1 // SPDX-License-Identifier: GPL-2.0-only
3 * AMD Memory Encryption Support
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
10 #define DISABLE_BRANCH_PROFILING
12 #include <linux/linkage.h>
13 #include <linux/init.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
23 #include <asm/tlbflush.h>
24 #include <asm/fixmap.h>
25 #include <asm/setup.h>
26 #include <asm/bootparam.h>
27 #include <asm/set_memory.h>
28 #include <asm/cacheflush.h>
29 #include <asm/processor-flags.h>
31 #include <asm/cmdline.h>
33 #include "mm_internal.h"
36 * Since SME related variables are set early in the boot process they must
37 * reside in the .data section so as not to be zeroed out when the .bss
38 * section is later cleared.
40 u64 sme_me_mask
__section(".data") = 0;
41 u64 sev_status
__section(".data") = 0;
42 u64 sev_check_data
__section(".data") = 0;
43 EXPORT_SYMBOL(sme_me_mask
);
44 DEFINE_STATIC_KEY_FALSE(sev_enable_key
);
45 EXPORT_SYMBOL_GPL(sev_enable_key
);
47 bool sev_enabled
__section(".data");
49 /* Buffer used for early in-place encryption by BSP, no locking needed */
50 static char sme_early_buffer
[PAGE_SIZE
] __initdata
__aligned(PAGE_SIZE
);
53 * This routine does not change the underlying encryption setting of the
54 * page(s) that map this memory. It assumes that eventually the memory is
55 * meant to be accessed as either encrypted or decrypted but the contents
56 * are currently not in the desired state.
58 * This routine follows the steps outlined in the AMD64 Architecture
59 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
61 static void __init
__sme_early_enc_dec(resource_size_t paddr
,
62 unsigned long size
, bool enc
)
73 * There are limited number of early mapping slots, so map (at most)
77 len
= min_t(size_t, sizeof(sme_early_buffer
), size
);
80 * Create mappings for the current and desired format of
81 * the memory. Use a write-protected mapping for the source.
83 src
= enc
? early_memremap_decrypted_wp(paddr
, len
) :
84 early_memremap_encrypted_wp(paddr
, len
);
86 dst
= enc
? early_memremap_encrypted(paddr
, len
) :
87 early_memremap_decrypted(paddr
, len
);
90 * If a mapping can't be obtained to perform the operation,
91 * then eventual access of that area in the desired mode
97 * Use a temporary buffer, of cache-line multiple size, to
98 * avoid data corruption as documented in the APM.
100 memcpy(sme_early_buffer
, src
, len
);
101 memcpy(dst
, sme_early_buffer
, len
);
103 early_memunmap(dst
, len
);
104 early_memunmap(src
, len
);
111 void __init
sme_early_encrypt(resource_size_t paddr
, unsigned long size
)
113 __sme_early_enc_dec(paddr
, size
, true);
116 void __init
sme_early_decrypt(resource_size_t paddr
, unsigned long size
)
118 __sme_early_enc_dec(paddr
, size
, false);
121 static void __init
__sme_early_map_unmap_mem(void *vaddr
, unsigned long size
,
124 unsigned long paddr
= (unsigned long)vaddr
- __PAGE_OFFSET
;
125 pmdval_t pmd_flags
, pmd
;
127 /* Use early_pmd_flags but remove the encryption mask */
128 pmd_flags
= __sme_clr(early_pmd_flags
);
131 pmd
= map
? (paddr
& PMD_MASK
) + pmd_flags
: 0;
132 __early_make_pgtable((unsigned long)vaddr
, pmd
);
136 size
= (size
<= PMD_SIZE
) ? 0 : size
- PMD_SIZE
;
142 void __init
sme_unmap_bootdata(char *real_mode_data
)
144 struct boot_params
*boot_data
;
145 unsigned long cmdline_paddr
;
150 /* Get the command line address before unmapping the real_mode_data */
151 boot_data
= (struct boot_params
*)real_mode_data
;
152 cmdline_paddr
= boot_data
->hdr
.cmd_line_ptr
| ((u64
)boot_data
->ext_cmd_line_ptr
<< 32);
154 __sme_early_map_unmap_mem(real_mode_data
, sizeof(boot_params
), false);
159 __sme_early_map_unmap_mem(__va(cmdline_paddr
), COMMAND_LINE_SIZE
, false);
162 void __init
sme_map_bootdata(char *real_mode_data
)
164 struct boot_params
*boot_data
;
165 unsigned long cmdline_paddr
;
170 __sme_early_map_unmap_mem(real_mode_data
, sizeof(boot_params
), true);
172 /* Get the command line address after mapping the real_mode_data */
173 boot_data
= (struct boot_params
*)real_mode_data
;
174 cmdline_paddr
= boot_data
->hdr
.cmd_line_ptr
| ((u64
)boot_data
->ext_cmd_line_ptr
<< 32);
179 __sme_early_map_unmap_mem(__va(cmdline_paddr
), COMMAND_LINE_SIZE
, true);
182 void __init
sme_early_init(void)
189 early_pmd_flags
= __sme_set(early_pmd_flags
);
191 __supported_pte_mask
= __sme_set(__supported_pte_mask
);
193 /* Update the protection map with memory encryption mask */
194 for (i
= 0; i
< ARRAY_SIZE(protection_map
); i
++)
195 protection_map
[i
] = pgprot_encrypted(protection_map
[i
]);
198 swiotlb_force
= SWIOTLB_FORCE
;
201 void __init
sev_setup_arch(void)
203 phys_addr_t total_mem
= memblock_phys_mem_size();
210 * For SEV, all DMA has to occur via shared/unencrypted pages.
211 * SEV uses SWIOTLB to make this happen without changing device
212 * drivers. However, depending on the workload being run, the
213 * default 64MB of SWIOTLB may not be enough and SWIOTLB may
214 * run out of buffers for DMA, resulting in I/O errors and/or
215 * performance degradation especially with high I/O workloads.
217 * Adjust the default size of SWIOTLB for SEV guests using
218 * a percentage of guest memory for SWIOTLB buffers.
219 * Also, as the SWIOTLB bounce buffer memory is allocated
220 * from low memory, ensure that the adjusted size is within
221 * the limits of low available memory.
223 * The percentage of guest memory used here for SWIOTLB buffers
224 * is more of an approximation of the static adjustment which
225 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
227 size
= total_mem
* 6 / 100;
228 size
= clamp_val(size
, IO_TLB_DEFAULT_SIZE
, SZ_1G
);
229 swiotlb_adjust_size(size
);
232 static void __init
__set_clr_pte_enc(pte_t
*kpte
, int level
, bool enc
)
234 pgprot_t old_prot
, new_prot
;
235 unsigned long pfn
, pa
, size
;
240 pfn
= pte_pfn(*kpte
);
241 old_prot
= pte_pgprot(*kpte
);
244 pfn
= pmd_pfn(*(pmd_t
*)kpte
);
245 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
248 pfn
= pud_pfn(*(pud_t
*)kpte
);
249 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
257 pgprot_val(new_prot
) |= _PAGE_ENC
;
259 pgprot_val(new_prot
) &= ~_PAGE_ENC
;
261 /* If prot is same then do nothing. */
262 if (pgprot_val(old_prot
) == pgprot_val(new_prot
))
265 pa
= pfn
<< page_level_shift(level
);
266 size
= page_level_size(level
);
269 * We are going to perform in-place en-/decryption and change the
270 * physical page attribute from C=1 to C=0 or vice versa. Flush the
271 * caches to ensure that data gets accessed with the correct C-bit.
273 clflush_cache_range(__va(pa
), size
);
275 /* Encrypt/decrypt the contents in-place */
277 sme_early_encrypt(pa
, size
);
279 sme_early_decrypt(pa
, size
);
281 /* Change the page encryption mask. */
282 new_pte
= pfn_pte(pfn
, new_prot
);
283 set_pte_atomic(kpte
, new_pte
);
286 static int __init
early_set_memory_enc_dec(unsigned long vaddr
,
287 unsigned long size
, bool enc
)
289 unsigned long vaddr_end
, vaddr_next
;
290 unsigned long psize
, pmask
;
291 int split_page_size_mask
;
296 vaddr_end
= vaddr
+ size
;
298 for (; vaddr
< vaddr_end
; vaddr
= vaddr_next
) {
299 kpte
= lookup_address(vaddr
, &level
);
300 if (!kpte
|| pte_none(*kpte
)) {
305 if (level
== PG_LEVEL_4K
) {
306 __set_clr_pte_enc(kpte
, level
, enc
);
307 vaddr_next
= (vaddr
& PAGE_MASK
) + PAGE_SIZE
;
311 psize
= page_level_size(level
);
312 pmask
= page_level_mask(level
);
315 * Check whether we can change the large page in one go.
316 * We request a split when the address is not aligned and
317 * the number of pages to set/clear encryption bit is smaller
318 * than the number of pages in the large page.
320 if (vaddr
== (vaddr
& pmask
) &&
321 ((vaddr_end
- vaddr
) >= psize
)) {
322 __set_clr_pte_enc(kpte
, level
, enc
);
323 vaddr_next
= (vaddr
& pmask
) + psize
;
328 * The virtual address is part of a larger page, create the next
329 * level page table mapping (4K or 2M). If it is part of a 2M
330 * page then we request a split of the large page into 4K
331 * chunks. A 1GB large page is split into 2M pages, resp.
333 if (level
== PG_LEVEL_2M
)
334 split_page_size_mask
= 0;
336 split_page_size_mask
= 1 << PG_LEVEL_2M
;
339 * kernel_physical_mapping_change() does not flush the TLBs, so
340 * a TLB flush is required after we exit from the for loop.
342 kernel_physical_mapping_change(__pa(vaddr
& pmask
),
343 __pa((vaddr_end
& pmask
) + psize
),
344 split_page_size_mask
);
354 int __init
early_set_memory_decrypted(unsigned long vaddr
, unsigned long size
)
356 return early_set_memory_enc_dec(vaddr
, size
, false);
359 int __init
early_set_memory_encrypted(unsigned long vaddr
, unsigned long size
)
361 return early_set_memory_enc_dec(vaddr
, size
, true);
365 * SME and SEV are very similar but they are not the same, so there are
366 * times that the kernel will need to distinguish between SME and SEV. The
367 * sme_active() and sev_active() functions are used for this. When a
368 * distinction isn't needed, the mem_encrypt_active() function can be used.
370 * The trampoline code is a good example for this requirement. Before
371 * paging is activated, SME will access all memory as decrypted, but SEV
372 * will access all memory as encrypted. So, when APs are being brought
373 * up under SME the trampoline area cannot be encrypted, whereas under SEV
374 * the trampoline area must be encrypted.
376 bool sme_active(void)
378 return sme_me_mask
&& !sev_enabled
;
381 bool sev_active(void)
383 return sev_status
& MSR_AMD64_SEV_ENABLED
;
386 /* Needs to be called from non-instrumentable code */
387 bool noinstr
sev_es_active(void)
389 return sev_status
& MSR_AMD64_SEV_ES_ENABLED
;
392 /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
393 bool force_dma_unencrypted(struct device
*dev
)
396 * For SEV, all DMA must be to unencrypted addresses.
402 * For SME, all DMA must be to unencrypted addresses if the
403 * device does not support DMA to addresses that include the
407 u64 dma_enc_mask
= DMA_BIT_MASK(__ffs64(sme_me_mask
));
408 u64 dma_dev_mask
= min_not_zero(dev
->coherent_dma_mask
,
411 if (dma_dev_mask
<= dma_enc_mask
)
418 void __init
mem_encrypt_free_decrypted_mem(void)
420 unsigned long vaddr
, vaddr_end
, npages
;
423 vaddr
= (unsigned long)__start_bss_decrypted_unused
;
424 vaddr_end
= (unsigned long)__end_bss_decrypted
;
425 npages
= (vaddr_end
- vaddr
) >> PAGE_SHIFT
;
428 * The unused memory range was mapped decrypted, change the encryption
429 * attribute from decrypted to encrypted before freeing it.
431 if (mem_encrypt_active()) {
432 r
= set_memory_encrypted(vaddr
, npages
);
434 pr_warn("failed to free unused decrypted pages\n");
439 free_init_pages("unused decrypted", vaddr
, vaddr_end
);
442 static void print_mem_encrypt_feature_info(void)
444 pr_info("AMD Memory Encryption Features active:");
446 /* Secure Memory Encryption */
449 * SME is mutually exclusive with any of the SEV
456 /* Secure Encrypted Virtualization */
460 /* Encrypted Register State */
467 /* Architecture __weak replacement functions */
468 void __init
mem_encrypt_init(void)
473 /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
474 swiotlb_update_mem_attributes();
477 * With SEV, we need to unroll the rep string I/O instructions.
480 static_branch_enable(&sev_enable_key
);
482 print_mem_encrypt_feature_info();