1 // SPDX-License-Identifier: GPL-2.0
6 * This file contains the various mmu fetch and update operations.
7 * The most important job they must perform is the mapping between the
8 * domain's pfn and the overall machine mfns.
10 * Xen allows guests to directly update the pagetable, in a controlled
11 * fashion. In other words, the guest modifies the same pagetable
12 * that the CPU actually uses, which eliminates the overhead of having
13 * a separate shadow pagetable.
15 * In order to allow this, it falls on the guest domain to map its
16 * notion of a "physical" pfn - which is just a domain-local linear
17 * address - into a real "machine address" which the CPU's MMU can
20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21 * inserted directly into the pagetable. When creating a new
22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
24 * the mfn back into a pfn.
26 * The other constraint is that all pages which make up a pagetable
27 * must be mapped read-only in the guest. This prevents uncontrolled
28 * guest updates to the pagetable. Xen strictly enforces this, and
29 * will disallow any pagetable update which will end up mapping a
30 * pagetable page RW, and will disallow using any writable page as a
33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
34 * would need to validate the whole pagetable before going on.
35 * Naturally, this is quite slow. The solution is to "pin" a
36 * pagetable, which enforces all the constraints on the pagetable even
37 * when it is not actively in use. This menas that Xen can be assured
38 * that it is still valid when you do load it into %cr3, and doesn't
39 * need to revalidate it.
41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
43 #include <linux/sched/mm.h>
44 #include <linux/highmem.h>
45 #include <linux/debugfs.h>
46 #include <linux/bug.h>
47 #include <linux/vmalloc.h>
48 #include <linux/export.h>
49 #include <linux/init.h>
50 #include <linux/gfp.h>
51 #include <linux/memblock.h>
52 #include <linux/seq_file.h>
53 #include <linux/crash_dump.h>
54 #include <linux/pgtable.h>
55 #ifdef CONFIG_KEXEC_CORE
56 #include <linux/kexec.h>
59 #include <trace/events/xen.h>
61 #include <asm/tlbflush.h>
62 #include <asm/fixmap.h>
63 #include <asm/mmu_context.h>
64 #include <asm/setup.h>
65 #include <asm/paravirt.h>
66 #include <asm/e820/api.h>
67 #include <asm/linkage.h>
70 #include <asm/memtype.h>
74 #include <asm/xen/hypercall.h>
75 #include <asm/xen/hypervisor.h>
79 #include <xen/interface/xen.h>
80 #include <xen/interface/hvm/hvm_op.h>
81 #include <xen/interface/version.h>
82 #include <xen/interface/memory.h>
83 #include <xen/hvc-console.h>
85 #include "multicalls.h"
89 /* l3 pud for userspace vsyscall mapping */
90 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
93 * Protects atomic reservation decrease/increase against concurrent increases.
94 * Also protects non-atomic updates of current_pages and balloon lists.
96 static DEFINE_SPINLOCK(xen_reservation_lock
);
99 * Note about cr3 (pagetable base) values:
101 * xen_cr3 contains the current logical cr3 value; it contains the
102 * last set cr3. This may not be the current effective cr3, because
103 * its update may be being lazily deferred. However, a vcpu looking
104 * at its own cr3 can use this value knowing that it everything will
105 * be self-consistent.
107 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
108 * hypercall to set the vcpu cr3 is complete (so it may be a little
109 * out of date, but it will never be set early). If one vcpu is
110 * looking at another vcpu's cr3 value, it should use this variable.
112 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
113 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
115 static phys_addr_t xen_pt_base
, xen_pt_size __initdata
;
117 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready
);
120 * Just beyond the highest usermode address. STACK_TOP_MAX has a
121 * redzone above it, so round it up to a PGD boundary.
123 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 void make_lowmem_page_readonly(void *vaddr
)
128 unsigned long address
= (unsigned long)vaddr
;
131 pte
= lookup_address(address
, &level
);
133 return; /* vaddr missing */
135 ptev
= pte_wrprotect(*pte
);
137 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
141 void make_lowmem_page_readwrite(void *vaddr
)
144 unsigned long address
= (unsigned long)vaddr
;
147 pte
= lookup_address(address
, &level
);
149 return; /* vaddr missing */
151 ptev
= pte_mkwrite(*pte
);
153 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
159 * During early boot all page table pages are pinned, but we do not have struct
160 * pages, so return true until struct pages are ready.
162 static bool xen_page_pinned(void *ptr
)
164 if (static_branch_likely(&xen_struct_pages_ready
)) {
165 struct page
*page
= virt_to_page(ptr
);
167 return PagePinned(page
);
172 static void xen_extend_mmu_update(const struct mmu_update
*update
)
174 struct multicall_space mcs
;
175 struct mmu_update
*u
;
177 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
179 if (mcs
.mc
!= NULL
) {
182 mcs
= __xen_mc_entry(sizeof(*u
));
183 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
190 static void xen_extend_mmuext_op(const struct mmuext_op
*op
)
192 struct multicall_space mcs
;
195 mcs
= xen_mc_extend_args(__HYPERVISOR_mmuext_op
, sizeof(*u
));
197 if (mcs
.mc
!= NULL
) {
200 mcs
= __xen_mc_entry(sizeof(*u
));
201 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
208 static void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
216 /* ptr may be ioremapped for 64-bit pagetable setup */
217 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
218 u
.val
= pmd_val_ma(val
);
219 xen_extend_mmu_update(&u
);
221 xen_mc_issue(PARAVIRT_LAZY_MMU
);
226 static void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
228 trace_xen_mmu_set_pmd(ptr
, val
);
230 /* If page is not pinned, we can just update the entry
232 if (!xen_page_pinned(ptr
)) {
237 xen_set_pmd_hyper(ptr
, val
);
241 * Associate a virtual page frame with a given physical page frame
242 * and protection flags for that frame.
244 void set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
246 set_pte_vaddr(vaddr
, mfn_pte(mfn
, flags
));
249 static bool xen_batched_set_pte(pte_t
*ptep
, pte_t pteval
)
253 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU
)
258 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
259 u
.val
= pte_val_ma(pteval
);
260 xen_extend_mmu_update(&u
);
262 xen_mc_issue(PARAVIRT_LAZY_MMU
);
267 static inline void __xen_set_pte(pte_t
*ptep
, pte_t pteval
)
269 if (!xen_batched_set_pte(ptep
, pteval
)) {
271 * Could call native_set_pte() here and trap and
272 * emulate the PTE write, but a hypercall is much cheaper.
276 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
277 u
.val
= pte_val_ma(pteval
);
278 HYPERVISOR_mmu_update(&u
, 1, NULL
, DOMID_SELF
);
282 static void xen_set_pte(pte_t
*ptep
, pte_t pteval
)
284 trace_xen_mmu_set_pte(ptep
, pteval
);
285 __xen_set_pte(ptep
, pteval
);
288 pte_t
xen_ptep_modify_prot_start(struct vm_area_struct
*vma
,
289 unsigned long addr
, pte_t
*ptep
)
291 /* Just return the pte as-is. We preserve the bits on commit */
292 trace_xen_mmu_ptep_modify_prot_start(vma
->vm_mm
, addr
, ptep
, *ptep
);
296 void xen_ptep_modify_prot_commit(struct vm_area_struct
*vma
, unsigned long addr
,
297 pte_t
*ptep
, pte_t pte
)
301 trace_xen_mmu_ptep_modify_prot_commit(vma
->vm_mm
, addr
, ptep
, pte
);
304 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
305 u
.val
= pte_val_ma(pte
);
306 xen_extend_mmu_update(&u
);
308 xen_mc_issue(PARAVIRT_LAZY_MMU
);
311 /* Assume pteval_t is equivalent to all the other *val_t types. */
312 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
314 if (val
& _PAGE_PRESENT
) {
315 unsigned long mfn
= (val
& XEN_PTE_MFN_MASK
) >> PAGE_SHIFT
;
316 unsigned long pfn
= mfn_to_pfn(mfn
);
318 pteval_t flags
= val
& PTE_FLAGS_MASK
;
319 if (unlikely(pfn
== ~0))
320 val
= flags
& ~_PAGE_PRESENT
;
322 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
328 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
330 if (val
& _PAGE_PRESENT
) {
331 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
332 pteval_t flags
= val
& PTE_FLAGS_MASK
;
335 mfn
= __pfn_to_mfn(pfn
);
338 * If there's no mfn for the pfn, then just create an
339 * empty non-present pte. Unfortunately this loses
340 * information about the original pfn, so
341 * pte_mfn_to_pfn is asymmetric.
343 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
347 mfn
&= ~(FOREIGN_FRAME_BIT
| IDENTITY_FRAME_BIT
);
348 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
354 __visible pteval_t
xen_pte_val(pte_t pte
)
356 pteval_t pteval
= pte
.pte
;
358 return pte_mfn_to_pfn(pteval
);
360 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
362 __visible pgdval_t
xen_pgd_val(pgd_t pgd
)
364 return pte_mfn_to_pfn(pgd
.pgd
);
366 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
368 __visible pte_t
xen_make_pte(pteval_t pte
)
370 pte
= pte_pfn_to_mfn(pte
);
372 return native_make_pte(pte
);
374 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
376 __visible pgd_t
xen_make_pgd(pgdval_t pgd
)
378 pgd
= pte_pfn_to_mfn(pgd
);
379 return native_make_pgd(pgd
);
381 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
383 __visible pmdval_t
xen_pmd_val(pmd_t pmd
)
385 return pte_mfn_to_pfn(pmd
.pmd
);
387 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
389 static void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
397 /* ptr may be ioremapped for 64-bit pagetable setup */
398 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
399 u
.val
= pud_val_ma(val
);
400 xen_extend_mmu_update(&u
);
402 xen_mc_issue(PARAVIRT_LAZY_MMU
);
407 static void xen_set_pud(pud_t
*ptr
, pud_t val
)
409 trace_xen_mmu_set_pud(ptr
, val
);
411 /* If page is not pinned, we can just update the entry
413 if (!xen_page_pinned(ptr
)) {
418 xen_set_pud_hyper(ptr
, val
);
421 __visible pmd_t
xen_make_pmd(pmdval_t pmd
)
423 pmd
= pte_pfn_to_mfn(pmd
);
424 return native_make_pmd(pmd
);
426 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
428 __visible pudval_t
xen_pud_val(pud_t pud
)
430 return pte_mfn_to_pfn(pud
.pud
);
432 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
434 __visible pud_t
xen_make_pud(pudval_t pud
)
436 pud
= pte_pfn_to_mfn(pud
);
438 return native_make_pud(pud
);
440 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
442 static pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
444 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
445 unsigned offset
= pgd
- pgd_page
;
446 pgd_t
*user_ptr
= NULL
;
448 if (offset
< pgd_index(USER_LIMIT
)) {
449 struct page
*page
= virt_to_page(pgd_page
);
450 user_ptr
= (pgd_t
*)page
->private;
458 static void __xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
462 u
.ptr
= virt_to_machine(ptr
).maddr
;
463 u
.val
= p4d_val_ma(val
);
464 xen_extend_mmu_update(&u
);
468 * Raw hypercall-based set_p4d, intended for in early boot before
469 * there's a page structure. This implies:
470 * 1. The only existing pagetable is the kernel's
471 * 2. It is always pinned
472 * 3. It has no user pagetable attached to it
474 static void __init
xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
480 __xen_set_p4d_hyper(ptr
, val
);
482 xen_mc_issue(PARAVIRT_LAZY_MMU
);
487 static void xen_set_p4d(p4d_t
*ptr
, p4d_t val
)
489 pgd_t
*user_ptr
= xen_get_user_pgd((pgd_t
*)ptr
);
492 trace_xen_mmu_set_p4d(ptr
, (p4d_t
*)user_ptr
, val
);
494 /* If page is not pinned, we can just update the entry
496 if (!xen_page_pinned(ptr
)) {
499 WARN_ON(xen_page_pinned(user_ptr
));
500 pgd_val
.pgd
= p4d_val_ma(val
);
506 /* If it's pinned, then we can at least batch the kernel and
507 user updates together. */
510 __xen_set_p4d_hyper(ptr
, val
);
512 __xen_set_p4d_hyper((p4d_t
*)user_ptr
, val
);
514 xen_mc_issue(PARAVIRT_LAZY_MMU
);
517 #if CONFIG_PGTABLE_LEVELS >= 5
518 __visible p4dval_t
xen_p4d_val(p4d_t p4d
)
520 return pte_mfn_to_pfn(p4d
.p4d
);
522 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val
);
524 __visible p4d_t
xen_make_p4d(p4dval_t p4d
)
526 p4d
= pte_pfn_to_mfn(p4d
);
528 return native_make_p4d(p4d
);
530 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d
);
531 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
533 static void xen_pmd_walk(struct mm_struct
*mm
, pmd_t
*pmd
,
534 void (*func
)(struct mm_struct
*mm
, struct page
*,
536 bool last
, unsigned long limit
)
540 nr
= last
? pmd_index(limit
) + 1 : PTRS_PER_PMD
;
541 for (i
= 0; i
< nr
; i
++) {
542 if (!pmd_none(pmd
[i
]))
543 (*func
)(mm
, pmd_page(pmd
[i
]), PT_PTE
);
547 static void xen_pud_walk(struct mm_struct
*mm
, pud_t
*pud
,
548 void (*func
)(struct mm_struct
*mm
, struct page
*,
550 bool last
, unsigned long limit
)
554 nr
= last
? pud_index(limit
) + 1 : PTRS_PER_PUD
;
555 for (i
= 0; i
< nr
; i
++) {
558 if (pud_none(pud
[i
]))
561 pmd
= pmd_offset(&pud
[i
], 0);
562 if (PTRS_PER_PMD
> 1)
563 (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
564 xen_pmd_walk(mm
, pmd
, func
, last
&& i
== nr
- 1, limit
);
568 static void xen_p4d_walk(struct mm_struct
*mm
, p4d_t
*p4d
,
569 void (*func
)(struct mm_struct
*mm
, struct page
*,
571 bool last
, unsigned long limit
)
579 pud
= pud_offset(p4d
, 0);
580 if (PTRS_PER_PUD
> 1)
581 (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
582 xen_pud_walk(mm
, pud
, func
, last
, limit
);
586 * (Yet another) pagetable walker. This one is intended for pinning a
587 * pagetable. This means that it walks a pagetable and calls the
588 * callback function on each page it finds making up the page table,
589 * at every level. It walks the entire pagetable, but it only bothers
590 * pinning pte pages which are below limit. In the normal case this
591 * will be STACK_TOP_MAX, but at boot we need to pin up to
594 * We must skip the Xen hole in the middle of the address space, just after
595 * the big x86-64 virtual hole.
597 static void __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
598 void (*func
)(struct mm_struct
*mm
, struct page
*,
603 unsigned hole_low
= 0, hole_high
= 0;
605 /* The limit is the last byte to be touched */
607 BUG_ON(limit
>= FIXADDR_TOP
);
610 * 64-bit has a great big hole in the middle of the address
611 * space, which contains the Xen mappings.
613 hole_low
= pgd_index(GUARD_HOLE_BASE_ADDR
);
614 hole_high
= pgd_index(GUARD_HOLE_END_ADDR
);
616 nr
= pgd_index(limit
) + 1;
617 for (i
= 0; i
< nr
; i
++) {
620 if (i
>= hole_low
&& i
< hole_high
)
623 if (pgd_none(pgd
[i
]))
626 p4d
= p4d_offset(&pgd
[i
], 0);
627 xen_p4d_walk(mm
, p4d
, func
, i
== nr
- 1, limit
);
630 /* Do the top level last, so that the callbacks can use it as
631 a cue to do final things like tlb flushes. */
632 (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
635 static void xen_pgd_walk(struct mm_struct
*mm
,
636 void (*func
)(struct mm_struct
*mm
, struct page
*,
640 __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
643 /* If we're using split pte locks, then take the page's lock and
644 return a pointer to it. Otherwise return NULL. */
645 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
647 spinlock_t
*ptl
= NULL
;
649 #if USE_SPLIT_PTE_PTLOCKS
650 ptl
= ptlock_ptr(page
);
651 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
657 static void xen_pte_unlock(void *v
)
663 static void xen_do_pin(unsigned level
, unsigned long pfn
)
668 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
670 xen_extend_mmuext_op(&op
);
673 static void xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
676 unsigned pgfl
= TestSetPagePinned(page
);
679 void *pt
= lowmem_page_address(page
);
680 unsigned long pfn
= page_to_pfn(page
);
681 struct multicall_space mcs
= __xen_mc_entry(0);
685 * We need to hold the pagetable lock between the time
686 * we make the pagetable RO and when we actually pin
687 * it. If we don't, then other users may come in and
688 * attempt to update the pagetable by writing it,
689 * which will fail because the memory is RO but not
690 * pinned, so Xen won't do the trap'n'emulate.
692 * If we're using split pte locks, we can't hold the
693 * entire pagetable's worth of locks during the
694 * traverse, because we may wrap the preempt count (8
695 * bits). The solution is to mark RO and pin each PTE
696 * page while holding the lock. This means the number
697 * of locks we end up holding is never more than a
698 * batch size (~32 entries, at present).
700 * If we're not using split pte locks, we needn't pin
701 * the PTE pages independently, because we're
702 * protected by the overall pagetable lock.
706 ptl
= xen_pte_lock(page
, mm
);
708 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
709 pfn_pte(pfn
, PAGE_KERNEL_RO
),
710 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
713 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
715 /* Queue a deferred unlock for when this batch
717 xen_mc_callback(xen_pte_unlock
, ptl
);
722 /* This is called just after a mm has been created, but it has not
723 been used yet. We need to make sure that its pagetable is all
724 read-only, and can be pinned. */
725 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
727 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
729 trace_xen_mmu_pgd_pin(mm
, pgd
);
733 __xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
);
735 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
738 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
739 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
740 PFN_DOWN(__pa(user_pgd
)));
746 static void xen_pgd_pin(struct mm_struct
*mm
)
748 __xen_pgd_pin(mm
, mm
->pgd
);
752 * On save, we need to pin all pagetables to make sure they get their
753 * mfns turned into pfns. Search the list for any unpinned pgds and pin
754 * them (unpinned pgds are not currently in use, probably because the
755 * process is under construction or destruction).
757 * Expected to be called in stop_machine() ("equivalent to taking
758 * every spinlock in the system"), so the locking doesn't really
759 * matter all that much.
761 void xen_mm_pin_all(void)
765 spin_lock(&pgd_lock
);
767 list_for_each_entry(page
, &pgd_list
, lru
) {
768 if (!PagePinned(page
)) {
769 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
770 SetPageSavePinned(page
);
774 spin_unlock(&pgd_lock
);
777 static void __init
xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
784 * The init_mm pagetable is really pinned as soon as its created, but
785 * that's before we have page structures to store the bits. So do all
786 * the book-keeping now once struct pages for allocated pages are
787 * initialized. This happens only after memblock_free_all() is called.
789 static void __init
xen_after_bootmem(void)
791 static_branch_enable(&xen_struct_pages_ready
);
792 SetPagePinned(virt_to_page(level3_user_vsyscall
));
793 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
796 static void xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
799 unsigned pgfl
= TestClearPagePinned(page
);
802 void *pt
= lowmem_page_address(page
);
803 unsigned long pfn
= page_to_pfn(page
);
804 spinlock_t
*ptl
= NULL
;
805 struct multicall_space mcs
;
808 * Do the converse to pin_page. If we're using split
809 * pte locks, we must be holding the lock for while
810 * the pte page is unpinned but still RO to prevent
811 * concurrent updates from seeing it in this
812 * partially-pinned state.
814 if (level
== PT_PTE
) {
815 ptl
= xen_pte_lock(page
, mm
);
818 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
821 mcs
= __xen_mc_entry(0);
823 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
824 pfn_pte(pfn
, PAGE_KERNEL
),
825 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
828 /* unlock when batch completed */
829 xen_mc_callback(xen_pte_unlock
, ptl
);
834 /* Release a pagetables pages back as normal RW */
835 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
837 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
839 trace_xen_mmu_pgd_unpin(mm
, pgd
);
843 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
846 xen_do_pin(MMUEXT_UNPIN_TABLE
,
847 PFN_DOWN(__pa(user_pgd
)));
848 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
851 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
856 static void xen_pgd_unpin(struct mm_struct
*mm
)
858 __xen_pgd_unpin(mm
, mm
->pgd
);
862 * On resume, undo any pinning done at save, so that the rest of the
863 * kernel doesn't see any unexpected pinned pagetables.
865 void xen_mm_unpin_all(void)
869 spin_lock(&pgd_lock
);
871 list_for_each_entry(page
, &pgd_list
, lru
) {
872 if (PageSavePinned(page
)) {
873 BUG_ON(!PagePinned(page
));
874 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
875 ClearPageSavePinned(page
);
879 spin_unlock(&pgd_lock
);
882 static void xen_activate_mm(struct mm_struct
*prev
, struct mm_struct
*next
)
884 spin_lock(&next
->page_table_lock
);
886 spin_unlock(&next
->page_table_lock
);
889 static void xen_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
891 spin_lock(&mm
->page_table_lock
);
893 spin_unlock(&mm
->page_table_lock
);
896 static void drop_mm_ref_this_cpu(void *info
)
898 struct mm_struct
*mm
= info
;
900 if (this_cpu_read(cpu_tlbstate
.loaded_mm
) == mm
)
901 leave_mm(smp_processor_id());
904 * If this cpu still has a stale cr3 reference, then make sure
905 * it has been flushed.
907 if (this_cpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
913 * Another cpu may still have their %cr3 pointing at the pagetable, so
914 * we need to repoint it somewhere else before we can unpin it.
916 static void xen_drop_mm_ref(struct mm_struct
*mm
)
921 drop_mm_ref_this_cpu(mm
);
923 /* Get the "official" set of cpus referring to our pagetable. */
924 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
925 for_each_online_cpu(cpu
) {
926 if (per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
928 smp_call_function_single(cpu
, drop_mm_ref_this_cpu
, mm
, 1);
934 * It's possible that a vcpu may have a stale reference to our
935 * cr3, because its in lazy mode, and it hasn't yet flushed
936 * its set of pending hypercalls yet. In this case, we can
937 * look at its actual current cr3 value, and force it to flush
941 for_each_online_cpu(cpu
) {
942 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
943 cpumask_set_cpu(cpu
, mask
);
946 smp_call_function_many(mask
, drop_mm_ref_this_cpu
, mm
, 1);
947 free_cpumask_var(mask
);
950 static void xen_drop_mm_ref(struct mm_struct
*mm
)
952 drop_mm_ref_this_cpu(mm
);
957 * While a process runs, Xen pins its pagetables, which means that the
958 * hypervisor forces it to be read-only, and it controls all updates
959 * to it. This means that all pagetable updates have to go via the
960 * hypervisor, which is moderately expensive.
962 * Since we're pulling the pagetable down, we switch to use init_mm,
963 * unpin old process pagetable and mark it all read-write, which
964 * allows further operations on it to be simple memory accesses.
966 * The only subtle point is that another CPU may be still using the
967 * pagetable because of lazy tlb flushing. This means we need need to
968 * switch all CPUs off this pagetable before we can unpin it.
970 static void xen_exit_mmap(struct mm_struct
*mm
)
972 get_cpu(); /* make sure we don't move around */
976 spin_lock(&mm
->page_table_lock
);
978 /* pgd may not be pinned in the error exit path of execve */
979 if (xen_page_pinned(mm
->pgd
))
982 spin_unlock(&mm
->page_table_lock
);
985 static void xen_post_allocator_init(void);
987 static void __init
pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
992 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
993 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
997 static void __init
xen_cleanhighmap(unsigned long vaddr
,
998 unsigned long vaddr_end
)
1000 unsigned long kernel_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
1001 pmd_t
*pmd
= level2_kernel_pgt
+ pmd_index(vaddr
);
1003 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1004 * We include the PMD passed in on _both_ boundaries. */
1005 for (; vaddr
<= vaddr_end
&& (pmd
< (level2_kernel_pgt
+ PTRS_PER_PMD
));
1006 pmd
++, vaddr
+= PMD_SIZE
) {
1009 if (vaddr
< (unsigned long) _text
|| vaddr
> kernel_end
)
1010 set_pmd(pmd
, __pmd(0));
1012 /* In case we did something silly, we should crash in this function
1013 * instead of somewhere later and be confusing. */
1018 * Make a page range writeable and free it.
1020 static void __init
xen_free_ro_pages(unsigned long paddr
, unsigned long size
)
1022 void *vaddr
= __va(paddr
);
1023 void *vaddr_end
= vaddr
+ size
;
1025 for (; vaddr
< vaddr_end
; vaddr
+= PAGE_SIZE
)
1026 make_lowmem_page_readwrite(vaddr
);
1028 memblock_free(paddr
, size
);
1031 static void __init
xen_cleanmfnmap_free_pgtbl(void *pgtbl
, bool unpin
)
1033 unsigned long pa
= __pa(pgtbl
) & PHYSICAL_PAGE_MASK
;
1036 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(pa
));
1037 ClearPagePinned(virt_to_page(__va(pa
)));
1038 xen_free_ro_pages(pa
, PAGE_SIZE
);
1041 static void __init
xen_cleanmfnmap_pmd(pmd_t
*pmd
, bool unpin
)
1047 if (pmd_large(*pmd
)) {
1048 pa
= pmd_val(*pmd
) & PHYSICAL_PAGE_MASK
;
1049 xen_free_ro_pages(pa
, PMD_SIZE
);
1053 pte_tbl
= pte_offset_kernel(pmd
, 0);
1054 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
1055 if (pte_none(pte_tbl
[i
]))
1057 pa
= pte_pfn(pte_tbl
[i
]) << PAGE_SHIFT
;
1058 xen_free_ro_pages(pa
, PAGE_SIZE
);
1060 set_pmd(pmd
, __pmd(0));
1061 xen_cleanmfnmap_free_pgtbl(pte_tbl
, unpin
);
1064 static void __init
xen_cleanmfnmap_pud(pud_t
*pud
, bool unpin
)
1070 if (pud_large(*pud
)) {
1071 pa
= pud_val(*pud
) & PHYSICAL_PAGE_MASK
;
1072 xen_free_ro_pages(pa
, PUD_SIZE
);
1076 pmd_tbl
= pmd_offset(pud
, 0);
1077 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
1078 if (pmd_none(pmd_tbl
[i
]))
1080 xen_cleanmfnmap_pmd(pmd_tbl
+ i
, unpin
);
1082 set_pud(pud
, __pud(0));
1083 xen_cleanmfnmap_free_pgtbl(pmd_tbl
, unpin
);
1086 static void __init
xen_cleanmfnmap_p4d(p4d_t
*p4d
, bool unpin
)
1092 if (p4d_large(*p4d
)) {
1093 pa
= p4d_val(*p4d
) & PHYSICAL_PAGE_MASK
;
1094 xen_free_ro_pages(pa
, P4D_SIZE
);
1098 pud_tbl
= pud_offset(p4d
, 0);
1099 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
1100 if (pud_none(pud_tbl
[i
]))
1102 xen_cleanmfnmap_pud(pud_tbl
+ i
, unpin
);
1104 set_p4d(p4d
, __p4d(0));
1105 xen_cleanmfnmap_free_pgtbl(pud_tbl
, unpin
);
1109 * Since it is well isolated we can (and since it is perhaps large we should)
1110 * also free the page tables mapping the initial P->M table.
1112 static void __init
xen_cleanmfnmap(unsigned long vaddr
)
1118 unpin
= (vaddr
== 2 * PGDIR_SIZE
);
1120 pgd
= pgd_offset_k(vaddr
);
1121 p4d
= p4d_offset(pgd
, 0);
1122 if (!p4d_none(*p4d
))
1123 xen_cleanmfnmap_p4d(p4d
, unpin
);
1126 static void __init
xen_pagetable_p2m_free(void)
1131 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
1133 /* No memory or already called. */
1134 if ((unsigned long)xen_p2m_addr
== xen_start_info
->mfn_list
)
1137 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1138 memset((void *)xen_start_info
->mfn_list
, 0xff, size
);
1140 addr
= xen_start_info
->mfn_list
;
1142 * We could be in __ka space.
1143 * We roundup to the PMD, which means that if anybody at this stage is
1144 * using the __ka address of xen_start_info or
1145 * xen_start_info->shared_info they are in going to crash. Fortunately
1146 * we have already revectored in xen_setup_kernel_pagetable.
1148 size
= roundup(size
, PMD_SIZE
);
1150 if (addr
>= __START_KERNEL_map
) {
1151 xen_cleanhighmap(addr
, addr
+ size
);
1152 size
= PAGE_ALIGN(xen_start_info
->nr_pages
*
1153 sizeof(unsigned long));
1154 memblock_free(__pa(addr
), size
);
1156 xen_cleanmfnmap(addr
);
1160 static void __init
xen_pagetable_cleanhighmap(void)
1165 /* At this stage, cleanup_highmap has already cleaned __ka space
1166 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1167 * the ramdisk). We continue on, erasing PMD entries that point to page
1168 * tables - do note that they are accessible at this stage via __va.
1169 * As Xen is aligning the memory end to a 4MB boundary, for good
1170 * measure we also round up to PMD_SIZE * 2 - which means that if
1171 * anybody is using __ka address to the initial boot-stack - and try
1172 * to use it - they are going to crash. The xen_start_info has been
1173 * taken care of already in xen_setup_kernel_pagetable. */
1174 addr
= xen_start_info
->pt_base
;
1175 size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
1177 xen_cleanhighmap(addr
, roundup(addr
+ size
, PMD_SIZE
* 2));
1178 xen_start_info
->pt_base
= (unsigned long)__va(__pa(xen_start_info
->pt_base
));
1181 static void __init
xen_pagetable_p2m_setup(void)
1183 xen_vmalloc_p2m_tree();
1185 xen_pagetable_p2m_free();
1187 xen_pagetable_cleanhighmap();
1189 /* And revector! Bye bye old array */
1190 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
1193 static void __init
xen_pagetable_init(void)
1196 xen_post_allocator_init();
1198 xen_pagetable_p2m_setup();
1200 /* Allocate and initialize top and mid mfn levels for p2m structure */
1201 xen_build_mfn_list_list();
1203 /* Remap memory freed due to conflicts with E820 map */
1205 xen_setup_mfn_list_list();
1207 static void xen_write_cr2(unsigned long cr2
)
1209 this_cpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1212 static noinline
void xen_flush_tlb(void)
1214 struct mmuext_op
*op
;
1215 struct multicall_space mcs
;
1219 mcs
= xen_mc_entry(sizeof(*op
));
1222 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1223 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1225 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1230 static void xen_flush_tlb_one_user(unsigned long addr
)
1232 struct mmuext_op
*op
;
1233 struct multicall_space mcs
;
1235 trace_xen_mmu_flush_tlb_one_user(addr
);
1239 mcs
= xen_mc_entry(sizeof(*op
));
1241 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1242 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1243 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1245 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1250 static void xen_flush_tlb_others(const struct cpumask
*cpus
,
1251 const struct flush_tlb_info
*info
)
1254 struct mmuext_op op
;
1255 DECLARE_BITMAP(mask
, NR_CPUS
);
1257 struct multicall_space mcs
;
1258 const size_t mc_entry_size
= sizeof(args
->op
) +
1259 sizeof(args
->mask
[0]) * BITS_TO_LONGS(num_possible_cpus());
1261 trace_xen_mmu_flush_tlb_others(cpus
, info
->mm
, info
->start
, info
->end
);
1263 if (cpumask_empty(cpus
))
1264 return; /* nothing to do */
1266 mcs
= xen_mc_entry(mc_entry_size
);
1268 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1270 /* Remove us, and any offline CPUS. */
1271 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1272 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args
->mask
));
1274 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1275 if (info
->end
!= TLB_FLUSH_ALL
&&
1276 (info
->end
- info
->start
) <= PAGE_SIZE
) {
1277 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1278 args
->op
.arg1
.linear_addr
= info
->start
;
1281 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1283 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1286 static unsigned long xen_read_cr3(void)
1288 return this_cpu_read(xen_cr3
);
1291 static void set_current_cr3(void *v
)
1293 this_cpu_write(xen_current_cr3
, (unsigned long)v
);
1296 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1298 struct mmuext_op op
;
1301 trace_xen_mmu_write_cr3(kernel
, cr3
);
1304 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1308 WARN_ON(mfn
== 0 && kernel
);
1310 op
.cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1313 xen_extend_mmuext_op(&op
);
1316 this_cpu_write(xen_cr3
, cr3
);
1318 /* Update xen_current_cr3 once the batch has actually
1320 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1323 static void xen_write_cr3(unsigned long cr3
)
1325 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1327 BUG_ON(preemptible());
1329 xen_mc_batch(); /* disables interrupts */
1331 /* Update while interrupts are disabled, so its atomic with
1333 this_cpu_write(xen_cr3
, cr3
);
1335 __xen_write_cr3(true, cr3
);
1338 __xen_write_cr3(false, __pa(user_pgd
));
1340 __xen_write_cr3(false, 0);
1342 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1346 * At the start of the day - when Xen launches a guest, it has already
1347 * built pagetables for the guest. We diligently look over them
1348 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1349 * init_top_pgt and its friends. Then when we are happy we load
1350 * the new init_top_pgt - and continue on.
1352 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1353 * up the rest of the pagetables. When it has completed it loads the cr3.
1354 * N.B. that baremetal would start at 'start_kernel' (and the early
1355 * #PF handler would create bootstrap pagetables) - so we are running
1356 * with the same assumptions as what to do when write_cr3 is executed
1359 * Since there are no user-page tables at all, we have two variants
1360 * of xen_write_cr3 - the early bootup (this one), and the late one
1361 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1362 * the Linux kernel and user-space are both in ring 3 while the
1363 * hypervisor is in ring 0.
1365 static void __init
xen_write_cr3_init(unsigned long cr3
)
1367 BUG_ON(preemptible());
1369 xen_mc_batch(); /* disables interrupts */
1371 /* Update while interrupts are disabled, so its atomic with
1373 this_cpu_write(xen_cr3
, cr3
);
1375 __xen_write_cr3(true, cr3
);
1377 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1380 static int xen_pgd_alloc(struct mm_struct
*mm
)
1382 pgd_t
*pgd
= mm
->pgd
;
1383 struct page
*page
= virt_to_page(pgd
);
1387 BUG_ON(PagePinned(virt_to_page(pgd
)));
1388 BUG_ON(page
->private != 0);
1390 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1391 page
->private = (unsigned long)user_pgd
;
1393 if (user_pgd
!= NULL
) {
1394 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1395 user_pgd
[pgd_index(VSYSCALL_ADDR
)] =
1396 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1401 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1406 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1408 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1411 free_page((unsigned long)user_pgd
);
1415 * Init-time set_pte while constructing initial pagetables, which
1416 * doesn't allow RO page table pages to be remapped RW.
1418 * If there is no MFN for this PFN then this page is initially
1419 * ballooned out so clear the PTE (as in decrease_reservation() in
1420 * drivers/xen/balloon.c).
1422 * Many of these PTE updates are done on unpinned and writable pages
1423 * and doing a hypercall for these is unnecessary and expensive. At
1424 * this point it is not possible to tell if a page is pinned or not,
1425 * so always write the PTE directly and rely on Xen trapping and
1426 * emulating any updates as necessary.
1428 __visible pte_t
xen_make_pte_init(pteval_t pte
)
1433 * Pages belonging to the initial p2m list mapped outside the default
1434 * address range must be mapped read-only. This region contains the
1435 * page tables for mapping the p2m list, too, and page tables MUST be
1438 pfn
= (pte
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
1439 if (xen_start_info
->mfn_list
< __START_KERNEL_map
&&
1440 pfn
>= xen_start_info
->first_p2m_pfn
&&
1441 pfn
< xen_start_info
->first_p2m_pfn
+ xen_start_info
->nr_p2m_frames
)
1444 pte
= pte_pfn_to_mfn(pte
);
1445 return native_make_pte(pte
);
1447 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init
);
1449 static void __init
xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1451 __xen_set_pte(ptep
, pte
);
1454 /* Early in boot, while setting up the initial pagetable, assume
1455 everything is pinned. */
1456 static void __init
xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1458 #ifdef CONFIG_FLATMEM
1459 BUG_ON(mem_map
); /* should only be used early */
1461 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1462 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1465 /* Used for pmd and pud */
1466 static void __init
xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1468 #ifdef CONFIG_FLATMEM
1469 BUG_ON(mem_map
); /* should only be used early */
1471 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1474 /* Early release_pte assumes that all pts are pinned, since there's
1475 only init_mm and anything attached to that is pinned. */
1476 static void __init
xen_release_pte_init(unsigned long pfn
)
1478 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1479 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1482 static void __init
xen_release_pmd_init(unsigned long pfn
)
1484 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1487 static inline void __pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1489 struct multicall_space mcs
;
1490 struct mmuext_op
*op
;
1492 mcs
= __xen_mc_entry(sizeof(*op
));
1495 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
1497 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
1500 static inline void __set_pfn_prot(unsigned long pfn
, pgprot_t prot
)
1502 struct multicall_space mcs
;
1503 unsigned long addr
= (unsigned long)__va(pfn
<< PAGE_SHIFT
);
1505 mcs
= __xen_mc_entry(0);
1506 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)addr
,
1507 pfn_pte(pfn
, prot
), 0);
1510 /* This needs to make sure the new pte page is pinned iff its being
1511 attached to a pinned pagetable. */
1512 static inline void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
,
1515 bool pinned
= xen_page_pinned(mm
->pgd
);
1517 trace_xen_mmu_alloc_ptpage(mm
, pfn
, level
, pinned
);
1520 struct page
*page
= pfn_to_page(pfn
);
1522 if (static_branch_likely(&xen_struct_pages_ready
))
1523 SetPagePinned(page
);
1527 __set_pfn_prot(pfn
, PAGE_KERNEL_RO
);
1529 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1530 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1532 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1536 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1538 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1541 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1543 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1546 /* This should never happen until we're OK to use struct page */
1547 static inline void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1549 struct page
*page
= pfn_to_page(pfn
);
1550 bool pinned
= PagePinned(page
);
1552 trace_xen_mmu_release_ptpage(pfn
, level
, pinned
);
1557 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1558 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1560 __set_pfn_prot(pfn
, PAGE_KERNEL
);
1562 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1564 ClearPagePinned(page
);
1568 static void xen_release_pte(unsigned long pfn
)
1570 xen_release_ptpage(pfn
, PT_PTE
);
1573 static void xen_release_pmd(unsigned long pfn
)
1575 xen_release_ptpage(pfn
, PT_PMD
);
1578 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1580 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1583 static void xen_release_pud(unsigned long pfn
)
1585 xen_release_ptpage(pfn
, PT_PUD
);
1589 * Like __va(), but returns address in the kernel mapping (which is
1590 * all we have until the physical memory mapping has been set up.
1592 static void * __init
__ka(phys_addr_t paddr
)
1594 return (void *)(paddr
+ __START_KERNEL_map
);
1597 /* Convert a machine address to physical address */
1598 static unsigned long __init
m2p(phys_addr_t maddr
)
1602 maddr
&= XEN_PTE_MFN_MASK
;
1603 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1608 /* Convert a machine address to kernel virtual */
1609 static void * __init
m2v(phys_addr_t maddr
)
1611 return __ka(m2p(maddr
));
1614 /* Set the page permissions on an identity-mapped pages */
1615 static void __init
set_page_prot_flags(void *addr
, pgprot_t prot
,
1616 unsigned long flags
)
1618 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1619 pte_t pte
= pfn_pte(pfn
, prot
);
1621 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, flags
))
1624 static void __init
set_page_prot(void *addr
, pgprot_t prot
)
1626 return set_page_prot_flags(addr
, prot
, UVMF_NONE
);
1629 void __init
xen_setup_machphys_mapping(void)
1631 struct xen_machphys_mapping mapping
;
1633 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping
, &mapping
) == 0) {
1634 machine_to_phys_mapping
= (unsigned long *)mapping
.v_start
;
1635 machine_to_phys_nr
= mapping
.max_mfn
+ 1;
1637 machine_to_phys_nr
= MACH2PHYS_NR_ENTRIES
;
1641 static void __init
convert_pfn_mfn(void *v
)
1646 /* All levels are converted the same way, so just treat them
1648 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1649 pte
[i
] = xen_make_pte(pte
[i
].pte
);
1651 static void __init
check_pt_base(unsigned long *pt_base
, unsigned long *pt_end
,
1654 if (*pt_base
== PFN_DOWN(__pa(addr
))) {
1655 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1656 clear_page((void *)addr
);
1659 if (*pt_end
== PFN_DOWN(__pa(addr
))) {
1660 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1661 clear_page((void *)addr
);
1666 * Set up the initial kernel pagetable.
1668 * We can construct this by grafting the Xen provided pagetable into
1669 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1670 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1671 * kernel has a physical mapping to start with - but that's enough to
1672 * get __va working. We need to fill in the rest of the physical
1673 * mapping once some sort of allocator has been set up.
1675 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
1679 unsigned long addr
[3];
1680 unsigned long pt_base
, pt_end
;
1683 /* max_pfn_mapped is the last pfn mapped in the initial memory
1684 * mappings. Considering that on Xen after the kernel mappings we
1685 * have the mappings of some pages that don't exist in pfn space, we
1686 * set max_pfn_mapped to the last real pfn mapped. */
1687 if (xen_start_info
->mfn_list
< __START_KERNEL_map
)
1688 max_pfn_mapped
= xen_start_info
->first_p2m_pfn
;
1690 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1692 pt_base
= PFN_DOWN(__pa(xen_start_info
->pt_base
));
1693 pt_end
= pt_base
+ xen_start_info
->nr_pt_frames
;
1695 /* Zap identity mapping */
1696 init_top_pgt
[0] = __pgd(0);
1698 /* Pre-constructed entries are in pfn, so convert to mfn */
1699 /* L4[273] -> level3_ident_pgt */
1700 /* L4[511] -> level3_kernel_pgt */
1701 convert_pfn_mfn(init_top_pgt
);
1703 /* L3_i[0] -> level2_ident_pgt */
1704 convert_pfn_mfn(level3_ident_pgt
);
1705 /* L3_k[510] -> level2_kernel_pgt */
1706 /* L3_k[511] -> level2_fixmap_pgt */
1707 convert_pfn_mfn(level3_kernel_pgt
);
1709 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1710 convert_pfn_mfn(level2_fixmap_pgt
);
1712 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1713 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
1714 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
1716 addr
[0] = (unsigned long)pgd
;
1717 addr
[1] = (unsigned long)l3
;
1718 addr
[2] = (unsigned long)l2
;
1719 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1720 * Both L4[273][0] and L4[511][510] have entries that point to the same
1721 * L2 (PMD) tables. Meaning that if you modify it in __va space
1722 * it will be also modified in the __ka space! (But if you just
1723 * modify the PMD table to point to other PTE's or none, then you
1724 * are OK - which is what cleanup_highmap does) */
1725 copy_page(level2_ident_pgt
, l2
);
1726 /* Graft it onto L4[511][510] */
1727 copy_page(level2_kernel_pgt
, l2
);
1730 * Zap execute permission from the ident map. Due to the sharing of
1731 * L1 entries we need to do this in the L2.
1733 if (__supported_pte_mask
& _PAGE_NX
) {
1734 for (i
= 0; i
< PTRS_PER_PMD
; ++i
) {
1735 if (pmd_none(level2_ident_pgt
[i
]))
1737 level2_ident_pgt
[i
] = pmd_set_flags(level2_ident_pgt
[i
], _PAGE_NX
);
1741 /* Copy the initial P->M table mappings if necessary. */
1742 i
= pgd_index(xen_start_info
->mfn_list
);
1743 if (i
&& i
< pgd_index(__START_KERNEL_map
))
1744 init_top_pgt
[i
] = ((pgd_t
*)xen_start_info
->pt_base
)[i
];
1746 /* Make pagetable pieces RO */
1747 set_page_prot(init_top_pgt
, PAGE_KERNEL_RO
);
1748 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
1749 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
1750 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
1751 set_page_prot(level2_ident_pgt
, PAGE_KERNEL_RO
);
1752 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
1753 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
1755 for (i
= 0; i
< FIXMAP_PMD_NUM
; i
++) {
1756 set_page_prot(level1_fixmap_pgt
+ i
* PTRS_PER_PTE
,
1760 /* Pin down new L4 */
1761 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
1762 PFN_DOWN(__pa_symbol(init_top_pgt
)));
1764 /* Unpin Xen-provided one */
1765 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1768 * At this stage there can be no user pgd, and no page structure to
1769 * attach it to, so make sure we just set kernel pgd.
1772 __xen_write_cr3(true, __pa(init_top_pgt
));
1773 xen_mc_issue(PARAVIRT_LAZY_CPU
);
1775 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1776 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1777 * the initial domain. For guests using the toolstack, they are in:
1778 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1779 * rip out the [L4] (pgd), but for guests we shave off three pages.
1781 for (i
= 0; i
< ARRAY_SIZE(addr
); i
++)
1782 check_pt_base(&pt_base
, &pt_end
, addr
[i
]);
1784 /* Our (by three pages) smaller Xen pagetable that we are using */
1785 xen_pt_base
= PFN_PHYS(pt_base
);
1786 xen_pt_size
= (pt_end
- pt_base
) * PAGE_SIZE
;
1787 memblock_reserve(xen_pt_base
, xen_pt_size
);
1789 /* Revector the xen_start_info */
1790 xen_start_info
= (struct start_info
*)__va(__pa(xen_start_info
));
1794 * Read a value from a physical address.
1796 static unsigned long __init
xen_read_phys_ulong(phys_addr_t addr
)
1798 unsigned long *vaddr
;
1801 vaddr
= early_memremap_ro(addr
, sizeof(val
));
1803 early_memunmap(vaddr
, sizeof(val
));
1808 * Translate a virtual address to a physical one without relying on mapped
1809 * page tables. Don't rely on big pages being aligned in (guest) physical
1812 static phys_addr_t __init
xen_early_virt_to_phys(unsigned long vaddr
)
1821 pgd
= native_make_pgd(xen_read_phys_ulong(pa
+ pgd_index(vaddr
) *
1823 if (!pgd_present(pgd
))
1826 pa
= pgd_val(pgd
) & PTE_PFN_MASK
;
1827 pud
= native_make_pud(xen_read_phys_ulong(pa
+ pud_index(vaddr
) *
1829 if (!pud_present(pud
))
1831 pa
= pud_val(pud
) & PTE_PFN_MASK
;
1833 return pa
+ (vaddr
& ~PUD_MASK
);
1835 pmd
= native_make_pmd(xen_read_phys_ulong(pa
+ pmd_index(vaddr
) *
1837 if (!pmd_present(pmd
))
1839 pa
= pmd_val(pmd
) & PTE_PFN_MASK
;
1841 return pa
+ (vaddr
& ~PMD_MASK
);
1843 pte
= native_make_pte(xen_read_phys_ulong(pa
+ pte_index(vaddr
) *
1845 if (!pte_present(pte
))
1847 pa
= pte_pfn(pte
) << PAGE_SHIFT
;
1849 return pa
| (vaddr
& ~PAGE_MASK
);
1853 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1856 void __init
xen_relocate_p2m(void)
1858 phys_addr_t size
, new_area
, pt_phys
, pmd_phys
, pud_phys
;
1859 unsigned long p2m_pfn
, p2m_pfn_end
, n_frames
, pfn
, pfn_end
;
1860 int n_pte
, n_pt
, n_pmd
, n_pud
, idx_pte
, idx_pt
, idx_pmd
, idx_pud
;
1865 unsigned long *new_p2m
;
1867 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
1868 n_pte
= roundup(size
, PAGE_SIZE
) >> PAGE_SHIFT
;
1869 n_pt
= roundup(size
, PMD_SIZE
) >> PMD_SHIFT
;
1870 n_pmd
= roundup(size
, PUD_SIZE
) >> PUD_SHIFT
;
1871 n_pud
= roundup(size
, P4D_SIZE
) >> P4D_SHIFT
;
1872 n_frames
= n_pte
+ n_pt
+ n_pmd
+ n_pud
;
1874 new_area
= xen_find_free_area(PFN_PHYS(n_frames
));
1876 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1881 * Setup the page tables for addressing the new p2m list.
1882 * We have asked the hypervisor to map the p2m list at the user address
1883 * PUD_SIZE. It may have done so, or it may have used a kernel space
1884 * address depending on the Xen version.
1885 * To avoid any possible virtual address collision, just use
1886 * 2 * PUD_SIZE for the new area.
1888 pud_phys
= new_area
;
1889 pmd_phys
= pud_phys
+ PFN_PHYS(n_pud
);
1890 pt_phys
= pmd_phys
+ PFN_PHYS(n_pmd
);
1891 p2m_pfn
= PFN_DOWN(pt_phys
) + n_pt
;
1893 pgd
= __va(read_cr3_pa());
1894 new_p2m
= (unsigned long *)(2 * PGDIR_SIZE
);
1895 for (idx_pud
= 0; idx_pud
< n_pud
; idx_pud
++) {
1896 pud
= early_memremap(pud_phys
, PAGE_SIZE
);
1898 for (idx_pmd
= 0; idx_pmd
< min(n_pmd
, PTRS_PER_PUD
);
1900 pmd
= early_memremap(pmd_phys
, PAGE_SIZE
);
1902 for (idx_pt
= 0; idx_pt
< min(n_pt
, PTRS_PER_PMD
);
1904 pt
= early_memremap(pt_phys
, PAGE_SIZE
);
1907 idx_pte
< min(n_pte
, PTRS_PER_PTE
);
1909 pt
[idx_pte
] = pfn_pte(p2m_pfn
,
1913 n_pte
-= PTRS_PER_PTE
;
1914 early_memunmap(pt
, PAGE_SIZE
);
1915 make_lowmem_page_readonly(__va(pt_phys
));
1916 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
,
1918 pmd
[idx_pt
] = __pmd(_PAGE_TABLE
| pt_phys
);
1919 pt_phys
+= PAGE_SIZE
;
1921 n_pt
-= PTRS_PER_PMD
;
1922 early_memunmap(pmd
, PAGE_SIZE
);
1923 make_lowmem_page_readonly(__va(pmd_phys
));
1924 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE
,
1925 PFN_DOWN(pmd_phys
));
1926 pud
[idx_pmd
] = __pud(_PAGE_TABLE
| pmd_phys
);
1927 pmd_phys
+= PAGE_SIZE
;
1929 n_pmd
-= PTRS_PER_PUD
;
1930 early_memunmap(pud
, PAGE_SIZE
);
1931 make_lowmem_page_readonly(__va(pud_phys
));
1932 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(pud_phys
));
1933 set_pgd(pgd
+ 2 + idx_pud
, __pgd(_PAGE_TABLE
| pud_phys
));
1934 pud_phys
+= PAGE_SIZE
;
1937 /* Now copy the old p2m info to the new area. */
1938 memcpy(new_p2m
, xen_p2m_addr
, size
);
1939 xen_p2m_addr
= new_p2m
;
1941 /* Release the old p2m list and set new list info. */
1942 p2m_pfn
= PFN_DOWN(xen_early_virt_to_phys(xen_start_info
->mfn_list
));
1944 p2m_pfn_end
= p2m_pfn
+ PFN_DOWN(size
);
1946 if (xen_start_info
->mfn_list
< __START_KERNEL_map
) {
1947 pfn
= xen_start_info
->first_p2m_pfn
;
1948 pfn_end
= xen_start_info
->first_p2m_pfn
+
1949 xen_start_info
->nr_p2m_frames
;
1950 set_pgd(pgd
+ 1, __pgd(0));
1953 pfn_end
= p2m_pfn_end
;
1956 memblock_free(PFN_PHYS(pfn
), PAGE_SIZE
* (pfn_end
- pfn
));
1957 while (pfn
< pfn_end
) {
1958 if (pfn
== p2m_pfn
) {
1962 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1966 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
1967 xen_start_info
->first_p2m_pfn
= PFN_DOWN(new_area
);
1968 xen_start_info
->nr_p2m_frames
= n_frames
;
1971 void __init
xen_reserve_special_pages(void)
1975 memblock_reserve(__pa(xen_start_info
), PAGE_SIZE
);
1976 if (xen_start_info
->store_mfn
) {
1977 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->store_mfn
));
1978 memblock_reserve(paddr
, PAGE_SIZE
);
1980 if (!xen_initial_domain()) {
1981 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->console
.domU
.mfn
));
1982 memblock_reserve(paddr
, PAGE_SIZE
);
1986 void __init
xen_pt_check_e820(void)
1988 if (xen_is_e820_reserved(xen_pt_base
, xen_pt_size
)) {
1989 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
1994 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
1996 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
2000 phys
>>= PAGE_SHIFT
;
2003 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
2004 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2007 /* All local page mappings */
2008 pte
= pfn_pte(phys
, prot
);
2011 #ifdef CONFIG_X86_LOCAL_APIC
2012 case FIX_APIC_BASE
: /* maps dummy local APIC */
2013 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2017 #ifdef CONFIG_X86_IO_APIC
2018 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
2020 * We just don't map the IO APIC - all access is via
2021 * hypercalls. Keep the address in the pte for reference.
2023 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2027 case FIX_PARAVIRT_BOOTMAP
:
2028 /* This is an MFN, but it isn't an IO mapping from the
2030 pte
= mfn_pte(phys
, prot
);
2034 /* By default, set_fixmap is used for hardware mappings */
2035 pte
= mfn_pte(phys
, prot
);
2039 __native_set_fixmap(idx
, pte
);
2041 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2042 /* Replicate changes to map the vsyscall page into the user
2043 pagetable vsyscall mapping. */
2044 if (idx
== VSYSCALL_PAGE
) {
2045 unsigned long vaddr
= __fix_to_virt(idx
);
2046 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
2051 static void __init
xen_post_allocator_init(void)
2053 pv_ops
.mmu
.set_pte
= xen_set_pte
;
2054 pv_ops
.mmu
.set_pmd
= xen_set_pmd
;
2055 pv_ops
.mmu
.set_pud
= xen_set_pud
;
2056 pv_ops
.mmu
.set_p4d
= xen_set_p4d
;
2058 /* This will work as long as patching hasn't happened yet
2059 (which it hasn't) */
2060 pv_ops
.mmu
.alloc_pte
= xen_alloc_pte
;
2061 pv_ops
.mmu
.alloc_pmd
= xen_alloc_pmd
;
2062 pv_ops
.mmu
.release_pte
= xen_release_pte
;
2063 pv_ops
.mmu
.release_pmd
= xen_release_pmd
;
2064 pv_ops
.mmu
.alloc_pud
= xen_alloc_pud
;
2065 pv_ops
.mmu
.release_pud
= xen_release_pud
;
2066 pv_ops
.mmu
.make_pte
= PV_CALLEE_SAVE(xen_make_pte
);
2068 pv_ops
.mmu
.write_cr3
= &xen_write_cr3
;
2071 static void xen_leave_lazy_mmu(void)
2075 paravirt_leave_lazy_mmu();
2079 static const struct pv_mmu_ops xen_mmu_ops __initconst
= {
2080 .read_cr2
= __PV_IS_CALLEE_SAVE(xen_read_cr2
),
2081 .write_cr2
= xen_write_cr2
,
2083 .read_cr3
= xen_read_cr3
,
2084 .write_cr3
= xen_write_cr3_init
,
2086 .flush_tlb_user
= xen_flush_tlb
,
2087 .flush_tlb_kernel
= xen_flush_tlb
,
2088 .flush_tlb_one_user
= xen_flush_tlb_one_user
,
2089 .flush_tlb_others
= xen_flush_tlb_others
,
2090 .tlb_remove_table
= tlb_remove_table
,
2092 .pgd_alloc
= xen_pgd_alloc
,
2093 .pgd_free
= xen_pgd_free
,
2095 .alloc_pte
= xen_alloc_pte_init
,
2096 .release_pte
= xen_release_pte_init
,
2097 .alloc_pmd
= xen_alloc_pmd_init
,
2098 .release_pmd
= xen_release_pmd_init
,
2100 .set_pte
= xen_set_pte_init
,
2101 .set_pmd
= xen_set_pmd_hyper
,
2103 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
2104 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
2106 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
2107 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
2109 .make_pte
= PV_CALLEE_SAVE(xen_make_pte_init
),
2110 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
2112 .set_pud
= xen_set_pud_hyper
,
2114 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
2115 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
2117 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
2118 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
2119 .set_p4d
= xen_set_p4d_hyper
,
2121 .alloc_pud
= xen_alloc_pmd_init
,
2122 .release_pud
= xen_release_pmd_init
,
2124 #if CONFIG_PGTABLE_LEVELS >= 5
2125 .p4d_val
= PV_CALLEE_SAVE(xen_p4d_val
),
2126 .make_p4d
= PV_CALLEE_SAVE(xen_make_p4d
),
2129 .activate_mm
= xen_activate_mm
,
2130 .dup_mmap
= xen_dup_mmap
,
2131 .exit_mmap
= xen_exit_mmap
,
2134 .enter
= paravirt_enter_lazy_mmu
,
2135 .leave
= xen_leave_lazy_mmu
,
2136 .flush
= paravirt_flush_lazy_mmu
,
2139 .set_fixmap
= xen_set_fixmap
,
2142 void __init
xen_init_mmu_ops(void)
2144 x86_init
.paging
.pagetable_init
= xen_pagetable_init
;
2145 x86_init
.hyper
.init_after_bootmem
= xen_after_bootmem
;
2147 pv_ops
.mmu
= xen_mmu_ops
;
2149 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2152 /* Protected by xen_reservation_lock. */
2153 #define MAX_CONTIG_ORDER 9 /* 2MB */
2154 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2156 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2157 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2158 unsigned long *in_frames
,
2159 unsigned long *out_frames
)
2162 struct multicall_space mcs
;
2165 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2166 mcs
= __xen_mc_entry(0);
2169 in_frames
[i
] = virt_to_mfn(vaddr
);
2171 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2172 __set_phys_to_machine(virt_to_pfn(vaddr
), INVALID_P2M_ENTRY
);
2175 out_frames
[i
] = virt_to_pfn(vaddr
);
2181 * Update the pfn-to-mfn mappings for a virtual address range, either to
2182 * point to an array of mfns, or contiguously from a single starting
2185 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2186 unsigned long *mfns
,
2187 unsigned long first_mfn
)
2194 limit
= 1u << order
;
2195 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2196 struct multicall_space mcs
;
2199 mcs
= __xen_mc_entry(0);
2203 mfn
= first_mfn
+ i
;
2205 if (i
< (limit
- 1))
2209 flags
= UVMF_INVLPG
| UVMF_ALL
;
2211 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2214 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2215 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2217 set_phys_to_machine(virt_to_pfn(vaddr
), mfn
);
2224 * Perform the hypercall to exchange a region of our pfns to point to
2225 * memory with the required contiguous alignment. Takes the pfns as
2226 * input, and populates mfns as output.
2228 * Returns a success code indicating whether the hypervisor was able to
2229 * satisfy the request or not.
2231 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2232 unsigned long *pfns_in
,
2233 unsigned long extents_out
,
2234 unsigned int order_out
,
2235 unsigned long *mfns_out
,
2236 unsigned int address_bits
)
2241 struct xen_memory_exchange exchange
= {
2243 .nr_extents
= extents_in
,
2244 .extent_order
= order_in
,
2245 .extent_start
= pfns_in
,
2249 .nr_extents
= extents_out
,
2250 .extent_order
= order_out
,
2251 .extent_start
= mfns_out
,
2252 .address_bits
= address_bits
,
2257 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2259 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2260 success
= (exchange
.nr_exchanged
== extents_in
);
2262 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2263 BUG_ON(success
&& (rc
!= 0));
2268 int xen_create_contiguous_region(phys_addr_t pstart
, unsigned int order
,
2269 unsigned int address_bits
,
2270 dma_addr_t
*dma_handle
)
2272 unsigned long *in_frames
= discontig_frames
, out_frame
;
2273 unsigned long flags
;
2275 unsigned long vstart
= (unsigned long)phys_to_virt(pstart
);
2278 * Currently an auto-translated guest will not perform I/O, nor will
2279 * it require PAE page directories below 4GB. Therefore any calls to
2280 * this function are redundant and can be ignored.
2283 if (unlikely(order
> MAX_CONTIG_ORDER
))
2286 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2288 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2290 /* 1. Zap current PTEs, remembering MFNs. */
2291 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2293 /* 2. Get a new contiguous memory extent. */
2294 out_frame
= virt_to_pfn(vstart
);
2295 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2296 1, order
, &out_frame
,
2299 /* 3. Map the new extent in place of old pages. */
2301 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2303 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2305 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2307 *dma_handle
= virt_to_machine(vstart
).maddr
;
2308 return success
? 0 : -ENOMEM
;
2311 void xen_destroy_contiguous_region(phys_addr_t pstart
, unsigned int order
)
2313 unsigned long *out_frames
= discontig_frames
, in_frame
;
2314 unsigned long flags
;
2316 unsigned long vstart
;
2318 if (unlikely(order
> MAX_CONTIG_ORDER
))
2321 vstart
= (unsigned long)phys_to_virt(pstart
);
2322 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2324 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2326 /* 1. Find start MFN of contiguous extent. */
2327 in_frame
= virt_to_mfn(vstart
);
2329 /* 2. Zap current PTEs. */
2330 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2332 /* 3. Do the exchange for non-contiguous MFNs. */
2333 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2336 /* 4. Map new pages in place of old pages. */
2338 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2340 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2342 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2345 static noinline
void xen_flush_tlb_all(void)
2347 struct mmuext_op
*op
;
2348 struct multicall_space mcs
;
2352 mcs
= xen_mc_entry(sizeof(*op
));
2355 op
->cmd
= MMUEXT_TLB_FLUSH_ALL
;
2356 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
2358 xen_mc_issue(PARAVIRT_LAZY_MMU
);
2363 #define REMAP_BATCH_SIZE 16
2370 struct mmu_update
*mmu_update
;
2373 static int remap_area_pfn_pte_fn(pte_t
*ptep
, unsigned long addr
, void *data
)
2375 struct remap_data
*rmd
= data
;
2376 pte_t pte
= pte_mkspecial(mfn_pte(*rmd
->pfn
, rmd
->prot
));
2379 * If we have a contiguous range, just update the pfn itself,
2380 * else update pointer to be "next pfn".
2382 if (rmd
->contiguous
)
2387 rmd
->mmu_update
->ptr
= virt_to_machine(ptep
).maddr
;
2388 rmd
->mmu_update
->ptr
|= rmd
->no_translate
?
2389 MMU_PT_UPDATE_NO_TRANSLATE
:
2390 MMU_NORMAL_PT_UPDATE
;
2391 rmd
->mmu_update
->val
= pte_val_ma(pte
);
2397 int xen_remap_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2398 xen_pfn_t
*pfn
, int nr
, int *err_ptr
, pgprot_t prot
,
2399 unsigned int domid
, bool no_translate
, struct page
**pages
)
2402 struct remap_data rmd
;
2403 struct mmu_update mmu_update
[REMAP_BATCH_SIZE
];
2404 unsigned long range
;
2407 BUG_ON(!((vma
->vm_flags
& (VM_PFNMAP
| VM_IO
)) == (VM_PFNMAP
| VM_IO
)));
2412 * We use the err_ptr to indicate if there we are doing a contiguous
2413 * mapping or a discontigious mapping.
2415 rmd
.contiguous
= !err_ptr
;
2416 rmd
.no_translate
= no_translate
;
2421 int batch
= min(REMAP_BATCH_SIZE
, nr
);
2422 int batch_left
= batch
;
2424 range
= (unsigned long)batch
<< PAGE_SHIFT
;
2426 rmd
.mmu_update
= mmu_update
;
2427 err
= apply_to_page_range(vma
->vm_mm
, addr
, range
,
2428 remap_area_pfn_pte_fn
, &rmd
);
2433 * We record the error for each page that gives an error, but
2434 * continue mapping until the whole set is done
2439 err
= HYPERVISOR_mmu_update(&mmu_update
[index
],
2440 batch_left
, &done
, domid
);
2443 * @err_ptr may be the same buffer as @gfn, so
2444 * only clear it after each chunk of @gfn is
2448 for (i
= index
; i
< index
+ done
; i
++)
2455 done
++; /* Skip failed frame. */
2460 } while (batch_left
);
2470 xen_flush_tlb_all();
2472 return err
< 0 ? err
: mapped
;
2474 EXPORT_SYMBOL_GPL(xen_remap_pfn
);
2476 #ifdef CONFIG_KEXEC_CORE
2477 phys_addr_t
paddr_vmcoreinfo_note(void)
2479 if (xen_pv_domain())
2480 return virt_to_machine(vmcoreinfo_note
).maddr
;
2482 return __pa(vmcoreinfo_note
);
2484 #endif /* CONFIG_KEXEC_CORE */