Linux 3.12.28
[linux/fpc-iii.git] / arch / ia64 / kvm / kvm-ia64.c
blobbdfd8789b37661da691bdf320841a21043cd4cd4
1 /*
2 * kvm_ia64.c: Basic KVM support On Itanium series processors
5 * Copyright (C) 2007, Intel Corporation.
6 * Xiantao Zhang (xiantao.zhang@intel.com)
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19 * Place - Suite 330, Boston, MA 02111-1307 USA.
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36 #include <linux/pci.h>
38 #include <asm/pgtable.h>
39 #include <asm/gcc_intrin.h>
40 #include <asm/pal.h>
41 #include <asm/cacheflush.h>
42 #include <asm/div64.h>
43 #include <asm/tlb.h>
44 #include <asm/elf.h>
45 #include <asm/sn/addrs.h>
46 #include <asm/sn/clksupport.h>
47 #include <asm/sn/shub_mmr.h>
49 #include "misc.h"
50 #include "vti.h"
51 #include "iodev.h"
52 #include "ioapic.h"
53 #include "lapic.h"
54 #include "irq.h"
56 static unsigned long kvm_vmm_base;
57 static unsigned long kvm_vsa_base;
58 static unsigned long kvm_vm_buffer;
59 static unsigned long kvm_vm_buffer_size;
60 unsigned long kvm_vmm_gp;
62 static long vp_env_info;
64 static struct kvm_vmm_info *kvm_vmm_info;
66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
68 struct kvm_stats_debugfs_item debugfs_entries[] = {
69 { NULL }
72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
75 if (vcpu->kvm->arch.is_sn2)
76 return rtc_time();
77 else
78 #endif
79 return ia64_getreg(_IA64_REG_AR_ITC);
82 static void kvm_flush_icache(unsigned long start, unsigned long len)
84 int l;
86 for (l = 0; l < (len + 32); l += 32)
87 ia64_fc((void *)(start + l));
89 ia64_sync_i();
90 ia64_srlz_i();
93 static void kvm_flush_tlb_all(void)
95 unsigned long i, j, count0, count1, stride0, stride1, addr;
96 long flags;
98 addr = local_cpu_data->ptce_base;
99 count0 = local_cpu_data->ptce_count[0];
100 count1 = local_cpu_data->ptce_count[1];
101 stride0 = local_cpu_data->ptce_stride[0];
102 stride1 = local_cpu_data->ptce_stride[1];
104 local_irq_save(flags);
105 for (i = 0; i < count0; ++i) {
106 for (j = 0; j < count1; ++j) {
107 ia64_ptce(addr);
108 addr += stride1;
110 addr += stride0;
112 local_irq_restore(flags);
113 ia64_srlz_i(); /* srlz.i implies srlz.d */
116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
118 struct ia64_pal_retval iprv;
120 PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121 (u64)opt_handler);
123 return iprv.status;
126 static DEFINE_SPINLOCK(vp_lock);
128 int kvm_arch_hardware_enable(void *garbage)
130 long status;
131 long tmp_base;
132 unsigned long pte;
133 unsigned long saved_psr;
134 int slot;
136 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137 local_irq_save(saved_psr);
138 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139 local_irq_restore(saved_psr);
140 if (slot < 0)
141 return -EINVAL;
143 spin_lock(&vp_lock);
144 status = ia64_pal_vp_init_env(kvm_vsa_base ?
145 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
146 __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147 if (status != 0) {
148 spin_unlock(&vp_lock);
149 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150 return -EINVAL;
153 if (!kvm_vsa_base) {
154 kvm_vsa_base = tmp_base;
155 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
157 spin_unlock(&vp_lock);
158 ia64_ptr_entry(0x3, slot);
160 return 0;
163 void kvm_arch_hardware_disable(void *garbage)
166 long status;
167 int slot;
168 unsigned long pte;
169 unsigned long saved_psr;
170 unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
172 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173 PAGE_KERNEL));
175 local_irq_save(saved_psr);
176 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177 local_irq_restore(saved_psr);
178 if (slot < 0)
179 return;
181 status = ia64_pal_vp_exit_env(host_iva);
182 if (status)
183 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184 status);
185 ia64_ptr_entry(0x3, slot);
188 void kvm_arch_check_processor_compat(void *rtn)
190 *(int *)rtn = 0;
193 int kvm_dev_ioctl_check_extension(long ext)
196 int r;
198 switch (ext) {
199 case KVM_CAP_IRQCHIP:
200 case KVM_CAP_MP_STATE:
201 case KVM_CAP_IRQ_INJECT_STATUS:
202 r = 1;
203 break;
204 case KVM_CAP_COALESCED_MMIO:
205 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
206 break;
207 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
208 case KVM_CAP_IOMMU:
209 r = iommu_present(&pci_bus_type);
210 break;
211 #endif
212 default:
213 r = 0;
215 return r;
219 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
221 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
222 kvm_run->hw.hardware_exit_reason = 1;
223 return 0;
226 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
228 struct kvm_mmio_req *p;
229 struct kvm_io_device *mmio_dev;
230 int r;
232 p = kvm_get_vcpu_ioreq(vcpu);
234 if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
235 goto mmio;
236 vcpu->mmio_needed = 1;
237 vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr;
238 vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size;
239 vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
241 if (vcpu->mmio_is_write)
242 memcpy(vcpu->arch.mmio_data, &p->data, p->size);
243 memcpy(kvm_run->mmio.data, &p->data, p->size);
244 kvm_run->exit_reason = KVM_EXIT_MMIO;
245 return 0;
246 mmio:
247 if (p->dir)
248 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
249 p->size, &p->data);
250 else
251 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
252 p->size, &p->data);
253 if (r)
254 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
255 p->state = STATE_IORESP_READY;
257 return 1;
260 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
262 struct exit_ctl_data *p;
264 p = kvm_get_exit_data(vcpu);
266 if (p->exit_reason == EXIT_REASON_PAL_CALL)
267 return kvm_pal_emul(vcpu, kvm_run);
268 else {
269 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
270 kvm_run->hw.hardware_exit_reason = 2;
271 return 0;
275 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
277 struct exit_ctl_data *p;
279 p = kvm_get_exit_data(vcpu);
281 if (p->exit_reason == EXIT_REASON_SAL_CALL) {
282 kvm_sal_emul(vcpu);
283 return 1;
284 } else {
285 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
286 kvm_run->hw.hardware_exit_reason = 3;
287 return 0;
292 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
294 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
296 if (!test_and_set_bit(vector, &vpd->irr[0])) {
297 vcpu->arch.irq_new_pending = 1;
298 kvm_vcpu_kick(vcpu);
299 return 1;
301 return 0;
305 * offset: address offset to IPI space.
306 * value: deliver value.
308 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
309 uint64_t vector)
311 switch (dm) {
312 case SAPIC_FIXED:
313 break;
314 case SAPIC_NMI:
315 vector = 2;
316 break;
317 case SAPIC_EXTINT:
318 vector = 0;
319 break;
320 case SAPIC_INIT:
321 case SAPIC_PMI:
322 default:
323 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
324 return;
326 __apic_accept_irq(vcpu, vector);
329 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
330 unsigned long eid)
332 union ia64_lid lid;
333 int i;
334 struct kvm_vcpu *vcpu;
336 kvm_for_each_vcpu(i, vcpu, kvm) {
337 lid.val = VCPU_LID(vcpu);
338 if (lid.id == id && lid.eid == eid)
339 return vcpu;
342 return NULL;
345 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
347 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
348 struct kvm_vcpu *target_vcpu;
349 struct kvm_pt_regs *regs;
350 union ia64_ipi_a addr = p->u.ipi_data.addr;
351 union ia64_ipi_d data = p->u.ipi_data.data;
353 target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
354 if (!target_vcpu)
355 return handle_vm_error(vcpu, kvm_run);
357 if (!target_vcpu->arch.launched) {
358 regs = vcpu_regs(target_vcpu);
360 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
361 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
363 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
364 if (waitqueue_active(&target_vcpu->wq))
365 wake_up_interruptible(&target_vcpu->wq);
366 } else {
367 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
368 if (target_vcpu != vcpu)
369 kvm_vcpu_kick(target_vcpu);
372 return 1;
375 struct call_data {
376 struct kvm_ptc_g ptc_g_data;
377 struct kvm_vcpu *vcpu;
380 static void vcpu_global_purge(void *info)
382 struct call_data *p = (struct call_data *)info;
383 struct kvm_vcpu *vcpu = p->vcpu;
385 if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
386 return;
388 set_bit(KVM_REQ_PTC_G, &vcpu->requests);
389 if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
390 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
391 p->ptc_g_data;
392 } else {
393 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
394 vcpu->arch.ptc_g_count = 0;
395 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
399 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
401 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
402 struct kvm *kvm = vcpu->kvm;
403 struct call_data call_data;
404 int i;
405 struct kvm_vcpu *vcpui;
407 call_data.ptc_g_data = p->u.ptc_g_data;
409 kvm_for_each_vcpu(i, vcpui, kvm) {
410 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
411 vcpu == vcpui)
412 continue;
414 if (waitqueue_active(&vcpui->wq))
415 wake_up_interruptible(&vcpui->wq);
417 if (vcpui->cpu != -1) {
418 call_data.vcpu = vcpui;
419 smp_call_function_single(vcpui->cpu,
420 vcpu_global_purge, &call_data, 1);
421 } else
422 printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
425 return 1;
428 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
430 return 1;
433 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
435 unsigned long pte, rtc_phys_addr, map_addr;
436 int slot;
438 map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
439 rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
440 pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
441 slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
442 vcpu->arch.sn_rtc_tr_slot = slot;
443 if (slot < 0) {
444 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
445 slot = 0;
447 return slot;
450 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
453 ktime_t kt;
454 long itc_diff;
455 unsigned long vcpu_now_itc;
456 unsigned long expires;
457 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
458 unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
459 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
461 if (irqchip_in_kernel(vcpu->kvm)) {
463 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
465 if (time_after(vcpu_now_itc, vpd->itm)) {
466 vcpu->arch.timer_check = 1;
467 return 1;
469 itc_diff = vpd->itm - vcpu_now_itc;
470 if (itc_diff < 0)
471 itc_diff = -itc_diff;
473 expires = div64_u64(itc_diff, cyc_per_usec);
474 kt = ktime_set(0, 1000 * expires);
476 vcpu->arch.ht_active = 1;
477 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
479 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
480 kvm_vcpu_block(vcpu);
481 hrtimer_cancel(p_ht);
482 vcpu->arch.ht_active = 0;
484 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
485 kvm_cpu_has_pending_timer(vcpu))
486 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
487 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
489 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
490 return -EINTR;
491 return 1;
492 } else {
493 printk(KERN_ERR"kvm: Unsupported userspace halt!");
494 return 0;
498 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
499 struct kvm_run *kvm_run)
501 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
502 return 0;
505 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
506 struct kvm_run *kvm_run)
508 return 1;
511 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
512 struct kvm_run *kvm_run)
514 printk("VMM: %s", vcpu->arch.log_buf);
515 return 1;
518 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
519 struct kvm_run *kvm_run) = {
520 [EXIT_REASON_VM_PANIC] = handle_vm_error,
521 [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
522 [EXIT_REASON_PAL_CALL] = handle_pal_call,
523 [EXIT_REASON_SAL_CALL] = handle_sal_call,
524 [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
525 [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
526 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
527 [EXIT_REASON_IPI] = handle_ipi,
528 [EXIT_REASON_PTC_G] = handle_global_purge,
529 [EXIT_REASON_DEBUG] = handle_vcpu_debug,
533 static const int kvm_vti_max_exit_handlers =
534 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
536 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
538 struct exit_ctl_data *p_exit_data;
540 p_exit_data = kvm_get_exit_data(vcpu);
541 return p_exit_data->exit_reason;
545 * The guest has exited. See if we can fix it or if we need userspace
546 * assistance.
548 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
550 u32 exit_reason = kvm_get_exit_reason(vcpu);
551 vcpu->arch.last_exit = exit_reason;
553 if (exit_reason < kvm_vti_max_exit_handlers
554 && kvm_vti_exit_handlers[exit_reason])
555 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
556 else {
557 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
558 kvm_run->hw.hardware_exit_reason = exit_reason;
560 return 0;
563 static inline void vti_set_rr6(unsigned long rr6)
565 ia64_set_rr(RR6, rr6);
566 ia64_srlz_i();
569 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
571 unsigned long pte;
572 struct kvm *kvm = vcpu->kvm;
573 int r;
575 /*Insert a pair of tr to map vmm*/
576 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
577 r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
578 if (r < 0)
579 goto out;
580 vcpu->arch.vmm_tr_slot = r;
581 /*Insert a pairt of tr to map data of vm*/
582 pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
583 r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
584 pte, KVM_VM_DATA_SHIFT);
585 if (r < 0)
586 goto out;
587 vcpu->arch.vm_tr_slot = r;
589 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
590 if (kvm->arch.is_sn2) {
591 r = kvm_sn2_setup_mappings(vcpu);
592 if (r < 0)
593 goto out;
595 #endif
597 r = 0;
598 out:
599 return r;
602 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
604 struct kvm *kvm = vcpu->kvm;
605 ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
606 ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
607 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
608 if (kvm->arch.is_sn2)
609 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
610 #endif
613 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
615 unsigned long psr;
616 int r;
617 int cpu = smp_processor_id();
619 if (vcpu->arch.last_run_cpu != cpu ||
620 per_cpu(last_vcpu, cpu) != vcpu) {
621 per_cpu(last_vcpu, cpu) = vcpu;
622 vcpu->arch.last_run_cpu = cpu;
623 kvm_flush_tlb_all();
626 vcpu->arch.host_rr6 = ia64_get_rr(RR6);
627 vti_set_rr6(vcpu->arch.vmm_rr);
628 local_irq_save(psr);
629 r = kvm_insert_vmm_mapping(vcpu);
630 local_irq_restore(psr);
631 return r;
634 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
636 kvm_purge_vmm_mapping(vcpu);
637 vti_set_rr6(vcpu->arch.host_rr6);
640 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
642 union context *host_ctx, *guest_ctx;
643 int r, idx;
645 idx = srcu_read_lock(&vcpu->kvm->srcu);
647 again:
648 if (signal_pending(current)) {
649 r = -EINTR;
650 kvm_run->exit_reason = KVM_EXIT_INTR;
651 goto out;
654 preempt_disable();
655 local_irq_disable();
657 /*Get host and guest context with guest address space.*/
658 host_ctx = kvm_get_host_context(vcpu);
659 guest_ctx = kvm_get_guest_context(vcpu);
661 clear_bit(KVM_REQ_KICK, &vcpu->requests);
663 r = kvm_vcpu_pre_transition(vcpu);
664 if (r < 0)
665 goto vcpu_run_fail;
667 srcu_read_unlock(&vcpu->kvm->srcu, idx);
668 vcpu->mode = IN_GUEST_MODE;
669 kvm_guest_enter();
672 * Transition to the guest
674 kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
676 kvm_vcpu_post_transition(vcpu);
678 vcpu->arch.launched = 1;
679 set_bit(KVM_REQ_KICK, &vcpu->requests);
680 local_irq_enable();
683 * We must have an instruction between local_irq_enable() and
684 * kvm_guest_exit(), so the timer interrupt isn't delayed by
685 * the interrupt shadow. The stat.exits increment will do nicely.
686 * But we need to prevent reordering, hence this barrier():
688 barrier();
689 kvm_guest_exit();
690 vcpu->mode = OUTSIDE_GUEST_MODE;
691 preempt_enable();
693 idx = srcu_read_lock(&vcpu->kvm->srcu);
695 r = kvm_handle_exit(kvm_run, vcpu);
697 if (r > 0) {
698 if (!need_resched())
699 goto again;
702 out:
703 srcu_read_unlock(&vcpu->kvm->srcu, idx);
704 if (r > 0) {
705 kvm_resched(vcpu);
706 idx = srcu_read_lock(&vcpu->kvm->srcu);
707 goto again;
710 return r;
712 vcpu_run_fail:
713 local_irq_enable();
714 preempt_enable();
715 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
716 goto out;
719 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
721 struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
723 if (!vcpu->mmio_is_write)
724 memcpy(&p->data, vcpu->arch.mmio_data, 8);
725 p->state = STATE_IORESP_READY;
728 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
730 int r;
731 sigset_t sigsaved;
733 if (vcpu->sigset_active)
734 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
736 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
737 kvm_vcpu_block(vcpu);
738 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
739 r = -EAGAIN;
740 goto out;
743 if (vcpu->mmio_needed) {
744 memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8);
745 kvm_set_mmio_data(vcpu);
746 vcpu->mmio_read_completed = 1;
747 vcpu->mmio_needed = 0;
749 r = __vcpu_run(vcpu, kvm_run);
750 out:
751 if (vcpu->sigset_active)
752 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
754 return r;
757 struct kvm *kvm_arch_alloc_vm(void)
760 struct kvm *kvm;
761 uint64_t vm_base;
763 BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
765 vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
767 if (!vm_base)
768 return NULL;
770 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
771 kvm = (struct kvm *)(vm_base +
772 offsetof(struct kvm_vm_data, kvm_vm_struct));
773 kvm->arch.vm_base = vm_base;
774 printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
776 return kvm;
779 struct kvm_ia64_io_range {
780 unsigned long start;
781 unsigned long size;
782 unsigned long type;
785 static const struct kvm_ia64_io_range io_ranges[] = {
786 {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
787 {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
788 {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
789 {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
790 {PIB_START, PIB_SIZE, GPFN_PIB},
793 static void kvm_build_io_pmt(struct kvm *kvm)
795 unsigned long i, j;
797 /* Mark I/O ranges */
798 for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
799 i++) {
800 for (j = io_ranges[i].start;
801 j < io_ranges[i].start + io_ranges[i].size;
802 j += PAGE_SIZE)
803 kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
804 io_ranges[i].type, 0);
809 /*Use unused rids to virtualize guest rid.*/
810 #define GUEST_PHYSICAL_RR0 0x1739
811 #define GUEST_PHYSICAL_RR4 0x2739
812 #define VMM_INIT_RR 0x1660
814 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
816 BUG_ON(!kvm);
818 if (type)
819 return -EINVAL;
821 kvm->arch.is_sn2 = ia64_platform_is("sn2");
823 kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
824 kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
825 kvm->arch.vmm_init_rr = VMM_INIT_RR;
828 *Fill P2M entries for MMIO/IO ranges
830 kvm_build_io_pmt(kvm);
832 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
834 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
835 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
837 return 0;
840 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
841 struct kvm_irqchip *chip)
843 int r;
845 r = 0;
846 switch (chip->chip_id) {
847 case KVM_IRQCHIP_IOAPIC:
848 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
849 break;
850 default:
851 r = -EINVAL;
852 break;
854 return r;
857 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
859 int r;
861 r = 0;
862 switch (chip->chip_id) {
863 case KVM_IRQCHIP_IOAPIC:
864 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
865 break;
866 default:
867 r = -EINVAL;
868 break;
870 return r;
873 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
875 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
877 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
878 int i;
880 for (i = 0; i < 16; i++) {
881 vpd->vgr[i] = regs->vpd.vgr[i];
882 vpd->vbgr[i] = regs->vpd.vbgr[i];
884 for (i = 0; i < 128; i++)
885 vpd->vcr[i] = regs->vpd.vcr[i];
886 vpd->vhpi = regs->vpd.vhpi;
887 vpd->vnat = regs->vpd.vnat;
888 vpd->vbnat = regs->vpd.vbnat;
889 vpd->vpsr = regs->vpd.vpsr;
891 vpd->vpr = regs->vpd.vpr;
893 memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
895 RESTORE_REGS(mp_state);
896 RESTORE_REGS(vmm_rr);
897 memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
898 memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
899 RESTORE_REGS(itr_regions);
900 RESTORE_REGS(dtr_regions);
901 RESTORE_REGS(tc_regions);
902 RESTORE_REGS(irq_check);
903 RESTORE_REGS(itc_check);
904 RESTORE_REGS(timer_check);
905 RESTORE_REGS(timer_pending);
906 RESTORE_REGS(last_itc);
907 for (i = 0; i < 8; i++) {
908 vcpu->arch.vrr[i] = regs->vrr[i];
909 vcpu->arch.ibr[i] = regs->ibr[i];
910 vcpu->arch.dbr[i] = regs->dbr[i];
912 for (i = 0; i < 4; i++)
913 vcpu->arch.insvc[i] = regs->insvc[i];
914 RESTORE_REGS(xtp);
915 RESTORE_REGS(metaphysical_rr0);
916 RESTORE_REGS(metaphysical_rr4);
917 RESTORE_REGS(metaphysical_saved_rr0);
918 RESTORE_REGS(metaphysical_saved_rr4);
919 RESTORE_REGS(fp_psr);
920 RESTORE_REGS(saved_gp);
922 vcpu->arch.irq_new_pending = 1;
923 vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
924 set_bit(KVM_REQ_RESUME, &vcpu->requests);
926 return 0;
929 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
930 bool line_status)
932 if (!irqchip_in_kernel(kvm))
933 return -ENXIO;
935 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
936 irq_event->irq, irq_event->level,
937 line_status);
938 return 0;
941 long kvm_arch_vm_ioctl(struct file *filp,
942 unsigned int ioctl, unsigned long arg)
944 struct kvm *kvm = filp->private_data;
945 void __user *argp = (void __user *)arg;
946 int r = -ENOTTY;
948 switch (ioctl) {
949 case KVM_CREATE_IRQCHIP:
950 r = -EFAULT;
951 r = kvm_ioapic_init(kvm);
952 if (r)
953 goto out;
954 r = kvm_setup_default_irq_routing(kvm);
955 if (r) {
956 mutex_lock(&kvm->slots_lock);
957 kvm_ioapic_destroy(kvm);
958 mutex_unlock(&kvm->slots_lock);
959 goto out;
961 break;
962 case KVM_GET_IRQCHIP: {
963 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
964 struct kvm_irqchip chip;
966 r = -EFAULT;
967 if (copy_from_user(&chip, argp, sizeof chip))
968 goto out;
969 r = -ENXIO;
970 if (!irqchip_in_kernel(kvm))
971 goto out;
972 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
973 if (r)
974 goto out;
975 r = -EFAULT;
976 if (copy_to_user(argp, &chip, sizeof chip))
977 goto out;
978 r = 0;
979 break;
981 case KVM_SET_IRQCHIP: {
982 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
983 struct kvm_irqchip chip;
985 r = -EFAULT;
986 if (copy_from_user(&chip, argp, sizeof chip))
987 goto out;
988 r = -ENXIO;
989 if (!irqchip_in_kernel(kvm))
990 goto out;
991 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
992 if (r)
993 goto out;
994 r = 0;
995 break;
997 default:
1000 out:
1001 return r;
1004 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1005 struct kvm_sregs *sregs)
1007 return -EINVAL;
1010 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1011 struct kvm_sregs *sregs)
1013 return -EINVAL;
1016 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1017 struct kvm_translation *tr)
1020 return -EINVAL;
1023 static int kvm_alloc_vmm_area(void)
1025 if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1026 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1027 get_order(KVM_VMM_SIZE));
1028 if (!kvm_vmm_base)
1029 return -ENOMEM;
1031 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1032 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1034 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1035 kvm_vmm_base, kvm_vm_buffer);
1038 return 0;
1041 static void kvm_free_vmm_area(void)
1043 if (kvm_vmm_base) {
1044 /*Zero this area before free to avoid bits leak!!*/
1045 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1046 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1047 kvm_vmm_base = 0;
1048 kvm_vm_buffer = 0;
1049 kvm_vsa_base = 0;
1053 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1055 int i;
1056 union cpuid3_t cpuid3;
1057 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1059 if (IS_ERR(vpd))
1060 return PTR_ERR(vpd);
1062 /* CPUID init */
1063 for (i = 0; i < 5; i++)
1064 vpd->vcpuid[i] = ia64_get_cpuid(i);
1066 /* Limit the CPUID number to 5 */
1067 cpuid3.value = vpd->vcpuid[3];
1068 cpuid3.number = 4; /* 5 - 1 */
1069 vpd->vcpuid[3] = cpuid3.value;
1071 /*Set vac and vdc fields*/
1072 vpd->vac.a_from_int_cr = 1;
1073 vpd->vac.a_to_int_cr = 1;
1074 vpd->vac.a_from_psr = 1;
1075 vpd->vac.a_from_cpuid = 1;
1076 vpd->vac.a_cover = 1;
1077 vpd->vac.a_bsw = 1;
1078 vpd->vac.a_int = 1;
1079 vpd->vdc.d_vmsw = 1;
1081 /*Set virtual buffer*/
1082 vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1084 return 0;
1087 static int vti_create_vp(struct kvm_vcpu *vcpu)
1089 long ret;
1090 struct vpd *vpd = vcpu->arch.vpd;
1091 unsigned long vmm_ivt;
1093 vmm_ivt = kvm_vmm_info->vmm_ivt;
1095 printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1097 ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1099 if (ret) {
1100 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1101 return -EINVAL;
1103 return 0;
1106 static void init_ptce_info(struct kvm_vcpu *vcpu)
1108 ia64_ptce_info_t ptce = {0};
1110 ia64_get_ptce(&ptce);
1111 vcpu->arch.ptce_base = ptce.base;
1112 vcpu->arch.ptce_count[0] = ptce.count[0];
1113 vcpu->arch.ptce_count[1] = ptce.count[1];
1114 vcpu->arch.ptce_stride[0] = ptce.stride[0];
1115 vcpu->arch.ptce_stride[1] = ptce.stride[1];
1118 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1120 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1122 if (hrtimer_cancel(p_ht))
1123 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1126 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1128 struct kvm_vcpu *vcpu;
1129 wait_queue_head_t *q;
1131 vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1132 q = &vcpu->wq;
1134 if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1135 goto out;
1137 if (waitqueue_active(q))
1138 wake_up_interruptible(q);
1140 out:
1141 vcpu->arch.timer_fired = 1;
1142 vcpu->arch.timer_check = 1;
1143 return HRTIMER_NORESTART;
1146 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1148 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
1150 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
1153 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1155 struct kvm_vcpu *v;
1156 int r;
1157 int i;
1158 long itc_offset;
1159 struct kvm *kvm = vcpu->kvm;
1160 struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1162 union context *p_ctx = &vcpu->arch.guest;
1163 struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1165 /*Init vcpu context for first run.*/
1166 if (IS_ERR(vmm_vcpu))
1167 return PTR_ERR(vmm_vcpu);
1169 if (kvm_vcpu_is_bsp(vcpu)) {
1170 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1172 /*Set entry address for first run.*/
1173 regs->cr_iip = PALE_RESET_ENTRY;
1175 /*Initialize itc offset for vcpus*/
1176 itc_offset = 0UL - kvm_get_itc(vcpu);
1177 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1178 v = (struct kvm_vcpu *)((char *)vcpu +
1179 sizeof(struct kvm_vcpu_data) * i);
1180 v->arch.itc_offset = itc_offset;
1181 v->arch.last_itc = 0;
1183 } else
1184 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1186 r = -ENOMEM;
1187 vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1188 if (!vcpu->arch.apic)
1189 goto out;
1190 vcpu->arch.apic->vcpu = vcpu;
1192 p_ctx->gr[1] = 0;
1193 p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1194 p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1195 p_ctx->psr = 0x1008522000UL;
1196 p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1197 p_ctx->caller_unat = 0;
1198 p_ctx->pr = 0x0;
1199 p_ctx->ar[36] = 0x0; /*unat*/
1200 p_ctx->ar[19] = 0x0; /*rnat*/
1201 p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1202 ((sizeof(struct kvm_vcpu)+15) & ~15);
1203 p_ctx->ar[64] = 0x0; /*pfs*/
1204 p_ctx->cr[0] = 0x7e04UL;
1205 p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1206 p_ctx->cr[8] = 0x3c;
1208 /*Initialize region register*/
1209 p_ctx->rr[0] = 0x30;
1210 p_ctx->rr[1] = 0x30;
1211 p_ctx->rr[2] = 0x30;
1212 p_ctx->rr[3] = 0x30;
1213 p_ctx->rr[4] = 0x30;
1214 p_ctx->rr[5] = 0x30;
1215 p_ctx->rr[7] = 0x30;
1217 /*Initialize branch register 0*/
1218 p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1220 vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1221 vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1222 vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1224 hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1225 vcpu->arch.hlt_timer.function = hlt_timer_fn;
1227 vcpu->arch.last_run_cpu = -1;
1228 vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1229 vcpu->arch.vsa_base = kvm_vsa_base;
1230 vcpu->arch.__gp = kvm_vmm_gp;
1231 vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1232 vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1233 vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1234 init_ptce_info(vcpu);
1236 r = 0;
1237 out:
1238 return r;
1241 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1243 unsigned long psr;
1244 int r;
1246 local_irq_save(psr);
1247 r = kvm_insert_vmm_mapping(vcpu);
1248 local_irq_restore(psr);
1249 if (r)
1250 goto fail;
1251 r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1252 if (r)
1253 goto fail;
1255 r = vti_init_vpd(vcpu);
1256 if (r) {
1257 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1258 goto uninit;
1261 r = vti_create_vp(vcpu);
1262 if (r)
1263 goto uninit;
1265 kvm_purge_vmm_mapping(vcpu);
1267 return 0;
1268 uninit:
1269 kvm_vcpu_uninit(vcpu);
1270 fail:
1271 return r;
1274 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1275 unsigned int id)
1277 struct kvm_vcpu *vcpu;
1278 unsigned long vm_base = kvm->arch.vm_base;
1279 int r;
1280 int cpu;
1282 BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1284 r = -EINVAL;
1285 if (id >= KVM_MAX_VCPUS) {
1286 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1287 KVM_MAX_VCPUS);
1288 goto fail;
1291 r = -ENOMEM;
1292 if (!vm_base) {
1293 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1294 goto fail;
1296 vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1297 vcpu_data[id].vcpu_struct));
1298 vcpu->kvm = kvm;
1300 cpu = get_cpu();
1301 r = vti_vcpu_setup(vcpu, id);
1302 put_cpu();
1304 if (r) {
1305 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1306 goto fail;
1309 return vcpu;
1310 fail:
1311 return ERR_PTR(r);
1314 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1316 return 0;
1319 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1321 return 0;
1324 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1326 return -EINVAL;
1329 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1331 return -EINVAL;
1334 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1335 struct kvm_guest_debug *dbg)
1337 return -EINVAL;
1340 void kvm_arch_free_vm(struct kvm *kvm)
1342 unsigned long vm_base = kvm->arch.vm_base;
1344 if (vm_base) {
1345 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1346 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1351 static void kvm_release_vm_pages(struct kvm *kvm)
1353 struct kvm_memslots *slots;
1354 struct kvm_memory_slot *memslot;
1355 int j;
1357 slots = kvm_memslots(kvm);
1358 kvm_for_each_memslot(memslot, slots) {
1359 for (j = 0; j < memslot->npages; j++) {
1360 if (memslot->rmap[j])
1361 put_page((struct page *)memslot->rmap[j]);
1366 void kvm_arch_sync_events(struct kvm *kvm)
1370 void kvm_arch_destroy_vm(struct kvm *kvm)
1372 kvm_iommu_unmap_guest(kvm);
1373 kvm_free_all_assigned_devices(kvm);
1374 kfree(kvm->arch.vioapic);
1375 kvm_release_vm_pages(kvm);
1378 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1382 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1384 if (cpu != vcpu->cpu) {
1385 vcpu->cpu = cpu;
1386 if (vcpu->arch.ht_active)
1387 kvm_migrate_hlt_timer(vcpu);
1391 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1393 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1395 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1396 int i;
1398 vcpu_load(vcpu);
1400 for (i = 0; i < 16; i++) {
1401 regs->vpd.vgr[i] = vpd->vgr[i];
1402 regs->vpd.vbgr[i] = vpd->vbgr[i];
1404 for (i = 0; i < 128; i++)
1405 regs->vpd.vcr[i] = vpd->vcr[i];
1406 regs->vpd.vhpi = vpd->vhpi;
1407 regs->vpd.vnat = vpd->vnat;
1408 regs->vpd.vbnat = vpd->vbnat;
1409 regs->vpd.vpsr = vpd->vpsr;
1410 regs->vpd.vpr = vpd->vpr;
1412 memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1414 SAVE_REGS(mp_state);
1415 SAVE_REGS(vmm_rr);
1416 memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1417 memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1418 SAVE_REGS(itr_regions);
1419 SAVE_REGS(dtr_regions);
1420 SAVE_REGS(tc_regions);
1421 SAVE_REGS(irq_check);
1422 SAVE_REGS(itc_check);
1423 SAVE_REGS(timer_check);
1424 SAVE_REGS(timer_pending);
1425 SAVE_REGS(last_itc);
1426 for (i = 0; i < 8; i++) {
1427 regs->vrr[i] = vcpu->arch.vrr[i];
1428 regs->ibr[i] = vcpu->arch.ibr[i];
1429 regs->dbr[i] = vcpu->arch.dbr[i];
1431 for (i = 0; i < 4; i++)
1432 regs->insvc[i] = vcpu->arch.insvc[i];
1433 regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1434 SAVE_REGS(xtp);
1435 SAVE_REGS(metaphysical_rr0);
1436 SAVE_REGS(metaphysical_rr4);
1437 SAVE_REGS(metaphysical_saved_rr0);
1438 SAVE_REGS(metaphysical_saved_rr4);
1439 SAVE_REGS(fp_psr);
1440 SAVE_REGS(saved_gp);
1442 vcpu_put(vcpu);
1443 return 0;
1446 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1447 struct kvm_ia64_vcpu_stack *stack)
1449 memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1450 return 0;
1453 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1454 struct kvm_ia64_vcpu_stack *stack)
1456 memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1457 sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1459 vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1460 return 0;
1463 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1466 hrtimer_cancel(&vcpu->arch.hlt_timer);
1467 kfree(vcpu->arch.apic);
1471 long kvm_arch_vcpu_ioctl(struct file *filp,
1472 unsigned int ioctl, unsigned long arg)
1474 struct kvm_vcpu *vcpu = filp->private_data;
1475 void __user *argp = (void __user *)arg;
1476 struct kvm_ia64_vcpu_stack *stack = NULL;
1477 long r;
1479 switch (ioctl) {
1480 case KVM_IA64_VCPU_GET_STACK: {
1481 struct kvm_ia64_vcpu_stack __user *user_stack;
1482 void __user *first_p = argp;
1484 r = -EFAULT;
1485 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1486 goto out;
1488 if (!access_ok(VERIFY_WRITE, user_stack,
1489 sizeof(struct kvm_ia64_vcpu_stack))) {
1490 printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1491 "Illegal user destination address for stack\n");
1492 goto out;
1494 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1495 if (!stack) {
1496 r = -ENOMEM;
1497 goto out;
1500 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1501 if (r)
1502 goto out;
1504 if (copy_to_user(user_stack, stack,
1505 sizeof(struct kvm_ia64_vcpu_stack))) {
1506 r = -EFAULT;
1507 goto out;
1510 break;
1512 case KVM_IA64_VCPU_SET_STACK: {
1513 struct kvm_ia64_vcpu_stack __user *user_stack;
1514 void __user *first_p = argp;
1516 r = -EFAULT;
1517 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1518 goto out;
1520 if (!access_ok(VERIFY_READ, user_stack,
1521 sizeof(struct kvm_ia64_vcpu_stack))) {
1522 printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1523 "Illegal user address for stack\n");
1524 goto out;
1526 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1527 if (!stack) {
1528 r = -ENOMEM;
1529 goto out;
1531 if (copy_from_user(stack, user_stack,
1532 sizeof(struct kvm_ia64_vcpu_stack)))
1533 goto out;
1535 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1536 break;
1539 default:
1540 r = -EINVAL;
1543 out:
1544 kfree(stack);
1545 return r;
1548 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1550 return VM_FAULT_SIGBUS;
1553 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
1554 struct kvm_memory_slot *dont)
1558 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
1560 return 0;
1563 void kvm_arch_memslots_updated(struct kvm *kvm)
1567 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1568 struct kvm_memory_slot *memslot,
1569 struct kvm_userspace_memory_region *mem,
1570 enum kvm_mr_change change)
1572 unsigned long i;
1573 unsigned long pfn;
1574 int npages = memslot->npages;
1575 unsigned long base_gfn = memslot->base_gfn;
1577 if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1578 return -ENOMEM;
1580 for (i = 0; i < npages; i++) {
1581 pfn = gfn_to_pfn(kvm, base_gfn + i);
1582 if (!kvm_is_mmio_pfn(pfn)) {
1583 kvm_set_pmt_entry(kvm, base_gfn + i,
1584 pfn << PAGE_SHIFT,
1585 _PAGE_AR_RWX | _PAGE_MA_WB);
1586 memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1587 } else {
1588 kvm_set_pmt_entry(kvm, base_gfn + i,
1589 GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1590 _PAGE_MA_UC);
1591 memslot->rmap[i] = 0;
1595 return 0;
1598 void kvm_arch_commit_memory_region(struct kvm *kvm,
1599 struct kvm_userspace_memory_region *mem,
1600 const struct kvm_memory_slot *old,
1601 enum kvm_mr_change change)
1603 return;
1606 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1608 kvm_flush_remote_tlbs(kvm);
1611 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1612 struct kvm_memory_slot *slot)
1614 kvm_arch_flush_shadow_all();
1617 long kvm_arch_dev_ioctl(struct file *filp,
1618 unsigned int ioctl, unsigned long arg)
1620 return -EINVAL;
1623 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1625 kvm_vcpu_uninit(vcpu);
1628 static int vti_cpu_has_kvm_support(void)
1630 long avail = 1, status = 1, control = 1;
1631 long ret;
1633 ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1634 if (ret)
1635 goto out;
1637 if (!(avail & PAL_PROC_VM_BIT))
1638 goto out;
1640 printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1642 ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1643 if (ret)
1644 goto out;
1645 printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1647 if (!(vp_env_info & VP_OPCODE)) {
1648 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1649 "vm_env_info:0x%lx\n", vp_env_info);
1652 return 1;
1653 out:
1654 return 0;
1659 * On SN2, the ITC isn't stable, so copy in fast path code to use the
1660 * SN2 RTC, replacing the ITC based default verion.
1662 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1663 struct module *module)
1665 unsigned long new_ar, new_ar_sn2;
1666 unsigned long module_base;
1668 if (!ia64_platform_is("sn2"))
1669 return;
1671 module_base = (unsigned long)module->module_core;
1673 new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1674 new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1676 printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1677 "as source\n");
1680 * Copy the SN2 version of mov_ar into place. They are both
1681 * the same size, so 6 bundles is sufficient (6 * 0x10).
1683 memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1686 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1687 struct module *module)
1689 unsigned long module_base;
1690 unsigned long vmm_size;
1692 unsigned long vmm_offset, func_offset, fdesc_offset;
1693 struct fdesc *p_fdesc;
1695 BUG_ON(!module);
1697 if (!kvm_vmm_base) {
1698 printk("kvm: kvm area hasn't been initialized yet!!\n");
1699 return -EFAULT;
1702 /*Calculate new position of relocated vmm module.*/
1703 module_base = (unsigned long)module->module_core;
1704 vmm_size = module->core_size;
1705 if (unlikely(vmm_size > KVM_VMM_SIZE))
1706 return -EFAULT;
1708 memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1709 kvm_patch_vmm(vmm_info, module);
1710 kvm_flush_icache(kvm_vmm_base, vmm_size);
1712 /*Recalculate kvm_vmm_info based on new VMM*/
1713 vmm_offset = vmm_info->vmm_ivt - module_base;
1714 kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1715 printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1716 kvm_vmm_info->vmm_ivt);
1718 fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1719 kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1720 fdesc_offset);
1721 func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1722 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1723 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1724 p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1726 printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1727 KVM_VMM_BASE+func_offset);
1729 fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1730 kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1731 fdesc_offset);
1732 func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1733 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1734 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1735 p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1737 kvm_vmm_gp = p_fdesc->gp;
1739 printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1740 kvm_vmm_info->vmm_entry);
1741 printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1742 KVM_VMM_BASE + func_offset);
1744 return 0;
1747 int kvm_arch_init(void *opaque)
1749 int r;
1750 struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1752 if (!vti_cpu_has_kvm_support()) {
1753 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1754 r = -EOPNOTSUPP;
1755 goto out;
1758 if (kvm_vmm_info) {
1759 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1760 r = -EEXIST;
1761 goto out;
1764 r = -ENOMEM;
1765 kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1766 if (!kvm_vmm_info)
1767 goto out;
1769 if (kvm_alloc_vmm_area())
1770 goto out_free0;
1772 r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1773 if (r)
1774 goto out_free1;
1776 return 0;
1778 out_free1:
1779 kvm_free_vmm_area();
1780 out_free0:
1781 kfree(kvm_vmm_info);
1782 out:
1783 return r;
1786 void kvm_arch_exit(void)
1788 kvm_free_vmm_area();
1789 kfree(kvm_vmm_info);
1790 kvm_vmm_info = NULL;
1793 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1794 struct kvm_memory_slot *memslot)
1796 int i;
1797 long base;
1798 unsigned long n;
1799 unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1800 offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1802 n = kvm_dirty_bitmap_bytes(memslot);
1803 base = memslot->base_gfn / BITS_PER_LONG;
1805 spin_lock(&kvm->arch.dirty_log_lock);
1806 for (i = 0; i < n/sizeof(long); ++i) {
1807 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1808 dirty_bitmap[base + i] = 0;
1810 spin_unlock(&kvm->arch.dirty_log_lock);
1813 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1814 struct kvm_dirty_log *log)
1816 int r;
1817 unsigned long n;
1818 struct kvm_memory_slot *memslot;
1819 int is_dirty = 0;
1821 mutex_lock(&kvm->slots_lock);
1823 r = -EINVAL;
1824 if (log->slot >= KVM_USER_MEM_SLOTS)
1825 goto out;
1827 memslot = id_to_memslot(kvm->memslots, log->slot);
1828 r = -ENOENT;
1829 if (!memslot->dirty_bitmap)
1830 goto out;
1832 kvm_ia64_sync_dirty_log(kvm, memslot);
1833 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1834 if (r)
1835 goto out;
1837 /* If nothing is dirty, don't bother messing with page tables. */
1838 if (is_dirty) {
1839 kvm_flush_remote_tlbs(kvm);
1840 n = kvm_dirty_bitmap_bytes(memslot);
1841 memset(memslot->dirty_bitmap, 0, n);
1843 r = 0;
1844 out:
1845 mutex_unlock(&kvm->slots_lock);
1846 return r;
1849 int kvm_arch_hardware_setup(void)
1851 return 0;
1854 void kvm_arch_hardware_unsetup(void)
1858 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1860 return __apic_accept_irq(vcpu, irq->vector);
1863 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1865 return apic->vcpu->vcpu_id == dest;
1868 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1870 return 0;
1873 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1875 return vcpu1->arch.xtp - vcpu2->arch.xtp;
1878 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1879 int short_hand, int dest, int dest_mode)
1881 struct kvm_lapic *target = vcpu->arch.apic;
1882 return (dest_mode == 0) ?
1883 kvm_apic_match_physical_addr(target, dest) :
1884 kvm_apic_match_logical_addr(target, dest);
1887 static int find_highest_bits(int *dat)
1889 u32 bits, bitnum;
1890 int i;
1892 /* loop for all 256 bits */
1893 for (i = 7; i >= 0 ; i--) {
1894 bits = dat[i];
1895 if (bits) {
1896 bitnum = fls(bits);
1897 return i * 32 + bitnum - 1;
1901 return -1;
1904 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1906 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1908 if (vpd->irr[0] & (1UL << NMI_VECTOR))
1909 return NMI_VECTOR;
1910 if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1911 return ExtINT_VECTOR;
1913 return find_highest_bits((int *)&vpd->irr[0]);
1916 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1918 return vcpu->arch.timer_fired;
1921 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1923 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1924 (kvm_highest_pending_irq(vcpu) != -1);
1927 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1929 return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests));
1932 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1933 struct kvm_mp_state *mp_state)
1935 mp_state->mp_state = vcpu->arch.mp_state;
1936 return 0;
1939 static int vcpu_reset(struct kvm_vcpu *vcpu)
1941 int r;
1942 long psr;
1943 local_irq_save(psr);
1944 r = kvm_insert_vmm_mapping(vcpu);
1945 local_irq_restore(psr);
1946 if (r)
1947 goto fail;
1949 vcpu->arch.launched = 0;
1950 kvm_arch_vcpu_uninit(vcpu);
1951 r = kvm_arch_vcpu_init(vcpu);
1952 if (r)
1953 goto fail;
1955 kvm_purge_vmm_mapping(vcpu);
1956 r = 0;
1957 fail:
1958 return r;
1961 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1962 struct kvm_mp_state *mp_state)
1964 int r = 0;
1966 vcpu->arch.mp_state = mp_state->mp_state;
1967 if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1968 r = vcpu_reset(vcpu);
1969 return r;