Linux 3.12.28
[linux/fpc-iii.git] / arch / arm64 / kvm / sys_regs.c
blob02e9d09e1d804b4e9344427037dd5a2b88d378ba
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cputype.h>
32 #include <trace/events/kvm.h>
34 #include "sys_regs.h"
37 * All of this file is extremly similar to the ARM coproc.c, but the
38 * types are different. My gut feeling is that it should be pretty
39 * easy to merge, but that would be an ABI breakage -- again. VFP
40 * would also need to be abstracted.
42 * For AArch32, we only take care of what is being trapped. Anything
43 * that has to do with init and userspace access has to go via the
44 * 64bit interface.
47 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
48 static u32 cache_levels;
50 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
51 #define CSSELR_MAX 12
53 /* Which cache CCSIDR represents depends on CSSELR value. */
54 static u32 get_ccsidr(u32 csselr)
56 u32 ccsidr;
58 /* Make sure noone else changes CSSELR during this! */
59 local_irq_disable();
60 /* Put value into CSSELR */
61 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
62 isb();
63 /* Read result out of CCSIDR */
64 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
65 local_irq_enable();
67 return ccsidr;
70 static void do_dc_cisw(u32 val)
72 asm volatile("dc cisw, %x0" : : "r" (val));
73 dsb();
76 static void do_dc_csw(u32 val)
78 asm volatile("dc csw, %x0" : : "r" (val));
79 dsb();
82 /* See note at ARM ARM B1.14.4 */
83 static bool access_dcsw(struct kvm_vcpu *vcpu,
84 const struct sys_reg_params *p,
85 const struct sys_reg_desc *r)
87 unsigned long val;
88 int cpu;
90 if (!p->is_write)
91 return read_from_write_only(vcpu, p);
93 cpu = get_cpu();
95 cpumask_setall(&vcpu->arch.require_dcache_flush);
96 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
98 /* If we were already preempted, take the long way around */
99 if (cpu != vcpu->arch.last_pcpu) {
100 flush_cache_all();
101 goto done;
104 val = *vcpu_reg(vcpu, p->Rt);
106 switch (p->CRm) {
107 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
108 case 14: /* DCCISW */
109 do_dc_cisw(val);
110 break;
112 case 10: /* DCCSW */
113 do_dc_csw(val);
114 break;
117 done:
118 put_cpu();
120 return true;
124 * We could trap ID_DFR0 and tell the guest we don't support performance
125 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
126 * NAKed, so it will read the PMCR anyway.
128 * Therefore we tell the guest we have 0 counters. Unfortunately, we
129 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
130 * all PM registers, which doesn't crash the guest kernel at least.
132 static bool pm_fake(struct kvm_vcpu *vcpu,
133 const struct sys_reg_params *p,
134 const struct sys_reg_desc *r)
136 if (p->is_write)
137 return ignore_write(vcpu, p);
138 else
139 return read_zero(vcpu, p);
142 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
144 u64 amair;
146 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
147 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
150 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
153 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
155 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
159 * Architected system registers.
160 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
162 static const struct sys_reg_desc sys_reg_descs[] = {
163 /* DC ISW */
164 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
165 access_dcsw },
166 /* DC CSW */
167 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
168 access_dcsw },
169 /* DC CISW */
170 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
171 access_dcsw },
173 /* TEECR32_EL1 */
174 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
175 NULL, reset_val, TEECR32_EL1, 0 },
176 /* TEEHBR32_EL1 */
177 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
178 NULL, reset_val, TEEHBR32_EL1, 0 },
179 /* DBGVCR32_EL2 */
180 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
181 NULL, reset_val, DBGVCR32_EL2, 0 },
183 /* MPIDR_EL1 */
184 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
185 NULL, reset_mpidr, MPIDR_EL1 },
186 /* SCTLR_EL1 */
187 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
188 NULL, reset_val, SCTLR_EL1, 0x00C50078 },
189 /* CPACR_EL1 */
190 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
191 NULL, reset_val, CPACR_EL1, 0 },
192 /* TTBR0_EL1 */
193 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
194 NULL, reset_unknown, TTBR0_EL1 },
195 /* TTBR1_EL1 */
196 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
197 NULL, reset_unknown, TTBR1_EL1 },
198 /* TCR_EL1 */
199 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
200 NULL, reset_val, TCR_EL1, 0 },
202 /* AFSR0_EL1 */
203 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
204 NULL, reset_unknown, AFSR0_EL1 },
205 /* AFSR1_EL1 */
206 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
207 NULL, reset_unknown, AFSR1_EL1 },
208 /* ESR_EL1 */
209 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
210 NULL, reset_unknown, ESR_EL1 },
211 /* FAR_EL1 */
212 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
213 NULL, reset_unknown, FAR_EL1 },
214 /* PAR_EL1 */
215 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
216 NULL, reset_unknown, PAR_EL1 },
218 /* PMINTENSET_EL1 */
219 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
220 pm_fake },
221 /* PMINTENCLR_EL1 */
222 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
223 pm_fake },
225 /* MAIR_EL1 */
226 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
227 NULL, reset_unknown, MAIR_EL1 },
228 /* AMAIR_EL1 */
229 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
230 NULL, reset_amair_el1, AMAIR_EL1 },
232 /* VBAR_EL1 */
233 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
234 NULL, reset_val, VBAR_EL1, 0 },
235 /* CONTEXTIDR_EL1 */
236 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
237 NULL, reset_val, CONTEXTIDR_EL1, 0 },
238 /* TPIDR_EL1 */
239 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
240 NULL, reset_unknown, TPIDR_EL1 },
242 /* CNTKCTL_EL1 */
243 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
244 NULL, reset_val, CNTKCTL_EL1, 0},
246 /* CSSELR_EL1 */
247 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
248 NULL, reset_unknown, CSSELR_EL1 },
250 /* PMCR_EL0 */
251 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
252 pm_fake },
253 /* PMCNTENSET_EL0 */
254 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
255 pm_fake },
256 /* PMCNTENCLR_EL0 */
257 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
258 pm_fake },
259 /* PMOVSCLR_EL0 */
260 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
261 pm_fake },
262 /* PMSWINC_EL0 */
263 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
264 pm_fake },
265 /* PMSELR_EL0 */
266 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
267 pm_fake },
268 /* PMCEID0_EL0 */
269 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
270 pm_fake },
271 /* PMCEID1_EL0 */
272 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
273 pm_fake },
274 /* PMCCNTR_EL0 */
275 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
276 pm_fake },
277 /* PMXEVTYPER_EL0 */
278 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
279 pm_fake },
280 /* PMXEVCNTR_EL0 */
281 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
282 pm_fake },
283 /* PMUSERENR_EL0 */
284 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
285 pm_fake },
286 /* PMOVSSET_EL0 */
287 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
288 pm_fake },
290 /* TPIDR_EL0 */
291 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
292 NULL, reset_unknown, TPIDR_EL0 },
293 /* TPIDRRO_EL0 */
294 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
295 NULL, reset_unknown, TPIDRRO_EL0 },
297 /* DACR32_EL2 */
298 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
299 NULL, reset_unknown, DACR32_EL2 },
300 /* IFSR32_EL2 */
301 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
302 NULL, reset_unknown, IFSR32_EL2 },
303 /* FPEXC32_EL2 */
304 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
305 NULL, reset_val, FPEXC32_EL2, 0x70 },
308 /* Trapped cp15 registers */
309 static const struct sys_reg_desc cp15_regs[] = {
311 * DC{C,I,CI}SW operations:
313 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
314 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
315 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
316 { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake },
317 { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake },
318 { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake },
319 { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake },
320 { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake },
321 { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake },
322 { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake },
323 { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake },
324 { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake },
325 { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake },
326 { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake },
327 { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake },
328 { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake },
331 /* Target specific emulation tables */
332 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
334 void kvm_register_target_sys_reg_table(unsigned int target,
335 struct kvm_sys_reg_target_table *table)
337 target_tables[target] = table;
340 /* Get specific register table for this target. */
341 static const struct sys_reg_desc *get_target_table(unsigned target,
342 bool mode_is_64,
343 size_t *num)
345 struct kvm_sys_reg_target_table *table;
347 table = target_tables[target];
348 if (mode_is_64) {
349 *num = table->table64.num;
350 return table->table64.table;
351 } else {
352 *num = table->table32.num;
353 return table->table32.table;
357 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
358 const struct sys_reg_desc table[],
359 unsigned int num)
361 unsigned int i;
363 for (i = 0; i < num; i++) {
364 const struct sys_reg_desc *r = &table[i];
366 if (params->Op0 != r->Op0)
367 continue;
368 if (params->Op1 != r->Op1)
369 continue;
370 if (params->CRn != r->CRn)
371 continue;
372 if (params->CRm != r->CRm)
373 continue;
374 if (params->Op2 != r->Op2)
375 continue;
377 return r;
379 return NULL;
382 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
384 kvm_inject_undefined(vcpu);
385 return 1;
388 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
390 kvm_inject_undefined(vcpu);
391 return 1;
394 static void emulate_cp15(struct kvm_vcpu *vcpu,
395 const struct sys_reg_params *params)
397 size_t num;
398 const struct sys_reg_desc *table, *r;
400 table = get_target_table(vcpu->arch.target, false, &num);
402 /* Search target-specific then generic table. */
403 r = find_reg(params, table, num);
404 if (!r)
405 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
407 if (likely(r)) {
409 * Not having an accessor means that we have
410 * configured a trap that we don't know how to
411 * handle. This certainly qualifies as a gross bug
412 * that should be fixed right away.
414 BUG_ON(!r->access);
416 if (likely(r->access(vcpu, params, r))) {
417 /* Skip instruction, since it was emulated */
418 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
419 return;
421 /* If access function fails, it should complain. */
424 kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
425 print_sys_reg_instr(params);
426 kvm_inject_undefined(vcpu);
430 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
431 * @vcpu: The VCPU pointer
432 * @run: The kvm_run struct
434 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
436 struct sys_reg_params params;
437 u32 hsr = kvm_vcpu_get_hsr(vcpu);
438 int Rt2 = (hsr >> 10) & 0xf;
440 params.CRm = (hsr >> 1) & 0xf;
441 params.Rt = (hsr >> 5) & 0xf;
442 params.is_write = ((hsr & 1) == 0);
444 params.Op0 = 0;
445 params.Op1 = (hsr >> 16) & 0xf;
446 params.Op2 = 0;
447 params.CRn = 0;
450 * Massive hack here. Store Rt2 in the top 32bits so we only
451 * have one register to deal with. As we use the same trap
452 * backends between AArch32 and AArch64, we get away with it.
454 if (params.is_write) {
455 u64 val = *vcpu_reg(vcpu, params.Rt);
456 val &= 0xffffffff;
457 val |= *vcpu_reg(vcpu, Rt2) << 32;
458 *vcpu_reg(vcpu, params.Rt) = val;
461 emulate_cp15(vcpu, &params);
463 /* Do the opposite hack for the read side */
464 if (!params.is_write) {
465 u64 val = *vcpu_reg(vcpu, params.Rt);
466 val >>= 32;
467 *vcpu_reg(vcpu, Rt2) = val;
470 return 1;
474 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
475 * @vcpu: The VCPU pointer
476 * @run: The kvm_run struct
478 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
480 struct sys_reg_params params;
481 u32 hsr = kvm_vcpu_get_hsr(vcpu);
483 params.CRm = (hsr >> 1) & 0xf;
484 params.Rt = (hsr >> 5) & 0xf;
485 params.is_write = ((hsr & 1) == 0);
486 params.CRn = (hsr >> 10) & 0xf;
487 params.Op0 = 0;
488 params.Op1 = (hsr >> 14) & 0x7;
489 params.Op2 = (hsr >> 17) & 0x7;
491 emulate_cp15(vcpu, &params);
492 return 1;
495 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
496 const struct sys_reg_params *params)
498 size_t num;
499 const struct sys_reg_desc *table, *r;
501 table = get_target_table(vcpu->arch.target, true, &num);
503 /* Search target-specific then generic table. */
504 r = find_reg(params, table, num);
505 if (!r)
506 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
508 if (likely(r)) {
510 * Not having an accessor means that we have
511 * configured a trap that we don't know how to
512 * handle. This certainly qualifies as a gross bug
513 * that should be fixed right away.
515 BUG_ON(!r->access);
517 if (likely(r->access(vcpu, params, r))) {
518 /* Skip instruction, since it was emulated */
519 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
520 return 1;
522 /* If access function fails, it should complain. */
523 } else {
524 kvm_err("Unsupported guest sys_reg access at: %lx\n",
525 *vcpu_pc(vcpu));
526 print_sys_reg_instr(params);
528 kvm_inject_undefined(vcpu);
529 return 1;
532 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
533 const struct sys_reg_desc *table, size_t num)
535 unsigned long i;
537 for (i = 0; i < num; i++)
538 if (table[i].reset)
539 table[i].reset(vcpu, &table[i]);
543 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
544 * @vcpu: The VCPU pointer
545 * @run: The kvm_run struct
547 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
549 struct sys_reg_params params;
550 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
552 params.Op0 = (esr >> 20) & 3;
553 params.Op1 = (esr >> 14) & 0x7;
554 params.CRn = (esr >> 10) & 0xf;
555 params.CRm = (esr >> 1) & 0xf;
556 params.Op2 = (esr >> 17) & 0x7;
557 params.Rt = (esr >> 5) & 0x1f;
558 params.is_write = !(esr & 1);
560 return emulate_sys_reg(vcpu, &params);
563 /******************************************************************************
564 * Userspace API
565 *****************************************************************************/
567 static bool index_to_params(u64 id, struct sys_reg_params *params)
569 switch (id & KVM_REG_SIZE_MASK) {
570 case KVM_REG_SIZE_U64:
571 /* Any unused index bits means it's not valid. */
572 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
573 | KVM_REG_ARM_COPROC_MASK
574 | KVM_REG_ARM64_SYSREG_OP0_MASK
575 | KVM_REG_ARM64_SYSREG_OP1_MASK
576 | KVM_REG_ARM64_SYSREG_CRN_MASK
577 | KVM_REG_ARM64_SYSREG_CRM_MASK
578 | KVM_REG_ARM64_SYSREG_OP2_MASK))
579 return false;
580 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
581 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
582 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
583 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
584 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
585 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
586 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
587 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
588 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
589 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
590 return true;
591 default:
592 return false;
596 /* Decode an index value, and find the sys_reg_desc entry. */
597 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
598 u64 id)
600 size_t num;
601 const struct sys_reg_desc *table, *r;
602 struct sys_reg_params params;
604 /* We only do sys_reg for now. */
605 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
606 return NULL;
608 if (!index_to_params(id, &params))
609 return NULL;
611 table = get_target_table(vcpu->arch.target, true, &num);
612 r = find_reg(&params, table, num);
613 if (!r)
614 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
616 /* Not saved in the sys_reg array? */
617 if (r && !r->reg)
618 r = NULL;
620 return r;
624 * These are the invariant sys_reg registers: we let the guest see the
625 * host versions of these, so they're part of the guest state.
627 * A future CPU may provide a mechanism to present different values to
628 * the guest, or a future kvm may trap them.
631 #define FUNCTION_INVARIANT(reg) \
632 static void get_##reg(struct kvm_vcpu *v, \
633 const struct sys_reg_desc *r) \
635 u64 val; \
637 asm volatile("mrs %0, " __stringify(reg) "\n" \
638 : "=r" (val)); \
639 ((struct sys_reg_desc *)r)->val = val; \
642 FUNCTION_INVARIANT(midr_el1)
643 FUNCTION_INVARIANT(ctr_el0)
644 FUNCTION_INVARIANT(revidr_el1)
645 FUNCTION_INVARIANT(id_pfr0_el1)
646 FUNCTION_INVARIANT(id_pfr1_el1)
647 FUNCTION_INVARIANT(id_dfr0_el1)
648 FUNCTION_INVARIANT(id_afr0_el1)
649 FUNCTION_INVARIANT(id_mmfr0_el1)
650 FUNCTION_INVARIANT(id_mmfr1_el1)
651 FUNCTION_INVARIANT(id_mmfr2_el1)
652 FUNCTION_INVARIANT(id_mmfr3_el1)
653 FUNCTION_INVARIANT(id_isar0_el1)
654 FUNCTION_INVARIANT(id_isar1_el1)
655 FUNCTION_INVARIANT(id_isar2_el1)
656 FUNCTION_INVARIANT(id_isar3_el1)
657 FUNCTION_INVARIANT(id_isar4_el1)
658 FUNCTION_INVARIANT(id_isar5_el1)
659 FUNCTION_INVARIANT(clidr_el1)
660 FUNCTION_INVARIANT(aidr_el1)
662 /* ->val is filled in by kvm_sys_reg_table_init() */
663 static struct sys_reg_desc invariant_sys_regs[] = {
664 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
665 NULL, get_midr_el1 },
666 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
667 NULL, get_revidr_el1 },
668 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
669 NULL, get_id_pfr0_el1 },
670 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
671 NULL, get_id_pfr1_el1 },
672 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
673 NULL, get_id_dfr0_el1 },
674 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
675 NULL, get_id_afr0_el1 },
676 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
677 NULL, get_id_mmfr0_el1 },
678 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
679 NULL, get_id_mmfr1_el1 },
680 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
681 NULL, get_id_mmfr2_el1 },
682 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
683 NULL, get_id_mmfr3_el1 },
684 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
685 NULL, get_id_isar0_el1 },
686 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
687 NULL, get_id_isar1_el1 },
688 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
689 NULL, get_id_isar2_el1 },
690 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
691 NULL, get_id_isar3_el1 },
692 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
693 NULL, get_id_isar4_el1 },
694 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
695 NULL, get_id_isar5_el1 },
696 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
697 NULL, get_clidr_el1 },
698 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
699 NULL, get_aidr_el1 },
700 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
701 NULL, get_ctr_el0 },
704 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
706 /* This Just Works because we are little endian. */
707 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
708 return -EFAULT;
709 return 0;
712 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
714 /* This Just Works because we are little endian. */
715 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
716 return -EFAULT;
717 return 0;
720 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
722 struct sys_reg_params params;
723 const struct sys_reg_desc *r;
725 if (!index_to_params(id, &params))
726 return -ENOENT;
728 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
729 if (!r)
730 return -ENOENT;
732 return reg_to_user(uaddr, &r->val, id);
735 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
737 struct sys_reg_params params;
738 const struct sys_reg_desc *r;
739 int err;
740 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
742 if (!index_to_params(id, &params))
743 return -ENOENT;
744 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
745 if (!r)
746 return -ENOENT;
748 err = reg_from_user(&val, uaddr, id);
749 if (err)
750 return err;
752 /* This is what we mean by invariant: you can't change it. */
753 if (r->val != val)
754 return -EINVAL;
756 return 0;
759 static bool is_valid_cache(u32 val)
761 u32 level, ctype;
763 if (val >= CSSELR_MAX)
764 return -ENOENT;
766 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
767 level = (val >> 1);
768 ctype = (cache_levels >> (level * 3)) & 7;
770 switch (ctype) {
771 case 0: /* No cache */
772 return false;
773 case 1: /* Instruction cache only */
774 return (val & 1);
775 case 2: /* Data cache only */
776 case 4: /* Unified cache */
777 return !(val & 1);
778 case 3: /* Separate instruction and data caches */
779 return true;
780 default: /* Reserved: we can't know instruction or data. */
781 return false;
785 static int demux_c15_get(u64 id, void __user *uaddr)
787 u32 val;
788 u32 __user *uval = uaddr;
790 /* Fail if we have unknown bits set. */
791 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
792 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
793 return -ENOENT;
795 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
796 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
797 if (KVM_REG_SIZE(id) != 4)
798 return -ENOENT;
799 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
800 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
801 if (!is_valid_cache(val))
802 return -ENOENT;
804 return put_user(get_ccsidr(val), uval);
805 default:
806 return -ENOENT;
810 static int demux_c15_set(u64 id, void __user *uaddr)
812 u32 val, newval;
813 u32 __user *uval = uaddr;
815 /* Fail if we have unknown bits set. */
816 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
817 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
818 return -ENOENT;
820 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
821 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
822 if (KVM_REG_SIZE(id) != 4)
823 return -ENOENT;
824 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
825 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
826 if (!is_valid_cache(val))
827 return -ENOENT;
829 if (get_user(newval, uval))
830 return -EFAULT;
832 /* This is also invariant: you can't change it. */
833 if (newval != get_ccsidr(val))
834 return -EINVAL;
835 return 0;
836 default:
837 return -ENOENT;
841 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
843 const struct sys_reg_desc *r;
844 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
846 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
847 return demux_c15_get(reg->id, uaddr);
849 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
850 return -ENOENT;
852 r = index_to_sys_reg_desc(vcpu, reg->id);
853 if (!r)
854 return get_invariant_sys_reg(reg->id, uaddr);
856 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
859 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
861 const struct sys_reg_desc *r;
862 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
864 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
865 return demux_c15_set(reg->id, uaddr);
867 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
868 return -ENOENT;
870 r = index_to_sys_reg_desc(vcpu, reg->id);
871 if (!r)
872 return set_invariant_sys_reg(reg->id, uaddr);
874 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
877 static unsigned int num_demux_regs(void)
879 unsigned int i, count = 0;
881 for (i = 0; i < CSSELR_MAX; i++)
882 if (is_valid_cache(i))
883 count++;
885 return count;
888 static int write_demux_regids(u64 __user *uindices)
890 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
891 unsigned int i;
893 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
894 for (i = 0; i < CSSELR_MAX; i++) {
895 if (!is_valid_cache(i))
896 continue;
897 if (put_user(val | i, uindices))
898 return -EFAULT;
899 uindices++;
901 return 0;
904 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
906 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
907 KVM_REG_ARM64_SYSREG |
908 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
909 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
910 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
911 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
912 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
915 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
917 if (!*uind)
918 return true;
920 if (put_user(sys_reg_to_index(reg), *uind))
921 return false;
923 (*uind)++;
924 return true;
927 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
928 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
930 const struct sys_reg_desc *i1, *i2, *end1, *end2;
931 unsigned int total = 0;
932 size_t num;
934 /* We check for duplicates here, to allow arch-specific overrides. */
935 i1 = get_target_table(vcpu->arch.target, true, &num);
936 end1 = i1 + num;
937 i2 = sys_reg_descs;
938 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
940 BUG_ON(i1 == end1 || i2 == end2);
942 /* Walk carefully, as both tables may refer to the same register. */
943 while (i1 || i2) {
944 int cmp = cmp_sys_reg(i1, i2);
945 /* target-specific overrides generic entry. */
946 if (cmp <= 0) {
947 /* Ignore registers we trap but don't save. */
948 if (i1->reg) {
949 if (!copy_reg_to_user(i1, &uind))
950 return -EFAULT;
951 total++;
953 } else {
954 /* Ignore registers we trap but don't save. */
955 if (i2->reg) {
956 if (!copy_reg_to_user(i2, &uind))
957 return -EFAULT;
958 total++;
962 if (cmp <= 0 && ++i1 == end1)
963 i1 = NULL;
964 if (cmp >= 0 && ++i2 == end2)
965 i2 = NULL;
967 return total;
970 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
972 return ARRAY_SIZE(invariant_sys_regs)
973 + num_demux_regs()
974 + walk_sys_regs(vcpu, (u64 __user *)NULL);
977 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
979 unsigned int i;
980 int err;
982 /* Then give them all the invariant registers' indices. */
983 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
984 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
985 return -EFAULT;
986 uindices++;
989 err = walk_sys_regs(vcpu, uindices);
990 if (err < 0)
991 return err;
992 uindices += err;
994 return write_demux_regids(uindices);
997 void kvm_sys_reg_table_init(void)
999 unsigned int i;
1000 struct sys_reg_desc clidr;
1002 /* Make sure tables are unique and in order. */
1003 for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1004 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1006 /* We abuse the reset function to overwrite the table itself. */
1007 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1008 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1011 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1013 * If software reads the Cache Type fields from Ctype1
1014 * upwards, once it has seen a value of 0b000, no caches
1015 * exist at further-out levels of the hierarchy. So, for
1016 * example, if Ctype3 is the first Cache Type field with a
1017 * value of 0b000, the values of Ctype4 to Ctype7 must be
1018 * ignored.
1020 get_clidr_el1(NULL, &clidr); /* Ugly... */
1021 cache_levels = clidr.val;
1022 for (i = 0; i < 7; i++)
1023 if (((cache_levels >> (i*3)) & 7) == 0)
1024 break;
1025 /* Clear all higher bits. */
1026 cache_levels &= (1 << (i*3))-1;
1030 * kvm_reset_sys_regs - sets system registers to reset value
1031 * @vcpu: The VCPU pointer
1033 * This function finds the right table above and sets the registers on the
1034 * virtual CPU struct to their architecturally defined reset values.
1036 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1038 size_t num;
1039 const struct sys_reg_desc *table;
1041 /* Catch someone adding a register without putting in reset entry. */
1042 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1044 /* Generic chip reset first (so target could override). */
1045 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1047 table = get_target_table(vcpu->arch.target, true, &num);
1048 reset_sys_reg_descs(vcpu, table, num);
1050 for (num = 1; num < NR_SYS_REGS; num++)
1051 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1052 panic("Didn't reset vcpu_sys_reg(%zi)", num);