under SEV
374 * the trampoline area must be encrypted.
376 bool sme_active(void)
378 return sme_me_mask && !sev_enabled;
381 bool sev_active(void)
383 return sev_status & MSR_AMD64_SEV_ENABLED;
386 /* Needs to be called from non-instrumentable code */
387 bool noinstr sev_es_active(void)
389 return sev_status & MSR_AMD64_SEV_ES_ENABLED;
392 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
393 bool force_dma_unencrypted(struct device *dev)
396 * For SEV, all DMA must be to unencrypted addresses.
398 if (sev_active())
399 return true;
402 * For SME, all DMA must be to unencrypted addresses if the
403 * device does not support DMA to addresses that include the
404 * encryption mask.
406 if (sme_active()) {
407 u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
408 u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
409 dev->bus_dma_limit);
411 if (dma_dev_mask <= dma_enc_mask)
412 return true;
415 return false;
418 void __init mem_encrypt_free_decrypted_mem(void)
420 unsigned long vaddr, vaddr_end, npages;
421 int r;
423 vaddr = (unsigned long)__start_bss_decrypted_unused;
424 vaddr_end = (unsigned long)__end_bss_decrypted;
425 npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
428 * The unused memory range was mapped decrypted, change the encryption
429 * attribute from decrypted to encrypted before freeing it.
431 if (mem_encrypt_active()) {
432 r = set_memory_encrypted(vaddr, npages);
433 if (r) {
434 pr_warn("failed to free unused decrypted pages\n");
435 return;
439 free_init_pages("unused decrypted", vaddr, vaddr_end);
442 static void print_mem_encrypt_feature_info(void)
444 pr_info("AMD Memory Encryption Features active:");
446 /* Secure Memory Encryption */
447 if (sme_active()) {
449 * SME is mutually exclusive with any of the SEV
450 * features below.
452 pr_cont(" SME\n");
453 return;
456 /* Secure Encrypted Virtualization */
457 if (sev_active())
458 pr_cont(" SEV");
460 /* Encrypted Register State */
461 if (sev_es_active())
462 pr_cont(" SEV-ES");
464 pr_cont("\n");
467 /* Architecture __weak replacement functions */
468 void __init mem_encrypt_init(void)
470 if (!sme_me_mask)
471 return;
473 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
474 swiotlb_update_mem_attributes();
477 * With SEV, we need to unroll the rep string I/O instructions.
479 if (sev_active())
480 static_branch_enable(&sev_enable_key);
482 print_mem_encrypt_feature_info();