2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/vmalloc.h>
24 #include "transaction.h"
25 #include "delayed-ref.h"
28 struct extent_inode_elem
{
31 struct extent_inode_elem
*next
;
34 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
35 struct btrfs_file_extent_item
*fi
,
37 struct extent_inode_elem
**eie
)
40 struct extent_inode_elem
*e
;
42 if (!btrfs_file_extent_compression(eb
, fi
) &&
43 !btrfs_file_extent_encryption(eb
, fi
) &&
44 !btrfs_file_extent_other_encoding(eb
, fi
)) {
48 data_offset
= btrfs_file_extent_offset(eb
, fi
);
49 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
51 if (extent_item_pos
< data_offset
||
52 extent_item_pos
>= data_offset
+ data_len
)
54 offset
= extent_item_pos
- data_offset
;
57 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
62 e
->inum
= key
->objectid
;
63 e
->offset
= key
->offset
+ offset
;
69 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
71 struct extent_inode_elem
**eie
)
75 struct btrfs_file_extent_item
*fi
;
82 * from the shared data ref, we only have the leaf but we need
83 * the key. thus, we must look into all items and see that we
84 * find one (some) with a reference to our extent item.
86 nritems
= btrfs_header_nritems(eb
);
87 for (slot
= 0; slot
< nritems
; ++slot
) {
88 btrfs_item_key_to_cpu(eb
, &key
, slot
);
89 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
91 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
92 extent_type
= btrfs_file_extent_type(eb
, fi
);
93 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
95 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
97 if (disk_byte
!= wanted_disk_byte
)
100 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
109 * this structure records all encountered refs on the way up to the root
111 struct __prelim_ref
{
112 struct list_head list
;
114 struct btrfs_key key_for_search
;
117 struct extent_inode_elem
*inode_list
;
119 u64 wanted_disk_byte
;
122 static struct kmem_cache
*btrfs_prelim_ref_cache
;
124 int __init
btrfs_prelim_ref_init(void)
126 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
127 sizeof(struct __prelim_ref
),
129 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
131 if (!btrfs_prelim_ref_cache
)
136 void btrfs_prelim_ref_exit(void)
138 if (btrfs_prelim_ref_cache
)
139 kmem_cache_destroy(btrfs_prelim_ref_cache
);
143 * the rules for all callers of this function are:
144 * - obtaining the parent is the goal
145 * - if you add a key, you must know that it is a correct key
146 * - if you cannot add the parent or a correct key, then we will look into the
147 * block later to set a correct key
151 * backref type | shared | indirect | shared | indirect
152 * information | tree | tree | data | data
153 * --------------------+--------+----------+--------+----------
154 * parent logical | y | - | - | -
155 * key to resolve | - | y | y | y
156 * tree block logical | - | - | - | -
157 * root for resolving | y | y | y | y
159 * - column 1: we've the parent -> done
160 * - column 2, 3, 4: we use the key to find the parent
162 * on disk refs (inline or keyed)
163 * ==============================
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | y | -
168 * key to resolve | - | - | - | y
169 * tree block logical | y | y | y | y
170 * root for resolving | - | y | y | y
172 * - column 1, 3: we've the parent -> done
173 * - column 2: we take the first key from the block to find the parent
174 * (see __add_missing_keys)
175 * - column 4: we use the key to find the parent
177 * additional information that's available but not required to find the parent
178 * block might help in merging entries to gain some speed.
181 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
182 struct btrfs_key
*key
, int level
,
183 u64 parent
, u64 wanted_disk_byte
, int count
,
186 struct __prelim_ref
*ref
;
188 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
191 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
195 ref
->root_id
= root_id
;
197 ref
->key_for_search
= *key
;
199 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
201 ref
->inode_list
= NULL
;
204 ref
->parent
= parent
;
205 ref
->wanted_disk_byte
= wanted_disk_byte
;
206 list_add_tail(&ref
->list
, head
);
211 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
212 struct ulist
*parents
, int level
,
213 struct btrfs_key
*key_for_search
, u64 time_seq
,
214 u64 wanted_disk_byte
,
215 const u64
*extent_item_pos
)
219 struct extent_buffer
*eb
;
220 struct btrfs_key key
;
221 struct btrfs_file_extent_item
*fi
;
222 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
226 eb
= path
->nodes
[level
];
227 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
234 * We normally enter this function with the path already pointing to
235 * the first item to check. But sometimes, we may enter it with
236 * slot==nritems. In that case, go to the next leaf before we continue.
238 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0]))
239 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
243 slot
= path
->slots
[0];
245 btrfs_item_key_to_cpu(eb
, &key
, slot
);
247 if (key
.objectid
!= key_for_search
->objectid
||
248 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
251 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
252 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
254 if (disk_byte
== wanted_disk_byte
) {
257 if (extent_item_pos
) {
258 ret
= check_extent_in_eb(&key
, eb
, fi
,
266 ret
= ulist_add_merge(parents
, eb
->start
,
268 (u64
*)&old
, GFP_NOFS
);
271 if (!ret
&& extent_item_pos
) {
278 ret
= btrfs_next_old_item(root
, path
, time_seq
);
287 * resolve an indirect backref in the form (root_id, key, level)
288 * to a logical address
290 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
291 struct btrfs_path
*path
, u64 time_seq
,
292 struct __prelim_ref
*ref
,
293 struct ulist
*parents
,
294 const u64
*extent_item_pos
)
296 struct btrfs_root
*root
;
297 struct btrfs_key root_key
;
298 struct extent_buffer
*eb
;
301 int level
= ref
->level
;
303 root_key
.objectid
= ref
->root_id
;
304 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
305 root_key
.offset
= (u64
)-1;
306 root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
312 root_level
= btrfs_old_root_level(root
, time_seq
);
314 if (root_level
+ 1 == level
)
317 path
->lowest_level
= level
;
318 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
, time_seq
);
319 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
320 "%d for key (%llu %u %llu)\n",
321 ref
->root_id
, level
, ref
->count
, ret
,
322 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
323 ref
->key_for_search
.offset
);
327 eb
= path
->nodes
[level
];
335 eb
= path
->nodes
[level
];
338 ret
= add_all_parents(root
, path
, parents
, level
, &ref
->key_for_search
,
339 time_seq
, ref
->wanted_disk_byte
,
342 path
->lowest_level
= 0;
343 btrfs_release_path(path
);
348 * resolve all indirect backrefs from the list
350 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
351 struct btrfs_path
*path
, u64 time_seq
,
352 struct list_head
*head
,
353 const u64
*extent_item_pos
)
357 struct __prelim_ref
*ref
;
358 struct __prelim_ref
*ref_safe
;
359 struct __prelim_ref
*new_ref
;
360 struct ulist
*parents
;
361 struct ulist_node
*node
;
362 struct ulist_iterator uiter
;
364 parents
= ulist_alloc(GFP_NOFS
);
369 * _safe allows us to insert directly after the current item without
370 * iterating over the newly inserted items.
371 * we're also allowed to re-assign ref during iteration.
373 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
374 if (ref
->parent
) /* already direct */
378 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
379 parents
, extent_item_pos
);
385 /* we put the first parent into the ref at hand */
386 ULIST_ITER_INIT(&uiter
);
387 node
= ulist_next(parents
, &uiter
);
388 ref
->parent
= node
? node
->val
: 0;
389 ref
->inode_list
= node
?
390 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
392 /* additional parents require new refs being added here */
393 while ((node
= ulist_next(parents
, &uiter
))) {
394 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
400 memcpy(new_ref
, ref
, sizeof(*ref
));
401 new_ref
->parent
= node
->val
;
402 new_ref
->inode_list
= (struct extent_inode_elem
*)
403 (uintptr_t)node
->aux
;
404 list_add(&new_ref
->list
, &ref
->list
);
406 ulist_reinit(parents
);
413 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
414 struct __prelim_ref
*ref2
)
416 if (ref1
->level
!= ref2
->level
)
418 if (ref1
->root_id
!= ref2
->root_id
)
420 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
422 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
424 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
426 if (ref1
->parent
!= ref2
->parent
)
433 * read tree blocks and add keys where required.
435 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
436 struct list_head
*head
)
438 struct list_head
*pos
;
439 struct extent_buffer
*eb
;
441 list_for_each(pos
, head
) {
442 struct __prelim_ref
*ref
;
443 ref
= list_entry(pos
, struct __prelim_ref
, list
);
447 if (ref
->key_for_search
.type
)
449 BUG_ON(!ref
->wanted_disk_byte
);
450 eb
= read_tree_block(fs_info
->tree_root
, ref
->wanted_disk_byte
,
451 fs_info
->tree_root
->leafsize
, 0);
452 if (!eb
|| !extent_buffer_uptodate(eb
)) {
453 free_extent_buffer(eb
);
456 btrfs_tree_read_lock(eb
);
457 if (btrfs_header_level(eb
) == 0)
458 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
460 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
461 btrfs_tree_read_unlock(eb
);
462 free_extent_buffer(eb
);
468 * merge two lists of backrefs and adjust counts accordingly
470 * mode = 1: merge identical keys, if key is set
471 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
472 * additionally, we could even add a key range for the blocks we
473 * looked into to merge even more (-> replace unresolved refs by those
475 * mode = 2: merge identical parents
477 static void __merge_refs(struct list_head
*head
, int mode
)
479 struct list_head
*pos1
;
481 list_for_each(pos1
, head
) {
482 struct list_head
*n2
;
483 struct list_head
*pos2
;
484 struct __prelim_ref
*ref1
;
486 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
488 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
489 pos2
= n2
, n2
= pos2
->next
) {
490 struct __prelim_ref
*ref2
;
491 struct __prelim_ref
*xchg
;
492 struct extent_inode_elem
*eie
;
494 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
497 if (!ref_for_same_block(ref1
, ref2
))
499 if (!ref1
->parent
&& ref2
->parent
) {
505 if (ref1
->parent
!= ref2
->parent
)
509 eie
= ref1
->inode_list
;
510 while (eie
&& eie
->next
)
513 eie
->next
= ref2
->inode_list
;
515 ref1
->inode_list
= ref2
->inode_list
;
516 ref1
->count
+= ref2
->count
;
518 list_del(&ref2
->list
);
519 kmem_cache_free(btrfs_prelim_ref_cache
, ref2
);
526 * add all currently queued delayed refs from this head whose seq nr is
527 * smaller or equal that seq to the list
529 static int __add_delayed_refs(struct btrfs_delayed_ref_head
*head
, u64 seq
,
530 struct list_head
*prefs
)
532 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
533 struct rb_node
*n
= &head
->node
.rb_node
;
534 struct btrfs_key key
;
535 struct btrfs_key op_key
= {0};
539 if (extent_op
&& extent_op
->update_key
)
540 btrfs_disk_key_to_cpu(&op_key
, &extent_op
->key
);
542 while ((n
= rb_prev(n
))) {
543 struct btrfs_delayed_ref_node
*node
;
544 node
= rb_entry(n
, struct btrfs_delayed_ref_node
,
546 if (node
->bytenr
!= head
->node
.bytenr
)
548 WARN_ON(node
->is_head
);
553 switch (node
->action
) {
554 case BTRFS_ADD_DELAYED_EXTENT
:
555 case BTRFS_UPDATE_DELAYED_HEAD
:
558 case BTRFS_ADD_DELAYED_REF
:
561 case BTRFS_DROP_DELAYED_REF
:
567 switch (node
->type
) {
568 case BTRFS_TREE_BLOCK_REF_KEY
: {
569 struct btrfs_delayed_tree_ref
*ref
;
571 ref
= btrfs_delayed_node_to_tree_ref(node
);
572 ret
= __add_prelim_ref(prefs
, ref
->root
, &op_key
,
573 ref
->level
+ 1, 0, node
->bytenr
,
574 node
->ref_mod
* sgn
, GFP_ATOMIC
);
577 case BTRFS_SHARED_BLOCK_REF_KEY
: {
578 struct btrfs_delayed_tree_ref
*ref
;
580 ref
= btrfs_delayed_node_to_tree_ref(node
);
581 ret
= __add_prelim_ref(prefs
, ref
->root
, NULL
,
582 ref
->level
+ 1, ref
->parent
,
584 node
->ref_mod
* sgn
, GFP_ATOMIC
);
587 case BTRFS_EXTENT_DATA_REF_KEY
: {
588 struct btrfs_delayed_data_ref
*ref
;
589 ref
= btrfs_delayed_node_to_data_ref(node
);
591 key
.objectid
= ref
->objectid
;
592 key
.type
= BTRFS_EXTENT_DATA_KEY
;
593 key
.offset
= ref
->offset
;
594 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0, 0,
596 node
->ref_mod
* sgn
, GFP_ATOMIC
);
599 case BTRFS_SHARED_DATA_REF_KEY
: {
600 struct btrfs_delayed_data_ref
*ref
;
602 ref
= btrfs_delayed_node_to_data_ref(node
);
604 key
.objectid
= ref
->objectid
;
605 key
.type
= BTRFS_EXTENT_DATA_KEY
;
606 key
.offset
= ref
->offset
;
607 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0,
608 ref
->parent
, node
->bytenr
,
609 node
->ref_mod
* sgn
, GFP_ATOMIC
);
623 * add all inline backrefs for bytenr to the list
625 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
626 struct btrfs_path
*path
, u64 bytenr
,
627 int *info_level
, struct list_head
*prefs
)
631 struct extent_buffer
*leaf
;
632 struct btrfs_key key
;
633 struct btrfs_key found_key
;
636 struct btrfs_extent_item
*ei
;
641 * enumerate all inline refs
643 leaf
= path
->nodes
[0];
644 slot
= path
->slots
[0];
646 item_size
= btrfs_item_size_nr(leaf
, slot
);
647 BUG_ON(item_size
< sizeof(*ei
));
649 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
650 flags
= btrfs_extent_flags(leaf
, ei
);
651 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
653 ptr
= (unsigned long)(ei
+ 1);
654 end
= (unsigned long)ei
+ item_size
;
656 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
657 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
658 struct btrfs_tree_block_info
*info
;
660 info
= (struct btrfs_tree_block_info
*)ptr
;
661 *info_level
= btrfs_tree_block_level(leaf
, info
);
662 ptr
+= sizeof(struct btrfs_tree_block_info
);
664 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
665 *info_level
= found_key
.offset
;
667 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
671 struct btrfs_extent_inline_ref
*iref
;
675 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
676 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
677 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
680 case BTRFS_SHARED_BLOCK_REF_KEY
:
681 ret
= __add_prelim_ref(prefs
, 0, NULL
,
682 *info_level
+ 1, offset
,
683 bytenr
, 1, GFP_NOFS
);
685 case BTRFS_SHARED_DATA_REF_KEY
: {
686 struct btrfs_shared_data_ref
*sdref
;
689 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
690 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
691 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
692 bytenr
, count
, GFP_NOFS
);
695 case BTRFS_TREE_BLOCK_REF_KEY
:
696 ret
= __add_prelim_ref(prefs
, offset
, NULL
,
698 bytenr
, 1, GFP_NOFS
);
700 case BTRFS_EXTENT_DATA_REF_KEY
: {
701 struct btrfs_extent_data_ref
*dref
;
705 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
706 count
= btrfs_extent_data_ref_count(leaf
, dref
);
707 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
709 key
.type
= BTRFS_EXTENT_DATA_KEY
;
710 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
711 root
= btrfs_extent_data_ref_root(leaf
, dref
);
712 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
713 bytenr
, count
, GFP_NOFS
);
721 ptr
+= btrfs_extent_inline_ref_size(type
);
728 * add all non-inline backrefs for bytenr to the list
730 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
731 struct btrfs_path
*path
, u64 bytenr
,
732 int info_level
, struct list_head
*prefs
)
734 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
737 struct extent_buffer
*leaf
;
738 struct btrfs_key key
;
741 ret
= btrfs_next_item(extent_root
, path
);
749 slot
= path
->slots
[0];
750 leaf
= path
->nodes
[0];
751 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
753 if (key
.objectid
!= bytenr
)
755 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
757 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
761 case BTRFS_SHARED_BLOCK_REF_KEY
:
762 ret
= __add_prelim_ref(prefs
, 0, NULL
,
763 info_level
+ 1, key
.offset
,
764 bytenr
, 1, GFP_NOFS
);
766 case BTRFS_SHARED_DATA_REF_KEY
: {
767 struct btrfs_shared_data_ref
*sdref
;
770 sdref
= btrfs_item_ptr(leaf
, slot
,
771 struct btrfs_shared_data_ref
);
772 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
773 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
774 bytenr
, count
, GFP_NOFS
);
777 case BTRFS_TREE_BLOCK_REF_KEY
:
778 ret
= __add_prelim_ref(prefs
, key
.offset
, NULL
,
780 bytenr
, 1, GFP_NOFS
);
782 case BTRFS_EXTENT_DATA_REF_KEY
: {
783 struct btrfs_extent_data_ref
*dref
;
787 dref
= btrfs_item_ptr(leaf
, slot
,
788 struct btrfs_extent_data_ref
);
789 count
= btrfs_extent_data_ref_count(leaf
, dref
);
790 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
792 key
.type
= BTRFS_EXTENT_DATA_KEY
;
793 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
794 root
= btrfs_extent_data_ref_root(leaf
, dref
);
795 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
796 bytenr
, count
, GFP_NOFS
);
811 * this adds all existing backrefs (inline backrefs, backrefs and delayed
812 * refs) for the given bytenr to the refs list, merges duplicates and resolves
813 * indirect refs to their parent bytenr.
814 * When roots are found, they're added to the roots list
816 * FIXME some caching might speed things up
818 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
819 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
820 u64 time_seq
, struct ulist
*refs
,
821 struct ulist
*roots
, const u64
*extent_item_pos
)
823 struct btrfs_key key
;
824 struct btrfs_path
*path
;
825 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
826 struct btrfs_delayed_ref_head
*head
;
829 struct list_head prefs_delayed
;
830 struct list_head prefs
;
831 struct __prelim_ref
*ref
;
833 INIT_LIST_HEAD(&prefs
);
834 INIT_LIST_HEAD(&prefs_delayed
);
836 key
.objectid
= bytenr
;
837 key
.offset
= (u64
)-1;
838 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
839 key
.type
= BTRFS_METADATA_ITEM_KEY
;
841 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
843 path
= btrfs_alloc_path();
847 path
->search_commit_root
= 1;
850 * grab both a lock on the path and a lock on the delayed ref head.
851 * We need both to get a consistent picture of how the refs look
852 * at a specified point in time
857 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
864 * look if there are updates for this ref queued and lock the
867 delayed_refs
= &trans
->transaction
->delayed_refs
;
868 spin_lock(&delayed_refs
->lock
);
869 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
871 if (!mutex_trylock(&head
->mutex
)) {
872 atomic_inc(&head
->node
.refs
);
873 spin_unlock(&delayed_refs
->lock
);
875 btrfs_release_path(path
);
878 * Mutex was contended, block until it's
879 * released and try again
881 mutex_lock(&head
->mutex
);
882 mutex_unlock(&head
->mutex
);
883 btrfs_put_delayed_ref(&head
->node
);
886 ret
= __add_delayed_refs(head
, time_seq
,
888 mutex_unlock(&head
->mutex
);
890 spin_unlock(&delayed_refs
->lock
);
894 spin_unlock(&delayed_refs
->lock
);
897 if (path
->slots
[0]) {
898 struct extent_buffer
*leaf
;
902 leaf
= path
->nodes
[0];
903 slot
= path
->slots
[0];
904 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
905 if (key
.objectid
== bytenr
&&
906 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
907 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
908 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
909 &info_level
, &prefs
);
912 ret
= __add_keyed_refs(fs_info
, path
, bytenr
,
918 btrfs_release_path(path
);
920 list_splice_init(&prefs_delayed
, &prefs
);
922 ret
= __add_missing_keys(fs_info
, &prefs
);
926 __merge_refs(&prefs
, 1);
928 ret
= __resolve_indirect_refs(fs_info
, path
, time_seq
, &prefs
,
933 __merge_refs(&prefs
, 2);
935 while (!list_empty(&prefs
)) {
936 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
937 WARN_ON(ref
->count
< 0);
938 if (ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
939 /* no parent == root of tree */
940 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
944 if (ref
->count
&& ref
->parent
) {
945 struct extent_inode_elem
*eie
= NULL
;
946 if (extent_item_pos
&& !ref
->inode_list
) {
948 struct extent_buffer
*eb
;
949 bsz
= btrfs_level_size(fs_info
->extent_root
,
951 eb
= read_tree_block(fs_info
->extent_root
,
952 ref
->parent
, bsz
, 0);
953 if (!eb
|| !extent_buffer_uptodate(eb
)) {
954 free_extent_buffer(eb
);
958 ret
= find_extent_in_eb(eb
, bytenr
,
959 *extent_item_pos
, &eie
);
960 free_extent_buffer(eb
);
963 ref
->inode_list
= eie
;
965 ret
= ulist_add_merge(refs
, ref
->parent
,
966 (uintptr_t)ref
->inode_list
,
967 (u64
*)&eie
, GFP_NOFS
);
970 if (!ret
&& extent_item_pos
) {
972 * we've recorded that parent, so we must extend
973 * its inode list here
978 eie
->next
= ref
->inode_list
;
981 list_del(&ref
->list
);
982 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
986 btrfs_free_path(path
);
987 while (!list_empty(&prefs
)) {
988 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
989 list_del(&ref
->list
);
990 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
992 while (!list_empty(&prefs_delayed
)) {
993 ref
= list_first_entry(&prefs_delayed
, struct __prelim_ref
,
995 list_del(&ref
->list
);
996 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1002 static void free_leaf_list(struct ulist
*blocks
)
1004 struct ulist_node
*node
= NULL
;
1005 struct extent_inode_elem
*eie
;
1006 struct extent_inode_elem
*eie_next
;
1007 struct ulist_iterator uiter
;
1009 ULIST_ITER_INIT(&uiter
);
1010 while ((node
= ulist_next(blocks
, &uiter
))) {
1013 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
1014 for (; eie
; eie
= eie_next
) {
1015 eie_next
= eie
->next
;
1025 * Finds all leafs with a reference to the specified combination of bytenr and
1026 * offset. key_list_head will point to a list of corresponding keys (caller must
1027 * free each list element). The leafs will be stored in the leafs ulist, which
1028 * must be freed with ulist_free.
1030 * returns 0 on success, <0 on error
1032 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1033 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1034 u64 time_seq
, struct ulist
**leafs
,
1035 const u64
*extent_item_pos
)
1040 tmp
= ulist_alloc(GFP_NOFS
);
1043 *leafs
= ulist_alloc(GFP_NOFS
);
1049 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1050 time_seq
, *leafs
, tmp
, extent_item_pos
);
1053 if (ret
< 0 && ret
!= -ENOENT
) {
1054 free_leaf_list(*leafs
);
1062 * walk all backrefs for a given extent to find all roots that reference this
1063 * extent. Walking a backref means finding all extents that reference this
1064 * extent and in turn walk the backrefs of those, too. Naturally this is a
1065 * recursive process, but here it is implemented in an iterative fashion: We
1066 * find all referencing extents for the extent in question and put them on a
1067 * list. In turn, we find all referencing extents for those, further appending
1068 * to the list. The way we iterate the list allows adding more elements after
1069 * the current while iterating. The process stops when we reach the end of the
1070 * list. Found roots are added to the roots list.
1072 * returns 0 on success, < 0 on error.
1074 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1075 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1076 u64 time_seq
, struct ulist
**roots
)
1079 struct ulist_node
*node
= NULL
;
1080 struct ulist_iterator uiter
;
1083 tmp
= ulist_alloc(GFP_NOFS
);
1086 *roots
= ulist_alloc(GFP_NOFS
);
1092 ULIST_ITER_INIT(&uiter
);
1094 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1095 time_seq
, tmp
, *roots
, NULL
);
1096 if (ret
< 0 && ret
!= -ENOENT
) {
1101 node
= ulist_next(tmp
, &uiter
);
1112 static int __inode_info(u64 inum
, u64 ioff
, u8 key_type
,
1113 struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1114 struct btrfs_key
*found_key
)
1117 struct btrfs_key key
;
1118 struct extent_buffer
*eb
;
1120 key
.type
= key_type
;
1121 key
.objectid
= inum
;
1124 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1128 eb
= path
->nodes
[0];
1129 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
1130 ret
= btrfs_next_leaf(fs_root
, path
);
1133 eb
= path
->nodes
[0];
1136 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
1137 if (found_key
->type
!= key
.type
|| found_key
->objectid
!= key
.objectid
)
1144 * this makes the path point to (inum INODE_ITEM ioff)
1146 int inode_item_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
1147 struct btrfs_path
*path
)
1149 struct btrfs_key key
;
1150 return __inode_info(inum
, ioff
, BTRFS_INODE_ITEM_KEY
, fs_root
, path
,
1154 static int inode_ref_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
1155 struct btrfs_path
*path
,
1156 struct btrfs_key
*found_key
)
1158 return __inode_info(inum
, ioff
, BTRFS_INODE_REF_KEY
, fs_root
, path
,
1162 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1163 u64 start_off
, struct btrfs_path
*path
,
1164 struct btrfs_inode_extref
**ret_extref
,
1168 struct btrfs_key key
;
1169 struct btrfs_key found_key
;
1170 struct btrfs_inode_extref
*extref
;
1171 struct extent_buffer
*leaf
;
1174 key
.objectid
= inode_objectid
;
1175 btrfs_set_key_type(&key
, BTRFS_INODE_EXTREF_KEY
);
1176 key
.offset
= start_off
;
1178 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1183 leaf
= path
->nodes
[0];
1184 slot
= path
->slots
[0];
1185 if (slot
>= btrfs_header_nritems(leaf
)) {
1187 * If the item at offset is not found,
1188 * btrfs_search_slot will point us to the slot
1189 * where it should be inserted. In our case
1190 * that will be the slot directly before the
1191 * next INODE_REF_KEY_V2 item. In the case
1192 * that we're pointing to the last slot in a
1193 * leaf, we must move one leaf over.
1195 ret
= btrfs_next_leaf(root
, path
);
1204 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1207 * Check that we're still looking at an extended ref key for
1208 * this particular objectid. If we have different
1209 * objectid or type then there are no more to be found
1210 * in the tree and we can exit.
1213 if (found_key
.objectid
!= inode_objectid
)
1215 if (btrfs_key_type(&found_key
) != BTRFS_INODE_EXTREF_KEY
)
1219 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1220 extref
= (struct btrfs_inode_extref
*)ptr
;
1221 *ret_extref
= extref
;
1223 *found_off
= found_key
.offset
;
1231 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1232 * Elements of the path are separated by '/' and the path is guaranteed to be
1233 * 0-terminated. the path is only given within the current file system.
1234 * Therefore, it never starts with a '/'. the caller is responsible to provide
1235 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1236 * the start point of the resulting string is returned. this pointer is within
1238 * in case the path buffer would overflow, the pointer is decremented further
1239 * as if output was written to the buffer, though no more output is actually
1240 * generated. that way, the caller can determine how much space would be
1241 * required for the path to fit into the buffer. in that case, the returned
1242 * value will be smaller than dest. callers must check this!
1244 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1245 u32 name_len
, unsigned long name_off
,
1246 struct extent_buffer
*eb_in
, u64 parent
,
1247 char *dest
, u32 size
)
1252 s64 bytes_left
= ((s64
)size
) - 1;
1253 struct extent_buffer
*eb
= eb_in
;
1254 struct btrfs_key found_key
;
1255 int leave_spinning
= path
->leave_spinning
;
1256 struct btrfs_inode_ref
*iref
;
1258 if (bytes_left
>= 0)
1259 dest
[bytes_left
] = '\0';
1261 path
->leave_spinning
= 1;
1263 bytes_left
-= name_len
;
1264 if (bytes_left
>= 0)
1265 read_extent_buffer(eb
, dest
+ bytes_left
,
1266 name_off
, name_len
);
1268 btrfs_tree_read_unlock_blocking(eb
);
1269 free_extent_buffer(eb
);
1271 ret
= inode_ref_info(parent
, 0, fs_root
, path
, &found_key
);
1277 next_inum
= found_key
.offset
;
1279 /* regular exit ahead */
1280 if (parent
== next_inum
)
1283 slot
= path
->slots
[0];
1284 eb
= path
->nodes
[0];
1285 /* make sure we can use eb after releasing the path */
1287 atomic_inc(&eb
->refs
);
1288 btrfs_tree_read_lock(eb
);
1289 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1291 btrfs_release_path(path
);
1292 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1294 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1295 name_off
= (unsigned long)(iref
+ 1);
1299 if (bytes_left
>= 0)
1300 dest
[bytes_left
] = '/';
1303 btrfs_release_path(path
);
1304 path
->leave_spinning
= leave_spinning
;
1307 return ERR_PTR(ret
);
1309 return dest
+ bytes_left
;
1313 * this makes the path point to (logical EXTENT_ITEM *)
1314 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1315 * tree blocks and <0 on error.
1317 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1318 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1325 struct extent_buffer
*eb
;
1326 struct btrfs_extent_item
*ei
;
1327 struct btrfs_key key
;
1329 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1330 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1332 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1333 key
.objectid
= logical
;
1334 key
.offset
= (u64
)-1;
1336 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1339 ret
= btrfs_previous_item(fs_info
->extent_root
, path
,
1340 0, BTRFS_EXTENT_ITEM_KEY
);
1344 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1345 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1346 size
= fs_info
->extent_root
->leafsize
;
1347 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1348 size
= found_key
->offset
;
1350 if ((found_key
->type
!= BTRFS_EXTENT_ITEM_KEY
&&
1351 found_key
->type
!= BTRFS_METADATA_ITEM_KEY
) ||
1352 found_key
->objectid
> logical
||
1353 found_key
->objectid
+ size
<= logical
) {
1354 pr_debug("logical %llu is not within any extent\n", logical
);
1358 eb
= path
->nodes
[0];
1359 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1360 BUG_ON(item_size
< sizeof(*ei
));
1362 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1363 flags
= btrfs_extent_flags(eb
, ei
);
1365 pr_debug("logical %llu is at position %llu within the extent (%llu "
1366 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1367 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1368 found_key
->offset
, flags
, item_size
);
1370 WARN_ON(!flags_ret
);
1372 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1373 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1374 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1375 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1385 * helper function to iterate extent inline refs. ptr must point to a 0 value
1386 * for the first call and may be modified. it is used to track state.
1387 * if more refs exist, 0 is returned and the next call to
1388 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1389 * next ref. after the last ref was processed, 1 is returned.
1390 * returns <0 on error
1392 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1393 struct btrfs_key
*key
,
1394 struct btrfs_extent_item
*ei
, u32 item_size
,
1395 struct btrfs_extent_inline_ref
**out_eiref
,
1400 struct btrfs_tree_block_info
*info
;
1404 flags
= btrfs_extent_flags(eb
, ei
);
1405 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1406 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1407 /* a skinny metadata extent */
1409 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1411 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1412 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1414 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1417 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1419 *ptr
= (unsigned long)*out_eiref
;
1420 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1424 end
= (unsigned long)ei
+ item_size
;
1425 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1426 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1428 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1429 WARN_ON(*ptr
> end
);
1431 return 1; /* last */
1437 * reads the tree block backref for an extent. tree level and root are returned
1438 * through out_level and out_root. ptr must point to a 0 value for the first
1439 * call and may be modified (see __get_extent_inline_ref comment).
1440 * returns 0 if data was provided, 1 if there was no more data to provide or
1443 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1444 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1445 u32 item_size
, u64
*out_root
, u8
*out_level
)
1449 struct btrfs_tree_block_info
*info
;
1450 struct btrfs_extent_inline_ref
*eiref
;
1452 if (*ptr
== (unsigned long)-1)
1456 ret
= __get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1461 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1462 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1469 /* we can treat both ref types equally here */
1470 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1471 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1472 *out_level
= btrfs_tree_block_level(eb
, info
);
1475 *ptr
= (unsigned long)-1;
1480 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1481 u64 root
, u64 extent_item_objectid
,
1482 iterate_extent_inodes_t
*iterate
, void *ctx
)
1484 struct extent_inode_elem
*eie
;
1487 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1488 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1489 "root %llu\n", extent_item_objectid
,
1490 eie
->inum
, eie
->offset
, root
);
1491 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1493 pr_debug("stopping iteration for %llu due to ret=%d\n",
1494 extent_item_objectid
, ret
);
1503 * calls iterate() for every inode that references the extent identified by
1504 * the given parameters.
1505 * when the iterator function returns a non-zero value, iteration stops.
1507 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1508 u64 extent_item_objectid
, u64 extent_item_pos
,
1509 int search_commit_root
,
1510 iterate_extent_inodes_t
*iterate
, void *ctx
)
1513 struct btrfs_trans_handle
*trans
= NULL
;
1514 struct ulist
*refs
= NULL
;
1515 struct ulist
*roots
= NULL
;
1516 struct ulist_node
*ref_node
= NULL
;
1517 struct ulist_node
*root_node
= NULL
;
1518 struct seq_list tree_mod_seq_elem
= {};
1519 struct ulist_iterator ref_uiter
;
1520 struct ulist_iterator root_uiter
;
1522 pr_debug("resolving all inodes for extent %llu\n",
1523 extent_item_objectid
);
1525 if (!search_commit_root
) {
1526 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1528 return PTR_ERR(trans
);
1529 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1532 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1533 tree_mod_seq_elem
.seq
, &refs
,
1538 ULIST_ITER_INIT(&ref_uiter
);
1539 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1540 ret
= btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1541 tree_mod_seq_elem
.seq
, &roots
);
1544 ULIST_ITER_INIT(&root_uiter
);
1545 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1546 pr_debug("root %llu references leaf %llu, data list "
1547 "%#llx\n", root_node
->val
, ref_node
->val
,
1549 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1550 (uintptr_t)ref_node
->aux
,
1552 extent_item_objectid
,
1558 free_leaf_list(refs
);
1560 if (!search_commit_root
) {
1561 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1562 btrfs_end_transaction(trans
, fs_info
->extent_root
);
1568 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1569 struct btrfs_path
*path
,
1570 iterate_extent_inodes_t
*iterate
, void *ctx
)
1573 u64 extent_item_pos
;
1575 struct btrfs_key found_key
;
1576 int search_commit_root
= path
->search_commit_root
;
1578 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1579 btrfs_release_path(path
);
1582 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1585 extent_item_pos
= logical
- found_key
.objectid
;
1586 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1587 extent_item_pos
, search_commit_root
,
1593 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1594 struct extent_buffer
*eb
, void *ctx
);
1596 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1597 struct btrfs_path
*path
,
1598 iterate_irefs_t
*iterate
, void *ctx
)
1607 struct extent_buffer
*eb
;
1608 struct btrfs_item
*item
;
1609 struct btrfs_inode_ref
*iref
;
1610 struct btrfs_key found_key
;
1613 path
->leave_spinning
= 1;
1614 ret
= inode_ref_info(inum
, parent
? parent
+1 : 0, fs_root
, path
,
1619 ret
= found
? 0 : -ENOENT
;
1624 parent
= found_key
.offset
;
1625 slot
= path
->slots
[0];
1626 eb
= path
->nodes
[0];
1627 /* make sure we can use eb after releasing the path */
1628 atomic_inc(&eb
->refs
);
1629 btrfs_tree_read_lock(eb
);
1630 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1631 btrfs_release_path(path
);
1633 item
= btrfs_item_nr(eb
, slot
);
1634 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1636 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1637 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1638 /* path must be released before calling iterate()! */
1639 pr_debug("following ref at offset %u for inode %llu in "
1640 "tree %llu\n", cur
, found_key
.objectid
,
1642 ret
= iterate(parent
, name_len
,
1643 (unsigned long)(iref
+ 1), eb
, ctx
);
1646 len
= sizeof(*iref
) + name_len
;
1647 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1649 btrfs_tree_read_unlock_blocking(eb
);
1650 free_extent_buffer(eb
);
1653 btrfs_release_path(path
);
1658 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1659 struct btrfs_path
*path
,
1660 iterate_irefs_t
*iterate
, void *ctx
)
1667 struct extent_buffer
*eb
;
1668 struct btrfs_inode_extref
*extref
;
1669 struct extent_buffer
*leaf
;
1675 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1680 ret
= found
? 0 : -ENOENT
;
1685 slot
= path
->slots
[0];
1686 eb
= path
->nodes
[0];
1687 /* make sure we can use eb after releasing the path */
1688 atomic_inc(&eb
->refs
);
1690 btrfs_tree_read_lock(eb
);
1691 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1692 btrfs_release_path(path
);
1694 leaf
= path
->nodes
[0];
1695 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1696 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1699 while (cur_offset
< item_size
) {
1702 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1703 parent
= btrfs_inode_extref_parent(eb
, extref
);
1704 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1705 ret
= iterate(parent
, name_len
,
1706 (unsigned long)&extref
->name
, eb
, ctx
);
1710 cur_offset
+= btrfs_inode_extref_name_len(leaf
, extref
);
1711 cur_offset
+= sizeof(*extref
);
1713 btrfs_tree_read_unlock_blocking(eb
);
1714 free_extent_buffer(eb
);
1719 btrfs_release_path(path
);
1724 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1725 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1731 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1734 else if (ret
!= -ENOENT
)
1737 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1738 if (ret
== -ENOENT
&& found_refs
)
1745 * returns 0 if the path could be dumped (probably truncated)
1746 * returns <0 in case of an error
1748 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1749 struct extent_buffer
*eb
, void *ctx
)
1751 struct inode_fs_paths
*ipath
= ctx
;
1754 int i
= ipath
->fspath
->elem_cnt
;
1755 const int s_ptr
= sizeof(char *);
1758 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1759 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1761 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1762 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1763 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1765 return PTR_ERR(fspath
);
1767 if (fspath
> fspath_min
) {
1768 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1769 ++ipath
->fspath
->elem_cnt
;
1770 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1772 ++ipath
->fspath
->elem_missed
;
1773 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1774 ipath
->fspath
->bytes_left
= 0;
1781 * this dumps all file system paths to the inode into the ipath struct, provided
1782 * is has been created large enough. each path is zero-terminated and accessed
1783 * from ipath->fspath->val[i].
1784 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1785 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1786 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1787 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1788 * have been needed to return all paths.
1790 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1792 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1793 inode_to_path
, ipath
);
1796 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1798 struct btrfs_data_container
*data
;
1801 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1802 data
= vmalloc(alloc_bytes
);
1804 return ERR_PTR(-ENOMEM
);
1806 if (total_bytes
>= sizeof(*data
)) {
1807 data
->bytes_left
= total_bytes
- sizeof(*data
);
1808 data
->bytes_missing
= 0;
1810 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1811 data
->bytes_left
= 0;
1815 data
->elem_missed
= 0;
1821 * allocates space to return multiple file system paths for an inode.
1822 * total_bytes to allocate are passed, note that space usable for actual path
1823 * information will be total_bytes - sizeof(struct inode_fs_paths).
1824 * the returned pointer must be freed with free_ipath() in the end.
1826 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1827 struct btrfs_path
*path
)
1829 struct inode_fs_paths
*ifp
;
1830 struct btrfs_data_container
*fspath
;
1832 fspath
= init_data_container(total_bytes
);
1834 return (void *)fspath
;
1836 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1839 return ERR_PTR(-ENOMEM
);
1842 ifp
->btrfs_path
= path
;
1843 ifp
->fspath
= fspath
;
1844 ifp
->fs_root
= fs_root
;
1849 void free_ipath(struct inode_fs_paths
*ipath
)
1853 vfree(ipath
->fspath
);