1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/mmu_context.h>
71 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
74 detach_pid(p
, PIDTYPE_PID
);
76 detach_pid(p
, PIDTYPE_TGID
);
77 detach_pid(p
, PIDTYPE_PGID
);
78 detach_pid(p
, PIDTYPE_SID
);
80 list_del_rcu(&p
->tasks
);
81 list_del_init(&p
->sibling
);
82 __this_cpu_dec(process_counts
);
84 list_del_rcu(&p
->thread_group
);
85 list_del_rcu(&p
->thread_node
);
89 * This function expects the tasklist_lock write-locked.
91 static void __exit_signal(struct task_struct
*tsk
)
93 struct signal_struct
*sig
= tsk
->signal
;
94 bool group_dead
= thread_group_leader(tsk
);
95 struct sighand_struct
*sighand
;
96 struct tty_struct
*tty
;
99 sighand
= rcu_dereference_check(tsk
->sighand
,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand
->siglock
);
103 #ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk
);
106 posix_cpu_timers_exit_group(tsk
);
114 * If there is any task waiting for the group exit
117 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
118 wake_up_process(sig
->group_exit_task
);
120 if (tsk
== sig
->curr_target
)
121 sig
->curr_target
= next_thread(tsk
);
124 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
125 sizeof(unsigned long long));
128 * Accumulate here the counters for all threads as they die. We could
129 * skip the group leader because it is the last user of signal_struct,
130 * but we want to avoid the race with thread_group_cputime() which can
131 * see the empty ->thread_head list.
133 task_cputime(tsk
, &utime
, &stime
);
134 write_seqlock(&sig
->stats_lock
);
137 sig
->gtime
+= task_gtime(tsk
);
138 sig
->min_flt
+= tsk
->min_flt
;
139 sig
->maj_flt
+= tsk
->maj_flt
;
140 sig
->nvcsw
+= tsk
->nvcsw
;
141 sig
->nivcsw
+= tsk
->nivcsw
;
142 sig
->inblock
+= task_io_get_inblock(tsk
);
143 sig
->oublock
+= task_io_get_oublock(tsk
);
144 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
145 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
147 __unhash_process(tsk
, group_dead
);
148 write_sequnlock(&sig
->stats_lock
);
151 * Do this under ->siglock, we can race with another thread
152 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 flush_sigqueue(&tsk
->pending
);
156 spin_unlock(&sighand
->siglock
);
158 __cleanup_sighand(sighand
);
159 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
161 flush_sigqueue(&sig
->shared_pending
);
166 static void delayed_put_task_struct(struct rcu_head
*rhp
)
168 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
170 perf_event_delayed_put(tsk
);
171 trace_sched_process_free(tsk
);
172 put_task_struct(tsk
);
175 void put_task_struct_rcu_user(struct task_struct
*task
)
177 if (refcount_dec_and_test(&task
->rcu_users
))
178 call_rcu(&task
->rcu
, delayed_put_task_struct
);
181 void release_task(struct task_struct
*p
)
183 struct task_struct
*leader
;
184 struct pid
*thread_pid
;
187 /* don't need to get the RCU readlock here - the process is dead and
188 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 atomic_dec(&__task_cred(p
)->user
->processes
);
195 write_lock_irq(&tasklist_lock
);
196 ptrace_release_task(p
);
197 thread_pid
= get_pid(p
->thread_pid
);
201 * If we are the last non-leader member of the thread
202 * group, and the leader is zombie, then notify the
203 * group leader's parent process. (if it wants notification.)
206 leader
= p
->group_leader
;
207 if (leader
!= p
&& thread_group_empty(leader
)
208 && leader
->exit_state
== EXIT_ZOMBIE
) {
210 * If we were the last child thread and the leader has
211 * exited already, and the leader's parent ignores SIGCHLD,
212 * then we are the one who should release the leader.
214 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
216 leader
->exit_state
= EXIT_DEAD
;
219 write_unlock_irq(&tasklist_lock
);
220 seccomp_filter_release(p
);
221 proc_flush_pid(thread_pid
);
224 put_task_struct_rcu_user(p
);
227 if (unlikely(zap_leader
))
231 int rcuwait_wake_up(struct rcuwait
*w
)
234 struct task_struct
*task
;
239 * Order condition vs @task, such that everything prior to the load
240 * of @task is visible. This is the condition as to why the user called
241 * rcuwait_wake() in the first place. Pairs with set_current_state()
242 * barrier (A) in rcuwait_wait_event().
245 * [S] tsk = current [S] cond = true
251 task
= rcu_dereference(w
->task
);
253 ret
= wake_up_process(task
);
258 EXPORT_SYMBOL_GPL(rcuwait_wake_up
);
261 * Determine if a process group is "orphaned", according to the POSIX
262 * definition in 2.2.2.52. Orphaned process groups are not to be affected
263 * by terminal-generated stop signals. Newly orphaned process groups are
264 * to receive a SIGHUP and a SIGCONT.
266 * "I ask you, have you ever known what it is to be an orphan?"
268 static int will_become_orphaned_pgrp(struct pid
*pgrp
,
269 struct task_struct
*ignored_task
)
271 struct task_struct
*p
;
273 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
274 if ((p
== ignored_task
) ||
275 (p
->exit_state
&& thread_group_empty(p
)) ||
276 is_global_init(p
->real_parent
))
279 if (task_pgrp(p
->real_parent
) != pgrp
&&
280 task_session(p
->real_parent
) == task_session(p
))
282 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
287 int is_current_pgrp_orphaned(void)
291 read_lock(&tasklist_lock
);
292 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
293 read_unlock(&tasklist_lock
);
298 static bool has_stopped_jobs(struct pid
*pgrp
)
300 struct task_struct
*p
;
302 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
303 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
305 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
311 * Check to see if any process groups have become orphaned as
312 * a result of our exiting, and if they have any stopped jobs,
313 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
318 struct pid
*pgrp
= task_pgrp(tsk
);
319 struct task_struct
*ignored_task
= tsk
;
322 /* exit: our father is in a different pgrp than
323 * we are and we were the only connection outside.
325 parent
= tsk
->real_parent
;
327 /* reparent: our child is in a different pgrp than
328 * we are, and it was the only connection outside.
332 if (task_pgrp(parent
) != pgrp
&&
333 task_session(parent
) == task_session(tsk
) &&
334 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
335 has_stopped_jobs(pgrp
)) {
336 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
337 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
343 * A task is exiting. If it owned this mm, find a new owner for the mm.
345 void mm_update_next_owner(struct mm_struct
*mm
)
347 struct task_struct
*c
, *g
, *p
= current
;
351 * If the exiting or execing task is not the owner, it's
352 * someone else's problem.
357 * The current owner is exiting/execing and there are no other
358 * candidates. Do not leave the mm pointing to a possibly
359 * freed task structure.
361 if (atomic_read(&mm
->mm_users
) <= 1) {
362 WRITE_ONCE(mm
->owner
, NULL
);
366 read_lock(&tasklist_lock
);
368 * Search in the children
370 list_for_each_entry(c
, &p
->children
, sibling
) {
372 goto assign_new_owner
;
376 * Search in the siblings
378 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
380 goto assign_new_owner
;
384 * Search through everything else, we should not get here often.
386 for_each_process(g
) {
387 if (g
->flags
& PF_KTHREAD
)
389 for_each_thread(g
, c
) {
391 goto assign_new_owner
;
396 read_unlock(&tasklist_lock
);
398 * We found no owner yet mm_users > 1: this implies that we are
399 * most likely racing with swapoff (try_to_unuse()) or /proc or
400 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
402 WRITE_ONCE(mm
->owner
, NULL
);
409 * The task_lock protects c->mm from changing.
410 * We always want mm->owner->mm == mm
414 * Delay read_unlock() till we have the task_lock()
415 * to ensure that c does not slip away underneath us
417 read_unlock(&tasklist_lock
);
423 WRITE_ONCE(mm
->owner
, c
);
427 #endif /* CONFIG_MEMCG */
430 * Turn us into a lazy TLB process if we
433 static void exit_mm(void)
435 struct mm_struct
*mm
= current
->mm
;
436 struct core_state
*core_state
;
438 exit_mm_release(current
, mm
);
443 * Serialize with any possible pending coredump.
444 * We must hold mmap_lock around checking core_state
445 * and clearing tsk->mm. The core-inducing thread
446 * will increment ->nr_threads for each thread in the
447 * group with ->mm != NULL.
450 core_state
= mm
->core_state
;
452 struct core_thread self
;
454 mmap_read_unlock(mm
);
457 if (self
.task
->flags
& PF_SIGNALED
)
458 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
462 * Implies mb(), the result of xchg() must be visible
463 * to core_state->dumper.
465 if (atomic_dec_and_test(&core_state
->nr_threads
))
466 complete(&core_state
->startup
);
469 set_current_state(TASK_UNINTERRUPTIBLE
);
470 if (!self
.task
) /* see coredump_finish() */
472 freezable_schedule();
474 __set_current_state(TASK_RUNNING
);
478 BUG_ON(mm
!= current
->active_mm
);
479 /* more a memory barrier than a real lock */
482 * When a thread stops operating on an address space, the loop
483 * in membarrier_private_expedited() may not observe that
484 * tsk->mm, and the loop in membarrier_global_expedited() may
485 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
486 * rq->membarrier_state, so those would not issue an IPI.
487 * Membarrier requires a memory barrier after accessing
488 * user-space memory, before clearing tsk->mm or the
489 * rq->membarrier_state.
491 smp_mb__after_spinlock();
494 membarrier_update_current_mm(NULL
);
495 enter_lazy_tlb(mm
, current
);
497 task_unlock(current
);
498 mmap_read_unlock(mm
);
499 mm_update_next_owner(mm
);
501 if (test_thread_flag(TIF_MEMDIE
))
505 static struct task_struct
*find_alive_thread(struct task_struct
*p
)
507 struct task_struct
*t
;
509 for_each_thread(p
, t
) {
510 if (!(t
->flags
& PF_EXITING
))
516 static struct task_struct
*find_child_reaper(struct task_struct
*father
,
517 struct list_head
*dead
)
518 __releases(&tasklist_lock
)
519 __acquires(&tasklist_lock
)
521 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
522 struct task_struct
*reaper
= pid_ns
->child_reaper
;
523 struct task_struct
*p
, *n
;
525 if (likely(reaper
!= father
))
528 reaper
= find_alive_thread(father
);
530 pid_ns
->child_reaper
= reaper
;
534 write_unlock_irq(&tasklist_lock
);
536 list_for_each_entry_safe(p
, n
, dead
, ptrace_entry
) {
537 list_del_init(&p
->ptrace_entry
);
541 zap_pid_ns_processes(pid_ns
);
542 write_lock_irq(&tasklist_lock
);
548 * When we die, we re-parent all our children, and try to:
549 * 1. give them to another thread in our thread group, if such a member exists
550 * 2. give it to the first ancestor process which prctl'd itself as a
551 * child_subreaper for its children (like a service manager)
552 * 3. give it to the init process (PID 1) in our pid namespace
554 static struct task_struct
*find_new_reaper(struct task_struct
*father
,
555 struct task_struct
*child_reaper
)
557 struct task_struct
*thread
, *reaper
;
559 thread
= find_alive_thread(father
);
563 if (father
->signal
->has_child_subreaper
) {
564 unsigned int ns_level
= task_pid(father
)->level
;
566 * Find the first ->is_child_subreaper ancestor in our pid_ns.
567 * We can't check reaper != child_reaper to ensure we do not
568 * cross the namespaces, the exiting parent could be injected
569 * by setns() + fork().
570 * We check pid->level, this is slightly more efficient than
571 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
573 for (reaper
= father
->real_parent
;
574 task_pid(reaper
)->level
== ns_level
;
575 reaper
= reaper
->real_parent
) {
576 if (reaper
== &init_task
)
578 if (!reaper
->signal
->is_child_subreaper
)
580 thread
= find_alive_thread(reaper
);
590 * Any that need to be release_task'd are put on the @dead list.
592 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
593 struct list_head
*dead
)
595 if (unlikely(p
->exit_state
== EXIT_DEAD
))
598 /* We don't want people slaying init. */
599 p
->exit_signal
= SIGCHLD
;
601 /* If it has exited notify the new parent about this child's death. */
603 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
604 if (do_notify_parent(p
, p
->exit_signal
)) {
605 p
->exit_state
= EXIT_DEAD
;
606 list_add(&p
->ptrace_entry
, dead
);
610 kill_orphaned_pgrp(p
, father
);
614 * This does two things:
616 * A. Make init inherit all the child processes
617 * B. Check to see if any process groups have become orphaned
618 * as a result of our exiting, and if they have any stopped
619 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
621 static void forget_original_parent(struct task_struct
*father
,
622 struct list_head
*dead
)
624 struct task_struct
*p
, *t
, *reaper
;
626 if (unlikely(!list_empty(&father
->ptraced
)))
627 exit_ptrace(father
, dead
);
629 /* Can drop and reacquire tasklist_lock */
630 reaper
= find_child_reaper(father
, dead
);
631 if (list_empty(&father
->children
))
634 reaper
= find_new_reaper(father
, reaper
);
635 list_for_each_entry(p
, &father
->children
, sibling
) {
636 for_each_thread(p
, t
) {
637 RCU_INIT_POINTER(t
->real_parent
, reaper
);
638 BUG_ON((!t
->ptrace
) != (rcu_access_pointer(t
->parent
) == father
));
639 if (likely(!t
->ptrace
))
640 t
->parent
= t
->real_parent
;
641 if (t
->pdeath_signal
)
642 group_send_sig_info(t
->pdeath_signal
,
647 * If this is a threaded reparent there is no need to
648 * notify anyone anything has happened.
650 if (!same_thread_group(reaper
, father
))
651 reparent_leader(father
, p
, dead
);
653 list_splice_tail_init(&father
->children
, &reaper
->children
);
657 * Send signals to all our closest relatives so that they know
658 * to properly mourn us..
660 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
663 struct task_struct
*p
, *n
;
666 write_lock_irq(&tasklist_lock
);
667 forget_original_parent(tsk
, &dead
);
670 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
672 tsk
->exit_state
= EXIT_ZOMBIE
;
673 if (unlikely(tsk
->ptrace
)) {
674 int sig
= thread_group_leader(tsk
) &&
675 thread_group_empty(tsk
) &&
676 !ptrace_reparented(tsk
) ?
677 tsk
->exit_signal
: SIGCHLD
;
678 autoreap
= do_notify_parent(tsk
, sig
);
679 } else if (thread_group_leader(tsk
)) {
680 autoreap
= thread_group_empty(tsk
) &&
681 do_notify_parent(tsk
, tsk
->exit_signal
);
687 tsk
->exit_state
= EXIT_DEAD
;
688 list_add(&tsk
->ptrace_entry
, &dead
);
691 /* mt-exec, de_thread() is waiting for group leader */
692 if (unlikely(tsk
->signal
->notify_count
< 0))
693 wake_up_process(tsk
->signal
->group_exit_task
);
694 write_unlock_irq(&tasklist_lock
);
696 list_for_each_entry_safe(p
, n
, &dead
, ptrace_entry
) {
697 list_del_init(&p
->ptrace_entry
);
702 #ifdef CONFIG_DEBUG_STACK_USAGE
703 static void check_stack_usage(void)
705 static DEFINE_SPINLOCK(low_water_lock
);
706 static int lowest_to_date
= THREAD_SIZE
;
709 free
= stack_not_used(current
);
711 if (free
>= lowest_to_date
)
714 spin_lock(&low_water_lock
);
715 if (free
< lowest_to_date
) {
716 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
717 current
->comm
, task_pid_nr(current
), free
);
718 lowest_to_date
= free
;
720 spin_unlock(&low_water_lock
);
723 static inline void check_stack_usage(void) {}
726 void __noreturn
do_exit(long code
)
728 struct task_struct
*tsk
= current
;
732 * We can get here from a kernel oops, sometimes with preemption off.
733 * Start by checking for critical errors.
734 * Then fix up important state like USER_DS and preemption.
735 * Then do everything else.
738 WARN_ON(blk_needs_flush_plug(tsk
));
740 if (unlikely(in_interrupt()))
741 panic("Aiee, killing interrupt handler!");
742 if (unlikely(!tsk
->pid
))
743 panic("Attempted to kill the idle task!");
746 * If do_exit is called because this processes oopsed, it's possible
747 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
748 * continuing. Amongst other possible reasons, this is to prevent
749 * mm_release()->clear_child_tid() from writing to a user-controlled
752 force_uaccess_begin();
754 if (unlikely(in_atomic())) {
755 pr_info("note: %s[%d] exited with preempt_count %d\n",
756 current
->comm
, task_pid_nr(current
),
758 preempt_count_set(PREEMPT_ENABLED
);
761 profile_task_exit(tsk
);
764 ptrace_event(PTRACE_EVENT_EXIT
, code
);
766 validate_creds_for_do_exit(tsk
);
769 * We're taking recursive faults here in do_exit. Safest is to just
770 * leave this task alone and wait for reboot.
772 if (unlikely(tsk
->flags
& PF_EXITING
)) {
773 pr_alert("Fixing recursive fault but reboot is needed!\n");
774 futex_exit_recursive(tsk
);
775 set_current_state(TASK_UNINTERRUPTIBLE
);
779 exit_signals(tsk
); /* sets PF_EXITING */
781 /* sync mm's RSS info before statistics gathering */
783 sync_mm_rss(tsk
->mm
);
784 acct_update_integrals(tsk
);
785 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
788 * If the last thread of global init has exited, panic
789 * immediately to get a useable coredump.
791 if (unlikely(is_global_init(tsk
)))
792 panic("Attempted to kill init! exitcode=0x%08x\n",
793 tsk
->signal
->group_exit_code
?: (int)code
);
795 #ifdef CONFIG_POSIX_TIMERS
796 hrtimer_cancel(&tsk
->signal
->real_timer
);
797 exit_itimers(tsk
->signal
);
800 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
802 acct_collect(code
, group_dead
);
807 tsk
->exit_code
= code
;
808 taskstats_exit(tsk
, group_dead
);
814 trace_sched_process_exit(tsk
);
821 disassociate_ctty(1);
822 exit_task_namespaces(tsk
);
827 * Flush inherited counters to the parent - before the parent
828 * gets woken up by child-exit notifications.
830 * because of cgroup mode, must be called before cgroup_exit()
832 perf_event_exit_task(tsk
);
834 sched_autogroup_exit_task(tsk
);
838 * FIXME: do that only when needed, using sched_exit tracepoint
840 flush_ptrace_hw_breakpoint(tsk
);
842 exit_tasks_rcu_start();
843 exit_notify(tsk
, group_dead
);
844 proc_exit_connector(tsk
);
845 mpol_put_task_policy(tsk
);
847 if (unlikely(current
->pi_state_cache
))
848 kfree(current
->pi_state_cache
);
851 * Make sure we are holding no locks:
853 debug_check_no_locks_held();
856 exit_io_context(tsk
);
858 if (tsk
->splice_pipe
)
859 free_pipe_info(tsk
->splice_pipe
);
861 if (tsk
->task_frag
.page
)
862 put_page(tsk
->task_frag
.page
);
864 validate_creds_for_do_exit(tsk
);
869 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
871 exit_tasks_rcu_finish();
873 lockdep_free_task(tsk
);
876 EXPORT_SYMBOL_GPL(do_exit
);
878 void complete_and_exit(struct completion
*comp
, long code
)
885 EXPORT_SYMBOL(complete_and_exit
);
887 SYSCALL_DEFINE1(exit
, int, error_code
)
889 do_exit((error_code
&0xff)<<8);
893 * Take down every thread in the group. This is called by fatal signals
894 * as well as by sys_exit_group (below).
897 do_group_exit(int exit_code
)
899 struct signal_struct
*sig
= current
->signal
;
901 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
903 if (signal_group_exit(sig
))
904 exit_code
= sig
->group_exit_code
;
905 else if (!thread_group_empty(current
)) {
906 struct sighand_struct
*const sighand
= current
->sighand
;
908 spin_lock_irq(&sighand
->siglock
);
909 if (signal_group_exit(sig
))
910 /* Another thread got here before we took the lock. */
911 exit_code
= sig
->group_exit_code
;
913 sig
->group_exit_code
= exit_code
;
914 sig
->flags
= SIGNAL_GROUP_EXIT
;
915 zap_other_threads(current
);
917 spin_unlock_irq(&sighand
->siglock
);
925 * this kills every thread in the thread group. Note that any externally
926 * wait4()-ing process will get the correct exit code - even if this
927 * thread is not the thread group leader.
929 SYSCALL_DEFINE1(exit_group
, int, error_code
)
931 do_group_exit((error_code
& 0xff) << 8);
944 enum pid_type wo_type
;
948 struct waitid_info
*wo_info
;
950 struct rusage
*wo_rusage
;
952 wait_queue_entry_t child_wait
;
956 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
958 return wo
->wo_type
== PIDTYPE_MAX
||
959 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
963 eligible_child(struct wait_opts
*wo
, bool ptrace
, struct task_struct
*p
)
965 if (!eligible_pid(wo
, p
))
969 * Wait for all children (clone and not) if __WALL is set or
970 * if it is traced by us.
972 if (ptrace
|| (wo
->wo_flags
& __WALL
))
976 * Otherwise, wait for clone children *only* if __WCLONE is set;
977 * otherwise, wait for non-clone children *only*.
979 * Note: a "clone" child here is one that reports to its parent
980 * using a signal other than SIGCHLD, or a non-leader thread which
981 * we can only see if it is traced by us.
983 if ((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
990 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
991 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
992 * the lock and this task is uninteresting. If we return nonzero, we have
993 * released the lock and the system call should return.
995 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
998 pid_t pid
= task_pid_vnr(p
);
999 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1000 struct waitid_info
*infop
;
1002 if (!likely(wo
->wo_flags
& WEXITED
))
1005 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1006 status
= p
->exit_code
;
1008 read_unlock(&tasklist_lock
);
1009 sched_annotate_sleep();
1011 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1016 * Move the task's state to DEAD/TRACE, only one thread can do this.
1018 state
= (ptrace_reparented(p
) && thread_group_leader(p
)) ?
1019 EXIT_TRACE
: EXIT_DEAD
;
1020 if (cmpxchg(&p
->exit_state
, EXIT_ZOMBIE
, state
) != EXIT_ZOMBIE
)
1023 * We own this thread, nobody else can reap it.
1025 read_unlock(&tasklist_lock
);
1026 sched_annotate_sleep();
1029 * Check thread_group_leader() to exclude the traced sub-threads.
1031 if (state
== EXIT_DEAD
&& thread_group_leader(p
)) {
1032 struct signal_struct
*sig
= p
->signal
;
1033 struct signal_struct
*psig
= current
->signal
;
1034 unsigned long maxrss
;
1035 u64 tgutime
, tgstime
;
1038 * The resource counters for the group leader are in its
1039 * own task_struct. Those for dead threads in the group
1040 * are in its signal_struct, as are those for the child
1041 * processes it has previously reaped. All these
1042 * accumulate in the parent's signal_struct c* fields.
1044 * We don't bother to take a lock here to protect these
1045 * p->signal fields because the whole thread group is dead
1046 * and nobody can change them.
1048 * psig->stats_lock also protects us from our sub-theads
1049 * which can reap other children at the same time. Until
1050 * we change k_getrusage()-like users to rely on this lock
1051 * we have to take ->siglock as well.
1053 * We use thread_group_cputime_adjusted() to get times for
1054 * the thread group, which consolidates times for all threads
1055 * in the group including the group leader.
1057 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1058 spin_lock_irq(¤t
->sighand
->siglock
);
1059 write_seqlock(&psig
->stats_lock
);
1060 psig
->cutime
+= tgutime
+ sig
->cutime
;
1061 psig
->cstime
+= tgstime
+ sig
->cstime
;
1062 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1064 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1066 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1068 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1070 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1072 task_io_get_inblock(p
) +
1073 sig
->inblock
+ sig
->cinblock
;
1075 task_io_get_oublock(p
) +
1076 sig
->oublock
+ sig
->coublock
;
1077 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1078 if (psig
->cmaxrss
< maxrss
)
1079 psig
->cmaxrss
= maxrss
;
1080 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1081 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1082 write_sequnlock(&psig
->stats_lock
);
1083 spin_unlock_irq(¤t
->sighand
->siglock
);
1087 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1088 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1089 ? p
->signal
->group_exit_code
: p
->exit_code
;
1090 wo
->wo_stat
= status
;
1092 if (state
== EXIT_TRACE
) {
1093 write_lock_irq(&tasklist_lock
);
1094 /* We dropped tasklist, ptracer could die and untrace */
1097 /* If parent wants a zombie, don't release it now */
1098 state
= EXIT_ZOMBIE
;
1099 if (do_notify_parent(p
, p
->exit_signal
))
1101 p
->exit_state
= state
;
1102 write_unlock_irq(&tasklist_lock
);
1104 if (state
== EXIT_DEAD
)
1108 infop
= wo
->wo_info
;
1110 if ((status
& 0x7f) == 0) {
1111 infop
->cause
= CLD_EXITED
;
1112 infop
->status
= status
>> 8;
1114 infop
->cause
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1115 infop
->status
= status
& 0x7f;
1124 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1127 if (task_is_traced(p
) && !(p
->jobctl
& JOBCTL_LISTENING
))
1128 return &p
->exit_code
;
1130 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1131 return &p
->signal
->group_exit_code
;
1137 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1139 * @ptrace: is the wait for ptrace
1140 * @p: task to wait for
1142 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1145 * read_lock(&tasklist_lock), which is released if return value is
1146 * non-zero. Also, grabs and releases @p->sighand->siglock.
1149 * 0 if wait condition didn't exist and search for other wait conditions
1150 * should continue. Non-zero return, -errno on failure and @p's pid on
1151 * success, implies that tasklist_lock is released and wait condition
1152 * search should terminate.
1154 static int wait_task_stopped(struct wait_opts
*wo
,
1155 int ptrace
, struct task_struct
*p
)
1157 struct waitid_info
*infop
;
1158 int exit_code
, *p_code
, why
;
1159 uid_t uid
= 0; /* unneeded, required by compiler */
1163 * Traditionally we see ptrace'd stopped tasks regardless of options.
1165 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1168 if (!task_stopped_code(p
, ptrace
))
1172 spin_lock_irq(&p
->sighand
->siglock
);
1174 p_code
= task_stopped_code(p
, ptrace
);
1175 if (unlikely(!p_code
))
1178 exit_code
= *p_code
;
1182 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1185 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1187 spin_unlock_irq(&p
->sighand
->siglock
);
1192 * Now we are pretty sure this task is interesting.
1193 * Make sure it doesn't get reaped out from under us while we
1194 * give up the lock and then examine it below. We don't want to
1195 * keep holding onto the tasklist_lock while we call getrusage and
1196 * possibly take page faults for user memory.
1199 pid
= task_pid_vnr(p
);
1200 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1201 read_unlock(&tasklist_lock
);
1202 sched_annotate_sleep();
1204 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1207 if (likely(!(wo
->wo_flags
& WNOWAIT
)))
1208 wo
->wo_stat
= (exit_code
<< 8) | 0x7f;
1210 infop
= wo
->wo_info
;
1213 infop
->status
= exit_code
;
1221 * Handle do_wait work for one task in a live, non-stopped state.
1222 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1223 * the lock and this task is uninteresting. If we return nonzero, we have
1224 * released the lock and the system call should return.
1226 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1228 struct waitid_info
*infop
;
1232 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1235 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1238 spin_lock_irq(&p
->sighand
->siglock
);
1239 /* Re-check with the lock held. */
1240 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1241 spin_unlock_irq(&p
->sighand
->siglock
);
1244 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1245 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1246 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1247 spin_unlock_irq(&p
->sighand
->siglock
);
1249 pid
= task_pid_vnr(p
);
1251 read_unlock(&tasklist_lock
);
1252 sched_annotate_sleep();
1254 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1257 infop
= wo
->wo_info
;
1259 wo
->wo_stat
= 0xffff;
1261 infop
->cause
= CLD_CONTINUED
;
1264 infop
->status
= SIGCONT
;
1270 * Consider @p for a wait by @parent.
1272 * -ECHILD should be in ->notask_error before the first call.
1273 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1274 * Returns zero if the search for a child should continue;
1275 * then ->notask_error is 0 if @p is an eligible child,
1278 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1279 struct task_struct
*p
)
1282 * We can race with wait_task_zombie() from another thread.
1283 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1284 * can't confuse the checks below.
1286 int exit_state
= READ_ONCE(p
->exit_state
);
1289 if (unlikely(exit_state
== EXIT_DEAD
))
1292 ret
= eligible_child(wo
, ptrace
, p
);
1296 if (unlikely(exit_state
== EXIT_TRACE
)) {
1298 * ptrace == 0 means we are the natural parent. In this case
1299 * we should clear notask_error, debugger will notify us.
1301 if (likely(!ptrace
))
1302 wo
->notask_error
= 0;
1306 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1308 * If it is traced by its real parent's group, just pretend
1309 * the caller is ptrace_do_wait() and reap this child if it
1312 * This also hides group stop state from real parent; otherwise
1313 * a single stop can be reported twice as group and ptrace stop.
1314 * If a ptracer wants to distinguish these two events for its
1315 * own children it should create a separate process which takes
1316 * the role of real parent.
1318 if (!ptrace_reparented(p
))
1323 if (exit_state
== EXIT_ZOMBIE
) {
1324 /* we don't reap group leaders with subthreads */
1325 if (!delay_group_leader(p
)) {
1327 * A zombie ptracee is only visible to its ptracer.
1328 * Notification and reaping will be cascaded to the
1329 * real parent when the ptracer detaches.
1331 if (unlikely(ptrace
) || likely(!p
->ptrace
))
1332 return wait_task_zombie(wo
, p
);
1336 * Allow access to stopped/continued state via zombie by
1337 * falling through. Clearing of notask_error is complex.
1341 * If WEXITED is set, notask_error should naturally be
1342 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1343 * so, if there are live subthreads, there are events to
1344 * wait for. If all subthreads are dead, it's still safe
1345 * to clear - this function will be called again in finite
1346 * amount time once all the subthreads are released and
1347 * will then return without clearing.
1351 * Stopped state is per-task and thus can't change once the
1352 * target task dies. Only continued and exited can happen.
1353 * Clear notask_error if WCONTINUED | WEXITED.
1355 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1356 wo
->notask_error
= 0;
1359 * @p is alive and it's gonna stop, continue or exit, so
1360 * there always is something to wait for.
1362 wo
->notask_error
= 0;
1366 * Wait for stopped. Depending on @ptrace, different stopped state
1367 * is used and the two don't interact with each other.
1369 ret
= wait_task_stopped(wo
, ptrace
, p
);
1374 * Wait for continued. There's only one continued state and the
1375 * ptracer can consume it which can confuse the real parent. Don't
1376 * use WCONTINUED from ptracer. You don't need or want it.
1378 return wait_task_continued(wo
, p
);
1382 * Do the work of do_wait() for one thread in the group, @tsk.
1384 * -ECHILD should be in ->notask_error before the first call.
1385 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1386 * Returns zero if the search for a child should continue; then
1387 * ->notask_error is 0 if there were any eligible children,
1390 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1392 struct task_struct
*p
;
1394 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1395 int ret
= wait_consider_task(wo
, 0, p
);
1404 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1406 struct task_struct
*p
;
1408 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1409 int ret
= wait_consider_task(wo
, 1, p
);
1418 static int child_wait_callback(wait_queue_entry_t
*wait
, unsigned mode
,
1419 int sync
, void *key
)
1421 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1423 struct task_struct
*p
= key
;
1425 if (!eligible_pid(wo
, p
))
1428 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1431 return default_wake_function(wait
, mode
, sync
, key
);
1434 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1436 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1437 TASK_INTERRUPTIBLE
, p
);
1440 static long do_wait(struct wait_opts
*wo
)
1442 struct task_struct
*tsk
;
1445 trace_sched_process_wait(wo
->wo_pid
);
1447 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1448 wo
->child_wait
.private = current
;
1449 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1452 * If there is nothing that can match our criteria, just get out.
1453 * We will clear ->notask_error to zero if we see any child that
1454 * might later match our criteria, even if we are not able to reap
1457 wo
->notask_error
= -ECHILD
;
1458 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1459 (!wo
->wo_pid
|| !pid_has_task(wo
->wo_pid
, wo
->wo_type
)))
1462 set_current_state(TASK_INTERRUPTIBLE
);
1463 read_lock(&tasklist_lock
);
1466 retval
= do_wait_thread(wo
, tsk
);
1470 retval
= ptrace_do_wait(wo
, tsk
);
1474 if (wo
->wo_flags
& __WNOTHREAD
)
1476 } while_each_thread(current
, tsk
);
1477 read_unlock(&tasklist_lock
);
1480 retval
= wo
->notask_error
;
1481 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1482 retval
= -ERESTARTSYS
;
1483 if (!signal_pending(current
)) {
1489 __set_current_state(TASK_RUNNING
);
1490 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1494 static long kernel_waitid(int which
, pid_t upid
, struct waitid_info
*infop
,
1495 int options
, struct rusage
*ru
)
1497 struct wait_opts wo
;
1498 struct pid
*pid
= NULL
;
1501 unsigned int f_flags
= 0;
1503 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
|
1504 __WNOTHREAD
|__WCLONE
|__WALL
))
1506 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1518 pid
= find_get_pid(upid
);
1521 type
= PIDTYPE_PGID
;
1526 pid
= find_get_pid(upid
);
1528 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1535 pid
= pidfd_get_pid(upid
, &f_flags
);
1537 return PTR_ERR(pid
);
1546 wo
.wo_flags
= options
;
1549 if (f_flags
& O_NONBLOCK
)
1550 wo
.wo_flags
|= WNOHANG
;
1553 if (!ret
&& !(options
& WNOHANG
) && (f_flags
& O_NONBLOCK
))
1560 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1561 infop
, int, options
, struct rusage __user
*, ru
)
1564 struct waitid_info info
= {.status
= 0};
1565 long err
= kernel_waitid(which
, upid
, &info
, options
, ru
? &r
: NULL
);
1571 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1577 if (!user_write_access_begin(infop
, sizeof(*infop
)))
1580 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1581 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1582 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1583 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1584 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1585 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1586 user_write_access_end();
1589 user_write_access_end();
1593 long kernel_wait4(pid_t upid
, int __user
*stat_addr
, int options
,
1596 struct wait_opts wo
;
1597 struct pid
*pid
= NULL
;
1601 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1602 __WNOTHREAD
|__WCLONE
|__WALL
))
1605 /* -INT_MIN is not defined */
1606 if (upid
== INT_MIN
)
1611 else if (upid
< 0) {
1612 type
= PIDTYPE_PGID
;
1613 pid
= find_get_pid(-upid
);
1614 } else if (upid
== 0) {
1615 type
= PIDTYPE_PGID
;
1616 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1617 } else /* upid > 0 */ {
1619 pid
= find_get_pid(upid
);
1624 wo
.wo_flags
= options
| WEXITED
;
1630 if (ret
> 0 && stat_addr
&& put_user(wo
.wo_stat
, stat_addr
))
1636 int kernel_wait(pid_t pid
, int *stat
)
1638 struct wait_opts wo
= {
1639 .wo_type
= PIDTYPE_PID
,
1640 .wo_pid
= find_get_pid(pid
),
1641 .wo_flags
= WEXITED
,
1646 if (ret
> 0 && wo
.wo_stat
)
1652 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1653 int, options
, struct rusage __user
*, ru
)
1656 long err
= kernel_wait4(upid
, stat_addr
, options
, ru
? &r
: NULL
);
1659 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1665 #ifdef __ARCH_WANT_SYS_WAITPID
1668 * sys_waitpid() remains for compatibility. waitpid() should be
1669 * implemented by calling sys_wait4() from libc.a.
1671 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1673 return kernel_wait4(pid
, stat_addr
, options
, NULL
);
1678 #ifdef CONFIG_COMPAT
1679 COMPAT_SYSCALL_DEFINE4(wait4
,
1681 compat_uint_t __user
*, stat_addr
,
1683 struct compat_rusage __user
*, ru
)
1686 long err
= kernel_wait4(pid
, stat_addr
, options
, ru
? &r
: NULL
);
1688 if (ru
&& put_compat_rusage(&r
, ru
))
1694 COMPAT_SYSCALL_DEFINE5(waitid
,
1695 int, which
, compat_pid_t
, pid
,
1696 struct compat_siginfo __user
*, infop
, int, options
,
1697 struct compat_rusage __user
*, uru
)
1700 struct waitid_info info
= {.status
= 0};
1701 long err
= kernel_waitid(which
, pid
, &info
, options
, uru
? &ru
: NULL
);
1707 /* kernel_waitid() overwrites everything in ru */
1708 if (COMPAT_USE_64BIT_TIME
)
1709 err
= copy_to_user(uru
, &ru
, sizeof(ru
));
1711 err
= put_compat_rusage(&ru
, uru
);
1720 if (!user_write_access_begin(infop
, sizeof(*infop
)))
1723 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1724 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1725 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1726 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1727 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1728 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1729 user_write_access_end();
1732 user_write_access_end();
1738 * thread_group_exited - check that a thread group has exited
1739 * @pid: tgid of thread group to be checked.
1741 * Test if the thread group represented by tgid has exited (all
1742 * threads are zombies, dead or completely gone).
1744 * Return: true if the thread group has exited. false otherwise.
1746 bool thread_group_exited(struct pid
*pid
)
1748 struct task_struct
*task
;
1752 task
= pid_task(pid
, PIDTYPE_PID
);
1754 (READ_ONCE(task
->exit_state
) && thread_group_empty(task
));
1759 EXPORT_SYMBOL(thread_group_exited
);
1761 __weak
void abort(void)
1765 /* if that doesn't kill us, halt */
1766 panic("Oops failed to kill thread");
1768 EXPORT_SYMBOL(abort
);