2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cputype.h>
32 #include <trace/events/kvm.h>
37 * All of this file is extremly similar to the ARM coproc.c, but the
38 * types are different. My gut feeling is that it should be pretty
39 * easy to merge, but that would be an ABI breakage -- again. VFP
40 * would also need to be abstracted.
42 * For AArch32, we only take care of what is being trapped. Anything
43 * that has to do with init and userspace access has to go via the
47 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
48 static u32 cache_levels
;
50 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53 /* Which cache CCSIDR represents depends on CSSELR value. */
54 static u32
get_ccsidr(u32 csselr
)
58 /* Make sure noone else changes CSSELR during this! */
60 /* Put value into CSSELR */
61 asm volatile("msr csselr_el1, %x0" : : "r" (csselr
));
63 /* Read result out of CCSIDR */
64 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr
));
70 static void do_dc_cisw(u32 val
)
72 asm volatile("dc cisw, %x0" : : "r" (val
));
76 static void do_dc_csw(u32 val
)
78 asm volatile("dc csw, %x0" : : "r" (val
));
82 /* See note at ARM ARM B1.14.4 */
83 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
84 const struct sys_reg_params
*p
,
85 const struct sys_reg_desc
*r
)
91 return read_from_write_only(vcpu
, p
);
95 cpumask_setall(&vcpu
->arch
.require_dcache_flush
);
96 cpumask_clear_cpu(cpu
, &vcpu
->arch
.require_dcache_flush
);
98 /* If we were already preempted, take the long way around */
99 if (cpu
!= vcpu
->arch
.last_pcpu
) {
104 val
= *vcpu_reg(vcpu
, p
->Rt
);
107 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
108 case 14: /* DCCISW */
124 * We could trap ID_DFR0 and tell the guest we don't support performance
125 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
126 * NAKed, so it will read the PMCR anyway.
128 * Therefore we tell the guest we have 0 counters. Unfortunately, we
129 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
130 * all PM registers, which doesn't crash the guest kernel at least.
132 static bool pm_fake(struct kvm_vcpu
*vcpu
,
133 const struct sys_reg_params
*p
,
134 const struct sys_reg_desc
*r
)
137 return ignore_write(vcpu
, p
);
139 return read_zero(vcpu
, p
);
142 static void reset_amair_el1(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
146 asm volatile("mrs %0, amair_el1\n" : "=r" (amair
));
147 vcpu_sys_reg(vcpu
, AMAIR_EL1
) = amair
;
150 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
153 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
155 vcpu_sys_reg(vcpu
, MPIDR_EL1
) = (1UL << 31) | (vcpu
->vcpu_id
& 0xff);
159 * Architected system registers.
160 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
162 static const struct sys_reg_desc sys_reg_descs
[] = {
164 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
167 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
170 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
174 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
175 NULL
, reset_val
, TEECR32_EL1
, 0 },
177 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
178 NULL
, reset_val
, TEEHBR32_EL1
, 0 },
180 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
181 NULL
, reset_val
, DBGVCR32_EL2
, 0 },
184 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
185 NULL
, reset_mpidr
, MPIDR_EL1
},
187 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
188 NULL
, reset_val
, SCTLR_EL1
, 0x00C50078 },
190 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
191 NULL
, reset_val
, CPACR_EL1
, 0 },
193 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
194 NULL
, reset_unknown
, TTBR0_EL1
},
196 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
197 NULL
, reset_unknown
, TTBR1_EL1
},
199 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
200 NULL
, reset_val
, TCR_EL1
, 0 },
203 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
204 NULL
, reset_unknown
, AFSR0_EL1
},
206 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
207 NULL
, reset_unknown
, AFSR1_EL1
},
209 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
210 NULL
, reset_unknown
, ESR_EL1
},
212 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
213 NULL
, reset_unknown
, FAR_EL1
},
215 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
216 NULL
, reset_unknown
, PAR_EL1
},
219 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
222 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
226 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
227 NULL
, reset_unknown
, MAIR_EL1
},
229 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
230 NULL
, reset_amair_el1
, AMAIR_EL1
},
233 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
234 NULL
, reset_val
, VBAR_EL1
, 0 },
236 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
237 NULL
, reset_val
, CONTEXTIDR_EL1
, 0 },
239 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
240 NULL
, reset_unknown
, TPIDR_EL1
},
243 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
244 NULL
, reset_val
, CNTKCTL_EL1
, 0},
247 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
248 NULL
, reset_unknown
, CSSELR_EL1
},
251 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
254 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
257 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
260 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
263 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
266 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
269 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
272 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
275 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
278 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
281 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
284 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
287 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
291 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
292 NULL
, reset_unknown
, TPIDR_EL0
},
294 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
295 NULL
, reset_unknown
, TPIDRRO_EL0
},
298 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
299 NULL
, reset_unknown
, DACR32_EL2
},
301 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
302 NULL
, reset_unknown
, IFSR32_EL2
},
304 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
305 NULL
, reset_val
, FPEXC32_EL2
, 0x70 },
308 /* Trapped cp15 registers */
309 static const struct sys_reg_desc cp15_regs
[] = {
311 * DC{C,I,CI}SW operations:
313 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw
},
314 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw
},
315 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw
},
316 { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake
},
317 { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake
},
318 { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake
},
319 { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake
},
320 { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake
},
321 { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake
},
322 { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake
},
323 { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake
},
324 { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake
},
325 { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake
},
326 { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake
},
327 { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake
},
328 { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake
},
331 /* Target specific emulation tables */
332 static struct kvm_sys_reg_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
334 void kvm_register_target_sys_reg_table(unsigned int target
,
335 struct kvm_sys_reg_target_table
*table
)
337 target_tables
[target
] = table
;
340 /* Get specific register table for this target. */
341 static const struct sys_reg_desc
*get_target_table(unsigned target
,
345 struct kvm_sys_reg_target_table
*table
;
347 table
= target_tables
[target
];
349 *num
= table
->table64
.num
;
350 return table
->table64
.table
;
352 *num
= table
->table32
.num
;
353 return table
->table32
.table
;
357 static const struct sys_reg_desc
*find_reg(const struct sys_reg_params
*params
,
358 const struct sys_reg_desc table
[],
363 for (i
= 0; i
< num
; i
++) {
364 const struct sys_reg_desc
*r
= &table
[i
];
366 if (params
->Op0
!= r
->Op0
)
368 if (params
->Op1
!= r
->Op1
)
370 if (params
->CRn
!= r
->CRn
)
372 if (params
->CRm
!= r
->CRm
)
374 if (params
->Op2
!= r
->Op2
)
382 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
384 kvm_inject_undefined(vcpu
);
388 int kvm_handle_cp14_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
390 kvm_inject_undefined(vcpu
);
394 static void emulate_cp15(struct kvm_vcpu
*vcpu
,
395 const struct sys_reg_params
*params
)
398 const struct sys_reg_desc
*table
, *r
;
400 table
= get_target_table(vcpu
->arch
.target
, false, &num
);
402 /* Search target-specific then generic table. */
403 r
= find_reg(params
, table
, num
);
405 r
= find_reg(params
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
409 * Not having an accessor means that we have
410 * configured a trap that we don't know how to
411 * handle. This certainly qualifies as a gross bug
412 * that should be fixed right away.
416 if (likely(r
->access(vcpu
, params
, r
))) {
417 /* Skip instruction, since it was emulated */
418 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
421 /* If access function fails, it should complain. */
424 kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu
));
425 print_sys_reg_instr(params
);
426 kvm_inject_undefined(vcpu
);
430 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
431 * @vcpu: The VCPU pointer
432 * @run: The kvm_run struct
434 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
436 struct sys_reg_params params
;
437 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
438 int Rt2
= (hsr
>> 10) & 0xf;
440 params
.CRm
= (hsr
>> 1) & 0xf;
441 params
.Rt
= (hsr
>> 5) & 0xf;
442 params
.is_write
= ((hsr
& 1) == 0);
445 params
.Op1
= (hsr
>> 16) & 0xf;
450 * Massive hack here. Store Rt2 in the top 32bits so we only
451 * have one register to deal with. As we use the same trap
452 * backends between AArch32 and AArch64, we get away with it.
454 if (params
.is_write
) {
455 u64 val
= *vcpu_reg(vcpu
, params
.Rt
);
457 val
|= *vcpu_reg(vcpu
, Rt2
) << 32;
458 *vcpu_reg(vcpu
, params
.Rt
) = val
;
461 emulate_cp15(vcpu
, ¶ms
);
463 /* Do the opposite hack for the read side */
464 if (!params
.is_write
) {
465 u64 val
= *vcpu_reg(vcpu
, params
.Rt
);
467 *vcpu_reg(vcpu
, Rt2
) = val
;
474 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
475 * @vcpu: The VCPU pointer
476 * @run: The kvm_run struct
478 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
480 struct sys_reg_params params
;
481 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
483 params
.CRm
= (hsr
>> 1) & 0xf;
484 params
.Rt
= (hsr
>> 5) & 0xf;
485 params
.is_write
= ((hsr
& 1) == 0);
486 params
.CRn
= (hsr
>> 10) & 0xf;
488 params
.Op1
= (hsr
>> 14) & 0x7;
489 params
.Op2
= (hsr
>> 17) & 0x7;
491 emulate_cp15(vcpu
, ¶ms
);
495 static int emulate_sys_reg(struct kvm_vcpu
*vcpu
,
496 const struct sys_reg_params
*params
)
499 const struct sys_reg_desc
*table
, *r
;
501 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
503 /* Search target-specific then generic table. */
504 r
= find_reg(params
, table
, num
);
506 r
= find_reg(params
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
510 * Not having an accessor means that we have
511 * configured a trap that we don't know how to
512 * handle. This certainly qualifies as a gross bug
513 * that should be fixed right away.
517 if (likely(r
->access(vcpu
, params
, r
))) {
518 /* Skip instruction, since it was emulated */
519 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
522 /* If access function fails, it should complain. */
524 kvm_err("Unsupported guest sys_reg access at: %lx\n",
526 print_sys_reg_instr(params
);
528 kvm_inject_undefined(vcpu
);
532 static void reset_sys_reg_descs(struct kvm_vcpu
*vcpu
,
533 const struct sys_reg_desc
*table
, size_t num
)
537 for (i
= 0; i
< num
; i
++)
539 table
[i
].reset(vcpu
, &table
[i
]);
543 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
544 * @vcpu: The VCPU pointer
545 * @run: The kvm_run struct
547 int kvm_handle_sys_reg(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
549 struct sys_reg_params params
;
550 unsigned long esr
= kvm_vcpu_get_hsr(vcpu
);
552 params
.Op0
= (esr
>> 20) & 3;
553 params
.Op1
= (esr
>> 14) & 0x7;
554 params
.CRn
= (esr
>> 10) & 0xf;
555 params
.CRm
= (esr
>> 1) & 0xf;
556 params
.Op2
= (esr
>> 17) & 0x7;
557 params
.Rt
= (esr
>> 5) & 0x1f;
558 params
.is_write
= !(esr
& 1);
560 return emulate_sys_reg(vcpu
, ¶ms
);
563 /******************************************************************************
565 *****************************************************************************/
567 static bool index_to_params(u64 id
, struct sys_reg_params
*params
)
569 switch (id
& KVM_REG_SIZE_MASK
) {
570 case KVM_REG_SIZE_U64
:
571 /* Any unused index bits means it's not valid. */
572 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
573 | KVM_REG_ARM_COPROC_MASK
574 | KVM_REG_ARM64_SYSREG_OP0_MASK
575 | KVM_REG_ARM64_SYSREG_OP1_MASK
576 | KVM_REG_ARM64_SYSREG_CRN_MASK
577 | KVM_REG_ARM64_SYSREG_CRM_MASK
578 | KVM_REG_ARM64_SYSREG_OP2_MASK
))
580 params
->Op0
= ((id
& KVM_REG_ARM64_SYSREG_OP0_MASK
)
581 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT
);
582 params
->Op1
= ((id
& KVM_REG_ARM64_SYSREG_OP1_MASK
)
583 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT
);
584 params
->CRn
= ((id
& KVM_REG_ARM64_SYSREG_CRN_MASK
)
585 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT
);
586 params
->CRm
= ((id
& KVM_REG_ARM64_SYSREG_CRM_MASK
)
587 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT
);
588 params
->Op2
= ((id
& KVM_REG_ARM64_SYSREG_OP2_MASK
)
589 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT
);
596 /* Decode an index value, and find the sys_reg_desc entry. */
597 static const struct sys_reg_desc
*index_to_sys_reg_desc(struct kvm_vcpu
*vcpu
,
601 const struct sys_reg_desc
*table
, *r
;
602 struct sys_reg_params params
;
604 /* We only do sys_reg for now. */
605 if ((id
& KVM_REG_ARM_COPROC_MASK
) != KVM_REG_ARM64_SYSREG
)
608 if (!index_to_params(id
, ¶ms
))
611 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
612 r
= find_reg(¶ms
, table
, num
);
614 r
= find_reg(¶ms
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
616 /* Not saved in the sys_reg array? */
624 * These are the invariant sys_reg registers: we let the guest see the
625 * host versions of these, so they're part of the guest state.
627 * A future CPU may provide a mechanism to present different values to
628 * the guest, or a future kvm may trap them.
631 #define FUNCTION_INVARIANT(reg) \
632 static void get_##reg(struct kvm_vcpu *v, \
633 const struct sys_reg_desc *r) \
637 asm volatile("mrs %0, " __stringify(reg) "\n" \
639 ((struct sys_reg_desc *)r)->val = val; \
642 FUNCTION_INVARIANT(midr_el1
)
643 FUNCTION_INVARIANT(ctr_el0
)
644 FUNCTION_INVARIANT(revidr_el1
)
645 FUNCTION_INVARIANT(id_pfr0_el1
)
646 FUNCTION_INVARIANT(id_pfr1_el1
)
647 FUNCTION_INVARIANT(id_dfr0_el1
)
648 FUNCTION_INVARIANT(id_afr0_el1
)
649 FUNCTION_INVARIANT(id_mmfr0_el1
)
650 FUNCTION_INVARIANT(id_mmfr1_el1
)
651 FUNCTION_INVARIANT(id_mmfr2_el1
)
652 FUNCTION_INVARIANT(id_mmfr3_el1
)
653 FUNCTION_INVARIANT(id_isar0_el1
)
654 FUNCTION_INVARIANT(id_isar1_el1
)
655 FUNCTION_INVARIANT(id_isar2_el1
)
656 FUNCTION_INVARIANT(id_isar3_el1
)
657 FUNCTION_INVARIANT(id_isar4_el1
)
658 FUNCTION_INVARIANT(id_isar5_el1
)
659 FUNCTION_INVARIANT(clidr_el1
)
660 FUNCTION_INVARIANT(aidr_el1
)
662 /* ->val is filled in by kvm_sys_reg_table_init() */
663 static struct sys_reg_desc invariant_sys_regs
[] = {
664 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
665 NULL
, get_midr_el1
},
666 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
667 NULL
, get_revidr_el1
},
668 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
669 NULL
, get_id_pfr0_el1
},
670 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
671 NULL
, get_id_pfr1_el1
},
672 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
673 NULL
, get_id_dfr0_el1
},
674 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
675 NULL
, get_id_afr0_el1
},
676 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
677 NULL
, get_id_mmfr0_el1
},
678 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
679 NULL
, get_id_mmfr1_el1
},
680 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
681 NULL
, get_id_mmfr2_el1
},
682 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
683 NULL
, get_id_mmfr3_el1
},
684 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
685 NULL
, get_id_isar0_el1
},
686 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
687 NULL
, get_id_isar1_el1
},
688 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
689 NULL
, get_id_isar2_el1
},
690 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
691 NULL
, get_id_isar3_el1
},
692 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
693 NULL
, get_id_isar4_el1
},
694 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
695 NULL
, get_id_isar5_el1
},
696 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
697 NULL
, get_clidr_el1
},
698 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
699 NULL
, get_aidr_el1
},
700 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
704 static int reg_from_user(void *val
, const void __user
*uaddr
, u64 id
)
706 /* This Just Works because we are little endian. */
707 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
712 static int reg_to_user(void __user
*uaddr
, const void *val
, u64 id
)
714 /* This Just Works because we are little endian. */
715 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
720 static int get_invariant_sys_reg(u64 id
, void __user
*uaddr
)
722 struct sys_reg_params params
;
723 const struct sys_reg_desc
*r
;
725 if (!index_to_params(id
, ¶ms
))
728 r
= find_reg(¶ms
, invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
));
732 return reg_to_user(uaddr
, &r
->val
, id
);
735 static int set_invariant_sys_reg(u64 id
, void __user
*uaddr
)
737 struct sys_reg_params params
;
738 const struct sys_reg_desc
*r
;
740 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
742 if (!index_to_params(id
, ¶ms
))
744 r
= find_reg(¶ms
, invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
));
748 err
= reg_from_user(&val
, uaddr
, id
);
752 /* This is what we mean by invariant: you can't change it. */
759 static bool is_valid_cache(u32 val
)
763 if (val
>= CSSELR_MAX
)
766 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
768 ctype
= (cache_levels
>> (level
* 3)) & 7;
771 case 0: /* No cache */
773 case 1: /* Instruction cache only */
775 case 2: /* Data cache only */
776 case 4: /* Unified cache */
778 case 3: /* Separate instruction and data caches */
780 default: /* Reserved: we can't know instruction or data. */
785 static int demux_c15_get(u64 id
, void __user
*uaddr
)
788 u32 __user
*uval
= uaddr
;
790 /* Fail if we have unknown bits set. */
791 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
792 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
795 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
796 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
797 if (KVM_REG_SIZE(id
) != 4)
799 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
800 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
801 if (!is_valid_cache(val
))
804 return put_user(get_ccsidr(val
), uval
);
810 static int demux_c15_set(u64 id
, void __user
*uaddr
)
813 u32 __user
*uval
= uaddr
;
815 /* Fail if we have unknown bits set. */
816 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
817 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
820 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
821 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
822 if (KVM_REG_SIZE(id
) != 4)
824 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
825 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
826 if (!is_valid_cache(val
))
829 if (get_user(newval
, uval
))
832 /* This is also invariant: you can't change it. */
833 if (newval
!= get_ccsidr(val
))
841 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
843 const struct sys_reg_desc
*r
;
844 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
846 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
847 return demux_c15_get(reg
->id
, uaddr
);
849 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
852 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
854 return get_invariant_sys_reg(reg
->id
, uaddr
);
856 return reg_to_user(uaddr
, &vcpu_sys_reg(vcpu
, r
->reg
), reg
->id
);
859 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
861 const struct sys_reg_desc
*r
;
862 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
864 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
865 return demux_c15_set(reg
->id
, uaddr
);
867 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
870 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
872 return set_invariant_sys_reg(reg
->id
, uaddr
);
874 return reg_from_user(&vcpu_sys_reg(vcpu
, r
->reg
), uaddr
, reg
->id
);
877 static unsigned int num_demux_regs(void)
879 unsigned int i
, count
= 0;
881 for (i
= 0; i
< CSSELR_MAX
; i
++)
882 if (is_valid_cache(i
))
888 static int write_demux_regids(u64 __user
*uindices
)
890 u64 val
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
893 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
894 for (i
= 0; i
< CSSELR_MAX
; i
++) {
895 if (!is_valid_cache(i
))
897 if (put_user(val
| i
, uindices
))
904 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
)
906 return (KVM_REG_ARM64
| KVM_REG_SIZE_U64
|
907 KVM_REG_ARM64_SYSREG
|
908 (reg
->Op0
<< KVM_REG_ARM64_SYSREG_OP0_SHIFT
) |
909 (reg
->Op1
<< KVM_REG_ARM64_SYSREG_OP1_SHIFT
) |
910 (reg
->CRn
<< KVM_REG_ARM64_SYSREG_CRN_SHIFT
) |
911 (reg
->CRm
<< KVM_REG_ARM64_SYSREG_CRM_SHIFT
) |
912 (reg
->Op2
<< KVM_REG_ARM64_SYSREG_OP2_SHIFT
));
915 static bool copy_reg_to_user(const struct sys_reg_desc
*reg
, u64 __user
**uind
)
920 if (put_user(sys_reg_to_index(reg
), *uind
))
927 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
928 static int walk_sys_regs(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
930 const struct sys_reg_desc
*i1
, *i2
, *end1
, *end2
;
931 unsigned int total
= 0;
934 /* We check for duplicates here, to allow arch-specific overrides. */
935 i1
= get_target_table(vcpu
->arch
.target
, true, &num
);
938 end2
= sys_reg_descs
+ ARRAY_SIZE(sys_reg_descs
);
940 BUG_ON(i1
== end1
|| i2
== end2
);
942 /* Walk carefully, as both tables may refer to the same register. */
944 int cmp
= cmp_sys_reg(i1
, i2
);
945 /* target-specific overrides generic entry. */
947 /* Ignore registers we trap but don't save. */
949 if (!copy_reg_to_user(i1
, &uind
))
954 /* Ignore registers we trap but don't save. */
956 if (!copy_reg_to_user(i2
, &uind
))
962 if (cmp
<= 0 && ++i1
== end1
)
964 if (cmp
>= 0 && ++i2
== end2
)
970 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu
*vcpu
)
972 return ARRAY_SIZE(invariant_sys_regs
)
974 + walk_sys_regs(vcpu
, (u64 __user
*)NULL
);
977 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
982 /* Then give them all the invariant registers' indices. */
983 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++) {
984 if (put_user(sys_reg_to_index(&invariant_sys_regs
[i
]), uindices
))
989 err
= walk_sys_regs(vcpu
, uindices
);
994 return write_demux_regids(uindices
);
997 void kvm_sys_reg_table_init(void)
1000 struct sys_reg_desc clidr
;
1002 /* Make sure tables are unique and in order. */
1003 for (i
= 1; i
< ARRAY_SIZE(sys_reg_descs
); i
++)
1004 BUG_ON(cmp_sys_reg(&sys_reg_descs
[i
-1], &sys_reg_descs
[i
]) >= 0);
1006 /* We abuse the reset function to overwrite the table itself. */
1007 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++)
1008 invariant_sys_regs
[i
].reset(NULL
, &invariant_sys_regs
[i
]);
1011 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1013 * If software reads the Cache Type fields from Ctype1
1014 * upwards, once it has seen a value of 0b000, no caches
1015 * exist at further-out levels of the hierarchy. So, for
1016 * example, if Ctype3 is the first Cache Type field with a
1017 * value of 0b000, the values of Ctype4 to Ctype7 must be
1020 get_clidr_el1(NULL
, &clidr
); /* Ugly... */
1021 cache_levels
= clidr
.val
;
1022 for (i
= 0; i
< 7; i
++)
1023 if (((cache_levels
>> (i
*3)) & 7) == 0)
1025 /* Clear all higher bits. */
1026 cache_levels
&= (1 << (i
*3))-1;
1030 * kvm_reset_sys_regs - sets system registers to reset value
1031 * @vcpu: The VCPU pointer
1033 * This function finds the right table above and sets the registers on the
1034 * virtual CPU struct to their architecturally defined reset values.
1036 void kvm_reset_sys_regs(struct kvm_vcpu
*vcpu
)
1039 const struct sys_reg_desc
*table
;
1041 /* Catch someone adding a register without putting in reset entry. */
1042 memset(&vcpu
->arch
.ctxt
.sys_regs
, 0x42, sizeof(vcpu
->arch
.ctxt
.sys_regs
));
1044 /* Generic chip reset first (so target could override). */
1045 reset_sys_reg_descs(vcpu
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1047 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1048 reset_sys_reg_descs(vcpu
, table
, num
);
1050 for (num
= 1; num
< NR_SYS_REGS
; num
++)
1051 if (vcpu_sys_reg(vcpu
, num
) == 0x4242424242424242)
1052 panic("Didn't reset vcpu_sys_reg(%zi)", num
);