2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
56 #include <asm/debugreg.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
80 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
82 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
89 static void process_nmi(struct kvm_vcpu
*vcpu
);
91 struct kvm_x86_ops
*kvm_x86_ops
;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
94 static bool ignore_msrs
= 0;
95 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
97 unsigned int min_timer_period_us
= 500;
98 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
100 bool kvm_has_tsc_control
;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
102 u32 kvm_max_guest_tsc_khz
;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm
= 250;
107 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
109 #define KVM_NR_SHARED_MSRS 16
111 struct kvm_shared_msrs_global
{
113 u32 msrs
[KVM_NR_SHARED_MSRS
];
116 struct kvm_shared_msrs
{
117 struct user_return_notifier urn
;
119 struct kvm_shared_msr_values
{
122 } values
[KVM_NR_SHARED_MSRS
];
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
126 static struct kvm_shared_msrs __percpu
*shared_msrs
;
128 struct kvm_stats_debugfs_item debugfs_entries
[] = {
129 { "pf_fixed", VCPU_STAT(pf_fixed
) },
130 { "pf_guest", VCPU_STAT(pf_guest
) },
131 { "tlb_flush", VCPU_STAT(tlb_flush
) },
132 { "invlpg", VCPU_STAT(invlpg
) },
133 { "exits", VCPU_STAT(exits
) },
134 { "io_exits", VCPU_STAT(io_exits
) },
135 { "mmio_exits", VCPU_STAT(mmio_exits
) },
136 { "signal_exits", VCPU_STAT(signal_exits
) },
137 { "irq_window", VCPU_STAT(irq_window_exits
) },
138 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
139 { "halt_exits", VCPU_STAT(halt_exits
) },
140 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
141 { "hypercalls", VCPU_STAT(hypercalls
) },
142 { "request_irq", VCPU_STAT(request_irq_exits
) },
143 { "irq_exits", VCPU_STAT(irq_exits
) },
144 { "host_state_reload", VCPU_STAT(host_state_reload
) },
145 { "efer_reload", VCPU_STAT(efer_reload
) },
146 { "fpu_reload", VCPU_STAT(fpu_reload
) },
147 { "insn_emulation", VCPU_STAT(insn_emulation
) },
148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
149 { "irq_injections", VCPU_STAT(irq_injections
) },
150 { "nmi_injections", VCPU_STAT(nmi_injections
) },
151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
152 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
155 { "mmu_flooded", VM_STAT(mmu_flooded
) },
156 { "mmu_recycled", VM_STAT(mmu_recycled
) },
157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
158 { "mmu_unsync", VM_STAT(mmu_unsync
) },
159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
160 { "largepages", VM_STAT(lpages
) },
164 u64 __read_mostly host_xcr0
;
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
171 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
172 vcpu
->arch
.apf
.gfns
[i
] = ~0;
175 static void kvm_on_user_return(struct user_return_notifier
*urn
)
178 struct kvm_shared_msrs
*locals
179 = container_of(urn
, struct kvm_shared_msrs
, urn
);
180 struct kvm_shared_msr_values
*values
;
182 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
183 values
= &locals
->values
[slot
];
184 if (values
->host
!= values
->curr
) {
185 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
186 values
->curr
= values
->host
;
189 locals
->registered
= false;
190 user_return_notifier_unregister(urn
);
193 static void shared_msr_update(unsigned slot
, u32 msr
)
196 unsigned int cpu
= smp_processor_id();
197 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
199 /* only read, and nobody should modify it at this time,
200 * so don't need lock */
201 if (slot
>= shared_msrs_global
.nr
) {
202 printk(KERN_ERR
"kvm: invalid MSR slot!");
205 rdmsrl_safe(msr
, &value
);
206 smsr
->values
[slot
].host
= value
;
207 smsr
->values
[slot
].curr
= value
;
210 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
212 if (slot
>= shared_msrs_global
.nr
)
213 shared_msrs_global
.nr
= slot
+ 1;
214 shared_msrs_global
.msrs
[slot
] = msr
;
215 /* we need ensured the shared_msr_global have been updated */
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
220 static void kvm_shared_msr_cpu_online(void)
224 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
225 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
228 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
230 unsigned int cpu
= smp_processor_id();
231 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
233 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
235 smsr
->values
[slot
].curr
= value
;
236 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
237 if (!smsr
->registered
) {
238 smsr
->urn
.on_user_return
= kvm_on_user_return
;
239 user_return_notifier_register(&smsr
->urn
);
240 smsr
->registered
= true;
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
245 static void drop_user_return_notifiers(void *ignore
)
247 unsigned int cpu
= smp_processor_id();
248 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
250 if (smsr
->registered
)
251 kvm_on_user_return(&smsr
->urn
);
254 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
256 return vcpu
->arch
.apic_base
;
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
260 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
262 /* TODO: reserve bits check */
263 kvm_lapic_set_base(vcpu
, data
);
265 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
267 asmlinkage
void kvm_spurious_fault(void)
269 /* Fault while not rebooting. We want the trace. */
272 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
274 #define EXCPT_BENIGN 0
275 #define EXCPT_CONTRIBUTORY 1
278 static int exception_class(int vector
)
288 return EXCPT_CONTRIBUTORY
;
295 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
296 unsigned nr
, bool has_error
, u32 error_code
,
302 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
304 if (!vcpu
->arch
.exception
.pending
) {
306 vcpu
->arch
.exception
.pending
= true;
307 vcpu
->arch
.exception
.has_error_code
= has_error
;
308 vcpu
->arch
.exception
.nr
= nr
;
309 vcpu
->arch
.exception
.error_code
= error_code
;
310 vcpu
->arch
.exception
.reinject
= reinject
;
314 /* to check exception */
315 prev_nr
= vcpu
->arch
.exception
.nr
;
316 if (prev_nr
== DF_VECTOR
) {
317 /* triple fault -> shutdown */
318 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
321 class1
= exception_class(prev_nr
);
322 class2
= exception_class(nr
);
323 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
324 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
325 /* generate double fault per SDM Table 5-5 */
326 vcpu
->arch
.exception
.pending
= true;
327 vcpu
->arch
.exception
.has_error_code
= true;
328 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
329 vcpu
->arch
.exception
.error_code
= 0;
331 /* replace previous exception with a new one in a hope
332 that instruction re-execution will regenerate lost
337 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
339 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
341 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
343 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
345 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
347 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
349 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
352 kvm_inject_gp(vcpu
, 0);
354 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
356 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
358 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
360 ++vcpu
->stat
.pf_guest
;
361 vcpu
->arch
.cr2
= fault
->address
;
362 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
364 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
366 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
368 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
369 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
371 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
374 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
376 atomic_inc(&vcpu
->arch
.nmi_queued
);
377 kvm_make_request(KVM_REQ_NMI
, vcpu
);
379 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
381 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
383 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
385 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
387 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
389 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
391 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
394 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
395 * a #GP and return false.
397 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
399 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
401 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
404 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
407 * This function will be used to read from the physical memory of the currently
408 * running guest. The difference to kvm_read_guest_page is that this function
409 * can read from guest physical or from the guest's guest physical memory.
411 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
412 gfn_t ngfn
, void *data
, int offset
, int len
,
418 ngpa
= gfn_to_gpa(ngfn
);
419 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
420 if (real_gfn
== UNMAPPED_GVA
)
423 real_gfn
= gpa_to_gfn(real_gfn
);
425 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
427 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
429 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
430 void *data
, int offset
, int len
, u32 access
)
432 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
433 data
, offset
, len
, access
);
437 * Load the pae pdptrs. Return true is they are all valid.
439 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
441 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
442 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
445 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
447 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
448 offset
* sizeof(u64
), sizeof(pdpte
),
449 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
454 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
455 if (is_present_gpte(pdpte
[i
]) &&
456 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
463 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
464 __set_bit(VCPU_EXREG_PDPTR
,
465 (unsigned long *)&vcpu
->arch
.regs_avail
);
466 __set_bit(VCPU_EXREG_PDPTR
,
467 (unsigned long *)&vcpu
->arch
.regs_dirty
);
472 EXPORT_SYMBOL_GPL(load_pdptrs
);
474 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
476 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
482 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
485 if (!test_bit(VCPU_EXREG_PDPTR
,
486 (unsigned long *)&vcpu
->arch
.regs_avail
))
489 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
490 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
491 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
492 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
495 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
501 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
503 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
504 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
505 X86_CR0_CD
| X86_CR0_NW
;
510 if (cr0
& 0xffffffff00000000UL
)
514 cr0
&= ~CR0_RESERVED_BITS
;
516 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
519 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
522 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
524 if ((vcpu
->arch
.efer
& EFER_LME
)) {
529 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
534 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
539 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
542 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
544 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
545 kvm_clear_async_pf_completion_queue(vcpu
);
546 kvm_async_pf_hash_reset(vcpu
);
549 if ((cr0
^ old_cr0
) & update_bits
)
550 kvm_mmu_reset_context(vcpu
);
553 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
555 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
557 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
559 EXPORT_SYMBOL_GPL(kvm_lmsw
);
561 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
563 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
564 !vcpu
->guest_xcr0_loaded
) {
565 /* kvm_set_xcr() also depends on this */
566 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
567 vcpu
->guest_xcr0_loaded
= 1;
571 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
573 if (vcpu
->guest_xcr0_loaded
) {
574 if (vcpu
->arch
.xcr0
!= host_xcr0
)
575 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
576 vcpu
->guest_xcr0_loaded
= 0;
580 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
584 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
585 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
588 if (!(xcr0
& XSTATE_FP
))
590 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
592 if (xcr0
& ~host_xcr0
)
594 kvm_put_guest_xcr0(vcpu
);
595 vcpu
->arch
.xcr0
= xcr0
;
599 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
601 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
602 __kvm_set_xcr(vcpu
, index
, xcr
)) {
603 kvm_inject_gp(vcpu
, 0);
608 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
610 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
612 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
613 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
614 X86_CR4_PAE
| X86_CR4_SMEP
;
615 if (cr4
& CR4_RESERVED_BITS
)
618 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
621 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
624 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
627 if (is_long_mode(vcpu
)) {
628 if (!(cr4
& X86_CR4_PAE
))
630 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
631 && ((cr4
^ old_cr4
) & pdptr_bits
)
632 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
636 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
637 if (!guest_cpuid_has_pcid(vcpu
))
640 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
641 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
645 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
648 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
649 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
650 kvm_mmu_reset_context(vcpu
);
652 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
653 kvm_update_cpuid(vcpu
);
657 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
659 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
661 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
662 kvm_mmu_sync_roots(vcpu
);
663 kvm_mmu_flush_tlb(vcpu
);
667 if (is_long_mode(vcpu
)) {
668 if (kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
)) {
669 if (cr3
& CR3_PCID_ENABLED_RESERVED_BITS
)
672 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
676 if (cr3
& CR3_PAE_RESERVED_BITS
)
678 if (is_paging(vcpu
) &&
679 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
683 * We don't check reserved bits in nonpae mode, because
684 * this isn't enforced, and VMware depends on this.
688 vcpu
->arch
.cr3
= cr3
;
689 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
690 vcpu
->arch
.mmu
.new_cr3(vcpu
);
693 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
695 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
697 if (cr8
& CR8_RESERVED_BITS
)
699 if (irqchip_in_kernel(vcpu
->kvm
))
700 kvm_lapic_set_tpr(vcpu
, cr8
);
702 vcpu
->arch
.cr8
= cr8
;
705 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
707 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
709 if (irqchip_in_kernel(vcpu
->kvm
))
710 return kvm_lapic_get_cr8(vcpu
);
712 return vcpu
->arch
.cr8
;
714 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
716 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
720 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
721 dr7
= vcpu
->arch
.guest_debug_dr7
;
723 dr7
= vcpu
->arch
.dr7
;
724 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
725 vcpu
->arch
.switch_db_regs
= (dr7
& DR7_BP_EN_MASK
);
728 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
732 vcpu
->arch
.db
[dr
] = val
;
733 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
734 vcpu
->arch
.eff_db
[dr
] = val
;
737 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
741 if (val
& 0xffffffff00000000ULL
)
743 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
746 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
750 if (val
& 0xffffffff00000000ULL
)
752 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
753 kvm_update_dr7(vcpu
);
760 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
764 res
= __kvm_set_dr(vcpu
, dr
, val
);
766 kvm_queue_exception(vcpu
, UD_VECTOR
);
768 kvm_inject_gp(vcpu
, 0);
772 EXPORT_SYMBOL_GPL(kvm_set_dr
);
774 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
778 *val
= vcpu
->arch
.db
[dr
];
781 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
785 *val
= vcpu
->arch
.dr6
;
788 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
792 *val
= vcpu
->arch
.dr7
;
799 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
801 if (_kvm_get_dr(vcpu
, dr
, val
)) {
802 kvm_queue_exception(vcpu
, UD_VECTOR
);
807 EXPORT_SYMBOL_GPL(kvm_get_dr
);
809 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
811 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
815 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
818 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
819 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
822 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
825 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
826 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
828 * This list is modified at module load time to reflect the
829 * capabilities of the host cpu. This capabilities test skips MSRs that are
830 * kvm-specific. Those are put in the beginning of the list.
833 #define KVM_SAVE_MSRS_BEGIN 10
834 static u32 msrs_to_save
[] = {
835 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
836 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
837 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
838 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
840 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
843 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
845 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
846 MSR_IA32_FEATURE_CONTROL
849 static unsigned num_msrs_to_save
;
851 static const u32 emulated_msrs
[] = {
853 MSR_IA32_TSCDEADLINE
,
854 MSR_IA32_MISC_ENABLE
,
859 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
861 if (efer
& efer_reserved_bits
)
864 if (efer
& EFER_FFXSR
) {
865 struct kvm_cpuid_entry2
*feat
;
867 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
868 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
872 if (efer
& EFER_SVME
) {
873 struct kvm_cpuid_entry2
*feat
;
875 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
876 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
882 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
884 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
886 u64 old_efer
= vcpu
->arch
.efer
;
888 if (!kvm_valid_efer(vcpu
, efer
))
892 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
896 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
898 kvm_x86_ops
->set_efer(vcpu
, efer
);
900 /* Update reserved bits */
901 if ((efer
^ old_efer
) & EFER_NX
)
902 kvm_mmu_reset_context(vcpu
);
907 void kvm_enable_efer_bits(u64 mask
)
909 efer_reserved_bits
&= ~mask
;
911 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
915 * Writes msr value into into the appropriate "register".
916 * Returns 0 on success, non-0 otherwise.
917 * Assumes vcpu_load() was already called.
919 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
921 return kvm_x86_ops
->set_msr(vcpu
, msr
);
925 * Adapt set_msr() to msr_io()'s calling convention
927 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
933 msr
.host_initiated
= true;
934 return kvm_set_msr(vcpu
, &msr
);
938 struct pvclock_gtod_data
{
941 struct { /* extract of a clocksource struct */
949 /* open coded 'struct timespec' */
950 u64 monotonic_time_snsec
;
951 time_t monotonic_time_sec
;
954 static struct pvclock_gtod_data pvclock_gtod_data
;
956 static void update_pvclock_gtod(struct timekeeper
*tk
)
958 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
960 write_seqcount_begin(&vdata
->seq
);
962 /* copy pvclock gtod data */
963 vdata
->clock
.vclock_mode
= tk
->clock
->archdata
.vclock_mode
;
964 vdata
->clock
.cycle_last
= tk
->clock
->cycle_last
;
965 vdata
->clock
.mask
= tk
->clock
->mask
;
966 vdata
->clock
.mult
= tk
->mult
;
967 vdata
->clock
.shift
= tk
->shift
;
969 vdata
->monotonic_time_sec
= tk
->xtime_sec
970 + tk
->wall_to_monotonic
.tv_sec
;
971 vdata
->monotonic_time_snsec
= tk
->xtime_nsec
972 + (tk
->wall_to_monotonic
.tv_nsec
974 while (vdata
->monotonic_time_snsec
>=
975 (((u64
)NSEC_PER_SEC
) << tk
->shift
)) {
976 vdata
->monotonic_time_snsec
-=
977 ((u64
)NSEC_PER_SEC
) << tk
->shift
;
978 vdata
->monotonic_time_sec
++;
981 write_seqcount_end(&vdata
->seq
);
986 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
990 struct pvclock_wall_clock wc
;
991 struct timespec boot
;
996 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1001 ++version
; /* first time write, random junk */
1005 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1008 * The guest calculates current wall clock time by adding
1009 * system time (updated by kvm_guest_time_update below) to the
1010 * wall clock specified here. guest system time equals host
1011 * system time for us, thus we must fill in host boot time here.
1015 if (kvm
->arch
.kvmclock_offset
) {
1016 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
1017 boot
= timespec_sub(boot
, ts
);
1019 wc
.sec
= boot
.tv_sec
;
1020 wc
.nsec
= boot
.tv_nsec
;
1021 wc
.version
= version
;
1023 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1026 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1029 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1031 uint32_t quotient
, remainder
;
1033 /* Don't try to replace with do_div(), this one calculates
1034 * "(dividend << 32) / divisor" */
1036 : "=a" (quotient
), "=d" (remainder
)
1037 : "0" (0), "1" (dividend
), "r" (divisor
) );
1041 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
1042 s8
*pshift
, u32
*pmultiplier
)
1049 tps64
= base_khz
* 1000LL;
1050 scaled64
= scaled_khz
* 1000LL;
1051 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1056 tps32
= (uint32_t)tps64
;
1057 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1058 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1066 *pmultiplier
= div_frac(scaled64
, tps32
);
1068 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1069 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
1072 static inline u64
get_kernel_ns(void)
1077 monotonic_to_bootbased(&ts
);
1078 return timespec_to_ns(&ts
);
1081 #ifdef CONFIG_X86_64
1082 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1085 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1086 unsigned long max_tsc_khz
;
1088 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1090 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1091 vcpu
->arch
.virtual_tsc_shift
);
1094 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1096 u64 v
= (u64
)khz
* (1000000 + ppm
);
1101 static void kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1103 u32 thresh_lo
, thresh_hi
;
1104 int use_scaling
= 0;
1106 /* tsc_khz can be zero if TSC calibration fails */
1107 if (this_tsc_khz
== 0)
1110 /* Compute a scale to convert nanoseconds in TSC cycles */
1111 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1112 &vcpu
->arch
.virtual_tsc_shift
,
1113 &vcpu
->arch
.virtual_tsc_mult
);
1114 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1117 * Compute the variation in TSC rate which is acceptable
1118 * within the range of tolerance and decide if the
1119 * rate being applied is within that bounds of the hardware
1120 * rate. If so, no scaling or compensation need be done.
1122 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1123 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1124 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1125 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1128 kvm_x86_ops
->set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1131 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1133 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1134 vcpu
->arch
.virtual_tsc_mult
,
1135 vcpu
->arch
.virtual_tsc_shift
);
1136 tsc
+= vcpu
->arch
.this_tsc_write
;
1140 void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1142 #ifdef CONFIG_X86_64
1144 bool do_request
= false;
1145 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1146 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1148 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1149 atomic_read(&vcpu
->kvm
->online_vcpus
));
1151 if (vcpus_matched
&& gtod
->clock
.vclock_mode
== VCLOCK_TSC
)
1152 if (!ka
->use_master_clock
)
1155 if (!vcpus_matched
&& ka
->use_master_clock
)
1159 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1161 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1162 atomic_read(&vcpu
->kvm
->online_vcpus
),
1163 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1167 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1169 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1170 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1173 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1175 struct kvm
*kvm
= vcpu
->kvm
;
1176 u64 offset
, ns
, elapsed
;
1177 unsigned long flags
;
1180 u64 data
= msr
->data
;
1182 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1183 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1184 ns
= get_kernel_ns();
1185 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1187 if (vcpu
->arch
.virtual_tsc_khz
) {
1190 /* n.b - signed multiplication and division required */
1191 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1192 #ifdef CONFIG_X86_64
1193 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1195 /* do_div() only does unsigned */
1196 asm("1: idivl %[divisor]\n"
1197 "2: xor %%edx, %%edx\n"
1198 " movl $0, %[faulted]\n"
1200 ".section .fixup,\"ax\"\n"
1201 "4: movl $1, %[faulted]\n"
1205 _ASM_EXTABLE(1b
, 4b
)
1207 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1208 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1211 do_div(elapsed
, 1000);
1216 /* idivl overflow => difference is larger than USEC_PER_SEC */
1218 usdiff
= USEC_PER_SEC
;
1220 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1223 * Special case: TSC write with a small delta (1 second) of virtual
1224 * cycle time against real time is interpreted as an attempt to
1225 * synchronize the CPU.
1227 * For a reliable TSC, we can match TSC offsets, and for an unstable
1228 * TSC, we add elapsed time in this computation. We could let the
1229 * compensation code attempt to catch up if we fall behind, but
1230 * it's better to try to match offsets from the beginning.
1232 if (usdiff
< USEC_PER_SEC
&&
1233 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1234 if (!check_tsc_unstable()) {
1235 offset
= kvm
->arch
.cur_tsc_offset
;
1236 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1238 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1240 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1241 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1246 * We split periods of matched TSC writes into generations.
1247 * For each generation, we track the original measured
1248 * nanosecond time, offset, and write, so if TSCs are in
1249 * sync, we can match exact offset, and if not, we can match
1250 * exact software computation in compute_guest_tsc()
1252 * These values are tracked in kvm->arch.cur_xxx variables.
1254 kvm
->arch
.cur_tsc_generation
++;
1255 kvm
->arch
.cur_tsc_nsec
= ns
;
1256 kvm
->arch
.cur_tsc_write
= data
;
1257 kvm
->arch
.cur_tsc_offset
= offset
;
1259 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1260 kvm
->arch
.cur_tsc_generation
, data
);
1264 * We also track th most recent recorded KHZ, write and time to
1265 * allow the matching interval to be extended at each write.
1267 kvm
->arch
.last_tsc_nsec
= ns
;
1268 kvm
->arch
.last_tsc_write
= data
;
1269 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1271 /* Reset of TSC must disable overshoot protection below */
1272 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1273 vcpu
->arch
.last_guest_tsc
= data
;
1275 /* Keep track of which generation this VCPU has synchronized to */
1276 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1277 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1278 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1280 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1281 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1282 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1283 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1285 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1287 kvm
->arch
.nr_vcpus_matched_tsc
++;
1289 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1291 kvm_track_tsc_matching(vcpu
);
1292 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1295 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1297 #ifdef CONFIG_X86_64
1299 static cycle_t
read_tsc(void)
1305 * Empirically, a fence (of type that depends on the CPU)
1306 * before rdtsc is enough to ensure that rdtsc is ordered
1307 * with respect to loads. The various CPU manuals are unclear
1308 * as to whether rdtsc can be reordered with later loads,
1309 * but no one has ever seen it happen.
1312 ret
= (cycle_t
)vget_cycles();
1314 last
= pvclock_gtod_data
.clock
.cycle_last
;
1316 if (likely(ret
>= last
))
1320 * GCC likes to generate cmov here, but this branch is extremely
1321 * predictable (it's just a funciton of time and the likely is
1322 * very likely) and there's a data dependence, so force GCC
1323 * to generate a branch instead. I don't barrier() because
1324 * we don't actually need a barrier, and if this function
1325 * ever gets inlined it will generate worse code.
1331 static inline u64
vgettsc(cycle_t
*cycle_now
)
1334 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1336 *cycle_now
= read_tsc();
1338 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1339 return v
* gtod
->clock
.mult
;
1342 static int do_monotonic(struct timespec
*ts
, cycle_t
*cycle_now
)
1347 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1351 seq
= read_seqcount_begin(>od
->seq
);
1352 mode
= gtod
->clock
.vclock_mode
;
1353 ts
->tv_sec
= gtod
->monotonic_time_sec
;
1354 ns
= gtod
->monotonic_time_snsec
;
1355 ns
+= vgettsc(cycle_now
);
1356 ns
>>= gtod
->clock
.shift
;
1357 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1358 timespec_add_ns(ts
, ns
);
1363 /* returns true if host is using tsc clocksource */
1364 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1368 /* checked again under seqlock below */
1369 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1372 if (do_monotonic(&ts
, cycle_now
) != VCLOCK_TSC
)
1375 monotonic_to_bootbased(&ts
);
1376 *kernel_ns
= timespec_to_ns(&ts
);
1384 * Assuming a stable TSC across physical CPUS, and a stable TSC
1385 * across virtual CPUs, the following condition is possible.
1386 * Each numbered line represents an event visible to both
1387 * CPUs at the next numbered event.
1389 * "timespecX" represents host monotonic time. "tscX" represents
1392 * VCPU0 on CPU0 | VCPU1 on CPU1
1394 * 1. read timespec0,tsc0
1395 * 2. | timespec1 = timespec0 + N
1397 * 3. transition to guest | transition to guest
1398 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1399 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1400 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1402 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1405 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1407 * - 0 < N - M => M < N
1409 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1410 * always the case (the difference between two distinct xtime instances
1411 * might be smaller then the difference between corresponding TSC reads,
1412 * when updating guest vcpus pvclock areas).
1414 * To avoid that problem, do not allow visibility of distinct
1415 * system_timestamp/tsc_timestamp values simultaneously: use a master
1416 * copy of host monotonic time values. Update that master copy
1419 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1423 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1425 #ifdef CONFIG_X86_64
1426 struct kvm_arch
*ka
= &kvm
->arch
;
1428 bool host_tsc_clocksource
, vcpus_matched
;
1430 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1431 atomic_read(&kvm
->online_vcpus
));
1434 * If the host uses TSC clock, then passthrough TSC as stable
1437 host_tsc_clocksource
= kvm_get_time_and_clockread(
1438 &ka
->master_kernel_ns
,
1439 &ka
->master_cycle_now
);
1441 ka
->use_master_clock
= host_tsc_clocksource
& vcpus_matched
;
1443 if (ka
->use_master_clock
)
1444 atomic_set(&kvm_guest_has_master_clock
, 1);
1446 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1447 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1452 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1454 #ifdef CONFIG_X86_64
1456 struct kvm_vcpu
*vcpu
;
1457 struct kvm_arch
*ka
= &kvm
->arch
;
1459 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1460 kvm_make_mclock_inprogress_request(kvm
);
1461 /* no guest entries from this point */
1462 pvclock_update_vm_gtod_copy(kvm
);
1464 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1465 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
1467 /* guest entries allowed */
1468 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1469 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1471 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1475 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1477 unsigned long flags
, this_tsc_khz
;
1478 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1479 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1480 s64 kernel_ns
, max_kernel_ns
;
1481 u64 tsc_timestamp
, host_tsc
;
1482 struct pvclock_vcpu_time_info guest_hv_clock
;
1484 bool use_master_clock
;
1490 * If the host uses TSC clock, then passthrough TSC as stable
1493 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1494 use_master_clock
= ka
->use_master_clock
;
1495 if (use_master_clock
) {
1496 host_tsc
= ka
->master_cycle_now
;
1497 kernel_ns
= ka
->master_kernel_ns
;
1499 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1501 /* Keep irq disabled to prevent changes to the clock */
1502 local_irq_save(flags
);
1503 this_tsc_khz
= __get_cpu_var(cpu_tsc_khz
);
1504 if (unlikely(this_tsc_khz
== 0)) {
1505 local_irq_restore(flags
);
1506 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1509 if (!use_master_clock
) {
1510 host_tsc
= native_read_tsc();
1511 kernel_ns
= get_kernel_ns();
1514 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
, host_tsc
);
1517 * We may have to catch up the TSC to match elapsed wall clock
1518 * time for two reasons, even if kvmclock is used.
1519 * 1) CPU could have been running below the maximum TSC rate
1520 * 2) Broken TSC compensation resets the base at each VCPU
1521 * entry to avoid unknown leaps of TSC even when running
1522 * again on the same CPU. This may cause apparent elapsed
1523 * time to disappear, and the guest to stand still or run
1526 if (vcpu
->tsc_catchup
) {
1527 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1528 if (tsc
> tsc_timestamp
) {
1529 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1530 tsc_timestamp
= tsc
;
1534 local_irq_restore(flags
);
1536 if (!vcpu
->pv_time_enabled
)
1540 * Time as measured by the TSC may go backwards when resetting the base
1541 * tsc_timestamp. The reason for this is that the TSC resolution is
1542 * higher than the resolution of the other clock scales. Thus, many
1543 * possible measurments of the TSC correspond to one measurement of any
1544 * other clock, and so a spread of values is possible. This is not a
1545 * problem for the computation of the nanosecond clock; with TSC rates
1546 * around 1GHZ, there can only be a few cycles which correspond to one
1547 * nanosecond value, and any path through this code will inevitably
1548 * take longer than that. However, with the kernel_ns value itself,
1549 * the precision may be much lower, down to HZ granularity. If the
1550 * first sampling of TSC against kernel_ns ends in the low part of the
1551 * range, and the second in the high end of the range, we can get:
1553 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1555 * As the sampling errors potentially range in the thousands of cycles,
1556 * it is possible such a time value has already been observed by the
1557 * guest. To protect against this, we must compute the system time as
1558 * observed by the guest and ensure the new system time is greater.
1561 if (vcpu
->hv_clock
.tsc_timestamp
) {
1562 max_kernel_ns
= vcpu
->last_guest_tsc
-
1563 vcpu
->hv_clock
.tsc_timestamp
;
1564 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1565 vcpu
->hv_clock
.tsc_to_system_mul
,
1566 vcpu
->hv_clock
.tsc_shift
);
1567 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1570 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1571 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1572 &vcpu
->hv_clock
.tsc_shift
,
1573 &vcpu
->hv_clock
.tsc_to_system_mul
);
1574 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1577 /* with a master <monotonic time, tsc value> tuple,
1578 * pvclock clock reads always increase at the (scaled) rate
1579 * of guest TSC - no need to deal with sampling errors.
1581 if (!use_master_clock
) {
1582 if (max_kernel_ns
> kernel_ns
)
1583 kernel_ns
= max_kernel_ns
;
1585 /* With all the info we got, fill in the values */
1586 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1587 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1588 vcpu
->last_kernel_ns
= kernel_ns
;
1589 vcpu
->last_guest_tsc
= tsc_timestamp
;
1592 * The interface expects us to write an even number signaling that the
1593 * update is finished. Since the guest won't see the intermediate
1594 * state, we just increase by 2 at the end.
1596 vcpu
->hv_clock
.version
+= 2;
1598 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1599 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1602 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1603 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1605 if (vcpu
->pvclock_set_guest_stopped_request
) {
1606 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1607 vcpu
->pvclock_set_guest_stopped_request
= false;
1610 /* If the host uses TSC clocksource, then it is stable */
1611 if (use_master_clock
)
1612 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1614 vcpu
->hv_clock
.flags
= pvclock_flags
;
1616 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1618 sizeof(vcpu
->hv_clock
));
1623 * kvmclock updates which are isolated to a given vcpu, such as
1624 * vcpu->cpu migration, should not allow system_timestamp from
1625 * the rest of the vcpus to remain static. Otherwise ntp frequency
1626 * correction applies to one vcpu's system_timestamp but not
1629 * So in those cases, request a kvmclock update for all vcpus.
1630 * The worst case for a remote vcpu to update its kvmclock
1631 * is then bounded by maximum nohz sleep latency.
1634 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1637 struct kvm
*kvm
= v
->kvm
;
1638 struct kvm_vcpu
*vcpu
;
1640 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1641 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
1642 kvm_vcpu_kick(vcpu
);
1646 static bool msr_mtrr_valid(unsigned msr
)
1649 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1650 case MSR_MTRRfix64K_00000
:
1651 case MSR_MTRRfix16K_80000
:
1652 case MSR_MTRRfix16K_A0000
:
1653 case MSR_MTRRfix4K_C0000
:
1654 case MSR_MTRRfix4K_C8000
:
1655 case MSR_MTRRfix4K_D0000
:
1656 case MSR_MTRRfix4K_D8000
:
1657 case MSR_MTRRfix4K_E0000
:
1658 case MSR_MTRRfix4K_E8000
:
1659 case MSR_MTRRfix4K_F0000
:
1660 case MSR_MTRRfix4K_F8000
:
1661 case MSR_MTRRdefType
:
1662 case MSR_IA32_CR_PAT
:
1670 static bool valid_pat_type(unsigned t
)
1672 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1675 static bool valid_mtrr_type(unsigned t
)
1677 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1680 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1684 if (!msr_mtrr_valid(msr
))
1687 if (msr
== MSR_IA32_CR_PAT
) {
1688 for (i
= 0; i
< 8; i
++)
1689 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1692 } else if (msr
== MSR_MTRRdefType
) {
1695 return valid_mtrr_type(data
& 0xff);
1696 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1697 for (i
= 0; i
< 8 ; i
++)
1698 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1703 /* variable MTRRs */
1704 return valid_mtrr_type(data
& 0xff);
1707 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1709 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1711 if (!mtrr_valid(vcpu
, msr
, data
))
1714 if (msr
== MSR_MTRRdefType
) {
1715 vcpu
->arch
.mtrr_state
.def_type
= data
;
1716 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1717 } else if (msr
== MSR_MTRRfix64K_00000
)
1719 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1720 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1721 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1722 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1723 else if (msr
== MSR_IA32_CR_PAT
)
1724 vcpu
->arch
.pat
= data
;
1725 else { /* Variable MTRRs */
1726 int idx
, is_mtrr_mask
;
1729 idx
= (msr
- 0x200) / 2;
1730 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1733 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1736 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1740 kvm_mmu_reset_context(vcpu
);
1744 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1746 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1747 unsigned bank_num
= mcg_cap
& 0xff;
1750 case MSR_IA32_MCG_STATUS
:
1751 vcpu
->arch
.mcg_status
= data
;
1753 case MSR_IA32_MCG_CTL
:
1754 if (!(mcg_cap
& MCG_CTL_P
))
1756 if (data
!= 0 && data
!= ~(u64
)0)
1758 vcpu
->arch
.mcg_ctl
= data
;
1761 if (msr
>= MSR_IA32_MC0_CTL
&&
1762 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1763 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1764 /* only 0 or all 1s can be written to IA32_MCi_CTL
1765 * some Linux kernels though clear bit 10 in bank 4 to
1766 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1767 * this to avoid an uncatched #GP in the guest
1769 if ((offset
& 0x3) == 0 &&
1770 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1772 vcpu
->arch
.mce_banks
[offset
] = data
;
1780 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1782 struct kvm
*kvm
= vcpu
->kvm
;
1783 int lm
= is_long_mode(vcpu
);
1784 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1785 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1786 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1787 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1788 u32 page_num
= data
& ~PAGE_MASK
;
1789 u64 page_addr
= data
& PAGE_MASK
;
1794 if (page_num
>= blob_size
)
1797 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1802 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1811 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1813 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1816 static bool kvm_hv_msr_partition_wide(u32 msr
)
1820 case HV_X64_MSR_GUEST_OS_ID
:
1821 case HV_X64_MSR_HYPERCALL
:
1829 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1831 struct kvm
*kvm
= vcpu
->kvm
;
1834 case HV_X64_MSR_GUEST_OS_ID
:
1835 kvm
->arch
.hv_guest_os_id
= data
;
1836 /* setting guest os id to zero disables hypercall page */
1837 if (!kvm
->arch
.hv_guest_os_id
)
1838 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1840 case HV_X64_MSR_HYPERCALL
: {
1845 /* if guest os id is not set hypercall should remain disabled */
1846 if (!kvm
->arch
.hv_guest_os_id
)
1848 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1849 kvm
->arch
.hv_hypercall
= data
;
1852 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1853 addr
= gfn_to_hva(kvm
, gfn
);
1854 if (kvm_is_error_hva(addr
))
1856 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1857 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1858 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1860 kvm
->arch
.hv_hypercall
= data
;
1864 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1865 "data 0x%llx\n", msr
, data
);
1871 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1874 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1877 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1878 vcpu
->arch
.hv_vapic
= data
;
1881 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1882 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1883 if (kvm_is_error_hva(addr
))
1885 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1887 vcpu
->arch
.hv_vapic
= data
;
1890 case HV_X64_MSR_EOI
:
1891 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1892 case HV_X64_MSR_ICR
:
1893 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1894 case HV_X64_MSR_TPR
:
1895 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1897 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1898 "data 0x%llx\n", msr
, data
);
1905 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1907 gpa_t gpa
= data
& ~0x3f;
1909 /* Bits 2:5 are reserved, Should be zero */
1913 vcpu
->arch
.apf
.msr_val
= data
;
1915 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1916 kvm_clear_async_pf_completion_queue(vcpu
);
1917 kvm_async_pf_hash_reset(vcpu
);
1921 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
1925 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1926 kvm_async_pf_wakeup_all(vcpu
);
1930 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1932 vcpu
->arch
.pv_time_enabled
= false;
1935 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1939 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1942 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1943 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1944 vcpu
->arch
.st
.accum_steal
= delta
;
1947 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1949 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1952 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1953 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1956 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1957 vcpu
->arch
.st
.steal
.version
+= 2;
1958 vcpu
->arch
.st
.accum_steal
= 0;
1960 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1961 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1964 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
1967 u32 msr
= msr_info
->index
;
1968 u64 data
= msr_info
->data
;
1971 case MSR_AMD64_NB_CFG
:
1972 case MSR_IA32_UCODE_REV
:
1973 case MSR_IA32_UCODE_WRITE
:
1974 case MSR_VM_HSAVE_PA
:
1975 case MSR_AMD64_PATCH_LOADER
:
1976 case MSR_AMD64_BU_CFG2
:
1980 return set_efer(vcpu
, data
);
1982 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1983 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1984 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
1986 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1991 case MSR_FAM10H_MMIO_CONF_BASE
:
1993 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1998 case MSR_IA32_DEBUGCTLMSR
:
2000 /* We support the non-activated case already */
2002 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2003 /* Values other than LBR and BTF are vendor-specific,
2004 thus reserved and should throw a #GP */
2007 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2010 case 0x200 ... 0x2ff:
2011 return set_msr_mtrr(vcpu
, msr
, data
);
2012 case MSR_IA32_APICBASE
:
2013 kvm_set_apic_base(vcpu
, data
);
2015 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2016 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2017 case MSR_IA32_TSCDEADLINE
:
2018 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2020 case MSR_IA32_TSC_ADJUST
:
2021 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2022 if (!msr_info
->host_initiated
) {
2023 u64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2024 kvm_x86_ops
->adjust_tsc_offset(vcpu
, adj
, true);
2026 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2029 case MSR_IA32_MISC_ENABLE
:
2030 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2032 case MSR_KVM_WALL_CLOCK_NEW
:
2033 case MSR_KVM_WALL_CLOCK
:
2034 vcpu
->kvm
->arch
.wall_clock
= data
;
2035 kvm_write_wall_clock(vcpu
->kvm
, data
);
2037 case MSR_KVM_SYSTEM_TIME_NEW
:
2038 case MSR_KVM_SYSTEM_TIME
: {
2040 kvmclock_reset(vcpu
);
2042 vcpu
->arch
.time
= data
;
2043 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2045 /* we verify if the enable bit is set... */
2049 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2051 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2052 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2053 sizeof(struct pvclock_vcpu_time_info
)))
2054 vcpu
->arch
.pv_time_enabled
= false;
2056 vcpu
->arch
.pv_time_enabled
= true;
2060 case MSR_KVM_ASYNC_PF_EN
:
2061 if (kvm_pv_enable_async_pf(vcpu
, data
))
2064 case MSR_KVM_STEAL_TIME
:
2066 if (unlikely(!sched_info_on()))
2069 if (data
& KVM_STEAL_RESERVED_MASK
)
2072 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2073 data
& KVM_STEAL_VALID_BITS
,
2074 sizeof(struct kvm_steal_time
)))
2077 vcpu
->arch
.st
.msr_val
= data
;
2079 if (!(data
& KVM_MSR_ENABLED
))
2082 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2085 accumulate_steal_time(vcpu
);
2088 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2091 case MSR_KVM_PV_EOI_EN
:
2092 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2096 case MSR_IA32_MCG_CTL
:
2097 case MSR_IA32_MCG_STATUS
:
2098 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2099 return set_msr_mce(vcpu
, msr
, data
);
2101 /* Performance counters are not protected by a CPUID bit,
2102 * so we should check all of them in the generic path for the sake of
2103 * cross vendor migration.
2104 * Writing a zero into the event select MSRs disables them,
2105 * which we perfectly emulate ;-). Any other value should be at least
2106 * reported, some guests depend on them.
2108 case MSR_K7_EVNTSEL0
:
2109 case MSR_K7_EVNTSEL1
:
2110 case MSR_K7_EVNTSEL2
:
2111 case MSR_K7_EVNTSEL3
:
2113 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2114 "0x%x data 0x%llx\n", msr
, data
);
2116 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2117 * so we ignore writes to make it happy.
2119 case MSR_K7_PERFCTR0
:
2120 case MSR_K7_PERFCTR1
:
2121 case MSR_K7_PERFCTR2
:
2122 case MSR_K7_PERFCTR3
:
2123 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2124 "0x%x data 0x%llx\n", msr
, data
);
2126 case MSR_P6_PERFCTR0
:
2127 case MSR_P6_PERFCTR1
:
2129 case MSR_P6_EVNTSEL0
:
2130 case MSR_P6_EVNTSEL1
:
2131 if (kvm_pmu_msr(vcpu
, msr
))
2132 return kvm_pmu_set_msr(vcpu
, msr_info
);
2134 if (pr
|| data
!= 0)
2135 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2136 "0x%x data 0x%llx\n", msr
, data
);
2138 case MSR_K7_CLK_CTL
:
2140 * Ignore all writes to this no longer documented MSR.
2141 * Writes are only relevant for old K7 processors,
2142 * all pre-dating SVM, but a recommended workaround from
2143 * AMD for these chips. It is possible to specify the
2144 * affected processor models on the command line, hence
2145 * the need to ignore the workaround.
2148 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2149 if (kvm_hv_msr_partition_wide(msr
)) {
2151 mutex_lock(&vcpu
->kvm
->lock
);
2152 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
2153 mutex_unlock(&vcpu
->kvm
->lock
);
2156 return set_msr_hyperv(vcpu
, msr
, data
);
2158 case MSR_IA32_BBL_CR_CTL3
:
2159 /* Drop writes to this legacy MSR -- see rdmsr
2160 * counterpart for further detail.
2162 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2164 case MSR_AMD64_OSVW_ID_LENGTH
:
2165 if (!guest_cpuid_has_osvw(vcpu
))
2167 vcpu
->arch
.osvw
.length
= data
;
2169 case MSR_AMD64_OSVW_STATUS
:
2170 if (!guest_cpuid_has_osvw(vcpu
))
2172 vcpu
->arch
.osvw
.status
= data
;
2175 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2176 return xen_hvm_config(vcpu
, data
);
2177 if (kvm_pmu_msr(vcpu
, msr
))
2178 return kvm_pmu_set_msr(vcpu
, msr_info
);
2180 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2184 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2191 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2195 * Reads an msr value (of 'msr_index') into 'pdata'.
2196 * Returns 0 on success, non-0 otherwise.
2197 * Assumes vcpu_load() was already called.
2199 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2201 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
2204 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2206 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
2208 if (!msr_mtrr_valid(msr
))
2211 if (msr
== MSR_MTRRdefType
)
2212 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
2213 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
2214 else if (msr
== MSR_MTRRfix64K_00000
)
2216 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
2217 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
2218 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
2219 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
2220 else if (msr
== MSR_IA32_CR_PAT
)
2221 *pdata
= vcpu
->arch
.pat
;
2222 else { /* Variable MTRRs */
2223 int idx
, is_mtrr_mask
;
2226 idx
= (msr
- 0x200) / 2;
2227 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
2230 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
2233 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
2240 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2243 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2244 unsigned bank_num
= mcg_cap
& 0xff;
2247 case MSR_IA32_P5_MC_ADDR
:
2248 case MSR_IA32_P5_MC_TYPE
:
2251 case MSR_IA32_MCG_CAP
:
2252 data
= vcpu
->arch
.mcg_cap
;
2254 case MSR_IA32_MCG_CTL
:
2255 if (!(mcg_cap
& MCG_CTL_P
))
2257 data
= vcpu
->arch
.mcg_ctl
;
2259 case MSR_IA32_MCG_STATUS
:
2260 data
= vcpu
->arch
.mcg_status
;
2263 if (msr
>= MSR_IA32_MC0_CTL
&&
2264 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
2265 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2266 data
= vcpu
->arch
.mce_banks
[offset
];
2275 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2278 struct kvm
*kvm
= vcpu
->kvm
;
2281 case HV_X64_MSR_GUEST_OS_ID
:
2282 data
= kvm
->arch
.hv_guest_os_id
;
2284 case HV_X64_MSR_HYPERCALL
:
2285 data
= kvm
->arch
.hv_hypercall
;
2288 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2296 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2301 case HV_X64_MSR_VP_INDEX
: {
2304 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
2309 case HV_X64_MSR_EOI
:
2310 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
2311 case HV_X64_MSR_ICR
:
2312 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
2313 case HV_X64_MSR_TPR
:
2314 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
2315 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2316 data
= vcpu
->arch
.hv_vapic
;
2319 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2326 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2331 case MSR_IA32_PLATFORM_ID
:
2332 case MSR_IA32_EBL_CR_POWERON
:
2333 case MSR_IA32_DEBUGCTLMSR
:
2334 case MSR_IA32_LASTBRANCHFROMIP
:
2335 case MSR_IA32_LASTBRANCHTOIP
:
2336 case MSR_IA32_LASTINTFROMIP
:
2337 case MSR_IA32_LASTINTTOIP
:
2340 case MSR_VM_HSAVE_PA
:
2341 case MSR_K7_EVNTSEL0
:
2342 case MSR_K7_PERFCTR0
:
2343 case MSR_K8_INT_PENDING_MSG
:
2344 case MSR_AMD64_NB_CFG
:
2345 case MSR_FAM10H_MMIO_CONF_BASE
:
2346 case MSR_AMD64_BU_CFG2
:
2349 case MSR_P6_PERFCTR0
:
2350 case MSR_P6_PERFCTR1
:
2351 case MSR_P6_EVNTSEL0
:
2352 case MSR_P6_EVNTSEL1
:
2353 if (kvm_pmu_msr(vcpu
, msr
))
2354 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2357 case MSR_IA32_UCODE_REV
:
2358 data
= 0x100000000ULL
;
2361 data
= 0x500 | KVM_NR_VAR_MTRR
;
2363 case 0x200 ... 0x2ff:
2364 return get_msr_mtrr(vcpu
, msr
, pdata
);
2365 case 0xcd: /* fsb frequency */
2369 * MSR_EBC_FREQUENCY_ID
2370 * Conservative value valid for even the basic CPU models.
2371 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2372 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2373 * and 266MHz for model 3, or 4. Set Core Clock
2374 * Frequency to System Bus Frequency Ratio to 1 (bits
2375 * 31:24) even though these are only valid for CPU
2376 * models > 2, however guests may end up dividing or
2377 * multiplying by zero otherwise.
2379 case MSR_EBC_FREQUENCY_ID
:
2382 case MSR_IA32_APICBASE
:
2383 data
= kvm_get_apic_base(vcpu
);
2385 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2386 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
2388 case MSR_IA32_TSCDEADLINE
:
2389 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2391 case MSR_IA32_TSC_ADJUST
:
2392 data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2394 case MSR_IA32_MISC_ENABLE
:
2395 data
= vcpu
->arch
.ia32_misc_enable_msr
;
2397 case MSR_IA32_PERF_STATUS
:
2398 /* TSC increment by tick */
2400 /* CPU multiplier */
2401 data
|= (((uint64_t)4ULL) << 40);
2404 data
= vcpu
->arch
.efer
;
2406 case MSR_KVM_WALL_CLOCK
:
2407 case MSR_KVM_WALL_CLOCK_NEW
:
2408 data
= vcpu
->kvm
->arch
.wall_clock
;
2410 case MSR_KVM_SYSTEM_TIME
:
2411 case MSR_KVM_SYSTEM_TIME_NEW
:
2412 data
= vcpu
->arch
.time
;
2414 case MSR_KVM_ASYNC_PF_EN
:
2415 data
= vcpu
->arch
.apf
.msr_val
;
2417 case MSR_KVM_STEAL_TIME
:
2418 data
= vcpu
->arch
.st
.msr_val
;
2420 case MSR_KVM_PV_EOI_EN
:
2421 data
= vcpu
->arch
.pv_eoi
.msr_val
;
2423 case MSR_IA32_P5_MC_ADDR
:
2424 case MSR_IA32_P5_MC_TYPE
:
2425 case MSR_IA32_MCG_CAP
:
2426 case MSR_IA32_MCG_CTL
:
2427 case MSR_IA32_MCG_STATUS
:
2428 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2429 return get_msr_mce(vcpu
, msr
, pdata
);
2430 case MSR_K7_CLK_CTL
:
2432 * Provide expected ramp-up count for K7. All other
2433 * are set to zero, indicating minimum divisors for
2436 * This prevents guest kernels on AMD host with CPU
2437 * type 6, model 8 and higher from exploding due to
2438 * the rdmsr failing.
2442 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2443 if (kvm_hv_msr_partition_wide(msr
)) {
2445 mutex_lock(&vcpu
->kvm
->lock
);
2446 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
2447 mutex_unlock(&vcpu
->kvm
->lock
);
2450 return get_msr_hyperv(vcpu
, msr
, pdata
);
2452 case MSR_IA32_BBL_CR_CTL3
:
2453 /* This legacy MSR exists but isn't fully documented in current
2454 * silicon. It is however accessed by winxp in very narrow
2455 * scenarios where it sets bit #19, itself documented as
2456 * a "reserved" bit. Best effort attempt to source coherent
2457 * read data here should the balance of the register be
2458 * interpreted by the guest:
2460 * L2 cache control register 3: 64GB range, 256KB size,
2461 * enabled, latency 0x1, configured
2465 case MSR_AMD64_OSVW_ID_LENGTH
:
2466 if (!guest_cpuid_has_osvw(vcpu
))
2468 data
= vcpu
->arch
.osvw
.length
;
2470 case MSR_AMD64_OSVW_STATUS
:
2471 if (!guest_cpuid_has_osvw(vcpu
))
2473 data
= vcpu
->arch
.osvw
.status
;
2476 if (kvm_pmu_msr(vcpu
, msr
))
2477 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2479 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
2482 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
2490 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2493 * Read or write a bunch of msrs. All parameters are kernel addresses.
2495 * @return number of msrs set successfully.
2497 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2498 struct kvm_msr_entry
*entries
,
2499 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2500 unsigned index
, u64
*data
))
2504 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2505 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2506 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2508 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2514 * Read or write a bunch of msrs. Parameters are user addresses.
2516 * @return number of msrs set successfully.
2518 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2519 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2520 unsigned index
, u64
*data
),
2523 struct kvm_msrs msrs
;
2524 struct kvm_msr_entry
*entries
;
2529 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2533 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2536 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2537 entries
= memdup_user(user_msrs
->entries
, size
);
2538 if (IS_ERR(entries
)) {
2539 r
= PTR_ERR(entries
);
2543 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2548 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2559 int kvm_dev_ioctl_check_extension(long ext
)
2564 case KVM_CAP_IRQCHIP
:
2566 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2567 case KVM_CAP_SET_TSS_ADDR
:
2568 case KVM_CAP_EXT_CPUID
:
2569 case KVM_CAP_CLOCKSOURCE
:
2571 case KVM_CAP_NOP_IO_DELAY
:
2572 case KVM_CAP_MP_STATE
:
2573 case KVM_CAP_SYNC_MMU
:
2574 case KVM_CAP_USER_NMI
:
2575 case KVM_CAP_REINJECT_CONTROL
:
2576 case KVM_CAP_IRQ_INJECT_STATUS
:
2578 case KVM_CAP_IOEVENTFD
:
2580 case KVM_CAP_PIT_STATE2
:
2581 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2582 case KVM_CAP_XEN_HVM
:
2583 case KVM_CAP_ADJUST_CLOCK
:
2584 case KVM_CAP_VCPU_EVENTS
:
2585 case KVM_CAP_HYPERV
:
2586 case KVM_CAP_HYPERV_VAPIC
:
2587 case KVM_CAP_HYPERV_SPIN
:
2588 case KVM_CAP_PCI_SEGMENT
:
2589 case KVM_CAP_DEBUGREGS
:
2590 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2592 case KVM_CAP_ASYNC_PF
:
2593 case KVM_CAP_GET_TSC_KHZ
:
2594 case KVM_CAP_KVMCLOCK_CTRL
:
2595 case KVM_CAP_READONLY_MEM
:
2596 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2597 case KVM_CAP_ASSIGN_DEV_IRQ
:
2598 case KVM_CAP_PCI_2_3
:
2602 case KVM_CAP_COALESCED_MMIO
:
2603 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2606 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2608 case KVM_CAP_NR_VCPUS
:
2609 r
= KVM_SOFT_MAX_VCPUS
;
2611 case KVM_CAP_MAX_VCPUS
:
2614 case KVM_CAP_NR_MEMSLOTS
:
2615 r
= KVM_USER_MEM_SLOTS
;
2617 case KVM_CAP_PV_MMU
: /* obsolete */
2620 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2622 r
= iommu_present(&pci_bus_type
);
2626 r
= KVM_MAX_MCE_BANKS
;
2631 case KVM_CAP_TSC_CONTROL
:
2632 r
= kvm_has_tsc_control
;
2634 case KVM_CAP_TSC_DEADLINE_TIMER
:
2635 r
= boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER
);
2645 long kvm_arch_dev_ioctl(struct file
*filp
,
2646 unsigned int ioctl
, unsigned long arg
)
2648 void __user
*argp
= (void __user
*)arg
;
2652 case KVM_GET_MSR_INDEX_LIST
: {
2653 struct kvm_msr_list __user
*user_msr_list
= argp
;
2654 struct kvm_msr_list msr_list
;
2658 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2661 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2662 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2665 if (n
< msr_list
.nmsrs
)
2668 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2669 num_msrs_to_save
* sizeof(u32
)))
2671 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2673 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2678 case KVM_GET_SUPPORTED_CPUID
: {
2679 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2680 struct kvm_cpuid2 cpuid
;
2683 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2685 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2686 cpuid_arg
->entries
);
2691 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2696 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2699 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2701 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2713 static void wbinvd_ipi(void *garbage
)
2718 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2720 return vcpu
->kvm
->arch
.iommu_domain
&&
2721 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2724 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2726 /* Address WBINVD may be executed by guest */
2727 if (need_emulate_wbinvd(vcpu
)) {
2728 if (kvm_x86_ops
->has_wbinvd_exit())
2729 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2730 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2731 smp_call_function_single(vcpu
->cpu
,
2732 wbinvd_ipi
, NULL
, 1);
2735 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2737 /* Apply any externally detected TSC adjustments (due to suspend) */
2738 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2739 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2740 vcpu
->arch
.tsc_offset_adjustment
= 0;
2741 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
2744 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2745 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2746 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2748 mark_tsc_unstable("KVM discovered backwards TSC");
2749 if (check_tsc_unstable()) {
2750 u64 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
,
2751 vcpu
->arch
.last_guest_tsc
);
2752 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2753 vcpu
->arch
.tsc_catchup
= 1;
2756 * On a host with synchronized TSC, there is no need to update
2757 * kvmclock on vcpu->cpu migration
2759 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2760 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2761 if (vcpu
->cpu
!= cpu
)
2762 kvm_migrate_timers(vcpu
);
2766 accumulate_steal_time(vcpu
);
2767 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2770 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2772 kvm_x86_ops
->vcpu_put(vcpu
);
2773 kvm_put_guest_fpu(vcpu
);
2774 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2777 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2778 struct kvm_lapic_state
*s
)
2780 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2781 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2786 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2787 struct kvm_lapic_state
*s
)
2789 kvm_apic_post_state_restore(vcpu
, s
);
2790 update_cr8_intercept(vcpu
);
2795 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2796 struct kvm_interrupt
*irq
)
2798 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2800 if (irqchip_in_kernel(vcpu
->kvm
))
2803 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2804 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2809 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2811 kvm_inject_nmi(vcpu
);
2816 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2817 struct kvm_tpr_access_ctl
*tac
)
2821 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2825 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2829 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2832 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2834 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2837 vcpu
->arch
.mcg_cap
= mcg_cap
;
2838 /* Init IA32_MCG_CTL to all 1s */
2839 if (mcg_cap
& MCG_CTL_P
)
2840 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2841 /* Init IA32_MCi_CTL to all 1s */
2842 for (bank
= 0; bank
< bank_num
; bank
++)
2843 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2848 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2849 struct kvm_x86_mce
*mce
)
2851 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2852 unsigned bank_num
= mcg_cap
& 0xff;
2853 u64
*banks
= vcpu
->arch
.mce_banks
;
2855 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2858 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2859 * reporting is disabled
2861 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2862 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2864 banks
+= 4 * mce
->bank
;
2866 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2867 * reporting is disabled for the bank
2869 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2871 if (mce
->status
& MCI_STATUS_UC
) {
2872 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2873 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2874 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2877 if (banks
[1] & MCI_STATUS_VAL
)
2878 mce
->status
|= MCI_STATUS_OVER
;
2879 banks
[2] = mce
->addr
;
2880 banks
[3] = mce
->misc
;
2881 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2882 banks
[1] = mce
->status
;
2883 kvm_queue_exception(vcpu
, MC_VECTOR
);
2884 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2885 || !(banks
[1] & MCI_STATUS_UC
)) {
2886 if (banks
[1] & MCI_STATUS_VAL
)
2887 mce
->status
|= MCI_STATUS_OVER
;
2888 banks
[2] = mce
->addr
;
2889 banks
[3] = mce
->misc
;
2890 banks
[1] = mce
->status
;
2892 banks
[1] |= MCI_STATUS_OVER
;
2896 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2897 struct kvm_vcpu_events
*events
)
2900 events
->exception
.injected
=
2901 vcpu
->arch
.exception
.pending
&&
2902 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2903 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2904 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2905 events
->exception
.pad
= 0;
2906 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2908 events
->interrupt
.injected
=
2909 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2910 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2911 events
->interrupt
.soft
= 0;
2912 events
->interrupt
.shadow
=
2913 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2914 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2916 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2917 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2918 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2919 events
->nmi
.pad
= 0;
2921 events
->sipi_vector
= 0; /* never valid when reporting to user space */
2923 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2924 | KVM_VCPUEVENT_VALID_SHADOW
);
2925 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2928 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2929 struct kvm_vcpu_events
*events
)
2931 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2932 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2933 | KVM_VCPUEVENT_VALID_SHADOW
))
2937 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2938 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2939 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2940 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2942 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2943 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2944 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2945 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2946 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2947 events
->interrupt
.shadow
);
2949 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2950 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2951 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2952 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2954 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
2955 kvm_vcpu_has_lapic(vcpu
))
2956 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
2958 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2963 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2964 struct kvm_debugregs
*dbgregs
)
2966 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2967 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2968 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2970 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2973 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2974 struct kvm_debugregs
*dbgregs
)
2979 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2980 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2981 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2986 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2987 struct kvm_xsave
*guest_xsave
)
2990 memcpy(guest_xsave
->region
,
2991 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2994 memcpy(guest_xsave
->region
,
2995 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2996 sizeof(struct i387_fxsave_struct
));
2997 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3002 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3003 struct kvm_xsave
*guest_xsave
)
3006 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3009 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
3010 guest_xsave
->region
, xstate_size
);
3012 if (xstate_bv
& ~XSTATE_FPSSE
)
3014 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
3015 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
3020 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3021 struct kvm_xcrs
*guest_xcrs
)
3023 if (!cpu_has_xsave
) {
3024 guest_xcrs
->nr_xcrs
= 0;
3028 guest_xcrs
->nr_xcrs
= 1;
3029 guest_xcrs
->flags
= 0;
3030 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3031 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3034 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3035 struct kvm_xcrs
*guest_xcrs
)
3042 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3045 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3046 /* Only support XCR0 currently */
3047 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3048 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3049 guest_xcrs
->xcrs
[0].value
);
3058 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3059 * stopped by the hypervisor. This function will be called from the host only.
3060 * EINVAL is returned when the host attempts to set the flag for a guest that
3061 * does not support pv clocks.
3063 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3065 if (!vcpu
->arch
.pv_time_enabled
)
3067 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3068 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3072 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3073 unsigned int ioctl
, unsigned long arg
)
3075 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3076 void __user
*argp
= (void __user
*)arg
;
3079 struct kvm_lapic_state
*lapic
;
3080 struct kvm_xsave
*xsave
;
3081 struct kvm_xcrs
*xcrs
;
3087 case KVM_GET_LAPIC
: {
3089 if (!vcpu
->arch
.apic
)
3091 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3096 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3100 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3105 case KVM_SET_LAPIC
: {
3107 if (!vcpu
->arch
.apic
)
3109 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3110 if (IS_ERR(u
.lapic
))
3111 return PTR_ERR(u
.lapic
);
3113 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3116 case KVM_INTERRUPT
: {
3117 struct kvm_interrupt irq
;
3120 if (copy_from_user(&irq
, argp
, sizeof irq
))
3122 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3126 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3129 case KVM_SET_CPUID
: {
3130 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3131 struct kvm_cpuid cpuid
;
3134 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3136 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3139 case KVM_SET_CPUID2
: {
3140 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3141 struct kvm_cpuid2 cpuid
;
3144 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3146 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3147 cpuid_arg
->entries
);
3150 case KVM_GET_CPUID2
: {
3151 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3152 struct kvm_cpuid2 cpuid
;
3155 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3157 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3158 cpuid_arg
->entries
);
3162 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3168 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3171 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3173 case KVM_TPR_ACCESS_REPORTING
: {
3174 struct kvm_tpr_access_ctl tac
;
3177 if (copy_from_user(&tac
, argp
, sizeof tac
))
3179 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3183 if (copy_to_user(argp
, &tac
, sizeof tac
))
3188 case KVM_SET_VAPIC_ADDR
: {
3189 struct kvm_vapic_addr va
;
3192 if (!irqchip_in_kernel(vcpu
->kvm
))
3195 if (copy_from_user(&va
, argp
, sizeof va
))
3197 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3200 case KVM_X86_SETUP_MCE
: {
3204 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3206 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3209 case KVM_X86_SET_MCE
: {
3210 struct kvm_x86_mce mce
;
3213 if (copy_from_user(&mce
, argp
, sizeof mce
))
3215 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3218 case KVM_GET_VCPU_EVENTS
: {
3219 struct kvm_vcpu_events events
;
3221 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3224 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3229 case KVM_SET_VCPU_EVENTS
: {
3230 struct kvm_vcpu_events events
;
3233 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3236 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3239 case KVM_GET_DEBUGREGS
: {
3240 struct kvm_debugregs dbgregs
;
3242 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3245 if (copy_to_user(argp
, &dbgregs
,
3246 sizeof(struct kvm_debugregs
)))
3251 case KVM_SET_DEBUGREGS
: {
3252 struct kvm_debugregs dbgregs
;
3255 if (copy_from_user(&dbgregs
, argp
,
3256 sizeof(struct kvm_debugregs
)))
3259 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3262 case KVM_GET_XSAVE
: {
3263 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3268 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3271 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3276 case KVM_SET_XSAVE
: {
3277 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3278 if (IS_ERR(u
.xsave
))
3279 return PTR_ERR(u
.xsave
);
3281 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3284 case KVM_GET_XCRS
: {
3285 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3290 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3293 if (copy_to_user(argp
, u
.xcrs
,
3294 sizeof(struct kvm_xcrs
)))
3299 case KVM_SET_XCRS
: {
3300 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3302 return PTR_ERR(u
.xcrs
);
3304 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3307 case KVM_SET_TSC_KHZ
: {
3311 user_tsc_khz
= (u32
)arg
;
3313 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3316 if (user_tsc_khz
== 0)
3317 user_tsc_khz
= tsc_khz
;
3319 kvm_set_tsc_khz(vcpu
, user_tsc_khz
);
3324 case KVM_GET_TSC_KHZ
: {
3325 r
= vcpu
->arch
.virtual_tsc_khz
;
3328 case KVM_KVMCLOCK_CTRL
: {
3329 r
= kvm_set_guest_paused(vcpu
);
3340 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3342 return VM_FAULT_SIGBUS
;
3345 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3349 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3351 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3355 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3358 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3362 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3363 u32 kvm_nr_mmu_pages
)
3365 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3368 mutex_lock(&kvm
->slots_lock
);
3370 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3371 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3373 mutex_unlock(&kvm
->slots_lock
);
3377 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3379 return kvm
->arch
.n_max_mmu_pages
;
3382 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3387 switch (chip
->chip_id
) {
3388 case KVM_IRQCHIP_PIC_MASTER
:
3389 memcpy(&chip
->chip
.pic
,
3390 &pic_irqchip(kvm
)->pics
[0],
3391 sizeof(struct kvm_pic_state
));
3393 case KVM_IRQCHIP_PIC_SLAVE
:
3394 memcpy(&chip
->chip
.pic
,
3395 &pic_irqchip(kvm
)->pics
[1],
3396 sizeof(struct kvm_pic_state
));
3398 case KVM_IRQCHIP_IOAPIC
:
3399 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3408 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3413 switch (chip
->chip_id
) {
3414 case KVM_IRQCHIP_PIC_MASTER
:
3415 spin_lock(&pic_irqchip(kvm
)->lock
);
3416 memcpy(&pic_irqchip(kvm
)->pics
[0],
3418 sizeof(struct kvm_pic_state
));
3419 spin_unlock(&pic_irqchip(kvm
)->lock
);
3421 case KVM_IRQCHIP_PIC_SLAVE
:
3422 spin_lock(&pic_irqchip(kvm
)->lock
);
3423 memcpy(&pic_irqchip(kvm
)->pics
[1],
3425 sizeof(struct kvm_pic_state
));
3426 spin_unlock(&pic_irqchip(kvm
)->lock
);
3428 case KVM_IRQCHIP_IOAPIC
:
3429 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3435 kvm_pic_update_irq(pic_irqchip(kvm
));
3439 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3443 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3444 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3445 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3449 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3453 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3454 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3455 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3456 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3460 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3464 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3465 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3466 sizeof(ps
->channels
));
3467 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3468 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3469 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3473 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3475 int r
= 0, start
= 0;
3476 u32 prev_legacy
, cur_legacy
;
3477 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3478 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3479 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3480 if (!prev_legacy
&& cur_legacy
)
3482 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3483 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3484 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3485 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3486 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3490 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3491 struct kvm_reinject_control
*control
)
3493 if (!kvm
->arch
.vpit
)
3495 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3496 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3497 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3502 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3503 * @kvm: kvm instance
3504 * @log: slot id and address to which we copy the log
3506 * We need to keep it in mind that VCPU threads can write to the bitmap
3507 * concurrently. So, to avoid losing data, we keep the following order for
3510 * 1. Take a snapshot of the bit and clear it if needed.
3511 * 2. Write protect the corresponding page.
3512 * 3. Flush TLB's if needed.
3513 * 4. Copy the snapshot to the userspace.
3515 * Between 2 and 3, the guest may write to the page using the remaining TLB
3516 * entry. This is not a problem because the page will be reported dirty at
3517 * step 4 using the snapshot taken before and step 3 ensures that successive
3518 * writes will be logged for the next call.
3520 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3523 struct kvm_memory_slot
*memslot
;
3525 unsigned long *dirty_bitmap
;
3526 unsigned long *dirty_bitmap_buffer
;
3527 bool is_dirty
= false;
3529 mutex_lock(&kvm
->slots_lock
);
3532 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
3535 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
3537 dirty_bitmap
= memslot
->dirty_bitmap
;
3542 n
= kvm_dirty_bitmap_bytes(memslot
);
3544 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
3545 memset(dirty_bitmap_buffer
, 0, n
);
3547 spin_lock(&kvm
->mmu_lock
);
3549 for (i
= 0; i
< n
/ sizeof(long); i
++) {
3553 if (!dirty_bitmap
[i
])
3558 mask
= xchg(&dirty_bitmap
[i
], 0);
3559 dirty_bitmap_buffer
[i
] = mask
;
3561 offset
= i
* BITS_PER_LONG
;
3562 kvm_mmu_write_protect_pt_masked(kvm
, memslot
, offset
, mask
);
3565 kvm_flush_remote_tlbs(kvm
);
3567 spin_unlock(&kvm
->mmu_lock
);
3570 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
3575 mutex_unlock(&kvm
->slots_lock
);
3579 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3582 if (!irqchip_in_kernel(kvm
))
3585 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3586 irq_event
->irq
, irq_event
->level
,
3591 long kvm_arch_vm_ioctl(struct file
*filp
,
3592 unsigned int ioctl
, unsigned long arg
)
3594 struct kvm
*kvm
= filp
->private_data
;
3595 void __user
*argp
= (void __user
*)arg
;
3598 * This union makes it completely explicit to gcc-3.x
3599 * that these two variables' stack usage should be
3600 * combined, not added together.
3603 struct kvm_pit_state ps
;
3604 struct kvm_pit_state2 ps2
;
3605 struct kvm_pit_config pit_config
;
3609 case KVM_SET_TSS_ADDR
:
3610 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3612 case KVM_SET_IDENTITY_MAP_ADDR
: {
3616 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3618 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3621 case KVM_SET_NR_MMU_PAGES
:
3622 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3624 case KVM_GET_NR_MMU_PAGES
:
3625 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3627 case KVM_CREATE_IRQCHIP
: {
3628 struct kvm_pic
*vpic
;
3630 mutex_lock(&kvm
->lock
);
3633 goto create_irqchip_unlock
;
3635 if (atomic_read(&kvm
->online_vcpus
))
3636 goto create_irqchip_unlock
;
3638 vpic
= kvm_create_pic(kvm
);
3640 r
= kvm_ioapic_init(kvm
);
3642 mutex_lock(&kvm
->slots_lock
);
3643 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3645 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3647 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3649 mutex_unlock(&kvm
->slots_lock
);
3651 goto create_irqchip_unlock
;
3654 goto create_irqchip_unlock
;
3656 kvm
->arch
.vpic
= vpic
;
3658 r
= kvm_setup_default_irq_routing(kvm
);
3660 mutex_lock(&kvm
->slots_lock
);
3661 mutex_lock(&kvm
->irq_lock
);
3662 kvm_ioapic_destroy(kvm
);
3663 kvm_destroy_pic(kvm
);
3664 mutex_unlock(&kvm
->irq_lock
);
3665 mutex_unlock(&kvm
->slots_lock
);
3667 create_irqchip_unlock
:
3668 mutex_unlock(&kvm
->lock
);
3671 case KVM_CREATE_PIT
:
3672 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3674 case KVM_CREATE_PIT2
:
3676 if (copy_from_user(&u
.pit_config
, argp
,
3677 sizeof(struct kvm_pit_config
)))
3680 mutex_lock(&kvm
->slots_lock
);
3683 goto create_pit_unlock
;
3685 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3689 mutex_unlock(&kvm
->slots_lock
);
3691 case KVM_GET_IRQCHIP
: {
3692 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3693 struct kvm_irqchip
*chip
;
3695 chip
= memdup_user(argp
, sizeof(*chip
));
3702 if (!irqchip_in_kernel(kvm
))
3703 goto get_irqchip_out
;
3704 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3706 goto get_irqchip_out
;
3708 if (copy_to_user(argp
, chip
, sizeof *chip
))
3709 goto get_irqchip_out
;
3715 case KVM_SET_IRQCHIP
: {
3716 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3717 struct kvm_irqchip
*chip
;
3719 chip
= memdup_user(argp
, sizeof(*chip
));
3726 if (!irqchip_in_kernel(kvm
))
3727 goto set_irqchip_out
;
3728 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3730 goto set_irqchip_out
;
3738 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3741 if (!kvm
->arch
.vpit
)
3743 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3747 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3754 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3757 if (!kvm
->arch
.vpit
)
3759 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3762 case KVM_GET_PIT2
: {
3764 if (!kvm
->arch
.vpit
)
3766 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3770 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3775 case KVM_SET_PIT2
: {
3777 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3780 if (!kvm
->arch
.vpit
)
3782 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3785 case KVM_REINJECT_CONTROL
: {
3786 struct kvm_reinject_control control
;
3788 if (copy_from_user(&control
, argp
, sizeof(control
)))
3790 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3793 case KVM_XEN_HVM_CONFIG
: {
3795 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3796 sizeof(struct kvm_xen_hvm_config
)))
3799 if (kvm
->arch
.xen_hvm_config
.flags
)
3804 case KVM_SET_CLOCK
: {
3805 struct kvm_clock_data user_ns
;
3810 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3818 local_irq_disable();
3819 now_ns
= get_kernel_ns();
3820 delta
= user_ns
.clock
- now_ns
;
3822 kvm
->arch
.kvmclock_offset
= delta
;
3823 kvm_gen_update_masterclock(kvm
);
3826 case KVM_GET_CLOCK
: {
3827 struct kvm_clock_data user_ns
;
3830 local_irq_disable();
3831 now_ns
= get_kernel_ns();
3832 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3835 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3838 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3851 static void kvm_init_msr_list(void)
3856 /* skip the first msrs in the list. KVM-specific */
3857 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3858 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3861 msrs_to_save
[j
] = msrs_to_save
[i
];
3864 num_msrs_to_save
= j
;
3867 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3875 if (!(vcpu
->arch
.apic
&&
3876 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3877 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3888 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3895 if (!(vcpu
->arch
.apic
&&
3896 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3897 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3899 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3909 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3910 struct kvm_segment
*var
, int seg
)
3912 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3915 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3916 struct kvm_segment
*var
, int seg
)
3918 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3921 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3924 struct x86_exception exception
;
3926 BUG_ON(!mmu_is_nested(vcpu
));
3928 /* NPT walks are always user-walks */
3929 access
|= PFERR_USER_MASK
;
3930 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3935 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3936 struct x86_exception
*exception
)
3938 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3939 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3942 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3943 struct x86_exception
*exception
)
3945 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3946 access
|= PFERR_FETCH_MASK
;
3947 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3950 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3951 struct x86_exception
*exception
)
3953 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3954 access
|= PFERR_WRITE_MASK
;
3955 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3958 /* uses this to access any guest's mapped memory without checking CPL */
3959 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3960 struct x86_exception
*exception
)
3962 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3965 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3966 struct kvm_vcpu
*vcpu
, u32 access
,
3967 struct x86_exception
*exception
)
3970 int r
= X86EMUL_CONTINUE
;
3973 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3975 unsigned offset
= addr
& (PAGE_SIZE
-1);
3976 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3979 if (gpa
== UNMAPPED_GVA
)
3980 return X86EMUL_PROPAGATE_FAULT
;
3981 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3983 r
= X86EMUL_IO_NEEDED
;
3995 /* used for instruction fetching */
3996 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3997 gva_t addr
, void *val
, unsigned int bytes
,
3998 struct x86_exception
*exception
)
4000 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4001 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4003 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
4004 access
| PFERR_FETCH_MASK
,
4008 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4009 gva_t addr
, void *val
, unsigned int bytes
,
4010 struct x86_exception
*exception
)
4012 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4013 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4015 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4018 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4020 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4021 gva_t addr
, void *val
, unsigned int bytes
,
4022 struct x86_exception
*exception
)
4024 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4025 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4028 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4029 gva_t addr
, void *val
,
4031 struct x86_exception
*exception
)
4033 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4035 int r
= X86EMUL_CONTINUE
;
4038 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4041 unsigned offset
= addr
& (PAGE_SIZE
-1);
4042 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4045 if (gpa
== UNMAPPED_GVA
)
4046 return X86EMUL_PROPAGATE_FAULT
;
4047 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
4049 r
= X86EMUL_IO_NEEDED
;
4060 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4062 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4063 gpa_t
*gpa
, struct x86_exception
*exception
,
4066 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4067 | (write
? PFERR_WRITE_MASK
: 0);
4069 if (vcpu_match_mmio_gva(vcpu
, gva
)
4070 && !permission_fault(vcpu
->arch
.walk_mmu
, vcpu
->arch
.access
, access
)) {
4071 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4072 (gva
& (PAGE_SIZE
- 1));
4073 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4077 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4079 if (*gpa
== UNMAPPED_GVA
)
4082 /* For APIC access vmexit */
4083 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4086 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4087 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4094 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4095 const void *val
, int bytes
)
4099 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4102 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
4106 struct read_write_emulator_ops
{
4107 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4109 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4110 void *val
, int bytes
);
4111 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4112 int bytes
, void *val
);
4113 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4114 void *val
, int bytes
);
4118 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4120 if (vcpu
->mmio_read_completed
) {
4121 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4122 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4123 vcpu
->mmio_read_completed
= 0;
4130 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4131 void *val
, int bytes
)
4133 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4136 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4137 void *val
, int bytes
)
4139 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4142 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4144 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4145 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4148 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4149 void *val
, int bytes
)
4151 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4152 return X86EMUL_IO_NEEDED
;
4155 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4156 void *val
, int bytes
)
4158 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4160 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4161 return X86EMUL_CONTINUE
;
4164 static const struct read_write_emulator_ops read_emultor
= {
4165 .read_write_prepare
= read_prepare
,
4166 .read_write_emulate
= read_emulate
,
4167 .read_write_mmio
= vcpu_mmio_read
,
4168 .read_write_exit_mmio
= read_exit_mmio
,
4171 static const struct read_write_emulator_ops write_emultor
= {
4172 .read_write_emulate
= write_emulate
,
4173 .read_write_mmio
= write_mmio
,
4174 .read_write_exit_mmio
= write_exit_mmio
,
4178 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4180 struct x86_exception
*exception
,
4181 struct kvm_vcpu
*vcpu
,
4182 const struct read_write_emulator_ops
*ops
)
4186 bool write
= ops
->write
;
4187 struct kvm_mmio_fragment
*frag
;
4189 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4192 return X86EMUL_PROPAGATE_FAULT
;
4194 /* For APIC access vmexit */
4198 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4199 return X86EMUL_CONTINUE
;
4203 * Is this MMIO handled locally?
4205 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4206 if (handled
== bytes
)
4207 return X86EMUL_CONTINUE
;
4213 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4214 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4218 return X86EMUL_CONTINUE
;
4221 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
4222 void *val
, unsigned int bytes
,
4223 struct x86_exception
*exception
,
4224 const struct read_write_emulator_ops
*ops
)
4226 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4230 if (ops
->read_write_prepare
&&
4231 ops
->read_write_prepare(vcpu
, val
, bytes
))
4232 return X86EMUL_CONTINUE
;
4234 vcpu
->mmio_nr_fragments
= 0;
4236 /* Crossing a page boundary? */
4237 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4240 now
= -addr
& ~PAGE_MASK
;
4241 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4244 if (rc
!= X86EMUL_CONTINUE
)
4251 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4253 if (rc
!= X86EMUL_CONTINUE
)
4256 if (!vcpu
->mmio_nr_fragments
)
4259 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4261 vcpu
->mmio_needed
= 1;
4262 vcpu
->mmio_cur_fragment
= 0;
4264 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4265 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4266 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4267 vcpu
->run
->mmio
.phys_addr
= gpa
;
4269 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4272 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4276 struct x86_exception
*exception
)
4278 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4279 exception
, &read_emultor
);
4282 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4286 struct x86_exception
*exception
)
4288 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4289 exception
, &write_emultor
);
4292 #define CMPXCHG_TYPE(t, ptr, old, new) \
4293 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4295 #ifdef CONFIG_X86_64
4296 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4298 # define CMPXCHG64(ptr, old, new) \
4299 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4302 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4307 struct x86_exception
*exception
)
4309 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4315 /* guests cmpxchg8b have to be emulated atomically */
4316 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4319 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4321 if (gpa
== UNMAPPED_GVA
||
4322 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4325 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4328 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4329 if (is_error_page(page
))
4332 kaddr
= kmap_atomic(page
);
4333 kaddr
+= offset_in_page(gpa
);
4336 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4339 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4342 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4345 exchanged
= CMPXCHG64(kaddr
, old
, new);
4350 kunmap_atomic(kaddr
);
4351 kvm_release_page_dirty(page
);
4354 return X86EMUL_CMPXCHG_FAILED
;
4356 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
4358 return X86EMUL_CONTINUE
;
4361 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4363 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4366 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4368 /* TODO: String I/O for in kernel device */
4371 if (vcpu
->arch
.pio
.in
)
4372 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4373 vcpu
->arch
.pio
.size
, pd
);
4375 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
4376 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4381 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4382 unsigned short port
, void *val
,
4383 unsigned int count
, bool in
)
4385 trace_kvm_pio(!in
, port
, size
, count
);
4387 vcpu
->arch
.pio
.port
= port
;
4388 vcpu
->arch
.pio
.in
= in
;
4389 vcpu
->arch
.pio
.count
= count
;
4390 vcpu
->arch
.pio
.size
= size
;
4392 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4393 vcpu
->arch
.pio
.count
= 0;
4397 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4398 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4399 vcpu
->run
->io
.size
= size
;
4400 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4401 vcpu
->run
->io
.count
= count
;
4402 vcpu
->run
->io
.port
= port
;
4407 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4408 int size
, unsigned short port
, void *val
,
4411 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4414 if (vcpu
->arch
.pio
.count
)
4417 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4420 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4421 vcpu
->arch
.pio
.count
= 0;
4428 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4429 int size
, unsigned short port
,
4430 const void *val
, unsigned int count
)
4432 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4434 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4435 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4438 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4440 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4443 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4445 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4448 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4450 if (!need_emulate_wbinvd(vcpu
))
4451 return X86EMUL_CONTINUE
;
4453 if (kvm_x86_ops
->has_wbinvd_exit()) {
4454 int cpu
= get_cpu();
4456 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4457 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4458 wbinvd_ipi
, NULL
, 1);
4460 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4463 return X86EMUL_CONTINUE
;
4465 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4467 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4469 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4472 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4474 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4477 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4480 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4483 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4485 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4488 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4490 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4491 unsigned long value
;
4495 value
= kvm_read_cr0(vcpu
);
4498 value
= vcpu
->arch
.cr2
;
4501 value
= kvm_read_cr3(vcpu
);
4504 value
= kvm_read_cr4(vcpu
);
4507 value
= kvm_get_cr8(vcpu
);
4510 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4517 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4519 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4524 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4527 vcpu
->arch
.cr2
= val
;
4530 res
= kvm_set_cr3(vcpu
, val
);
4533 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4536 res
= kvm_set_cr8(vcpu
, val
);
4539 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4546 static void emulator_set_rflags(struct x86_emulate_ctxt
*ctxt
, ulong val
)
4548 kvm_set_rflags(emul_to_vcpu(ctxt
), val
);
4551 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4553 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4556 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4558 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4561 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4563 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4566 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4568 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4571 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4573 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4576 static unsigned long emulator_get_cached_segment_base(
4577 struct x86_emulate_ctxt
*ctxt
, int seg
)
4579 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4582 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4583 struct desc_struct
*desc
, u32
*base3
,
4586 struct kvm_segment var
;
4588 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4589 *selector
= var
.selector
;
4592 memset(desc
, 0, sizeof(*desc
));
4598 set_desc_limit(desc
, var
.limit
);
4599 set_desc_base(desc
, (unsigned long)var
.base
);
4600 #ifdef CONFIG_X86_64
4602 *base3
= var
.base
>> 32;
4604 desc
->type
= var
.type
;
4606 desc
->dpl
= var
.dpl
;
4607 desc
->p
= var
.present
;
4608 desc
->avl
= var
.avl
;
4616 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4617 struct desc_struct
*desc
, u32 base3
,
4620 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4621 struct kvm_segment var
;
4623 var
.selector
= selector
;
4624 var
.base
= get_desc_base(desc
);
4625 #ifdef CONFIG_X86_64
4626 var
.base
|= ((u64
)base3
) << 32;
4628 var
.limit
= get_desc_limit(desc
);
4630 var
.limit
= (var
.limit
<< 12) | 0xfff;
4631 var
.type
= desc
->type
;
4632 var
.present
= desc
->p
;
4633 var
.dpl
= desc
->dpl
;
4638 var
.avl
= desc
->avl
;
4639 var
.present
= desc
->p
;
4640 var
.unusable
= !var
.present
;
4643 kvm_set_segment(vcpu
, &var
, seg
);
4647 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4648 u32 msr_index
, u64
*pdata
)
4650 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4653 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4654 u32 msr_index
, u64 data
)
4656 struct msr_data msr
;
4659 msr
.index
= msr_index
;
4660 msr
.host_initiated
= false;
4661 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4664 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4665 u32 pmc
, u64
*pdata
)
4667 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4670 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4672 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4675 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4678 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4680 * CR0.TS may reference the host fpu state, not the guest fpu state,
4681 * so it may be clear at this point.
4686 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4691 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4692 struct x86_instruction_info
*info
,
4693 enum x86_intercept_stage stage
)
4695 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4698 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4699 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4701 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
4704 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
4706 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
4709 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
4711 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
4714 static const struct x86_emulate_ops emulate_ops
= {
4715 .read_gpr
= emulator_read_gpr
,
4716 .write_gpr
= emulator_write_gpr
,
4717 .read_std
= kvm_read_guest_virt_system
,
4718 .write_std
= kvm_write_guest_virt_system
,
4719 .fetch
= kvm_fetch_guest_virt
,
4720 .read_emulated
= emulator_read_emulated
,
4721 .write_emulated
= emulator_write_emulated
,
4722 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4723 .invlpg
= emulator_invlpg
,
4724 .pio_in_emulated
= emulator_pio_in_emulated
,
4725 .pio_out_emulated
= emulator_pio_out_emulated
,
4726 .get_segment
= emulator_get_segment
,
4727 .set_segment
= emulator_set_segment
,
4728 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4729 .get_gdt
= emulator_get_gdt
,
4730 .get_idt
= emulator_get_idt
,
4731 .set_gdt
= emulator_set_gdt
,
4732 .set_idt
= emulator_set_idt
,
4733 .get_cr
= emulator_get_cr
,
4734 .set_cr
= emulator_set_cr
,
4735 .set_rflags
= emulator_set_rflags
,
4736 .cpl
= emulator_get_cpl
,
4737 .get_dr
= emulator_get_dr
,
4738 .set_dr
= emulator_set_dr
,
4739 .set_msr
= emulator_set_msr
,
4740 .get_msr
= emulator_get_msr
,
4741 .read_pmc
= emulator_read_pmc
,
4742 .halt
= emulator_halt
,
4743 .wbinvd
= emulator_wbinvd
,
4744 .fix_hypercall
= emulator_fix_hypercall
,
4745 .get_fpu
= emulator_get_fpu
,
4746 .put_fpu
= emulator_put_fpu
,
4747 .intercept
= emulator_intercept
,
4748 .get_cpuid
= emulator_get_cpuid
,
4751 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4753 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4755 * an sti; sti; sequence only disable interrupts for the first
4756 * instruction. So, if the last instruction, be it emulated or
4757 * not, left the system with the INT_STI flag enabled, it
4758 * means that the last instruction is an sti. We should not
4759 * leave the flag on in this case. The same goes for mov ss
4761 if (!(int_shadow
& mask
))
4762 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4765 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4767 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4768 if (ctxt
->exception
.vector
== PF_VECTOR
)
4769 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4770 else if (ctxt
->exception
.error_code_valid
)
4771 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4772 ctxt
->exception
.error_code
);
4774 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4777 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
)
4779 memset(&ctxt
->twobyte
, 0,
4780 (void *)&ctxt
->_regs
- (void *)&ctxt
->twobyte
);
4782 ctxt
->fetch
.start
= 0;
4783 ctxt
->fetch
.end
= 0;
4784 ctxt
->io_read
.pos
= 0;
4785 ctxt
->io_read
.end
= 0;
4786 ctxt
->mem_read
.pos
= 0;
4787 ctxt
->mem_read
.end
= 0;
4790 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4792 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4795 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4797 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4798 ctxt
->eip
= kvm_rip_read(vcpu
);
4799 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4800 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4801 cs_l
? X86EMUL_MODE_PROT64
:
4802 cs_db
? X86EMUL_MODE_PROT32
:
4803 X86EMUL_MODE_PROT16
;
4804 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4806 init_decode_cache(ctxt
);
4807 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4810 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4812 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4815 init_emulate_ctxt(vcpu
);
4819 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4820 ret
= emulate_int_real(ctxt
, irq
);
4822 if (ret
!= X86EMUL_CONTINUE
)
4823 return EMULATE_FAIL
;
4825 ctxt
->eip
= ctxt
->_eip
;
4826 kvm_rip_write(vcpu
, ctxt
->eip
);
4827 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4829 if (irq
== NMI_VECTOR
)
4830 vcpu
->arch
.nmi_pending
= 0;
4832 vcpu
->arch
.interrupt
.pending
= false;
4834 return EMULATE_DONE
;
4836 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4838 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4840 int r
= EMULATE_DONE
;
4842 ++vcpu
->stat
.insn_emulation_fail
;
4843 trace_kvm_emulate_insn_failed(vcpu
);
4844 if (!is_guest_mode(vcpu
)) {
4845 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4846 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4847 vcpu
->run
->internal
.ndata
= 0;
4850 kvm_queue_exception(vcpu
, UD_VECTOR
);
4855 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
4856 bool write_fault_to_shadow_pgtable
,
4862 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
4865 if (!vcpu
->arch
.mmu
.direct_map
) {
4867 * Write permission should be allowed since only
4868 * write access need to be emulated.
4870 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
4873 * If the mapping is invalid in guest, let cpu retry
4874 * it to generate fault.
4876 if (gpa
== UNMAPPED_GVA
)
4881 * Do not retry the unhandleable instruction if it faults on the
4882 * readonly host memory, otherwise it will goto a infinite loop:
4883 * retry instruction -> write #PF -> emulation fail -> retry
4884 * instruction -> ...
4886 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
4889 * If the instruction failed on the error pfn, it can not be fixed,
4890 * report the error to userspace.
4892 if (is_error_noslot_pfn(pfn
))
4895 kvm_release_pfn_clean(pfn
);
4897 /* The instructions are well-emulated on direct mmu. */
4898 if (vcpu
->arch
.mmu
.direct_map
) {
4899 unsigned int indirect_shadow_pages
;
4901 spin_lock(&vcpu
->kvm
->mmu_lock
);
4902 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
4903 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4905 if (indirect_shadow_pages
)
4906 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
4912 * if emulation was due to access to shadowed page table
4913 * and it failed try to unshadow page and re-enter the
4914 * guest to let CPU execute the instruction.
4916 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
4919 * If the access faults on its page table, it can not
4920 * be fixed by unprotecting shadow page and it should
4921 * be reported to userspace.
4923 return !write_fault_to_shadow_pgtable
;
4926 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
4927 unsigned long cr2
, int emulation_type
)
4929 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4930 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
4932 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
4933 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
4936 * If the emulation is caused by #PF and it is non-page_table
4937 * writing instruction, it means the VM-EXIT is caused by shadow
4938 * page protected, we can zap the shadow page and retry this
4939 * instruction directly.
4941 * Note: if the guest uses a non-page-table modifying instruction
4942 * on the PDE that points to the instruction, then we will unmap
4943 * the instruction and go to an infinite loop. So, we cache the
4944 * last retried eip and the last fault address, if we meet the eip
4945 * and the address again, we can break out of the potential infinite
4948 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
4950 if (!(emulation_type
& EMULTYPE_RETRY
))
4953 if (x86_page_table_writing_insn(ctxt
))
4956 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
4959 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
4960 vcpu
->arch
.last_retry_addr
= cr2
;
4962 if (!vcpu
->arch
.mmu
.direct_map
)
4963 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
4965 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
4970 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
4971 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
4973 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
4982 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
4983 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
4988 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, int *r
)
4990 struct kvm_run
*kvm_run
= vcpu
->run
;
4993 * Use the "raw" value to see if TF was passed to the processor.
4994 * Note that the new value of the flags has not been saved yet.
4996 * This is correct even for TF set by the guest, because "the
4997 * processor will not generate this exception after the instruction
4998 * that sets the TF flag".
5000 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5002 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5003 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5004 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
;
5005 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5006 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5007 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5008 *r
= EMULATE_USER_EXIT
;
5010 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5012 * "Certain debug exceptions may clear bit 0-3. The
5013 * remaining contents of the DR6 register are never
5014 * cleared by the processor".
5016 vcpu
->arch
.dr6
&= ~15;
5017 vcpu
->arch
.dr6
|= DR6_BS
;
5018 kvm_queue_exception(vcpu
, DB_VECTOR
);
5023 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5025 struct kvm_run
*kvm_run
= vcpu
->run
;
5026 unsigned long eip
= vcpu
->arch
.emulate_ctxt
.eip
;
5029 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5030 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5031 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5032 vcpu
->arch
.guest_debug_dr7
,
5036 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
5037 kvm_run
->debug
.arch
.pc
= kvm_rip_read(vcpu
) +
5038 get_segment_base(vcpu
, VCPU_SREG_CS
);
5040 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5041 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5042 *r
= EMULATE_USER_EXIT
;
5047 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
)) {
5048 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5053 vcpu
->arch
.dr6
&= ~15;
5054 vcpu
->arch
.dr6
|= dr6
;
5055 kvm_queue_exception(vcpu
, DB_VECTOR
);
5064 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5071 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5072 bool writeback
= true;
5073 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5076 * Clear write_fault_to_shadow_pgtable here to ensure it is
5079 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5080 kvm_clear_exception_queue(vcpu
);
5082 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5083 init_emulate_ctxt(vcpu
);
5086 * We will reenter on the same instruction since
5087 * we do not set complete_userspace_io. This does not
5088 * handle watchpoints yet, those would be handled in
5091 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5094 ctxt
->interruptibility
= 0;
5095 ctxt
->have_exception
= false;
5096 ctxt
->perm_ok
= false;
5098 ctxt
->only_vendor_specific_insn
5099 = emulation_type
& EMULTYPE_TRAP_UD
;
5101 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5103 trace_kvm_emulate_insn_start(vcpu
);
5104 ++vcpu
->stat
.insn_emulation
;
5105 if (r
!= EMULATION_OK
) {
5106 if (emulation_type
& EMULTYPE_TRAP_UD
)
5107 return EMULATE_FAIL
;
5108 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5110 return EMULATE_DONE
;
5111 if (emulation_type
& EMULTYPE_SKIP
)
5112 return EMULATE_FAIL
;
5113 return handle_emulation_failure(vcpu
);
5117 if (emulation_type
& EMULTYPE_SKIP
) {
5118 kvm_rip_write(vcpu
, ctxt
->_eip
);
5119 return EMULATE_DONE
;
5122 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5123 return EMULATE_DONE
;
5125 /* this is needed for vmware backdoor interface to work since it
5126 changes registers values during IO operation */
5127 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5128 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5129 emulator_invalidate_register_cache(ctxt
);
5133 r
= x86_emulate_insn(ctxt
);
5135 if (r
== EMULATION_INTERCEPTED
)
5136 return EMULATE_DONE
;
5138 if (r
== EMULATION_FAILED
) {
5139 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5141 return EMULATE_DONE
;
5143 return handle_emulation_failure(vcpu
);
5146 if (ctxt
->have_exception
) {
5147 inject_emulated_exception(vcpu
);
5149 } else if (vcpu
->arch
.pio
.count
) {
5150 if (!vcpu
->arch
.pio
.in
) {
5151 /* FIXME: return into emulator if single-stepping. */
5152 vcpu
->arch
.pio
.count
= 0;
5155 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5157 r
= EMULATE_USER_EXIT
;
5158 } else if (vcpu
->mmio_needed
) {
5159 if (!vcpu
->mmio_is_write
)
5161 r
= EMULATE_USER_EXIT
;
5162 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5163 } else if (r
== EMULATION_RESTART
)
5169 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5170 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5171 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5172 kvm_rip_write(vcpu
, ctxt
->eip
);
5173 if (r
== EMULATE_DONE
)
5174 kvm_vcpu_check_singlestep(vcpu
, &r
);
5175 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5177 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5181 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5183 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5185 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5186 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5187 size
, port
, &val
, 1);
5188 /* do not return to emulator after return from userspace */
5189 vcpu
->arch
.pio
.count
= 0;
5192 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5194 static void tsc_bad(void *info
)
5196 __this_cpu_write(cpu_tsc_khz
, 0);
5199 static void tsc_khz_changed(void *data
)
5201 struct cpufreq_freqs
*freq
= data
;
5202 unsigned long khz
= 0;
5206 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5207 khz
= cpufreq_quick_get(raw_smp_processor_id());
5210 __this_cpu_write(cpu_tsc_khz
, khz
);
5213 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5216 struct cpufreq_freqs
*freq
= data
;
5218 struct kvm_vcpu
*vcpu
;
5219 int i
, send_ipi
= 0;
5222 * We allow guests to temporarily run on slowing clocks,
5223 * provided we notify them after, or to run on accelerating
5224 * clocks, provided we notify them before. Thus time never
5227 * However, we have a problem. We can't atomically update
5228 * the frequency of a given CPU from this function; it is
5229 * merely a notifier, which can be called from any CPU.
5230 * Changing the TSC frequency at arbitrary points in time
5231 * requires a recomputation of local variables related to
5232 * the TSC for each VCPU. We must flag these local variables
5233 * to be updated and be sure the update takes place with the
5234 * new frequency before any guests proceed.
5236 * Unfortunately, the combination of hotplug CPU and frequency
5237 * change creates an intractable locking scenario; the order
5238 * of when these callouts happen is undefined with respect to
5239 * CPU hotplug, and they can race with each other. As such,
5240 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5241 * undefined; you can actually have a CPU frequency change take
5242 * place in between the computation of X and the setting of the
5243 * variable. To protect against this problem, all updates of
5244 * the per_cpu tsc_khz variable are done in an interrupt
5245 * protected IPI, and all callers wishing to update the value
5246 * must wait for a synchronous IPI to complete (which is trivial
5247 * if the caller is on the CPU already). This establishes the
5248 * necessary total order on variable updates.
5250 * Note that because a guest time update may take place
5251 * anytime after the setting of the VCPU's request bit, the
5252 * correct TSC value must be set before the request. However,
5253 * to ensure the update actually makes it to any guest which
5254 * starts running in hardware virtualization between the set
5255 * and the acquisition of the spinlock, we must also ping the
5256 * CPU after setting the request bit.
5260 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5262 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5265 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5267 raw_spin_lock(&kvm_lock
);
5268 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5269 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5270 if (vcpu
->cpu
!= freq
->cpu
)
5272 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5273 if (vcpu
->cpu
!= smp_processor_id())
5277 raw_spin_unlock(&kvm_lock
);
5279 if (freq
->old
< freq
->new && send_ipi
) {
5281 * We upscale the frequency. Must make the guest
5282 * doesn't see old kvmclock values while running with
5283 * the new frequency, otherwise we risk the guest sees
5284 * time go backwards.
5286 * In case we update the frequency for another cpu
5287 * (which might be in guest context) send an interrupt
5288 * to kick the cpu out of guest context. Next time
5289 * guest context is entered kvmclock will be updated,
5290 * so the guest will not see stale values.
5292 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5297 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5298 .notifier_call
= kvmclock_cpufreq_notifier
5301 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5302 unsigned long action
, void *hcpu
)
5304 unsigned int cpu
= (unsigned long)hcpu
;
5308 case CPU_DOWN_FAILED
:
5309 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5311 case CPU_DOWN_PREPARE
:
5312 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5318 static struct notifier_block kvmclock_cpu_notifier_block
= {
5319 .notifier_call
= kvmclock_cpu_notifier
,
5320 .priority
= -INT_MAX
5323 static void kvm_timer_init(void)
5327 max_tsc_khz
= tsc_khz
;
5328 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5329 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5330 #ifdef CONFIG_CPU_FREQ
5331 struct cpufreq_policy policy
;
5332 memset(&policy
, 0, sizeof(policy
));
5334 cpufreq_get_policy(&policy
, cpu
);
5335 if (policy
.cpuinfo
.max_freq
)
5336 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5339 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5340 CPUFREQ_TRANSITION_NOTIFIER
);
5342 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5343 for_each_online_cpu(cpu
)
5344 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5347 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5349 int kvm_is_in_guest(void)
5351 return __this_cpu_read(current_vcpu
) != NULL
;
5354 static int kvm_is_user_mode(void)
5358 if (__this_cpu_read(current_vcpu
))
5359 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5361 return user_mode
!= 0;
5364 static unsigned long kvm_get_guest_ip(void)
5366 unsigned long ip
= 0;
5368 if (__this_cpu_read(current_vcpu
))
5369 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5374 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5375 .is_in_guest
= kvm_is_in_guest
,
5376 .is_user_mode
= kvm_is_user_mode
,
5377 .get_guest_ip
= kvm_get_guest_ip
,
5380 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5382 __this_cpu_write(current_vcpu
, vcpu
);
5384 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5386 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5388 __this_cpu_write(current_vcpu
, NULL
);
5390 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5392 static void kvm_set_mmio_spte_mask(void)
5395 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5398 * Set the reserved bits and the present bit of an paging-structure
5399 * entry to generate page fault with PFER.RSV = 1.
5401 /* Mask the reserved physical address bits. */
5402 mask
= ((1ull << (51 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
5404 /* Bit 62 is always reserved for 32bit host. */
5405 mask
|= 0x3ull
<< 62;
5407 /* Set the present bit. */
5410 #ifdef CONFIG_X86_64
5412 * If reserved bit is not supported, clear the present bit to disable
5415 if (maxphyaddr
== 52)
5419 kvm_mmu_set_mmio_spte_mask(mask
);
5422 #ifdef CONFIG_X86_64
5423 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5427 struct kvm_vcpu
*vcpu
;
5430 raw_spin_lock(&kvm_lock
);
5431 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5432 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5433 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
, &vcpu
->requests
);
5434 atomic_set(&kvm_guest_has_master_clock
, 0);
5435 raw_spin_unlock(&kvm_lock
);
5438 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5441 * Notification about pvclock gtod data update.
5443 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5446 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5447 struct timekeeper
*tk
= priv
;
5449 update_pvclock_gtod(tk
);
5451 /* disable master clock if host does not trust, or does not
5452 * use, TSC clocksource
5454 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5455 atomic_read(&kvm_guest_has_master_clock
) != 0)
5456 queue_work(system_long_wq
, &pvclock_gtod_work
);
5461 static struct notifier_block pvclock_gtod_notifier
= {
5462 .notifier_call
= pvclock_gtod_notify
,
5466 int kvm_arch_init(void *opaque
)
5469 struct kvm_x86_ops
*ops
= opaque
;
5472 printk(KERN_ERR
"kvm: already loaded the other module\n");
5477 if (!ops
->cpu_has_kvm_support()) {
5478 printk(KERN_ERR
"kvm: no hardware support\n");
5482 if (ops
->disabled_by_bios()) {
5483 printk(KERN_ERR
"kvm: disabled by bios\n");
5489 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5491 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5495 r
= kvm_mmu_module_init();
5497 goto out_free_percpu
;
5499 kvm_set_mmio_spte_mask();
5500 kvm_init_msr_list();
5503 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5504 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5508 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5511 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5514 #ifdef CONFIG_X86_64
5515 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5521 free_percpu(shared_msrs
);
5526 void kvm_arch_exit(void)
5528 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5530 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5531 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5532 CPUFREQ_TRANSITION_NOTIFIER
);
5533 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5534 #ifdef CONFIG_X86_64
5535 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5538 kvm_mmu_module_exit();
5539 free_percpu(shared_msrs
);
5542 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5544 ++vcpu
->stat
.halt_exits
;
5545 if (irqchip_in_kernel(vcpu
->kvm
)) {
5546 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5549 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5553 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5555 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5557 u64 param
, ingpa
, outgpa
, ret
;
5558 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5559 bool fast
, longmode
;
5563 * hypercall generates UD from non zero cpl and real mode
5566 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5567 kvm_queue_exception(vcpu
, UD_VECTOR
);
5571 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5572 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
5575 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5576 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5577 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5578 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5579 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5580 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5582 #ifdef CONFIG_X86_64
5584 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5585 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5586 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5590 code
= param
& 0xffff;
5591 fast
= (param
>> 16) & 0x1;
5592 rep_cnt
= (param
>> 32) & 0xfff;
5593 rep_idx
= (param
>> 48) & 0xfff;
5595 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5598 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5599 kvm_vcpu_on_spin(vcpu
);
5602 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5606 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5608 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5610 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5611 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5618 * kvm_pv_kick_cpu_op: Kick a vcpu.
5620 * @apicid - apicid of vcpu to be kicked.
5622 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5624 struct kvm_lapic_irq lapic_irq
;
5626 lapic_irq
.shorthand
= 0;
5627 lapic_irq
.dest_mode
= 0;
5628 lapic_irq
.dest_id
= apicid
;
5630 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5631 kvm_irq_delivery_to_apic(kvm
, 0, &lapic_irq
, NULL
);
5634 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5636 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5639 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5640 return kvm_hv_hypercall(vcpu
);
5642 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5643 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5644 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5645 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5646 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5648 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5650 if (!is_long_mode(vcpu
)) {
5658 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5664 case KVM_HC_VAPIC_POLL_IRQ
:
5667 case KVM_HC_KICK_CPU
:
5668 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
5676 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5677 ++vcpu
->stat
.hypercalls
;
5680 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5682 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5684 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5685 char instruction
[3];
5686 unsigned long rip
= kvm_rip_read(vcpu
);
5688 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5690 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5694 * Check if userspace requested an interrupt window, and that the
5695 * interrupt window is open.
5697 * No need to exit to userspace if we already have an interrupt queued.
5699 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5701 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5702 vcpu
->run
->request_interrupt_window
&&
5703 kvm_arch_interrupt_allowed(vcpu
));
5706 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5708 struct kvm_run
*kvm_run
= vcpu
->run
;
5710 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5711 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5712 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5713 if (irqchip_in_kernel(vcpu
->kvm
))
5714 kvm_run
->ready_for_interrupt_injection
= 1;
5716 kvm_run
->ready_for_interrupt_injection
=
5717 kvm_arch_interrupt_allowed(vcpu
) &&
5718 !kvm_cpu_has_interrupt(vcpu
) &&
5719 !kvm_event_needs_reinjection(vcpu
);
5722 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5726 if (!kvm_x86_ops
->update_cr8_intercept
)
5729 if (!vcpu
->arch
.apic
)
5732 if (!vcpu
->arch
.apic
->vapic_addr
)
5733 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5740 tpr
= kvm_lapic_get_cr8(vcpu
);
5742 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5745 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5747 /* try to reinject previous events if any */
5748 if (vcpu
->arch
.exception
.pending
) {
5749 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5750 vcpu
->arch
.exception
.has_error_code
,
5751 vcpu
->arch
.exception
.error_code
);
5752 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5753 vcpu
->arch
.exception
.has_error_code
,
5754 vcpu
->arch
.exception
.error_code
,
5755 vcpu
->arch
.exception
.reinject
);
5759 if (vcpu
->arch
.nmi_injected
) {
5760 kvm_x86_ops
->set_nmi(vcpu
);
5764 if (vcpu
->arch
.interrupt
.pending
) {
5765 kvm_x86_ops
->set_irq(vcpu
);
5769 /* try to inject new event if pending */
5770 if (vcpu
->arch
.nmi_pending
) {
5771 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5772 --vcpu
->arch
.nmi_pending
;
5773 vcpu
->arch
.nmi_injected
= true;
5774 kvm_x86_ops
->set_nmi(vcpu
);
5776 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
5777 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5778 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5780 kvm_x86_ops
->set_irq(vcpu
);
5785 static void process_nmi(struct kvm_vcpu
*vcpu
)
5790 * x86 is limited to one NMI running, and one NMI pending after it.
5791 * If an NMI is already in progress, limit further NMIs to just one.
5792 * Otherwise, allow two (and we'll inject the first one immediately).
5794 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
5797 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
5798 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
5799 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5802 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
5804 u64 eoi_exit_bitmap
[4];
5807 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
5810 memset(eoi_exit_bitmap
, 0, 32);
5813 kvm_ioapic_scan_entry(vcpu
, eoi_exit_bitmap
, tmr
);
5814 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
5815 kvm_apic_update_tmr(vcpu
, tmr
);
5818 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5821 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5822 vcpu
->run
->request_interrupt_window
;
5823 bool req_immediate_exit
= false;
5825 if (vcpu
->requests
) {
5826 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5827 kvm_mmu_unload(vcpu
);
5828 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5829 __kvm_migrate_timers(vcpu
);
5830 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
5831 kvm_gen_update_masterclock(vcpu
->kvm
);
5832 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
5833 kvm_gen_kvmclock_update(vcpu
);
5834 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5835 r
= kvm_guest_time_update(vcpu
);
5839 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5840 kvm_mmu_sync_roots(vcpu
);
5841 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5842 kvm_x86_ops
->tlb_flush(vcpu
);
5843 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5844 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5848 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5849 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5853 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5854 vcpu
->fpu_active
= 0;
5855 kvm_x86_ops
->fpu_deactivate(vcpu
);
5857 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5858 /* Page is swapped out. Do synthetic halt */
5859 vcpu
->arch
.apf
.halted
= true;
5863 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5864 record_steal_time(vcpu
);
5865 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5867 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
5868 kvm_handle_pmu_event(vcpu
);
5869 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
5870 kvm_deliver_pmi(vcpu
);
5871 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
5872 vcpu_scan_ioapic(vcpu
);
5875 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5876 kvm_apic_accept_events(vcpu
);
5877 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
5882 inject_pending_event(vcpu
);
5884 /* enable NMI/IRQ window open exits if needed */
5885 if (vcpu
->arch
.nmi_pending
)
5886 req_immediate_exit
=
5887 kvm_x86_ops
->enable_nmi_window(vcpu
) != 0;
5888 else if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
5889 req_immediate_exit
=
5890 kvm_x86_ops
->enable_irq_window(vcpu
) != 0;
5892 if (kvm_lapic_enabled(vcpu
)) {
5894 * Update architecture specific hints for APIC
5895 * virtual interrupt delivery.
5897 if (kvm_x86_ops
->hwapic_irr_update
)
5898 kvm_x86_ops
->hwapic_irr_update(vcpu
,
5899 kvm_lapic_find_highest_irr(vcpu
));
5900 update_cr8_intercept(vcpu
);
5901 kvm_lapic_sync_to_vapic(vcpu
);
5905 r
= kvm_mmu_reload(vcpu
);
5907 goto cancel_injection
;
5912 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5913 if (vcpu
->fpu_active
)
5914 kvm_load_guest_fpu(vcpu
);
5915 kvm_load_guest_xcr0(vcpu
);
5917 vcpu
->mode
= IN_GUEST_MODE
;
5919 /* We should set ->mode before check ->requests,
5920 * see the comment in make_all_cpus_request.
5924 local_irq_disable();
5926 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5927 || need_resched() || signal_pending(current
)) {
5928 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5933 goto cancel_injection
;
5936 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5938 if (req_immediate_exit
)
5939 smp_send_reschedule(vcpu
->cpu
);
5943 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5945 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5946 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5947 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5948 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5951 trace_kvm_entry(vcpu
->vcpu_id
);
5952 kvm_x86_ops
->run(vcpu
);
5955 * If the guest has used debug registers, at least dr7
5956 * will be disabled while returning to the host.
5957 * If we don't have active breakpoints in the host, we don't
5958 * care about the messed up debug address registers. But if
5959 * we have some of them active, restore the old state.
5961 if (hw_breakpoint_active())
5962 hw_breakpoint_restore();
5964 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
,
5967 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5970 /* Interrupt is enabled by handle_external_intr() */
5971 kvm_x86_ops
->handle_external_intr(vcpu
);
5976 * We must have an instruction between local_irq_enable() and
5977 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5978 * the interrupt shadow. The stat.exits increment will do nicely.
5979 * But we need to prevent reordering, hence this barrier():
5987 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5990 * Profile KVM exit RIPs:
5992 if (unlikely(prof_on
== KVM_PROFILING
)) {
5993 unsigned long rip
= kvm_rip_read(vcpu
);
5994 profile_hit(KVM_PROFILING
, (void *)rip
);
5997 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
5998 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6000 if (vcpu
->arch
.apic_attention
)
6001 kvm_lapic_sync_from_vapic(vcpu
);
6003 r
= kvm_x86_ops
->handle_exit(vcpu
);
6007 kvm_x86_ops
->cancel_injection(vcpu
);
6008 if (unlikely(vcpu
->arch
.apic_attention
))
6009 kvm_lapic_sync_from_vapic(vcpu
);
6015 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
6018 struct kvm
*kvm
= vcpu
->kvm
;
6020 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6024 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6025 !vcpu
->arch
.apf
.halted
)
6026 r
= vcpu_enter_guest(vcpu
);
6028 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6029 kvm_vcpu_block(vcpu
);
6030 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6031 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
)) {
6032 kvm_apic_accept_events(vcpu
);
6033 switch(vcpu
->arch
.mp_state
) {
6034 case KVM_MP_STATE_HALTED
:
6035 vcpu
->arch
.pv
.pv_unhalted
= false;
6036 vcpu
->arch
.mp_state
=
6037 KVM_MP_STATE_RUNNABLE
;
6038 case KVM_MP_STATE_RUNNABLE
:
6039 vcpu
->arch
.apf
.halted
= false;
6041 case KVM_MP_STATE_INIT_RECEIVED
:
6053 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6054 if (kvm_cpu_has_pending_timer(vcpu
))
6055 kvm_inject_pending_timer_irqs(vcpu
);
6057 if (dm_request_for_irq_injection(vcpu
)) {
6059 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6060 ++vcpu
->stat
.request_irq_exits
;
6063 kvm_check_async_pf_completion(vcpu
);
6065 if (signal_pending(current
)) {
6067 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6068 ++vcpu
->stat
.signal_exits
;
6070 if (need_resched()) {
6071 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6073 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6077 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6082 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6085 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6086 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6087 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6088 if (r
!= EMULATE_DONE
)
6093 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6095 BUG_ON(!vcpu
->arch
.pio
.count
);
6097 return complete_emulated_io(vcpu
);
6101 * Implements the following, as a state machine:
6105 * for each mmio piece in the fragment
6113 * for each mmio piece in the fragment
6118 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6120 struct kvm_run
*run
= vcpu
->run
;
6121 struct kvm_mmio_fragment
*frag
;
6124 BUG_ON(!vcpu
->mmio_needed
);
6126 /* Complete previous fragment */
6127 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6128 len
= min(8u, frag
->len
);
6129 if (!vcpu
->mmio_is_write
)
6130 memcpy(frag
->data
, run
->mmio
.data
, len
);
6132 if (frag
->len
<= 8) {
6133 /* Switch to the next fragment. */
6135 vcpu
->mmio_cur_fragment
++;
6137 /* Go forward to the next mmio piece. */
6143 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6144 vcpu
->mmio_needed
= 0;
6146 /* FIXME: return into emulator if single-stepping. */
6147 if (vcpu
->mmio_is_write
)
6149 vcpu
->mmio_read_completed
= 1;
6150 return complete_emulated_io(vcpu
);
6153 run
->exit_reason
= KVM_EXIT_MMIO
;
6154 run
->mmio
.phys_addr
= frag
->gpa
;
6155 if (vcpu
->mmio_is_write
)
6156 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6157 run
->mmio
.len
= min(8u, frag
->len
);
6158 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6159 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6164 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6169 if (!tsk_used_math(current
) && init_fpu(current
))
6172 if (vcpu
->sigset_active
)
6173 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6175 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6176 kvm_vcpu_block(vcpu
);
6177 kvm_apic_accept_events(vcpu
);
6178 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6183 /* re-sync apic's tpr */
6184 if (!irqchip_in_kernel(vcpu
->kvm
)) {
6185 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6191 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6192 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6193 vcpu
->arch
.complete_userspace_io
= NULL
;
6198 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6200 r
= __vcpu_run(vcpu
);
6203 post_kvm_run_save(vcpu
);
6204 if (vcpu
->sigset_active
)
6205 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6210 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6212 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6214 * We are here if userspace calls get_regs() in the middle of
6215 * instruction emulation. Registers state needs to be copied
6216 * back from emulation context to vcpu. Userspace shouldn't do
6217 * that usually, but some bad designed PV devices (vmware
6218 * backdoor interface) need this to work
6220 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6221 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6223 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6224 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6225 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6226 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6227 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6228 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6229 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6230 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6231 #ifdef CONFIG_X86_64
6232 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6233 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6234 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6235 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6236 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6237 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6238 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6239 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6242 regs
->rip
= kvm_rip_read(vcpu
);
6243 regs
->rflags
= kvm_get_rflags(vcpu
);
6248 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6250 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6251 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6253 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6254 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6255 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6256 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6257 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6258 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6259 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6260 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6261 #ifdef CONFIG_X86_64
6262 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6263 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6264 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6265 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6266 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6267 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6268 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6269 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6272 kvm_rip_write(vcpu
, regs
->rip
);
6273 kvm_set_rflags(vcpu
, regs
->rflags
);
6275 vcpu
->arch
.exception
.pending
= false;
6277 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6282 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6284 struct kvm_segment cs
;
6286 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6290 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6292 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6293 struct kvm_sregs
*sregs
)
6297 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6298 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6299 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6300 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6301 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6302 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6304 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6305 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6307 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6308 sregs
->idt
.limit
= dt
.size
;
6309 sregs
->idt
.base
= dt
.address
;
6310 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6311 sregs
->gdt
.limit
= dt
.size
;
6312 sregs
->gdt
.base
= dt
.address
;
6314 sregs
->cr0
= kvm_read_cr0(vcpu
);
6315 sregs
->cr2
= vcpu
->arch
.cr2
;
6316 sregs
->cr3
= kvm_read_cr3(vcpu
);
6317 sregs
->cr4
= kvm_read_cr4(vcpu
);
6318 sregs
->cr8
= kvm_get_cr8(vcpu
);
6319 sregs
->efer
= vcpu
->arch
.efer
;
6320 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6322 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6324 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6325 set_bit(vcpu
->arch
.interrupt
.nr
,
6326 (unsigned long *)sregs
->interrupt_bitmap
);
6331 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6332 struct kvm_mp_state
*mp_state
)
6334 kvm_apic_accept_events(vcpu
);
6335 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
6336 vcpu
->arch
.pv
.pv_unhalted
)
6337 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
6339 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6344 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6345 struct kvm_mp_state
*mp_state
)
6347 if (!kvm_vcpu_has_lapic(vcpu
) &&
6348 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
6351 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
6352 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
6353 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
6355 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6356 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6360 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
6361 int reason
, bool has_error_code
, u32 error_code
)
6363 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6366 init_emulate_ctxt(vcpu
);
6368 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
6369 has_error_code
, error_code
);
6372 return EMULATE_FAIL
;
6374 kvm_rip_write(vcpu
, ctxt
->eip
);
6375 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6376 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6377 return EMULATE_DONE
;
6379 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6381 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6382 struct kvm_sregs
*sregs
)
6384 int mmu_reset_needed
= 0;
6385 int pending_vec
, max_bits
, idx
;
6388 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
6391 dt
.size
= sregs
->idt
.limit
;
6392 dt
.address
= sregs
->idt
.base
;
6393 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6394 dt
.size
= sregs
->gdt
.limit
;
6395 dt
.address
= sregs
->gdt
.base
;
6396 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6398 vcpu
->arch
.cr2
= sregs
->cr2
;
6399 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6400 vcpu
->arch
.cr3
= sregs
->cr3
;
6401 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6403 kvm_set_cr8(vcpu
, sregs
->cr8
);
6405 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6406 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6407 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
6409 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6410 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6411 vcpu
->arch
.cr0
= sregs
->cr0
;
6413 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6414 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6415 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6416 kvm_update_cpuid(vcpu
);
6418 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6419 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6420 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6421 mmu_reset_needed
= 1;
6423 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6425 if (mmu_reset_needed
)
6426 kvm_mmu_reset_context(vcpu
);
6428 max_bits
= KVM_NR_INTERRUPTS
;
6429 pending_vec
= find_first_bit(
6430 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6431 if (pending_vec
< max_bits
) {
6432 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6433 pr_debug("Set back pending irq %d\n", pending_vec
);
6436 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6437 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6438 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6439 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6440 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6441 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6443 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6444 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6446 update_cr8_intercept(vcpu
);
6448 /* Older userspace won't unhalt the vcpu on reset. */
6449 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6450 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6452 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6454 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6459 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6460 struct kvm_guest_debug
*dbg
)
6462 unsigned long rflags
;
6465 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6467 if (vcpu
->arch
.exception
.pending
)
6469 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6470 kvm_queue_exception(vcpu
, DB_VECTOR
);
6472 kvm_queue_exception(vcpu
, BP_VECTOR
);
6476 * Read rflags as long as potentially injected trace flags are still
6479 rflags
= kvm_get_rflags(vcpu
);
6481 vcpu
->guest_debug
= dbg
->control
;
6482 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6483 vcpu
->guest_debug
= 0;
6485 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6486 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6487 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6488 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
6490 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6491 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6493 kvm_update_dr7(vcpu
);
6495 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6496 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6497 get_segment_base(vcpu
, VCPU_SREG_CS
);
6500 * Trigger an rflags update that will inject or remove the trace
6503 kvm_set_rflags(vcpu
, rflags
);
6505 kvm_x86_ops
->update_db_bp_intercept(vcpu
);
6515 * Translate a guest virtual address to a guest physical address.
6517 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6518 struct kvm_translation
*tr
)
6520 unsigned long vaddr
= tr
->linear_address
;
6524 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6525 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6526 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6527 tr
->physical_address
= gpa
;
6528 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6535 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6537 struct i387_fxsave_struct
*fxsave
=
6538 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6540 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6541 fpu
->fcw
= fxsave
->cwd
;
6542 fpu
->fsw
= fxsave
->swd
;
6543 fpu
->ftwx
= fxsave
->twd
;
6544 fpu
->last_opcode
= fxsave
->fop
;
6545 fpu
->last_ip
= fxsave
->rip
;
6546 fpu
->last_dp
= fxsave
->rdp
;
6547 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6552 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6554 struct i387_fxsave_struct
*fxsave
=
6555 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6557 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6558 fxsave
->cwd
= fpu
->fcw
;
6559 fxsave
->swd
= fpu
->fsw
;
6560 fxsave
->twd
= fpu
->ftwx
;
6561 fxsave
->fop
= fpu
->last_opcode
;
6562 fxsave
->rip
= fpu
->last_ip
;
6563 fxsave
->rdp
= fpu
->last_dp
;
6564 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
6569 int fx_init(struct kvm_vcpu
*vcpu
)
6573 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
6577 fpu_finit(&vcpu
->arch
.guest_fpu
);
6580 * Ensure guest xcr0 is valid for loading
6582 vcpu
->arch
.xcr0
= XSTATE_FP
;
6584 vcpu
->arch
.cr0
|= X86_CR0_ET
;
6588 EXPORT_SYMBOL_GPL(fx_init
);
6590 static void fx_free(struct kvm_vcpu
*vcpu
)
6592 fpu_free(&vcpu
->arch
.guest_fpu
);
6595 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
6597 if (vcpu
->guest_fpu_loaded
)
6601 * Restore all possible states in the guest,
6602 * and assume host would use all available bits.
6603 * Guest xcr0 would be loaded later.
6605 kvm_put_guest_xcr0(vcpu
);
6606 vcpu
->guest_fpu_loaded
= 1;
6607 __kernel_fpu_begin();
6608 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
6612 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
6614 kvm_put_guest_xcr0(vcpu
);
6616 if (!vcpu
->guest_fpu_loaded
)
6619 vcpu
->guest_fpu_loaded
= 0;
6620 fpu_save_init(&vcpu
->arch
.guest_fpu
);
6622 ++vcpu
->stat
.fpu_reload
;
6623 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
6627 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
6629 kvmclock_reset(vcpu
);
6631 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6633 kvm_x86_ops
->vcpu_free(vcpu
);
6636 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
6639 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
6640 printk_once(KERN_WARNING
6641 "kvm: SMP vm created on host with unstable TSC; "
6642 "guest TSC will not be reliable\n");
6643 return kvm_x86_ops
->vcpu_create(kvm
, id
);
6646 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
6650 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
6651 r
= vcpu_load(vcpu
);
6654 kvm_vcpu_reset(vcpu
);
6655 r
= kvm_mmu_setup(vcpu
);
6661 int kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
6664 struct msr_data msr
;
6666 r
= vcpu_load(vcpu
);
6670 msr
.index
= MSR_IA32_TSC
;
6671 msr
.host_initiated
= true;
6672 kvm_write_tsc(vcpu
, &msr
);
6678 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
6681 vcpu
->arch
.apf
.msr_val
= 0;
6683 r
= vcpu_load(vcpu
);
6685 kvm_mmu_unload(vcpu
);
6689 kvm_x86_ops
->vcpu_free(vcpu
);
6692 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
)
6694 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
6695 vcpu
->arch
.nmi_pending
= 0;
6696 vcpu
->arch
.nmi_injected
= false;
6698 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
6699 vcpu
->arch
.dr6
= DR6_FIXED_1
;
6700 vcpu
->arch
.dr7
= DR7_FIXED_1
;
6701 kvm_update_dr7(vcpu
);
6703 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6704 vcpu
->arch
.apf
.msr_val
= 0;
6705 vcpu
->arch
.st
.msr_val
= 0;
6707 kvmclock_reset(vcpu
);
6709 kvm_clear_async_pf_completion_queue(vcpu
);
6710 kvm_async_pf_hash_reset(vcpu
);
6711 vcpu
->arch
.apf
.halted
= false;
6713 kvm_pmu_reset(vcpu
);
6715 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
6716 vcpu
->arch
.regs_avail
= ~0;
6717 vcpu
->arch
.regs_dirty
= ~0;
6719 kvm_x86_ops
->vcpu_reset(vcpu
);
6722 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, unsigned int vector
)
6724 struct kvm_segment cs
;
6726 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6727 cs
.selector
= vector
<< 8;
6728 cs
.base
= vector
<< 12;
6729 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6730 kvm_rip_write(vcpu
, 0);
6733 int kvm_arch_hardware_enable(void *garbage
)
6736 struct kvm_vcpu
*vcpu
;
6741 bool stable
, backwards_tsc
= false;
6743 kvm_shared_msr_cpu_online();
6744 ret
= kvm_x86_ops
->hardware_enable(garbage
);
6748 local_tsc
= native_read_tsc();
6749 stable
= !check_tsc_unstable();
6750 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6751 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6752 if (!stable
&& vcpu
->cpu
== smp_processor_id())
6753 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
6754 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
6755 backwards_tsc
= true;
6756 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
6757 max_tsc
= vcpu
->arch
.last_host_tsc
;
6763 * Sometimes, even reliable TSCs go backwards. This happens on
6764 * platforms that reset TSC during suspend or hibernate actions, but
6765 * maintain synchronization. We must compensate. Fortunately, we can
6766 * detect that condition here, which happens early in CPU bringup,
6767 * before any KVM threads can be running. Unfortunately, we can't
6768 * bring the TSCs fully up to date with real time, as we aren't yet far
6769 * enough into CPU bringup that we know how much real time has actually
6770 * elapsed; our helper function, get_kernel_ns() will be using boot
6771 * variables that haven't been updated yet.
6773 * So we simply find the maximum observed TSC above, then record the
6774 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6775 * the adjustment will be applied. Note that we accumulate
6776 * adjustments, in case multiple suspend cycles happen before some VCPU
6777 * gets a chance to run again. In the event that no KVM threads get a
6778 * chance to run, we will miss the entire elapsed period, as we'll have
6779 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6780 * loose cycle time. This isn't too big a deal, since the loss will be
6781 * uniform across all VCPUs (not to mention the scenario is extremely
6782 * unlikely). It is possible that a second hibernate recovery happens
6783 * much faster than a first, causing the observed TSC here to be
6784 * smaller; this would require additional padding adjustment, which is
6785 * why we set last_host_tsc to the local tsc observed here.
6787 * N.B. - this code below runs only on platforms with reliable TSC,
6788 * as that is the only way backwards_tsc is set above. Also note
6789 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6790 * have the same delta_cyc adjustment applied if backwards_tsc
6791 * is detected. Note further, this adjustment is only done once,
6792 * as we reset last_host_tsc on all VCPUs to stop this from being
6793 * called multiple times (one for each physical CPU bringup).
6795 * Platforms with unreliable TSCs don't have to deal with this, they
6796 * will be compensated by the logic in vcpu_load, which sets the TSC to
6797 * catchup mode. This will catchup all VCPUs to real time, but cannot
6798 * guarantee that they stay in perfect synchronization.
6800 if (backwards_tsc
) {
6801 u64 delta_cyc
= max_tsc
- local_tsc
;
6802 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6803 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6804 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
6805 vcpu
->arch
.last_host_tsc
= local_tsc
;
6806 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
6811 * We have to disable TSC offset matching.. if you were
6812 * booting a VM while issuing an S4 host suspend....
6813 * you may have some problem. Solving this issue is
6814 * left as an exercise to the reader.
6816 kvm
->arch
.last_tsc_nsec
= 0;
6817 kvm
->arch
.last_tsc_write
= 0;
6824 void kvm_arch_hardware_disable(void *garbage
)
6826 kvm_x86_ops
->hardware_disable(garbage
);
6827 drop_user_return_notifiers(garbage
);
6830 int kvm_arch_hardware_setup(void)
6832 return kvm_x86_ops
->hardware_setup();
6835 void kvm_arch_hardware_unsetup(void)
6837 kvm_x86_ops
->hardware_unsetup();
6840 void kvm_arch_check_processor_compat(void *rtn
)
6842 kvm_x86_ops
->check_processor_compatibility(rtn
);
6845 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
6847 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
6850 struct static_key kvm_no_apic_vcpu __read_mostly
;
6852 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
6858 BUG_ON(vcpu
->kvm
== NULL
);
6861 vcpu
->arch
.pv
.pv_unhalted
= false;
6862 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
6863 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
6864 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6866 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
6868 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
6873 vcpu
->arch
.pio_data
= page_address(page
);
6875 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
6877 r
= kvm_mmu_create(vcpu
);
6879 goto fail_free_pio_data
;
6881 if (irqchip_in_kernel(kvm
)) {
6882 r
= kvm_create_lapic(vcpu
);
6884 goto fail_mmu_destroy
;
6886 static_key_slow_inc(&kvm_no_apic_vcpu
);
6888 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
6890 if (!vcpu
->arch
.mce_banks
) {
6892 goto fail_free_lapic
;
6894 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
6896 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
6898 goto fail_free_mce_banks
;
6903 goto fail_free_wbinvd_dirty_mask
;
6905 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
6906 vcpu
->arch
.pv_time_enabled
= false;
6907 kvm_async_pf_hash_reset(vcpu
);
6911 fail_free_wbinvd_dirty_mask
:
6912 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6913 fail_free_mce_banks
:
6914 kfree(vcpu
->arch
.mce_banks
);
6916 kvm_free_lapic(vcpu
);
6918 kvm_mmu_destroy(vcpu
);
6920 free_page((unsigned long)vcpu
->arch
.pio_data
);
6925 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6929 kvm_pmu_destroy(vcpu
);
6930 kfree(vcpu
->arch
.mce_banks
);
6931 kvm_free_lapic(vcpu
);
6932 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6933 kvm_mmu_destroy(vcpu
);
6934 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6935 free_page((unsigned long)vcpu
->arch
.pio_data
);
6936 if (!irqchip_in_kernel(vcpu
->kvm
))
6937 static_key_slow_dec(&kvm_no_apic_vcpu
);
6940 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
6945 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6946 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
6947 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6949 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6950 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6951 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6952 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
6953 &kvm
->arch
.irq_sources_bitmap
);
6955 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6956 mutex_init(&kvm
->arch
.apic_map_lock
);
6957 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
6959 pvclock_update_vm_gtod_copy(kvm
);
6964 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6967 r
= vcpu_load(vcpu
);
6969 kvm_mmu_unload(vcpu
);
6973 static void kvm_free_vcpus(struct kvm
*kvm
)
6976 struct kvm_vcpu
*vcpu
;
6979 * Unpin any mmu pages first.
6981 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6982 kvm_clear_async_pf_completion_queue(vcpu
);
6983 kvm_unload_vcpu_mmu(vcpu
);
6985 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6986 kvm_arch_vcpu_free(vcpu
);
6988 mutex_lock(&kvm
->lock
);
6989 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6990 kvm
->vcpus
[i
] = NULL
;
6992 atomic_set(&kvm
->online_vcpus
, 0);
6993 mutex_unlock(&kvm
->lock
);
6996 void kvm_arch_sync_events(struct kvm
*kvm
)
6998 kvm_free_all_assigned_devices(kvm
);
7002 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7004 if (current
->mm
== kvm
->mm
) {
7006 * Free memory regions allocated on behalf of userspace,
7007 * unless the the memory map has changed due to process exit
7010 struct kvm_userspace_memory_region mem
;
7011 memset(&mem
, 0, sizeof(mem
));
7012 mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
7013 kvm_set_memory_region(kvm
, &mem
);
7015 mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
7016 kvm_set_memory_region(kvm
, &mem
);
7018 mem
.slot
= TSS_PRIVATE_MEMSLOT
;
7019 kvm_set_memory_region(kvm
, &mem
);
7021 kvm_iommu_unmap_guest(kvm
);
7022 kfree(kvm
->arch
.vpic
);
7023 kfree(kvm
->arch
.vioapic
);
7024 kvm_free_vcpus(kvm
);
7025 if (kvm
->arch
.apic_access_page
)
7026 put_page(kvm
->arch
.apic_access_page
);
7027 if (kvm
->arch
.ept_identity_pagetable
)
7028 put_page(kvm
->arch
.ept_identity_pagetable
);
7029 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7032 void kvm_arch_free_memslot(struct kvm_memory_slot
*free
,
7033 struct kvm_memory_slot
*dont
)
7037 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7038 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7039 kvm_kvfree(free
->arch
.rmap
[i
]);
7040 free
->arch
.rmap
[i
] = NULL
;
7045 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7046 dont
->arch
.lpage_info
[i
- 1]) {
7047 kvm_kvfree(free
->arch
.lpage_info
[i
- 1]);
7048 free
->arch
.lpage_info
[i
- 1] = NULL
;
7053 int kvm_arch_create_memslot(struct kvm_memory_slot
*slot
, unsigned long npages
)
7057 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7062 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7063 slot
->base_gfn
, level
) + 1;
7065 slot
->arch
.rmap
[i
] =
7066 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7067 if (!slot
->arch
.rmap
[i
])
7072 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
7073 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
7074 if (!slot
->arch
.lpage_info
[i
- 1])
7077 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7078 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
7079 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7080 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
7081 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7083 * If the gfn and userspace address are not aligned wrt each
7084 * other, or if explicitly asked to, disable large page
7085 * support for this slot
7087 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7088 !kvm_largepages_enabled()) {
7091 for (j
= 0; j
< lpages
; ++j
)
7092 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
7099 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7100 kvm_kvfree(slot
->arch
.rmap
[i
]);
7101 slot
->arch
.rmap
[i
] = NULL
;
7105 kvm_kvfree(slot
->arch
.lpage_info
[i
- 1]);
7106 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7111 void kvm_arch_memslots_updated(struct kvm
*kvm
)
7114 * memslots->generation has been incremented.
7115 * mmio generation may have reached its maximum value.
7117 kvm_mmu_invalidate_mmio_sptes(kvm
);
7120 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
7121 struct kvm_memory_slot
*memslot
,
7122 struct kvm_userspace_memory_region
*mem
,
7123 enum kvm_mr_change change
)
7126 * Only private memory slots need to be mapped here since
7127 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7129 if ((memslot
->id
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_CREATE
)) {
7130 unsigned long userspace_addr
;
7133 * MAP_SHARED to prevent internal slot pages from being moved
7136 userspace_addr
= vm_mmap(NULL
, 0, memslot
->npages
* PAGE_SIZE
,
7137 PROT_READ
| PROT_WRITE
,
7138 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7140 if (IS_ERR((void *)userspace_addr
))
7141 return PTR_ERR((void *)userspace_addr
);
7143 memslot
->userspace_addr
= userspace_addr
;
7149 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
7150 struct kvm_userspace_memory_region
*mem
,
7151 const struct kvm_memory_slot
*old
,
7152 enum kvm_mr_change change
)
7155 int nr_mmu_pages
= 0;
7157 if ((mem
->slot
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_DELETE
)) {
7160 ret
= vm_munmap(old
->userspace_addr
,
7161 old
->npages
* PAGE_SIZE
);
7164 "kvm_vm_ioctl_set_memory_region: "
7165 "failed to munmap memory\n");
7168 if (!kvm
->arch
.n_requested_mmu_pages
)
7169 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
7172 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
7174 * Write protect all pages for dirty logging.
7175 * Existing largepage mappings are destroyed here and new ones will
7176 * not be created until the end of the logging.
7178 if ((change
!= KVM_MR_DELETE
) && (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
7179 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
7182 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
7184 kvm_mmu_invalidate_zap_all_pages(kvm
);
7187 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
7188 struct kvm_memory_slot
*slot
)
7190 kvm_mmu_invalidate_zap_all_pages(kvm
);
7193 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
7195 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7196 !vcpu
->arch
.apf
.halted
)
7197 || !list_empty_careful(&vcpu
->async_pf
.done
)
7198 || kvm_apic_has_events(vcpu
)
7199 || vcpu
->arch
.pv
.pv_unhalted
7200 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
7201 (kvm_arch_interrupt_allowed(vcpu
) &&
7202 kvm_cpu_has_interrupt(vcpu
));
7205 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
7207 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
7210 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
7212 return kvm_x86_ops
->interrupt_allowed(vcpu
);
7215 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
7217 unsigned long current_rip
= kvm_rip_read(vcpu
) +
7218 get_segment_base(vcpu
, VCPU_SREG_CS
);
7220 return current_rip
== linear_rip
;
7222 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
7224 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
7226 unsigned long rflags
;
7228 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
7229 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7230 rflags
&= ~X86_EFLAGS_TF
;
7233 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
7235 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
7237 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
7238 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
7239 rflags
|= X86_EFLAGS_TF
;
7240 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
7241 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7243 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
7245 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
7249 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
7250 is_error_page(work
->page
))
7253 r
= kvm_mmu_reload(vcpu
);
7257 if (!vcpu
->arch
.mmu
.direct_map
&&
7258 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
7261 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
7264 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
7266 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
7269 static inline u32
kvm_async_pf_next_probe(u32 key
)
7271 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
7274 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7276 u32 key
= kvm_async_pf_hash_fn(gfn
);
7278 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
7279 key
= kvm_async_pf_next_probe(key
);
7281 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
7284 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7287 u32 key
= kvm_async_pf_hash_fn(gfn
);
7289 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
7290 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
7291 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
7292 key
= kvm_async_pf_next_probe(key
);
7297 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7299 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
7302 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7306 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
7308 vcpu
->arch
.apf
.gfns
[i
] = ~0;
7310 j
= kvm_async_pf_next_probe(j
);
7311 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
7313 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
7315 * k lies cyclically in ]i,j]
7317 * |....j i.k.| or |.k..j i...|
7319 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
7320 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
7325 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
7328 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
7332 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
7333 struct kvm_async_pf
*work
)
7335 struct x86_exception fault
;
7337 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
7338 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7340 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
7341 (vcpu
->arch
.apf
.send_user_only
&&
7342 kvm_x86_ops
->get_cpl(vcpu
) == 0))
7343 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
7344 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
7345 fault
.vector
= PF_VECTOR
;
7346 fault
.error_code_valid
= true;
7347 fault
.error_code
= 0;
7348 fault
.nested_page_fault
= false;
7349 fault
.address
= work
->arch
.token
;
7350 kvm_inject_page_fault(vcpu
, &fault
);
7354 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
7355 struct kvm_async_pf
*work
)
7357 struct x86_exception fault
;
7359 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
7360 if (is_error_page(work
->page
))
7361 work
->arch
.token
= ~0; /* broadcast wakeup */
7363 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7365 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
7366 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
7367 fault
.vector
= PF_VECTOR
;
7368 fault
.error_code_valid
= true;
7369 fault
.error_code
= 0;
7370 fault
.nested_page_fault
= false;
7371 fault
.address
= work
->arch
.token
;
7372 kvm_inject_page_fault(vcpu
, &fault
);
7374 vcpu
->arch
.apf
.halted
= false;
7375 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7378 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
7380 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
7383 return !kvm_event_needs_reinjection(vcpu
) &&
7384 kvm_x86_ops
->interrupt_allowed(vcpu
);
7387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
7388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
7389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
7390 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
7391 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
7392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
7393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
7394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
7395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
7396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
7397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
7398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
7399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);