Linux 3.12.28
[linux/fpc-iii.git] / arch / ia64 / sn / pci / pcibr / pcibr_dma.c
blob1e863b277ac967fa29ad0ddf3ae0517ecb281ff7
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2001-2005 Silicon Graphics, Inc. All rights reserved.
7 */
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <linux/export.h>
12 #include <asm/sn/addrs.h>
13 #include <asm/sn/geo.h>
14 #include <asm/sn/pcibr_provider.h>
15 #include <asm/sn/pcibus_provider_defs.h>
16 #include <asm/sn/pcidev.h>
17 #include <asm/sn/pic.h>
18 #include <asm/sn/sn_sal.h>
19 #include <asm/sn/tiocp.h>
20 #include "tio.h"
21 #include "xtalk/xwidgetdev.h"
22 #include "xtalk/hubdev.h"
24 extern int sn_ioif_inited;
26 /* =====================================================================
27 * DMA MANAGEMENT
29 * The Bridge ASIC provides three methods of doing DMA: via a "direct map"
30 * register available in 32-bit PCI space (which selects a contiguous 2G
31 * address space on some other widget), via "direct" addressing via 64-bit
32 * PCI space (all destination information comes from the PCI address,
33 * including transfer attributes), and via a "mapped" region that allows
34 * a bunch of different small mappings to be established with the PMU.
36 * For efficiency, we most prefer to use the 32bit direct mapping facility,
37 * since it requires no resource allocations. The advantage of using the
38 * PMU over the 64-bit direct is that single-cycle PCI addressing can be
39 * used; the advantage of using 64-bit direct over PMU addressing is that
40 * we do not have to allocate entries in the PMU.
43 static dma_addr_t
44 pcibr_dmamap_ate32(struct pcidev_info *info,
45 u64 paddr, size_t req_size, u64 flags, int dma_flags)
48 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
49 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
50 pdi_pcibus_info;
51 u8 internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info->
52 pdi_linux_pcidev->devfn)) - 1;
53 int ate_count;
54 int ate_index;
55 u64 ate_flags = flags | PCI32_ATE_V;
56 u64 ate;
57 u64 pci_addr;
58 u64 xio_addr;
59 u64 offset;
61 /* PIC in PCI-X mode does not supports 32bit PageMap mode */
62 if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) {
63 return 0;
66 /* Calculate the number of ATEs needed. */
67 if (!(MINIMAL_ATE_FLAG(paddr, req_size))) {
68 ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */
69 +req_size /* max mapping bytes */
70 - 1) + 1; /* round UP */
71 } else { /* assume requested target is page aligned */
72 ate_count = IOPG(req_size /* max mapping bytes */
73 - 1) + 1; /* round UP */
76 /* Get the number of ATEs required. */
77 ate_index = pcibr_ate_alloc(pcibus_info, ate_count);
78 if (ate_index < 0)
79 return 0;
81 /* In PCI-X mode, Prefetch not supported */
82 if (IS_PCIX(pcibus_info))
83 ate_flags &= ~(PCI32_ATE_PREF);
85 if (SN_DMA_ADDRTYPE(dma_flags == SN_DMA_ADDR_PHYS))
86 xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
87 PHYS_TO_TIODMA(paddr);
88 else
89 xio_addr = paddr;
91 offset = IOPGOFF(xio_addr);
92 ate = ate_flags | (xio_addr - offset);
94 /* If PIC, put the targetid in the ATE */
95 if (IS_PIC_SOFT(pcibus_info)) {
96 ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT);
100 * If we're mapping for MSI, set the MSI bit in the ATE. If it's a
101 * TIOCP based pci bus, we also need to set the PIO bit in the ATE.
103 if (dma_flags & SN_DMA_MSI) {
104 ate |= PCI32_ATE_MSI;
105 if (IS_TIOCP_SOFT(pcibus_info))
106 ate |= PCI32_ATE_PIO;
109 ate_write(pcibus_info, ate_index, ate_count, ate);
112 * Set up the DMA mapped Address.
114 pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index;
117 * If swap was set in device in pcibr_endian_set()
118 * we need to turn swapping on.
120 if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR)
121 ATE_SWAP_ON(pci_addr);
124 return pci_addr;
127 static dma_addr_t
128 pcibr_dmatrans_direct64(struct pcidev_info * info, u64 paddr,
129 u64 dma_attributes, int dma_flags)
131 struct pcibus_info *pcibus_info = (struct pcibus_info *)
132 ((info->pdi_host_pcidev_info)->pdi_pcibus_info);
133 u64 pci_addr;
135 /* Translate to Crosstalk View of Physical Address */
136 if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
137 pci_addr = IS_PIC_SOFT(pcibus_info) ?
138 PHYS_TO_DMA(paddr) :
139 PHYS_TO_TIODMA(paddr);
140 else
141 pci_addr = paddr;
142 pci_addr |= dma_attributes;
144 /* Handle Bus mode */
145 if (IS_PCIX(pcibus_info))
146 pci_addr &= ~PCI64_ATTR_PREF;
148 /* Handle Bridge Chipset differences */
149 if (IS_PIC_SOFT(pcibus_info)) {
150 pci_addr |=
151 ((u64) pcibus_info->
152 pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT);
153 } else
154 pci_addr |= (dma_flags & SN_DMA_MSI) ?
155 TIOCP_PCI64_CMDTYPE_MSI :
156 TIOCP_PCI64_CMDTYPE_MEM;
158 /* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */
159 if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn))
160 pci_addr |= PCI64_ATTR_VIRTUAL;
162 return pci_addr;
165 static dma_addr_t
166 pcibr_dmatrans_direct32(struct pcidev_info * info,
167 u64 paddr, size_t req_size, u64 flags, int dma_flags)
169 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
170 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
171 pdi_pcibus_info;
172 u64 xio_addr;
174 u64 xio_base;
175 u64 offset;
176 u64 endoff;
178 if (IS_PCIX(pcibus_info)) {
179 return 0;
182 if (dma_flags & SN_DMA_MSI)
183 return 0;
185 if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
186 xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
187 PHYS_TO_TIODMA(paddr);
188 else
189 xio_addr = paddr;
191 xio_base = pcibus_info->pbi_dir_xbase;
192 offset = xio_addr - xio_base;
193 endoff = req_size + offset;
194 if ((req_size > (1ULL << 31)) || /* Too Big */
195 (xio_addr < xio_base) || /* Out of range for mappings */
196 (endoff > (1ULL << 31))) { /* Too Big */
197 return 0;
200 return PCI32_DIRECT_BASE | offset;
204 * Wrapper routine for freeing DMA maps
205 * DMA mappings for Direct 64 and 32 do not have any DMA maps.
207 void
208 pcibr_dma_unmap(struct pci_dev *hwdev, dma_addr_t dma_handle, int direction)
210 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
211 struct pcibus_info *pcibus_info =
212 (struct pcibus_info *)pcidev_info->pdi_pcibus_info;
214 if (IS_PCI32_MAPPED(dma_handle)) {
215 int ate_index;
217 ate_index =
218 IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE));
219 pcibr_ate_free(pcibus_info, ate_index);
224 * On SN systems there is a race condition between a PIO read response and
225 * DMA's. In rare cases, the read response may beat the DMA, causing the
226 * driver to think that data in memory is complete and meaningful. This code
227 * eliminates that race. This routine is called by the PIO read routines
228 * after doing the read. For PIC this routine then forces a fake interrupt
229 * on another line, which is logically associated with the slot that the PIO
230 * is addressed to. It then spins while watching the memory location that
231 * the interrupt is targeted to. When the interrupt response arrives, we
232 * are sure that the DMA has landed in memory and it is safe for the driver
233 * to proceed. For TIOCP use the Device(x) Write Request Buffer Flush
234 * Bridge register since it ensures the data has entered the coherence domain,
235 * unlike the PIC Device(x) Write Request Buffer Flush register.
238 void sn_dma_flush(u64 addr)
240 nasid_t nasid;
241 int is_tio;
242 int wid_num;
243 int i, j;
244 unsigned long flags;
245 u64 itte;
246 struct hubdev_info *hubinfo;
247 struct sn_flush_device_kernel *p;
248 struct sn_flush_device_common *common;
249 struct sn_flush_nasid_entry *flush_nasid_list;
251 if (!sn_ioif_inited)
252 return;
254 nasid = NASID_GET(addr);
255 if (-1 == nasid_to_cnodeid(nasid))
256 return;
258 hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo;
260 BUG_ON(!hubinfo);
262 flush_nasid_list = &hubinfo->hdi_flush_nasid_list;
263 if (flush_nasid_list->widget_p == NULL)
264 return;
266 is_tio = (nasid & 1);
267 if (is_tio) {
268 int itte_index;
270 if (TIO_HWIN(addr))
271 itte_index = 0;
272 else if (TIO_BWIN_WINDOWNUM(addr))
273 itte_index = TIO_BWIN_WINDOWNUM(addr);
274 else
275 itte_index = -1;
277 if (itte_index >= 0) {
278 itte = flush_nasid_list->iio_itte[itte_index];
279 if (! TIO_ITTE_VALID(itte))
280 return;
281 wid_num = TIO_ITTE_WIDGET(itte);
282 } else
283 wid_num = TIO_SWIN_WIDGETNUM(addr);
284 } else {
285 if (BWIN_WINDOWNUM(addr)) {
286 itte = flush_nasid_list->iio_itte[BWIN_WINDOWNUM(addr)];
287 wid_num = IIO_ITTE_WIDGET(itte);
288 } else
289 wid_num = SWIN_WIDGETNUM(addr);
291 if (flush_nasid_list->widget_p[wid_num] == NULL)
292 return;
293 p = &flush_nasid_list->widget_p[wid_num][0];
295 /* find a matching BAR */
296 for (i = 0; i < DEV_PER_WIDGET; i++,p++) {
297 common = p->common;
298 for (j = 0; j < PCI_ROM_RESOURCE; j++) {
299 if (common->sfdl_bar_list[j].start == 0)
300 break;
301 if (addr >= common->sfdl_bar_list[j].start
302 && addr <= common->sfdl_bar_list[j].end)
303 break;
305 if (j < PCI_ROM_RESOURCE && common->sfdl_bar_list[j].start != 0)
306 break;
309 /* if no matching BAR, return without doing anything. */
310 if (i == DEV_PER_WIDGET)
311 return;
314 * For TIOCP use the Device(x) Write Request Buffer Flush Bridge
315 * register since it ensures the data has entered the coherence
316 * domain, unlike PIC.
318 if (is_tio) {
320 * Note: devices behind TIOCE should never be matched in the
321 * above code, and so the following code is PIC/CP centric.
322 * If CE ever needs the sn_dma_flush mechanism, we will have
323 * to account for that here and in tioce_bus_fixup().
325 u32 tio_id = HUB_L(TIO_IOSPACE_ADDR(nasid, TIO_NODE_ID));
326 u32 revnum = XWIDGET_PART_REV_NUM(tio_id);
328 /* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */
329 if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) {
330 return;
331 } else {
332 pcireg_wrb_flush_get(common->sfdl_pcibus_info,
333 (common->sfdl_slot - 1));
335 } else {
336 spin_lock_irqsave(&p->sfdl_flush_lock, flags);
337 *common->sfdl_flush_addr = 0;
339 /* force an interrupt. */
340 *(volatile u32 *)(common->sfdl_force_int_addr) = 1;
342 /* wait for the interrupt to come back. */
343 while (*(common->sfdl_flush_addr) != 0x10f)
344 cpu_relax();
346 /* okay, everything is synched up. */
347 spin_unlock_irqrestore(&p->sfdl_flush_lock, flags);
349 return;
353 * DMA interfaces. Called from pci_dma.c routines.
356 dma_addr_t
357 pcibr_dma_map(struct pci_dev * hwdev, unsigned long phys_addr, size_t size, int dma_flags)
359 dma_addr_t dma_handle;
360 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
362 /* SN cannot support DMA addresses smaller than 32 bits. */
363 if (hwdev->dma_mask < 0x7fffffff) {
364 return 0;
367 if (hwdev->dma_mask == ~0UL) {
369 * Handle the most common case: 64 bit cards. This
370 * call should always succeed.
373 dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
374 PCI64_ATTR_PREF, dma_flags);
375 } else {
376 /* Handle 32-63 bit cards via direct mapping */
377 dma_handle = pcibr_dmatrans_direct32(pcidev_info, phys_addr,
378 size, 0, dma_flags);
379 if (!dma_handle) {
381 * It is a 32 bit card and we cannot do direct mapping,
382 * so we use an ATE.
385 dma_handle = pcibr_dmamap_ate32(pcidev_info, phys_addr,
386 size, PCI32_ATE_PREF,
387 dma_flags);
391 return dma_handle;
394 dma_addr_t
395 pcibr_dma_map_consistent(struct pci_dev * hwdev, unsigned long phys_addr,
396 size_t size, int dma_flags)
398 dma_addr_t dma_handle;
399 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
401 if (hwdev->dev.coherent_dma_mask == ~0UL) {
402 dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
403 PCI64_ATTR_BAR, dma_flags);
404 } else {
405 dma_handle = (dma_addr_t) pcibr_dmamap_ate32(pcidev_info,
406 phys_addr, size,
407 PCI32_ATE_BAR, dma_flags);
410 return dma_handle;
413 EXPORT_SYMBOL(sn_dma_flush);