Linux 3.12.28
[linux/fpc-iii.git] / fs / btrfs / compression.c
blob6e9ff8fac75a1ba56d5199f491f6d402ad30cbc1
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
53 /* inode that owns this data */
54 struct inode *inode;
56 /* starting offset in the inode for our pages */
57 u64 start;
59 /* number of bytes in the inode we're working on */
60 unsigned long len;
62 /* number of bytes on disk */
63 unsigned long compressed_len;
65 /* the compression algorithm for this bio */
66 int compress_type;
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
71 /* IO errors */
72 int errors;
73 int mirror_num;
75 /* for reads, this is the bio we are copying the data into */
76 struct bio *orig_bio;
79 * the start of a variable length array of checksums only
80 * used by reads
82 u32 sums;
85 static int btrfs_decompress_biovec(int type, struct page **pages_in,
86 u64 disk_start, struct bio_vec *bvec,
87 int vcnt, size_t srclen);
89 static inline int compressed_bio_size(struct btrfs_root *root,
90 unsigned long disk_size)
92 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
94 return sizeof(struct compressed_bio) +
95 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
96 csum_size;
99 static struct bio *compressed_bio_alloc(struct block_device *bdev,
100 u64 first_byte, gfp_t gfp_flags)
102 int nr_vecs;
104 nr_vecs = bio_get_nr_vecs(bdev);
105 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
108 static int check_compressed_csum(struct inode *inode,
109 struct compressed_bio *cb,
110 u64 disk_start)
112 int ret;
113 struct page *page;
114 unsigned long i;
115 char *kaddr;
116 u32 csum;
117 u32 *cb_sum = &cb->sums;
119 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
120 return 0;
122 for (i = 0; i < cb->nr_pages; i++) {
123 page = cb->compressed_pages[i];
124 csum = ~(u32)0;
126 kaddr = kmap_atomic(page);
127 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
128 btrfs_csum_final(csum, (char *)&csum);
129 kunmap_atomic(kaddr);
131 if (csum != *cb_sum) {
132 printk(KERN_INFO "btrfs csum failed ino %llu "
133 "extent %llu csum %u "
134 "wanted %u mirror %d\n",
135 btrfs_ino(inode), disk_start, csum, *cb_sum,
136 cb->mirror_num);
137 ret = -EIO;
138 goto fail;
140 cb_sum++;
143 ret = 0;
144 fail:
145 return ret;
148 /* when we finish reading compressed pages from the disk, we
149 * decompress them and then run the bio end_io routines on the
150 * decompressed pages (in the inode address space).
152 * This allows the checksumming and other IO error handling routines
153 * to work normally
155 * The compressed pages are freed here, and it must be run
156 * in process context
158 static void end_compressed_bio_read(struct bio *bio, int err)
160 struct compressed_bio *cb = bio->bi_private;
161 struct inode *inode;
162 struct page *page;
163 unsigned long index;
164 int ret;
166 if (err)
167 cb->errors = 1;
169 /* if there are more bios still pending for this compressed
170 * extent, just exit
172 if (!atomic_dec_and_test(&cb->pending_bios))
173 goto out;
175 inode = cb->inode;
176 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
177 if (ret)
178 goto csum_failed;
180 /* ok, we're the last bio for this extent, lets start
181 * the decompression.
183 ret = btrfs_decompress_biovec(cb->compress_type,
184 cb->compressed_pages,
185 cb->start,
186 cb->orig_bio->bi_io_vec,
187 cb->orig_bio->bi_vcnt,
188 cb->compressed_len);
189 csum_failed:
190 if (ret)
191 cb->errors = 1;
193 /* release the compressed pages */
194 index = 0;
195 for (index = 0; index < cb->nr_pages; index++) {
196 page = cb->compressed_pages[index];
197 page->mapping = NULL;
198 page_cache_release(page);
201 /* do io completion on the original bio */
202 if (cb->errors) {
203 bio_io_error(cb->orig_bio);
204 } else {
205 int bio_index = 0;
206 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
209 * we have verified the checksum already, set page
210 * checked so the end_io handlers know about it
212 while (bio_index < cb->orig_bio->bi_vcnt) {
213 SetPageChecked(bvec->bv_page);
214 bvec++;
215 bio_index++;
217 bio_endio(cb->orig_bio, 0);
220 /* finally free the cb struct */
221 kfree(cb->compressed_pages);
222 kfree(cb);
223 out:
224 bio_put(bio);
228 * Clear the writeback bits on all of the file
229 * pages for a compressed write
231 static noinline void end_compressed_writeback(struct inode *inode, u64 start,
232 unsigned long ram_size)
234 unsigned long index = start >> PAGE_CACHE_SHIFT;
235 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
236 struct page *pages[16];
237 unsigned long nr_pages = end_index - index + 1;
238 int i;
239 int ret;
241 while (nr_pages > 0) {
242 ret = find_get_pages_contig(inode->i_mapping, index,
243 min_t(unsigned long,
244 nr_pages, ARRAY_SIZE(pages)), pages);
245 if (ret == 0) {
246 nr_pages -= 1;
247 index += 1;
248 continue;
250 for (i = 0; i < ret; i++) {
251 end_page_writeback(pages[i]);
252 page_cache_release(pages[i]);
254 nr_pages -= ret;
255 index += ret;
257 /* the inode may be gone now */
261 * do the cleanup once all the compressed pages hit the disk.
262 * This will clear writeback on the file pages and free the compressed
263 * pages.
265 * This also calls the writeback end hooks for the file pages so that
266 * metadata and checksums can be updated in the file.
268 static void end_compressed_bio_write(struct bio *bio, int err)
270 struct extent_io_tree *tree;
271 struct compressed_bio *cb = bio->bi_private;
272 struct inode *inode;
273 struct page *page;
274 unsigned long index;
276 if (err)
277 cb->errors = 1;
279 /* if there are more bios still pending for this compressed
280 * extent, just exit
282 if (!atomic_dec_and_test(&cb->pending_bios))
283 goto out;
285 /* ok, we're the last bio for this extent, step one is to
286 * call back into the FS and do all the end_io operations
288 inode = cb->inode;
289 tree = &BTRFS_I(inode)->io_tree;
290 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
291 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
292 cb->start,
293 cb->start + cb->len - 1,
294 NULL, 1);
295 cb->compressed_pages[0]->mapping = NULL;
297 end_compressed_writeback(inode, cb->start, cb->len);
298 /* note, our inode could be gone now */
301 * release the compressed pages, these came from alloc_page and
302 * are not attached to the inode at all
304 index = 0;
305 for (index = 0; index < cb->nr_pages; index++) {
306 page = cb->compressed_pages[index];
307 page->mapping = NULL;
308 page_cache_release(page);
311 /* finally free the cb struct */
312 kfree(cb->compressed_pages);
313 kfree(cb);
314 out:
315 bio_put(bio);
319 * worker function to build and submit bios for previously compressed pages.
320 * The corresponding pages in the inode should be marked for writeback
321 * and the compressed pages should have a reference on them for dropping
322 * when the IO is complete.
324 * This also checksums the file bytes and gets things ready for
325 * the end io hooks.
327 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
328 unsigned long len, u64 disk_start,
329 unsigned long compressed_len,
330 struct page **compressed_pages,
331 unsigned long nr_pages)
333 struct bio *bio = NULL;
334 struct btrfs_root *root = BTRFS_I(inode)->root;
335 struct compressed_bio *cb;
336 unsigned long bytes_left;
337 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
338 int pg_index = 0;
339 struct page *page;
340 u64 first_byte = disk_start;
341 struct block_device *bdev;
342 int ret;
343 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
345 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
346 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
347 if (!cb)
348 return -ENOMEM;
349 atomic_set(&cb->pending_bios, 0);
350 cb->errors = 0;
351 cb->inode = inode;
352 cb->start = start;
353 cb->len = len;
354 cb->mirror_num = 0;
355 cb->compressed_pages = compressed_pages;
356 cb->compressed_len = compressed_len;
357 cb->orig_bio = NULL;
358 cb->nr_pages = nr_pages;
360 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
362 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
363 if(!bio) {
364 kfree(cb);
365 return -ENOMEM;
367 bio->bi_private = cb;
368 bio->bi_end_io = end_compressed_bio_write;
369 atomic_inc(&cb->pending_bios);
371 /* create and submit bios for the compressed pages */
372 bytes_left = compressed_len;
373 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
374 page = compressed_pages[pg_index];
375 page->mapping = inode->i_mapping;
376 if (bio->bi_size)
377 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
378 PAGE_CACHE_SIZE,
379 bio, 0);
380 else
381 ret = 0;
383 page->mapping = NULL;
384 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
385 PAGE_CACHE_SIZE) {
386 bio_get(bio);
389 * inc the count before we submit the bio so
390 * we know the end IO handler won't happen before
391 * we inc the count. Otherwise, the cb might get
392 * freed before we're done setting it up
394 atomic_inc(&cb->pending_bios);
395 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
396 BUG_ON(ret); /* -ENOMEM */
398 if (!skip_sum) {
399 ret = btrfs_csum_one_bio(root, inode, bio,
400 start, 1);
401 BUG_ON(ret); /* -ENOMEM */
404 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
405 BUG_ON(ret); /* -ENOMEM */
407 bio_put(bio);
409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
410 BUG_ON(!bio);
411 bio->bi_private = cb;
412 bio->bi_end_io = end_compressed_bio_write;
413 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
415 if (bytes_left < PAGE_CACHE_SIZE) {
416 printk("bytes left %lu compress len %lu nr %lu\n",
417 bytes_left, cb->compressed_len, cb->nr_pages);
419 bytes_left -= PAGE_CACHE_SIZE;
420 first_byte += PAGE_CACHE_SIZE;
421 cond_resched();
423 bio_get(bio);
425 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
426 BUG_ON(ret); /* -ENOMEM */
428 if (!skip_sum) {
429 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
430 BUG_ON(ret); /* -ENOMEM */
433 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
434 BUG_ON(ret); /* -ENOMEM */
436 bio_put(bio);
437 return 0;
440 static noinline int add_ra_bio_pages(struct inode *inode,
441 u64 compressed_end,
442 struct compressed_bio *cb)
444 unsigned long end_index;
445 unsigned long pg_index;
446 u64 last_offset;
447 u64 isize = i_size_read(inode);
448 int ret;
449 struct page *page;
450 unsigned long nr_pages = 0;
451 struct extent_map *em;
452 struct address_space *mapping = inode->i_mapping;
453 struct extent_map_tree *em_tree;
454 struct extent_io_tree *tree;
455 u64 end;
456 int misses = 0;
458 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
459 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
460 em_tree = &BTRFS_I(inode)->extent_tree;
461 tree = &BTRFS_I(inode)->io_tree;
463 if (isize == 0)
464 return 0;
466 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
468 while (last_offset < compressed_end) {
469 pg_index = last_offset >> PAGE_CACHE_SHIFT;
471 if (pg_index > end_index)
472 break;
474 rcu_read_lock();
475 page = radix_tree_lookup(&mapping->page_tree, pg_index);
476 rcu_read_unlock();
477 if (page) {
478 misses++;
479 if (misses > 4)
480 break;
481 goto next;
484 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
485 ~__GFP_FS);
486 if (!page)
487 break;
489 if (add_to_page_cache_lru(page, mapping, pg_index,
490 GFP_NOFS)) {
491 page_cache_release(page);
492 goto next;
495 end = last_offset + PAGE_CACHE_SIZE - 1;
497 * at this point, we have a locked page in the page cache
498 * for these bytes in the file. But, we have to make
499 * sure they map to this compressed extent on disk.
501 set_page_extent_mapped(page);
502 lock_extent(tree, last_offset, end);
503 read_lock(&em_tree->lock);
504 em = lookup_extent_mapping(em_tree, last_offset,
505 PAGE_CACHE_SIZE);
506 read_unlock(&em_tree->lock);
508 if (!em || last_offset < em->start ||
509 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
510 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
511 free_extent_map(em);
512 unlock_extent(tree, last_offset, end);
513 unlock_page(page);
514 page_cache_release(page);
515 break;
517 free_extent_map(em);
519 if (page->index == end_index) {
520 char *userpage;
521 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
523 if (zero_offset) {
524 int zeros;
525 zeros = PAGE_CACHE_SIZE - zero_offset;
526 userpage = kmap_atomic(page);
527 memset(userpage + zero_offset, 0, zeros);
528 flush_dcache_page(page);
529 kunmap_atomic(userpage);
533 ret = bio_add_page(cb->orig_bio, page,
534 PAGE_CACHE_SIZE, 0);
536 if (ret == PAGE_CACHE_SIZE) {
537 nr_pages++;
538 page_cache_release(page);
539 } else {
540 unlock_extent(tree, last_offset, end);
541 unlock_page(page);
542 page_cache_release(page);
543 break;
545 next:
546 last_offset += PAGE_CACHE_SIZE;
548 return 0;
552 * for a compressed read, the bio we get passed has all the inode pages
553 * in it. We don't actually do IO on those pages but allocate new ones
554 * to hold the compressed pages on disk.
556 * bio->bi_sector points to the compressed extent on disk
557 * bio->bi_io_vec points to all of the inode pages
558 * bio->bi_vcnt is a count of pages
560 * After the compressed pages are read, we copy the bytes into the
561 * bio we were passed and then call the bio end_io calls
563 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
564 int mirror_num, unsigned long bio_flags)
566 struct extent_io_tree *tree;
567 struct extent_map_tree *em_tree;
568 struct compressed_bio *cb;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
571 unsigned long compressed_len;
572 unsigned long nr_pages;
573 unsigned long pg_index;
574 struct page *page;
575 struct block_device *bdev;
576 struct bio *comp_bio;
577 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
578 u64 em_len;
579 u64 em_start;
580 struct extent_map *em;
581 int ret = -ENOMEM;
582 int faili = 0;
583 u32 *sums;
585 tree = &BTRFS_I(inode)->io_tree;
586 em_tree = &BTRFS_I(inode)->extent_tree;
588 /* we need the actual starting offset of this extent in the file */
589 read_lock(&em_tree->lock);
590 em = lookup_extent_mapping(em_tree,
591 page_offset(bio->bi_io_vec->bv_page),
592 PAGE_CACHE_SIZE);
593 read_unlock(&em_tree->lock);
594 if (!em)
595 return -EIO;
597 compressed_len = em->block_len;
598 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
599 if (!cb)
600 goto out;
602 atomic_set(&cb->pending_bios, 0);
603 cb->errors = 0;
604 cb->inode = inode;
605 cb->mirror_num = mirror_num;
606 sums = &cb->sums;
608 cb->start = em->orig_start;
609 em_len = em->len;
610 em_start = em->start;
612 free_extent_map(em);
613 em = NULL;
615 cb->len = uncompressed_len;
616 cb->compressed_len = compressed_len;
617 cb->compress_type = extent_compress_type(bio_flags);
618 cb->orig_bio = bio;
620 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
621 PAGE_CACHE_SIZE;
622 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
623 GFP_NOFS);
624 if (!cb->compressed_pages)
625 goto fail1;
627 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
629 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
630 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
631 __GFP_HIGHMEM);
632 if (!cb->compressed_pages[pg_index]) {
633 faili = pg_index - 1;
634 ret = -ENOMEM;
635 goto fail2;
638 faili = nr_pages - 1;
639 cb->nr_pages = nr_pages;
641 /* In the parent-locked case, we only locked the range we are
642 * interested in. In all other cases, we can opportunistically
643 * cache decompressed data that goes beyond the requested range. */
644 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
645 add_ra_bio_pages(inode, em_start + em_len, cb);
647 /* include any pages we added in add_ra-bio_pages */
648 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
649 cb->len = uncompressed_len;
651 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
652 if (!comp_bio)
653 goto fail2;
654 comp_bio->bi_private = cb;
655 comp_bio->bi_end_io = end_compressed_bio_read;
656 atomic_inc(&cb->pending_bios);
658 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
659 page = cb->compressed_pages[pg_index];
660 page->mapping = inode->i_mapping;
661 page->index = em_start >> PAGE_CACHE_SHIFT;
663 if (comp_bio->bi_size)
664 ret = tree->ops->merge_bio_hook(READ, page, 0,
665 PAGE_CACHE_SIZE,
666 comp_bio, 0);
667 else
668 ret = 0;
670 page->mapping = NULL;
671 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
672 PAGE_CACHE_SIZE) {
673 bio_get(comp_bio);
675 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
676 BUG_ON(ret); /* -ENOMEM */
679 * inc the count before we submit the bio so
680 * we know the end IO handler won't happen before
681 * we inc the count. Otherwise, the cb might get
682 * freed before we're done setting it up
684 atomic_inc(&cb->pending_bios);
686 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
687 ret = btrfs_lookup_bio_sums(root, inode,
688 comp_bio, sums);
689 BUG_ON(ret); /* -ENOMEM */
691 sums += (comp_bio->bi_size + root->sectorsize - 1) /
692 root->sectorsize;
694 ret = btrfs_map_bio(root, READ, comp_bio,
695 mirror_num, 0);
696 if (ret)
697 bio_endio(comp_bio, ret);
699 bio_put(comp_bio);
701 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
702 GFP_NOFS);
703 BUG_ON(!comp_bio);
704 comp_bio->bi_private = cb;
705 comp_bio->bi_end_io = end_compressed_bio_read;
707 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
709 cur_disk_byte += PAGE_CACHE_SIZE;
711 bio_get(comp_bio);
713 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
714 BUG_ON(ret); /* -ENOMEM */
716 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
717 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
718 BUG_ON(ret); /* -ENOMEM */
721 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
722 if (ret)
723 bio_endio(comp_bio, ret);
725 bio_put(comp_bio);
726 return 0;
728 fail2:
729 while (faili >= 0) {
730 __free_page(cb->compressed_pages[faili]);
731 faili--;
734 kfree(cb->compressed_pages);
735 fail1:
736 kfree(cb);
737 out:
738 free_extent_map(em);
739 return ret;
742 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
743 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
744 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
745 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
746 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
748 static struct btrfs_compress_op *btrfs_compress_op[] = {
749 &btrfs_zlib_compress,
750 &btrfs_lzo_compress,
753 void __init btrfs_init_compress(void)
755 int i;
757 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
758 INIT_LIST_HEAD(&comp_idle_workspace[i]);
759 spin_lock_init(&comp_workspace_lock[i]);
760 atomic_set(&comp_alloc_workspace[i], 0);
761 init_waitqueue_head(&comp_workspace_wait[i]);
766 * this finds an available workspace or allocates a new one
767 * ERR_PTR is returned if things go bad.
769 static struct list_head *find_workspace(int type)
771 struct list_head *workspace;
772 int cpus = num_online_cpus();
773 int idx = type - 1;
775 struct list_head *idle_workspace = &comp_idle_workspace[idx];
776 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
777 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
778 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
779 int *num_workspace = &comp_num_workspace[idx];
780 again:
781 spin_lock(workspace_lock);
782 if (!list_empty(idle_workspace)) {
783 workspace = idle_workspace->next;
784 list_del(workspace);
785 (*num_workspace)--;
786 spin_unlock(workspace_lock);
787 return workspace;
790 if (atomic_read(alloc_workspace) > cpus) {
791 DEFINE_WAIT(wait);
793 spin_unlock(workspace_lock);
794 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
795 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
796 schedule();
797 finish_wait(workspace_wait, &wait);
798 goto again;
800 atomic_inc(alloc_workspace);
801 spin_unlock(workspace_lock);
803 workspace = btrfs_compress_op[idx]->alloc_workspace();
804 if (IS_ERR(workspace)) {
805 atomic_dec(alloc_workspace);
806 wake_up(workspace_wait);
808 return workspace;
812 * put a workspace struct back on the list or free it if we have enough
813 * idle ones sitting around
815 static void free_workspace(int type, struct list_head *workspace)
817 int idx = type - 1;
818 struct list_head *idle_workspace = &comp_idle_workspace[idx];
819 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
820 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
821 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
822 int *num_workspace = &comp_num_workspace[idx];
824 spin_lock(workspace_lock);
825 if (*num_workspace < num_online_cpus()) {
826 list_add_tail(workspace, idle_workspace);
827 (*num_workspace)++;
828 spin_unlock(workspace_lock);
829 goto wake;
831 spin_unlock(workspace_lock);
833 btrfs_compress_op[idx]->free_workspace(workspace);
834 atomic_dec(alloc_workspace);
835 wake:
836 smp_mb();
837 if (waitqueue_active(workspace_wait))
838 wake_up(workspace_wait);
842 * cleanup function for module exit
844 static void free_workspaces(void)
846 struct list_head *workspace;
847 int i;
849 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
850 while (!list_empty(&comp_idle_workspace[i])) {
851 workspace = comp_idle_workspace[i].next;
852 list_del(workspace);
853 btrfs_compress_op[i]->free_workspace(workspace);
854 atomic_dec(&comp_alloc_workspace[i]);
860 * given an address space and start/len, compress the bytes.
862 * pages are allocated to hold the compressed result and stored
863 * in 'pages'
865 * out_pages is used to return the number of pages allocated. There
866 * may be pages allocated even if we return an error
868 * total_in is used to return the number of bytes actually read. It
869 * may be smaller then len if we had to exit early because we
870 * ran out of room in the pages array or because we cross the
871 * max_out threshold.
873 * total_out is used to return the total number of compressed bytes
875 * max_out tells us the max number of bytes that we're allowed to
876 * stuff into pages
878 int btrfs_compress_pages(int type, struct address_space *mapping,
879 u64 start, unsigned long len,
880 struct page **pages,
881 unsigned long nr_dest_pages,
882 unsigned long *out_pages,
883 unsigned long *total_in,
884 unsigned long *total_out,
885 unsigned long max_out)
887 struct list_head *workspace;
888 int ret;
890 workspace = find_workspace(type);
891 if (IS_ERR(workspace))
892 return -1;
894 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
895 start, len, pages,
896 nr_dest_pages, out_pages,
897 total_in, total_out,
898 max_out);
899 free_workspace(type, workspace);
900 return ret;
904 * pages_in is an array of pages with compressed data.
906 * disk_start is the starting logical offset of this array in the file
908 * bvec is a bio_vec of pages from the file that we want to decompress into
910 * vcnt is the count of pages in the biovec
912 * srclen is the number of bytes in pages_in
914 * The basic idea is that we have a bio that was created by readpages.
915 * The pages in the bio are for the uncompressed data, and they may not
916 * be contiguous. They all correspond to the range of bytes covered by
917 * the compressed extent.
919 static int btrfs_decompress_biovec(int type, struct page **pages_in,
920 u64 disk_start, struct bio_vec *bvec,
921 int vcnt, size_t srclen)
923 struct list_head *workspace;
924 int ret;
926 workspace = find_workspace(type);
927 if (IS_ERR(workspace))
928 return -ENOMEM;
930 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
931 disk_start,
932 bvec, vcnt, srclen);
933 free_workspace(type, workspace);
934 return ret;
938 * a less complex decompression routine. Our compressed data fits in a
939 * single page, and we want to read a single page out of it.
940 * start_byte tells us the offset into the compressed data we're interested in
942 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
943 unsigned long start_byte, size_t srclen, size_t destlen)
945 struct list_head *workspace;
946 int ret;
948 workspace = find_workspace(type);
949 if (IS_ERR(workspace))
950 return -ENOMEM;
952 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
953 dest_page, start_byte,
954 srclen, destlen);
956 free_workspace(type, workspace);
957 return ret;
960 void btrfs_exit_compress(void)
962 free_workspaces();
966 * Copy uncompressed data from working buffer to pages.
968 * buf_start is the byte offset we're of the start of our workspace buffer.
970 * total_out is the last byte of the buffer
972 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
973 unsigned long total_out, u64 disk_start,
974 struct bio_vec *bvec, int vcnt,
975 unsigned long *pg_index,
976 unsigned long *pg_offset)
978 unsigned long buf_offset;
979 unsigned long current_buf_start;
980 unsigned long start_byte;
981 unsigned long working_bytes = total_out - buf_start;
982 unsigned long bytes;
983 char *kaddr;
984 struct page *page_out = bvec[*pg_index].bv_page;
987 * start byte is the first byte of the page we're currently
988 * copying into relative to the start of the compressed data.
990 start_byte = page_offset(page_out) - disk_start;
992 /* we haven't yet hit data corresponding to this page */
993 if (total_out <= start_byte)
994 return 1;
997 * the start of the data we care about is offset into
998 * the middle of our working buffer
1000 if (total_out > start_byte && buf_start < start_byte) {
1001 buf_offset = start_byte - buf_start;
1002 working_bytes -= buf_offset;
1003 } else {
1004 buf_offset = 0;
1006 current_buf_start = buf_start;
1008 /* copy bytes from the working buffer into the pages */
1009 while (working_bytes > 0) {
1010 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1011 PAGE_CACHE_SIZE - buf_offset);
1012 bytes = min(bytes, working_bytes);
1013 kaddr = kmap_atomic(page_out);
1014 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1015 if (*pg_index == (vcnt - 1) && *pg_offset == 0)
1016 memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes);
1017 kunmap_atomic(kaddr);
1018 flush_dcache_page(page_out);
1020 *pg_offset += bytes;
1021 buf_offset += bytes;
1022 working_bytes -= bytes;
1023 current_buf_start += bytes;
1025 /* check if we need to pick another page */
1026 if (*pg_offset == PAGE_CACHE_SIZE) {
1027 (*pg_index)++;
1028 if (*pg_index >= vcnt)
1029 return 0;
1031 page_out = bvec[*pg_index].bv_page;
1032 *pg_offset = 0;
1033 start_byte = page_offset(page_out) - disk_start;
1036 * make sure our new page is covered by this
1037 * working buffer
1039 if (total_out <= start_byte)
1040 return 1;
1043 * the next page in the biovec might not be adjacent
1044 * to the last page, but it might still be found
1045 * inside this working buffer. bump our offset pointer
1047 if (total_out > start_byte &&
1048 current_buf_start < start_byte) {
1049 buf_offset = start_byte - buf_start;
1050 working_bytes = total_out - start_byte;
1051 current_buf_start = buf_start + buf_offset;
1056 return 1;