Linux 3.12.28
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blobb395791dd923ed664816da43f5908b581d57daa5
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
32 static DEFINE_SPINLOCK(leak_lock);
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
37 unsigned long flags;
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
47 unsigned long flags;
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
54 static inline
55 void btrfs_leak_debug_check(void)
57 struct extent_state *state;
58 struct extent_buffer *eb;
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
80 #define btrfs_debug_check_extent_io_range(inode, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct inode *inode, u64 start, u64 end)
85 u64 isize = i_size_read(inode);
87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88 printk_ratelimited(KERN_DEBUG
89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
90 caller, btrfs_ino(inode), isize, start, end);
93 #else
94 #define btrfs_leak_debug_add(new, head) do {} while (0)
95 #define btrfs_leak_debug_del(entry) do {} while (0)
96 #define btrfs_leak_debug_check() do {} while (0)
97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
98 #endif
100 #define BUFFER_LRU_MAX 64
102 struct tree_entry {
103 u64 start;
104 u64 end;
105 struct rb_node rb_node;
108 struct extent_page_data {
109 struct bio *bio;
110 struct extent_io_tree *tree;
111 get_extent_t *get_extent;
112 unsigned long bio_flags;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
117 unsigned int extent_locked:1;
119 /* tells the submit_bio code to use a WRITE_SYNC */
120 unsigned int sync_io:1;
123 static noinline void flush_write_bio(void *data);
124 static inline struct btrfs_fs_info *
125 tree_fs_info(struct extent_io_tree *tree)
127 return btrfs_sb(tree->mapping->host->i_sb);
130 int __init extent_io_init(void)
132 extent_state_cache = kmem_cache_create("btrfs_extent_state",
133 sizeof(struct extent_state), 0,
134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
135 if (!extent_state_cache)
136 return -ENOMEM;
138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
139 sizeof(struct extent_buffer), 0,
140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
141 if (!extent_buffer_cache)
142 goto free_state_cache;
144 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145 offsetof(struct btrfs_io_bio, bio));
146 if (!btrfs_bioset)
147 goto free_buffer_cache;
149 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
150 goto free_bioset;
152 return 0;
154 free_bioset:
155 bioset_free(btrfs_bioset);
156 btrfs_bioset = NULL;
158 free_buffer_cache:
159 kmem_cache_destroy(extent_buffer_cache);
160 extent_buffer_cache = NULL;
162 free_state_cache:
163 kmem_cache_destroy(extent_state_cache);
164 extent_state_cache = NULL;
165 return -ENOMEM;
168 void extent_io_exit(void)
170 btrfs_leak_debug_check();
173 * Make sure all delayed rcu free are flushed before we
174 * destroy caches.
176 rcu_barrier();
177 if (extent_state_cache)
178 kmem_cache_destroy(extent_state_cache);
179 if (extent_buffer_cache)
180 kmem_cache_destroy(extent_buffer_cache);
181 if (btrfs_bioset)
182 bioset_free(btrfs_bioset);
185 void extent_io_tree_init(struct extent_io_tree *tree,
186 struct address_space *mapping)
188 tree->state = RB_ROOT;
189 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
190 tree->ops = NULL;
191 tree->dirty_bytes = 0;
192 spin_lock_init(&tree->lock);
193 spin_lock_init(&tree->buffer_lock);
194 tree->mapping = mapping;
197 static struct extent_state *alloc_extent_state(gfp_t mask)
199 struct extent_state *state;
201 state = kmem_cache_alloc(extent_state_cache, mask);
202 if (!state)
203 return state;
204 state->state = 0;
205 state->private = 0;
206 state->tree = NULL;
207 btrfs_leak_debug_add(&state->leak_list, &states);
208 atomic_set(&state->refs, 1);
209 init_waitqueue_head(&state->wq);
210 trace_alloc_extent_state(state, mask, _RET_IP_);
211 return state;
214 void free_extent_state(struct extent_state *state)
216 if (!state)
217 return;
218 if (atomic_dec_and_test(&state->refs)) {
219 WARN_ON(state->tree);
220 btrfs_leak_debug_del(&state->leak_list);
221 trace_free_extent_state(state, _RET_IP_);
222 kmem_cache_free(extent_state_cache, state);
226 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
227 struct rb_node *node)
229 struct rb_node **p = &root->rb_node;
230 struct rb_node *parent = NULL;
231 struct tree_entry *entry;
233 while (*p) {
234 parent = *p;
235 entry = rb_entry(parent, struct tree_entry, rb_node);
237 if (offset < entry->start)
238 p = &(*p)->rb_left;
239 else if (offset > entry->end)
240 p = &(*p)->rb_right;
241 else
242 return parent;
245 rb_link_node(node, parent, p);
246 rb_insert_color(node, root);
247 return NULL;
250 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
251 struct rb_node **prev_ret,
252 struct rb_node **next_ret)
254 struct rb_root *root = &tree->state;
255 struct rb_node *n = root->rb_node;
256 struct rb_node *prev = NULL;
257 struct rb_node *orig_prev = NULL;
258 struct tree_entry *entry;
259 struct tree_entry *prev_entry = NULL;
261 while (n) {
262 entry = rb_entry(n, struct tree_entry, rb_node);
263 prev = n;
264 prev_entry = entry;
266 if (offset < entry->start)
267 n = n->rb_left;
268 else if (offset > entry->end)
269 n = n->rb_right;
270 else
271 return n;
274 if (prev_ret) {
275 orig_prev = prev;
276 while (prev && offset > prev_entry->end) {
277 prev = rb_next(prev);
278 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
280 *prev_ret = prev;
281 prev = orig_prev;
284 if (next_ret) {
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 while (prev && offset < prev_entry->start) {
287 prev = rb_prev(prev);
288 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
290 *next_ret = prev;
292 return NULL;
295 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
296 u64 offset)
298 struct rb_node *prev = NULL;
299 struct rb_node *ret;
301 ret = __etree_search(tree, offset, &prev, NULL);
302 if (!ret)
303 return prev;
304 return ret;
307 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
308 struct extent_state *other)
310 if (tree->ops && tree->ops->merge_extent_hook)
311 tree->ops->merge_extent_hook(tree->mapping->host, new,
312 other);
316 * utility function to look for merge candidates inside a given range.
317 * Any extents with matching state are merged together into a single
318 * extent in the tree. Extents with EXTENT_IO in their state field
319 * are not merged because the end_io handlers need to be able to do
320 * operations on them without sleeping (or doing allocations/splits).
322 * This should be called with the tree lock held.
324 static void merge_state(struct extent_io_tree *tree,
325 struct extent_state *state)
327 struct extent_state *other;
328 struct rb_node *other_node;
330 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
331 return;
333 other_node = rb_prev(&state->rb_node);
334 if (other_node) {
335 other = rb_entry(other_node, struct extent_state, rb_node);
336 if (other->end == state->start - 1 &&
337 other->state == state->state) {
338 merge_cb(tree, state, other);
339 state->start = other->start;
340 other->tree = NULL;
341 rb_erase(&other->rb_node, &tree->state);
342 free_extent_state(other);
345 other_node = rb_next(&state->rb_node);
346 if (other_node) {
347 other = rb_entry(other_node, struct extent_state, rb_node);
348 if (other->start == state->end + 1 &&
349 other->state == state->state) {
350 merge_cb(tree, state, other);
351 state->end = other->end;
352 other->tree = NULL;
353 rb_erase(&other->rb_node, &tree->state);
354 free_extent_state(other);
359 static void set_state_cb(struct extent_io_tree *tree,
360 struct extent_state *state, unsigned long *bits)
362 if (tree->ops && tree->ops->set_bit_hook)
363 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
366 static void clear_state_cb(struct extent_io_tree *tree,
367 struct extent_state *state, unsigned long *bits)
369 if (tree->ops && tree->ops->clear_bit_hook)
370 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
373 static void set_state_bits(struct extent_io_tree *tree,
374 struct extent_state *state, unsigned long *bits);
377 * insert an extent_state struct into the tree. 'bits' are set on the
378 * struct before it is inserted.
380 * This may return -EEXIST if the extent is already there, in which case the
381 * state struct is freed.
383 * The tree lock is not taken internally. This is a utility function and
384 * probably isn't what you want to call (see set/clear_extent_bit).
386 static int insert_state(struct extent_io_tree *tree,
387 struct extent_state *state, u64 start, u64 end,
388 unsigned long *bits)
390 struct rb_node *node;
392 if (end < start)
393 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
394 end, start);
395 state->start = start;
396 state->end = end;
398 set_state_bits(tree, state, bits);
400 node = tree_insert(&tree->state, end, &state->rb_node);
401 if (node) {
402 struct extent_state *found;
403 found = rb_entry(node, struct extent_state, rb_node);
404 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
405 "%llu %llu\n",
406 found->start, found->end, start, end);
407 return -EEXIST;
409 state->tree = tree;
410 merge_state(tree, state);
411 return 0;
414 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
415 u64 split)
417 if (tree->ops && tree->ops->split_extent_hook)
418 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
422 * split a given extent state struct in two, inserting the preallocated
423 * struct 'prealloc' as the newly created second half. 'split' indicates an
424 * offset inside 'orig' where it should be split.
426 * Before calling,
427 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
428 * are two extent state structs in the tree:
429 * prealloc: [orig->start, split - 1]
430 * orig: [ split, orig->end ]
432 * The tree locks are not taken by this function. They need to be held
433 * by the caller.
435 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
436 struct extent_state *prealloc, u64 split)
438 struct rb_node *node;
440 split_cb(tree, orig, split);
442 prealloc->start = orig->start;
443 prealloc->end = split - 1;
444 prealloc->state = orig->state;
445 orig->start = split;
447 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
448 if (node) {
449 free_extent_state(prealloc);
450 return -EEXIST;
452 prealloc->tree = tree;
453 return 0;
456 static struct extent_state *next_state(struct extent_state *state)
458 struct rb_node *next = rb_next(&state->rb_node);
459 if (next)
460 return rb_entry(next, struct extent_state, rb_node);
461 else
462 return NULL;
466 * utility function to clear some bits in an extent state struct.
467 * it will optionally wake up any one waiting on this state (wake == 1).
469 * If no bits are set on the state struct after clearing things, the
470 * struct is freed and removed from the tree
472 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
473 struct extent_state *state,
474 unsigned long *bits, int wake)
476 struct extent_state *next;
477 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
479 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
480 u64 range = state->end - state->start + 1;
481 WARN_ON(range > tree->dirty_bytes);
482 tree->dirty_bytes -= range;
484 clear_state_cb(tree, state, bits);
485 state->state &= ~bits_to_clear;
486 if (wake)
487 wake_up(&state->wq);
488 if (state->state == 0) {
489 next = next_state(state);
490 if (state->tree) {
491 rb_erase(&state->rb_node, &tree->state);
492 state->tree = NULL;
493 free_extent_state(state);
494 } else {
495 WARN_ON(1);
497 } else {
498 merge_state(tree, state);
499 next = next_state(state);
501 return next;
504 static struct extent_state *
505 alloc_extent_state_atomic(struct extent_state *prealloc)
507 if (!prealloc)
508 prealloc = alloc_extent_state(GFP_ATOMIC);
510 return prealloc;
513 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
515 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
516 "Extent tree was modified by another "
517 "thread while locked.");
521 * clear some bits on a range in the tree. This may require splitting
522 * or inserting elements in the tree, so the gfp mask is used to
523 * indicate which allocations or sleeping are allowed.
525 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
526 * the given range from the tree regardless of state (ie for truncate).
528 * the range [start, end] is inclusive.
530 * This takes the tree lock, and returns 0 on success and < 0 on error.
532 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
533 unsigned long bits, int wake, int delete,
534 struct extent_state **cached_state,
535 gfp_t mask)
537 struct extent_state *state;
538 struct extent_state *cached;
539 struct extent_state *prealloc = NULL;
540 struct rb_node *node;
541 u64 last_end;
542 int err;
543 int clear = 0;
545 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
547 if (bits & EXTENT_DELALLOC)
548 bits |= EXTENT_NORESERVE;
550 if (delete)
551 bits |= ~EXTENT_CTLBITS;
552 bits |= EXTENT_FIRST_DELALLOC;
554 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
555 clear = 1;
556 again:
557 if (!prealloc && (mask & __GFP_WAIT)) {
558 prealloc = alloc_extent_state(mask);
559 if (!prealloc)
560 return -ENOMEM;
563 spin_lock(&tree->lock);
564 if (cached_state) {
565 cached = *cached_state;
567 if (clear) {
568 *cached_state = NULL;
569 cached_state = NULL;
572 if (cached && cached->tree && cached->start <= start &&
573 cached->end > start) {
574 if (clear)
575 atomic_dec(&cached->refs);
576 state = cached;
577 goto hit_next;
579 if (clear)
580 free_extent_state(cached);
583 * this search will find the extents that end after
584 * our range starts
586 node = tree_search(tree, start);
587 if (!node)
588 goto out;
589 state = rb_entry(node, struct extent_state, rb_node);
590 hit_next:
591 if (state->start > end)
592 goto out;
593 WARN_ON(state->end < start);
594 last_end = state->end;
596 /* the state doesn't have the wanted bits, go ahead */
597 if (!(state->state & bits)) {
598 state = next_state(state);
599 goto next;
603 * | ---- desired range ---- |
604 * | state | or
605 * | ------------- state -------------- |
607 * We need to split the extent we found, and may flip
608 * bits on second half.
610 * If the extent we found extends past our range, we
611 * just split and search again. It'll get split again
612 * the next time though.
614 * If the extent we found is inside our range, we clear
615 * the desired bit on it.
618 if (state->start < start) {
619 prealloc = alloc_extent_state_atomic(prealloc);
620 BUG_ON(!prealloc);
621 err = split_state(tree, state, prealloc, start);
622 if (err)
623 extent_io_tree_panic(tree, err);
625 prealloc = NULL;
626 if (err)
627 goto out;
628 if (state->end <= end) {
629 state = clear_state_bit(tree, state, &bits, wake);
630 goto next;
632 goto search_again;
635 * | ---- desired range ---- |
636 * | state |
637 * We need to split the extent, and clear the bit
638 * on the first half
640 if (state->start <= end && state->end > end) {
641 prealloc = alloc_extent_state_atomic(prealloc);
642 BUG_ON(!prealloc);
643 err = split_state(tree, state, prealloc, end + 1);
644 if (err)
645 extent_io_tree_panic(tree, err);
647 if (wake)
648 wake_up(&state->wq);
650 clear_state_bit(tree, prealloc, &bits, wake);
652 prealloc = NULL;
653 goto out;
656 state = clear_state_bit(tree, state, &bits, wake);
657 next:
658 if (last_end == (u64)-1)
659 goto out;
660 start = last_end + 1;
661 if (start <= end && state && !need_resched())
662 goto hit_next;
663 goto search_again;
665 out:
666 spin_unlock(&tree->lock);
667 if (prealloc)
668 free_extent_state(prealloc);
670 return 0;
672 search_again:
673 if (start > end)
674 goto out;
675 spin_unlock(&tree->lock);
676 if (mask & __GFP_WAIT)
677 cond_resched();
678 goto again;
681 static void wait_on_state(struct extent_io_tree *tree,
682 struct extent_state *state)
683 __releases(tree->lock)
684 __acquires(tree->lock)
686 DEFINE_WAIT(wait);
687 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
688 spin_unlock(&tree->lock);
689 schedule();
690 spin_lock(&tree->lock);
691 finish_wait(&state->wq, &wait);
695 * waits for one or more bits to clear on a range in the state tree.
696 * The range [start, end] is inclusive.
697 * The tree lock is taken by this function
699 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
700 unsigned long bits)
702 struct extent_state *state;
703 struct rb_node *node;
705 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
707 spin_lock(&tree->lock);
708 again:
709 while (1) {
711 * this search will find all the extents that end after
712 * our range starts
714 node = tree_search(tree, start);
715 if (!node)
716 break;
718 state = rb_entry(node, struct extent_state, rb_node);
720 if (state->start > end)
721 goto out;
723 if (state->state & bits) {
724 start = state->start;
725 atomic_inc(&state->refs);
726 wait_on_state(tree, state);
727 free_extent_state(state);
728 goto again;
730 start = state->end + 1;
732 if (start > end)
733 break;
735 cond_resched_lock(&tree->lock);
737 out:
738 spin_unlock(&tree->lock);
741 static void set_state_bits(struct extent_io_tree *tree,
742 struct extent_state *state,
743 unsigned long *bits)
745 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
747 set_state_cb(tree, state, bits);
748 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
749 u64 range = state->end - state->start + 1;
750 tree->dirty_bytes += range;
752 state->state |= bits_to_set;
755 static void cache_state(struct extent_state *state,
756 struct extent_state **cached_ptr)
758 if (cached_ptr && !(*cached_ptr)) {
759 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
760 *cached_ptr = state;
761 atomic_inc(&state->refs);
767 * set some bits on a range in the tree. This may require allocations or
768 * sleeping, so the gfp mask is used to indicate what is allowed.
770 * If any of the exclusive bits are set, this will fail with -EEXIST if some
771 * part of the range already has the desired bits set. The start of the
772 * existing range is returned in failed_start in this case.
774 * [start, end] is inclusive This takes the tree lock.
777 static int __must_check
778 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
779 unsigned long bits, unsigned long exclusive_bits,
780 u64 *failed_start, struct extent_state **cached_state,
781 gfp_t mask)
783 struct extent_state *state;
784 struct extent_state *prealloc = NULL;
785 struct rb_node *node;
786 int err = 0;
787 u64 last_start;
788 u64 last_end;
790 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
792 bits |= EXTENT_FIRST_DELALLOC;
793 again:
794 if (!prealloc && (mask & __GFP_WAIT)) {
795 prealloc = alloc_extent_state(mask);
796 BUG_ON(!prealloc);
799 spin_lock(&tree->lock);
800 if (cached_state && *cached_state) {
801 state = *cached_state;
802 if (state->start <= start && state->end > start &&
803 state->tree) {
804 node = &state->rb_node;
805 goto hit_next;
809 * this search will find all the extents that end after
810 * our range starts.
812 node = tree_search(tree, start);
813 if (!node) {
814 prealloc = alloc_extent_state_atomic(prealloc);
815 BUG_ON(!prealloc);
816 err = insert_state(tree, prealloc, start, end, &bits);
817 if (err)
818 extent_io_tree_panic(tree, err);
820 prealloc = NULL;
821 goto out;
823 state = rb_entry(node, struct extent_state, rb_node);
824 hit_next:
825 last_start = state->start;
826 last_end = state->end;
829 * | ---- desired range ---- |
830 * | state |
832 * Just lock what we found and keep going
834 if (state->start == start && state->end <= end) {
835 if (state->state & exclusive_bits) {
836 *failed_start = state->start;
837 err = -EEXIST;
838 goto out;
841 set_state_bits(tree, state, &bits);
842 cache_state(state, cached_state);
843 merge_state(tree, state);
844 if (last_end == (u64)-1)
845 goto out;
846 start = last_end + 1;
847 state = next_state(state);
848 if (start < end && state && state->start == start &&
849 !need_resched())
850 goto hit_next;
851 goto search_again;
855 * | ---- desired range ---- |
856 * | state |
857 * or
858 * | ------------- state -------------- |
860 * We need to split the extent we found, and may flip bits on
861 * second half.
863 * If the extent we found extends past our
864 * range, we just split and search again. It'll get split
865 * again the next time though.
867 * If the extent we found is inside our range, we set the
868 * desired bit on it.
870 if (state->start < start) {
871 if (state->state & exclusive_bits) {
872 *failed_start = start;
873 err = -EEXIST;
874 goto out;
877 prealloc = alloc_extent_state_atomic(prealloc);
878 BUG_ON(!prealloc);
879 err = split_state(tree, state, prealloc, start);
880 if (err)
881 extent_io_tree_panic(tree, err);
883 prealloc = NULL;
884 if (err)
885 goto out;
886 if (state->end <= end) {
887 set_state_bits(tree, state, &bits);
888 cache_state(state, cached_state);
889 merge_state(tree, state);
890 if (last_end == (u64)-1)
891 goto out;
892 start = last_end + 1;
893 state = next_state(state);
894 if (start < end && state && state->start == start &&
895 !need_resched())
896 goto hit_next;
898 goto search_again;
901 * | ---- desired range ---- |
902 * | state | or | state |
904 * There's a hole, we need to insert something in it and
905 * ignore the extent we found.
907 if (state->start > start) {
908 u64 this_end;
909 if (end < last_start)
910 this_end = end;
911 else
912 this_end = last_start - 1;
914 prealloc = alloc_extent_state_atomic(prealloc);
915 BUG_ON(!prealloc);
918 * Avoid to free 'prealloc' if it can be merged with
919 * the later extent.
921 err = insert_state(tree, prealloc, start, this_end,
922 &bits);
923 if (err)
924 extent_io_tree_panic(tree, err);
926 cache_state(prealloc, cached_state);
927 prealloc = NULL;
928 start = this_end + 1;
929 goto search_again;
932 * | ---- desired range ---- |
933 * | state |
934 * We need to split the extent, and set the bit
935 * on the first half
937 if (state->start <= end && state->end > end) {
938 if (state->state & exclusive_bits) {
939 *failed_start = start;
940 err = -EEXIST;
941 goto out;
944 prealloc = alloc_extent_state_atomic(prealloc);
945 BUG_ON(!prealloc);
946 err = split_state(tree, state, prealloc, end + 1);
947 if (err)
948 extent_io_tree_panic(tree, err);
950 set_state_bits(tree, prealloc, &bits);
951 cache_state(prealloc, cached_state);
952 merge_state(tree, prealloc);
953 prealloc = NULL;
954 goto out;
957 goto search_again;
959 out:
960 spin_unlock(&tree->lock);
961 if (prealloc)
962 free_extent_state(prealloc);
964 return err;
966 search_again:
967 if (start > end)
968 goto out;
969 spin_unlock(&tree->lock);
970 if (mask & __GFP_WAIT)
971 cond_resched();
972 goto again;
975 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
976 unsigned long bits, u64 * failed_start,
977 struct extent_state **cached_state, gfp_t mask)
979 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
980 cached_state, mask);
985 * convert_extent_bit - convert all bits in a given range from one bit to
986 * another
987 * @tree: the io tree to search
988 * @start: the start offset in bytes
989 * @end: the end offset in bytes (inclusive)
990 * @bits: the bits to set in this range
991 * @clear_bits: the bits to clear in this range
992 * @cached_state: state that we're going to cache
993 * @mask: the allocation mask
995 * This will go through and set bits for the given range. If any states exist
996 * already in this range they are set with the given bit and cleared of the
997 * clear_bits. This is only meant to be used by things that are mergeable, ie
998 * converting from say DELALLOC to DIRTY. This is not meant to be used with
999 * boundary bits like LOCK.
1001 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1002 unsigned long bits, unsigned long clear_bits,
1003 struct extent_state **cached_state, gfp_t mask)
1005 struct extent_state *state;
1006 struct extent_state *prealloc = NULL;
1007 struct rb_node *node;
1008 int err = 0;
1009 u64 last_start;
1010 u64 last_end;
1012 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1014 again:
1015 if (!prealloc && (mask & __GFP_WAIT)) {
1016 prealloc = alloc_extent_state(mask);
1017 if (!prealloc)
1018 return -ENOMEM;
1021 spin_lock(&tree->lock);
1022 if (cached_state && *cached_state) {
1023 state = *cached_state;
1024 if (state->start <= start && state->end > start &&
1025 state->tree) {
1026 node = &state->rb_node;
1027 goto hit_next;
1032 * this search will find all the extents that end after
1033 * our range starts.
1035 node = tree_search(tree, start);
1036 if (!node) {
1037 prealloc = alloc_extent_state_atomic(prealloc);
1038 if (!prealloc) {
1039 err = -ENOMEM;
1040 goto out;
1042 err = insert_state(tree, prealloc, start, end, &bits);
1043 prealloc = NULL;
1044 if (err)
1045 extent_io_tree_panic(tree, err);
1046 goto out;
1048 state = rb_entry(node, struct extent_state, rb_node);
1049 hit_next:
1050 last_start = state->start;
1051 last_end = state->end;
1054 * | ---- desired range ---- |
1055 * | state |
1057 * Just lock what we found and keep going
1059 if (state->start == start && state->end <= end) {
1060 set_state_bits(tree, state, &bits);
1061 cache_state(state, cached_state);
1062 state = clear_state_bit(tree, state, &clear_bits, 0);
1063 if (last_end == (u64)-1)
1064 goto out;
1065 start = last_end + 1;
1066 if (start < end && state && state->start == start &&
1067 !need_resched())
1068 goto hit_next;
1069 goto search_again;
1073 * | ---- desired range ---- |
1074 * | state |
1075 * or
1076 * | ------------- state -------------- |
1078 * We need to split the extent we found, and may flip bits on
1079 * second half.
1081 * If the extent we found extends past our
1082 * range, we just split and search again. It'll get split
1083 * again the next time though.
1085 * If the extent we found is inside our range, we set the
1086 * desired bit on it.
1088 if (state->start < start) {
1089 prealloc = alloc_extent_state_atomic(prealloc);
1090 if (!prealloc) {
1091 err = -ENOMEM;
1092 goto out;
1094 err = split_state(tree, state, prealloc, start);
1095 if (err)
1096 extent_io_tree_panic(tree, err);
1097 prealloc = NULL;
1098 if (err)
1099 goto out;
1100 if (state->end <= end) {
1101 set_state_bits(tree, state, &bits);
1102 cache_state(state, cached_state);
1103 state = clear_state_bit(tree, state, &clear_bits, 0);
1104 if (last_end == (u64)-1)
1105 goto out;
1106 start = last_end + 1;
1107 if (start < end && state && state->start == start &&
1108 !need_resched())
1109 goto hit_next;
1111 goto search_again;
1114 * | ---- desired range ---- |
1115 * | state | or | state |
1117 * There's a hole, we need to insert something in it and
1118 * ignore the extent we found.
1120 if (state->start > start) {
1121 u64 this_end;
1122 if (end < last_start)
1123 this_end = end;
1124 else
1125 this_end = last_start - 1;
1127 prealloc = alloc_extent_state_atomic(prealloc);
1128 if (!prealloc) {
1129 err = -ENOMEM;
1130 goto out;
1134 * Avoid to free 'prealloc' if it can be merged with
1135 * the later extent.
1137 err = insert_state(tree, prealloc, start, this_end,
1138 &bits);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 start = this_end + 1;
1144 goto search_again;
1147 * | ---- desired range ---- |
1148 * | state |
1149 * We need to split the extent, and set the bit
1150 * on the first half
1152 if (state->start <= end && state->end > end) {
1153 prealloc = alloc_extent_state_atomic(prealloc);
1154 if (!prealloc) {
1155 err = -ENOMEM;
1156 goto out;
1159 err = split_state(tree, state, prealloc, end + 1);
1160 if (err)
1161 extent_io_tree_panic(tree, err);
1163 set_state_bits(tree, prealloc, &bits);
1164 cache_state(prealloc, cached_state);
1165 clear_state_bit(tree, prealloc, &clear_bits, 0);
1166 prealloc = NULL;
1167 goto out;
1170 goto search_again;
1172 out:
1173 spin_unlock(&tree->lock);
1174 if (prealloc)
1175 free_extent_state(prealloc);
1177 return err;
1179 search_again:
1180 if (start > end)
1181 goto out;
1182 spin_unlock(&tree->lock);
1183 if (mask & __GFP_WAIT)
1184 cond_resched();
1185 goto again;
1188 /* wrappers around set/clear extent bit */
1189 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1190 gfp_t mask)
1192 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1193 NULL, mask);
1196 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1197 unsigned long bits, gfp_t mask)
1199 return set_extent_bit(tree, start, end, bits, NULL,
1200 NULL, mask);
1203 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1204 unsigned long bits, gfp_t mask)
1206 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1209 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1210 struct extent_state **cached_state, gfp_t mask)
1212 return set_extent_bit(tree, start, end,
1213 EXTENT_DELALLOC | EXTENT_UPTODATE,
1214 NULL, cached_state, mask);
1217 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1218 struct extent_state **cached_state, gfp_t mask)
1220 return set_extent_bit(tree, start, end,
1221 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1222 NULL, cached_state, mask);
1225 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1226 gfp_t mask)
1228 return clear_extent_bit(tree, start, end,
1229 EXTENT_DIRTY | EXTENT_DELALLOC |
1230 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1233 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1234 gfp_t mask)
1236 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1237 NULL, mask);
1240 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1241 struct extent_state **cached_state, gfp_t mask)
1243 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1244 cached_state, mask);
1247 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1248 struct extent_state **cached_state, gfp_t mask)
1250 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1251 cached_state, mask);
1255 * either insert or lock state struct between start and end use mask to tell
1256 * us if waiting is desired.
1258 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1259 unsigned long bits, struct extent_state **cached_state)
1261 int err;
1262 u64 failed_start;
1263 while (1) {
1264 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1265 EXTENT_LOCKED, &failed_start,
1266 cached_state, GFP_NOFS);
1267 if (err == -EEXIST) {
1268 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1269 start = failed_start;
1270 } else
1271 break;
1272 WARN_ON(start > end);
1274 return err;
1277 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1279 return lock_extent_bits(tree, start, end, 0, NULL);
1282 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1284 int err;
1285 u64 failed_start;
1287 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1288 &failed_start, NULL, GFP_NOFS);
1289 if (err == -EEXIST) {
1290 if (failed_start > start)
1291 clear_extent_bit(tree, start, failed_start - 1,
1292 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1293 return 0;
1295 return 1;
1298 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1299 struct extent_state **cached, gfp_t mask)
1301 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1302 mask);
1305 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1307 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1308 GFP_NOFS);
1311 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1313 unsigned long index = start >> PAGE_CACHE_SHIFT;
1314 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1315 struct page *page;
1317 while (index <= end_index) {
1318 page = find_get_page(inode->i_mapping, index);
1319 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1320 clear_page_dirty_for_io(page);
1321 page_cache_release(page);
1322 index++;
1324 return 0;
1327 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1329 unsigned long index = start >> PAGE_CACHE_SHIFT;
1330 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1331 struct page *page;
1333 while (index <= end_index) {
1334 page = find_get_page(inode->i_mapping, index);
1335 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1336 account_page_redirty(page);
1337 __set_page_dirty_nobuffers(page);
1338 page_cache_release(page);
1339 index++;
1341 return 0;
1345 * helper function to set both pages and extents in the tree writeback
1347 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1349 unsigned long index = start >> PAGE_CACHE_SHIFT;
1350 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1351 struct page *page;
1353 while (index <= end_index) {
1354 page = find_get_page(tree->mapping, index);
1355 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1356 set_page_writeback(page);
1357 page_cache_release(page);
1358 index++;
1360 return 0;
1363 /* find the first state struct with 'bits' set after 'start', and
1364 * return it. tree->lock must be held. NULL will returned if
1365 * nothing was found after 'start'
1367 static struct extent_state *
1368 find_first_extent_bit_state(struct extent_io_tree *tree,
1369 u64 start, unsigned long bits)
1371 struct rb_node *node;
1372 struct extent_state *state;
1375 * this search will find all the extents that end after
1376 * our range starts.
1378 node = tree_search(tree, start);
1379 if (!node)
1380 goto out;
1382 while (1) {
1383 state = rb_entry(node, struct extent_state, rb_node);
1384 if (state->end >= start && (state->state & bits))
1385 return state;
1387 node = rb_next(node);
1388 if (!node)
1389 break;
1391 out:
1392 return NULL;
1396 * find the first offset in the io tree with 'bits' set. zero is
1397 * returned if we find something, and *start_ret and *end_ret are
1398 * set to reflect the state struct that was found.
1400 * If nothing was found, 1 is returned. If found something, return 0.
1402 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1403 u64 *start_ret, u64 *end_ret, unsigned long bits,
1404 struct extent_state **cached_state)
1406 struct extent_state *state;
1407 struct rb_node *n;
1408 int ret = 1;
1410 spin_lock(&tree->lock);
1411 if (cached_state && *cached_state) {
1412 state = *cached_state;
1413 if (state->end == start - 1 && state->tree) {
1414 n = rb_next(&state->rb_node);
1415 while (n) {
1416 state = rb_entry(n, struct extent_state,
1417 rb_node);
1418 if (state->state & bits)
1419 goto got_it;
1420 n = rb_next(n);
1422 free_extent_state(*cached_state);
1423 *cached_state = NULL;
1424 goto out;
1426 free_extent_state(*cached_state);
1427 *cached_state = NULL;
1430 state = find_first_extent_bit_state(tree, start, bits);
1431 got_it:
1432 if (state) {
1433 cache_state(state, cached_state);
1434 *start_ret = state->start;
1435 *end_ret = state->end;
1436 ret = 0;
1438 out:
1439 spin_unlock(&tree->lock);
1440 return ret;
1444 * find a contiguous range of bytes in the file marked as delalloc, not
1445 * more than 'max_bytes'. start and end are used to return the range,
1447 * 1 is returned if we find something, 0 if nothing was in the tree
1449 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1450 u64 *start, u64 *end, u64 max_bytes,
1451 struct extent_state **cached_state)
1453 struct rb_node *node;
1454 struct extent_state *state;
1455 u64 cur_start = *start;
1456 u64 found = 0;
1457 u64 total_bytes = 0;
1459 spin_lock(&tree->lock);
1462 * this search will find all the extents that end after
1463 * our range starts.
1465 node = tree_search(tree, cur_start);
1466 if (!node) {
1467 if (!found)
1468 *end = (u64)-1;
1469 goto out;
1472 while (1) {
1473 state = rb_entry(node, struct extent_state, rb_node);
1474 if (found && (state->start != cur_start ||
1475 (state->state & EXTENT_BOUNDARY))) {
1476 goto out;
1478 if (!(state->state & EXTENT_DELALLOC)) {
1479 if (!found)
1480 *end = state->end;
1481 goto out;
1483 if (!found) {
1484 *start = state->start;
1485 *cached_state = state;
1486 atomic_inc(&state->refs);
1488 found++;
1489 *end = state->end;
1490 cur_start = state->end + 1;
1491 node = rb_next(node);
1492 total_bytes += state->end - state->start + 1;
1493 if (total_bytes >= max_bytes)
1494 break;
1495 if (!node)
1496 break;
1498 out:
1499 spin_unlock(&tree->lock);
1500 return found;
1503 static noinline void __unlock_for_delalloc(struct inode *inode,
1504 struct page *locked_page,
1505 u64 start, u64 end)
1507 int ret;
1508 struct page *pages[16];
1509 unsigned long index = start >> PAGE_CACHE_SHIFT;
1510 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1511 unsigned long nr_pages = end_index - index + 1;
1512 int i;
1514 if (index == locked_page->index && end_index == index)
1515 return;
1517 while (nr_pages > 0) {
1518 ret = find_get_pages_contig(inode->i_mapping, index,
1519 min_t(unsigned long, nr_pages,
1520 ARRAY_SIZE(pages)), pages);
1521 for (i = 0; i < ret; i++) {
1522 if (pages[i] != locked_page)
1523 unlock_page(pages[i]);
1524 page_cache_release(pages[i]);
1526 nr_pages -= ret;
1527 index += ret;
1528 cond_resched();
1532 static noinline int lock_delalloc_pages(struct inode *inode,
1533 struct page *locked_page,
1534 u64 delalloc_start,
1535 u64 delalloc_end)
1537 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1538 unsigned long start_index = index;
1539 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1540 unsigned long pages_locked = 0;
1541 struct page *pages[16];
1542 unsigned long nrpages;
1543 int ret;
1544 int i;
1546 /* the caller is responsible for locking the start index */
1547 if (index == locked_page->index && index == end_index)
1548 return 0;
1550 /* skip the page at the start index */
1551 nrpages = end_index - index + 1;
1552 while (nrpages > 0) {
1553 ret = find_get_pages_contig(inode->i_mapping, index,
1554 min_t(unsigned long,
1555 nrpages, ARRAY_SIZE(pages)), pages);
1556 if (ret == 0) {
1557 ret = -EAGAIN;
1558 goto done;
1560 /* now we have an array of pages, lock them all */
1561 for (i = 0; i < ret; i++) {
1563 * the caller is taking responsibility for
1564 * locked_page
1566 if (pages[i] != locked_page) {
1567 lock_page(pages[i]);
1568 if (!PageDirty(pages[i]) ||
1569 pages[i]->mapping != inode->i_mapping) {
1570 ret = -EAGAIN;
1571 unlock_page(pages[i]);
1572 page_cache_release(pages[i]);
1573 goto done;
1576 page_cache_release(pages[i]);
1577 pages_locked++;
1579 nrpages -= ret;
1580 index += ret;
1581 cond_resched();
1583 ret = 0;
1584 done:
1585 if (ret && pages_locked) {
1586 __unlock_for_delalloc(inode, locked_page,
1587 delalloc_start,
1588 ((u64)(start_index + pages_locked - 1)) <<
1589 PAGE_CACHE_SHIFT);
1591 return ret;
1595 * find a contiguous range of bytes in the file marked as delalloc, not
1596 * more than 'max_bytes'. start and end are used to return the range,
1598 * 1 is returned if we find something, 0 if nothing was in the tree
1600 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1601 struct extent_io_tree *tree,
1602 struct page *locked_page,
1603 u64 *start, u64 *end,
1604 u64 max_bytes)
1606 u64 delalloc_start;
1607 u64 delalloc_end;
1608 u64 found;
1609 struct extent_state *cached_state = NULL;
1610 int ret;
1611 int loops = 0;
1613 again:
1614 /* step one, find a bunch of delalloc bytes starting at start */
1615 delalloc_start = *start;
1616 delalloc_end = 0;
1617 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1618 max_bytes, &cached_state);
1619 if (!found || delalloc_end <= *start) {
1620 *start = delalloc_start;
1621 *end = delalloc_end;
1622 free_extent_state(cached_state);
1623 return 0;
1627 * start comes from the offset of locked_page. We have to lock
1628 * pages in order, so we can't process delalloc bytes before
1629 * locked_page
1631 if (delalloc_start < *start)
1632 delalloc_start = *start;
1635 * make sure to limit the number of pages we try to lock down
1637 if (delalloc_end + 1 - delalloc_start > max_bytes)
1638 delalloc_end = delalloc_start + max_bytes - 1;
1640 /* step two, lock all the pages after the page that has start */
1641 ret = lock_delalloc_pages(inode, locked_page,
1642 delalloc_start, delalloc_end);
1643 if (ret == -EAGAIN) {
1644 /* some of the pages are gone, lets avoid looping by
1645 * shortening the size of the delalloc range we're searching
1647 free_extent_state(cached_state);
1648 cached_state = NULL;
1649 if (!loops) {
1650 max_bytes = PAGE_CACHE_SIZE;
1651 loops = 1;
1652 goto again;
1653 } else {
1654 found = 0;
1655 goto out_failed;
1658 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1660 /* step three, lock the state bits for the whole range */
1661 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1663 /* then test to make sure it is all still delalloc */
1664 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1665 EXTENT_DELALLOC, 1, cached_state);
1666 if (!ret) {
1667 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1668 &cached_state, GFP_NOFS);
1669 __unlock_for_delalloc(inode, locked_page,
1670 delalloc_start, delalloc_end);
1671 cond_resched();
1672 goto again;
1674 free_extent_state(cached_state);
1675 *start = delalloc_start;
1676 *end = delalloc_end;
1677 out_failed:
1678 return found;
1681 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1682 struct page *locked_page,
1683 unsigned long clear_bits,
1684 unsigned long page_ops)
1686 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1687 int ret;
1688 struct page *pages[16];
1689 unsigned long index = start >> PAGE_CACHE_SHIFT;
1690 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1691 unsigned long nr_pages = end_index - index + 1;
1692 int i;
1694 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1695 if (page_ops == 0)
1696 return 0;
1698 while (nr_pages > 0) {
1699 ret = find_get_pages_contig(inode->i_mapping, index,
1700 min_t(unsigned long,
1701 nr_pages, ARRAY_SIZE(pages)), pages);
1702 for (i = 0; i < ret; i++) {
1704 if (page_ops & PAGE_SET_PRIVATE2)
1705 SetPagePrivate2(pages[i]);
1707 if (pages[i] == locked_page) {
1708 page_cache_release(pages[i]);
1709 continue;
1711 if (page_ops & PAGE_CLEAR_DIRTY)
1712 clear_page_dirty_for_io(pages[i]);
1713 if (page_ops & PAGE_SET_WRITEBACK)
1714 set_page_writeback(pages[i]);
1715 if (page_ops & PAGE_END_WRITEBACK)
1716 end_page_writeback(pages[i]);
1717 if (page_ops & PAGE_UNLOCK)
1718 unlock_page(pages[i]);
1719 page_cache_release(pages[i]);
1721 nr_pages -= ret;
1722 index += ret;
1723 cond_resched();
1725 return 0;
1729 * count the number of bytes in the tree that have a given bit(s)
1730 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1731 * cached. The total number found is returned.
1733 u64 count_range_bits(struct extent_io_tree *tree,
1734 u64 *start, u64 search_end, u64 max_bytes,
1735 unsigned long bits, int contig)
1737 struct rb_node *node;
1738 struct extent_state *state;
1739 u64 cur_start = *start;
1740 u64 total_bytes = 0;
1741 u64 last = 0;
1742 int found = 0;
1744 if (search_end <= cur_start) {
1745 WARN_ON(1);
1746 return 0;
1749 spin_lock(&tree->lock);
1750 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1751 total_bytes = tree->dirty_bytes;
1752 goto out;
1755 * this search will find all the extents that end after
1756 * our range starts.
1758 node = tree_search(tree, cur_start);
1759 if (!node)
1760 goto out;
1762 while (1) {
1763 state = rb_entry(node, struct extent_state, rb_node);
1764 if (state->start > search_end)
1765 break;
1766 if (contig && found && state->start > last + 1)
1767 break;
1768 if (state->end >= cur_start && (state->state & bits) == bits) {
1769 total_bytes += min(search_end, state->end) + 1 -
1770 max(cur_start, state->start);
1771 if (total_bytes >= max_bytes)
1772 break;
1773 if (!found) {
1774 *start = max(cur_start, state->start);
1775 found = 1;
1777 last = state->end;
1778 } else if (contig && found) {
1779 break;
1781 node = rb_next(node);
1782 if (!node)
1783 break;
1785 out:
1786 spin_unlock(&tree->lock);
1787 return total_bytes;
1791 * set the private field for a given byte offset in the tree. If there isn't
1792 * an extent_state there already, this does nothing.
1794 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1796 struct rb_node *node;
1797 struct extent_state *state;
1798 int ret = 0;
1800 spin_lock(&tree->lock);
1802 * this search will find all the extents that end after
1803 * our range starts.
1805 node = tree_search(tree, start);
1806 if (!node) {
1807 ret = -ENOENT;
1808 goto out;
1810 state = rb_entry(node, struct extent_state, rb_node);
1811 if (state->start != start) {
1812 ret = -ENOENT;
1813 goto out;
1815 state->private = private;
1816 out:
1817 spin_unlock(&tree->lock);
1818 return ret;
1821 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1823 struct rb_node *node;
1824 struct extent_state *state;
1825 int ret = 0;
1827 spin_lock(&tree->lock);
1829 * this search will find all the extents that end after
1830 * our range starts.
1832 node = tree_search(tree, start);
1833 if (!node) {
1834 ret = -ENOENT;
1835 goto out;
1837 state = rb_entry(node, struct extent_state, rb_node);
1838 if (state->start != start) {
1839 ret = -ENOENT;
1840 goto out;
1842 *private = state->private;
1843 out:
1844 spin_unlock(&tree->lock);
1845 return ret;
1849 * searches a range in the state tree for a given mask.
1850 * If 'filled' == 1, this returns 1 only if every extent in the tree
1851 * has the bits set. Otherwise, 1 is returned if any bit in the
1852 * range is found set.
1854 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1855 unsigned long bits, int filled, struct extent_state *cached)
1857 struct extent_state *state = NULL;
1858 struct rb_node *node;
1859 int bitset = 0;
1861 spin_lock(&tree->lock);
1862 if (cached && cached->tree && cached->start <= start &&
1863 cached->end > start)
1864 node = &cached->rb_node;
1865 else
1866 node = tree_search(tree, start);
1867 while (node && start <= end) {
1868 state = rb_entry(node, struct extent_state, rb_node);
1870 if (filled && state->start > start) {
1871 bitset = 0;
1872 break;
1875 if (state->start > end)
1876 break;
1878 if (state->state & bits) {
1879 bitset = 1;
1880 if (!filled)
1881 break;
1882 } else if (filled) {
1883 bitset = 0;
1884 break;
1887 if (state->end == (u64)-1)
1888 break;
1890 start = state->end + 1;
1891 if (start > end)
1892 break;
1893 node = rb_next(node);
1894 if (!node) {
1895 if (filled)
1896 bitset = 0;
1897 break;
1900 spin_unlock(&tree->lock);
1901 return bitset;
1905 * helper function to set a given page up to date if all the
1906 * extents in the tree for that page are up to date
1908 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1910 u64 start = page_offset(page);
1911 u64 end = start + PAGE_CACHE_SIZE - 1;
1912 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1913 SetPageUptodate(page);
1917 * When IO fails, either with EIO or csum verification fails, we
1918 * try other mirrors that might have a good copy of the data. This
1919 * io_failure_record is used to record state as we go through all the
1920 * mirrors. If another mirror has good data, the page is set up to date
1921 * and things continue. If a good mirror can't be found, the original
1922 * bio end_io callback is called to indicate things have failed.
1924 struct io_failure_record {
1925 struct page *page;
1926 u64 start;
1927 u64 len;
1928 u64 logical;
1929 unsigned long bio_flags;
1930 int this_mirror;
1931 int failed_mirror;
1932 int in_validation;
1935 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1936 int did_repair)
1938 int ret;
1939 int err = 0;
1940 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1942 set_state_private(failure_tree, rec->start, 0);
1943 ret = clear_extent_bits(failure_tree, rec->start,
1944 rec->start + rec->len - 1,
1945 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1946 if (ret)
1947 err = ret;
1949 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1950 rec->start + rec->len - 1,
1951 EXTENT_DAMAGED, GFP_NOFS);
1952 if (ret && !err)
1953 err = ret;
1955 kfree(rec);
1956 return err;
1959 static void repair_io_failure_callback(struct bio *bio, int err)
1961 complete(bio->bi_private);
1965 * this bypasses the standard btrfs submit functions deliberately, as
1966 * the standard behavior is to write all copies in a raid setup. here we only
1967 * want to write the one bad copy. so we do the mapping for ourselves and issue
1968 * submit_bio directly.
1969 * to avoid any synchronization issues, wait for the data after writing, which
1970 * actually prevents the read that triggered the error from finishing.
1971 * currently, there can be no more than two copies of every data bit. thus,
1972 * exactly one rewrite is required.
1974 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1975 u64 length, u64 logical, struct page *page,
1976 int mirror_num)
1978 struct bio *bio;
1979 struct btrfs_device *dev;
1980 DECLARE_COMPLETION_ONSTACK(compl);
1981 u64 map_length = 0;
1982 u64 sector;
1983 struct btrfs_bio *bbio = NULL;
1984 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1985 int ret;
1987 BUG_ON(!mirror_num);
1989 /* we can't repair anything in raid56 yet */
1990 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1991 return 0;
1993 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1994 if (!bio)
1995 return -EIO;
1996 bio->bi_private = &compl;
1997 bio->bi_end_io = repair_io_failure_callback;
1998 bio->bi_size = 0;
1999 map_length = length;
2001 ret = btrfs_map_block(fs_info, WRITE, logical,
2002 &map_length, &bbio, mirror_num);
2003 if (ret) {
2004 bio_put(bio);
2005 return -EIO;
2007 BUG_ON(mirror_num != bbio->mirror_num);
2008 sector = bbio->stripes[mirror_num-1].physical >> 9;
2009 bio->bi_sector = sector;
2010 dev = bbio->stripes[mirror_num-1].dev;
2011 kfree(bbio);
2012 if (!dev || !dev->bdev || !dev->writeable) {
2013 bio_put(bio);
2014 return -EIO;
2016 bio->bi_bdev = dev->bdev;
2017 bio_add_page(bio, page, length, start - page_offset(page));
2018 btrfsic_submit_bio(WRITE_SYNC, bio);
2019 wait_for_completion(&compl);
2021 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2022 /* try to remap that extent elsewhere? */
2023 bio_put(bio);
2024 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2025 return -EIO;
2028 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2029 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2030 start, rcu_str_deref(dev->name), sector);
2032 bio_put(bio);
2033 return 0;
2036 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2037 int mirror_num)
2039 u64 start = eb->start;
2040 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2041 int ret = 0;
2043 for (i = 0; i < num_pages; i++) {
2044 struct page *p = extent_buffer_page(eb, i);
2045 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2046 start, p, mirror_num);
2047 if (ret)
2048 break;
2049 start += PAGE_CACHE_SIZE;
2052 return ret;
2056 * each time an IO finishes, we do a fast check in the IO failure tree
2057 * to see if we need to process or clean up an io_failure_record
2059 static int clean_io_failure(u64 start, struct page *page)
2061 u64 private;
2062 u64 private_failure;
2063 struct io_failure_record *failrec;
2064 struct btrfs_fs_info *fs_info;
2065 struct extent_state *state;
2066 int num_copies;
2067 int did_repair = 0;
2068 int ret;
2069 struct inode *inode = page->mapping->host;
2071 private = 0;
2072 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2073 (u64)-1, 1, EXTENT_DIRTY, 0);
2074 if (!ret)
2075 return 0;
2077 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2078 &private_failure);
2079 if (ret)
2080 return 0;
2082 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2083 BUG_ON(!failrec->this_mirror);
2085 if (failrec->in_validation) {
2086 /* there was no real error, just free the record */
2087 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2088 failrec->start);
2089 did_repair = 1;
2090 goto out;
2093 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2094 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2095 failrec->start,
2096 EXTENT_LOCKED);
2097 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2099 if (state && state->start <= failrec->start &&
2100 state->end >= failrec->start + failrec->len - 1) {
2101 fs_info = BTRFS_I(inode)->root->fs_info;
2102 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103 failrec->len);
2104 if (num_copies > 1) {
2105 ret = repair_io_failure(fs_info, start, failrec->len,
2106 failrec->logical, page,
2107 failrec->failed_mirror);
2108 did_repair = !ret;
2110 ret = 0;
2113 out:
2114 if (!ret)
2115 ret = free_io_failure(inode, failrec, did_repair);
2117 return ret;
2121 * this is a generic handler for readpage errors (default
2122 * readpage_io_failed_hook). if other copies exist, read those and write back
2123 * good data to the failed position. does not investigate in remapping the
2124 * failed extent elsewhere, hoping the device will be smart enough to do this as
2125 * needed
2128 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2129 struct page *page, u64 start, u64 end,
2130 int failed_mirror)
2132 struct io_failure_record *failrec = NULL;
2133 u64 private;
2134 struct extent_map *em;
2135 struct inode *inode = page->mapping->host;
2136 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2137 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2138 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2139 struct bio *bio;
2140 struct btrfs_io_bio *btrfs_failed_bio;
2141 struct btrfs_io_bio *btrfs_bio;
2142 int num_copies;
2143 int ret;
2144 int read_mode;
2145 u64 logical;
2147 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2149 ret = get_state_private(failure_tree, start, &private);
2150 if (ret) {
2151 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2152 if (!failrec)
2153 return -ENOMEM;
2154 failrec->start = start;
2155 failrec->len = end - start + 1;
2156 failrec->this_mirror = 0;
2157 failrec->bio_flags = 0;
2158 failrec->in_validation = 0;
2160 read_lock(&em_tree->lock);
2161 em = lookup_extent_mapping(em_tree, start, failrec->len);
2162 if (!em) {
2163 read_unlock(&em_tree->lock);
2164 kfree(failrec);
2165 return -EIO;
2168 if (em->start > start || em->start + em->len < start) {
2169 free_extent_map(em);
2170 em = NULL;
2172 read_unlock(&em_tree->lock);
2174 if (!em) {
2175 kfree(failrec);
2176 return -EIO;
2178 logical = start - em->start;
2179 logical = em->block_start + logical;
2180 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2181 logical = em->block_start;
2182 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2183 extent_set_compress_type(&failrec->bio_flags,
2184 em->compress_type);
2186 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2187 "len=%llu\n", logical, start, failrec->len);
2188 failrec->logical = logical;
2189 free_extent_map(em);
2191 /* set the bits in the private failure tree */
2192 ret = set_extent_bits(failure_tree, start, end,
2193 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2194 if (ret >= 0)
2195 ret = set_state_private(failure_tree, start,
2196 (u64)(unsigned long)failrec);
2197 /* set the bits in the inode's tree */
2198 if (ret >= 0)
2199 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2200 GFP_NOFS);
2201 if (ret < 0) {
2202 kfree(failrec);
2203 return ret;
2205 } else {
2206 failrec = (struct io_failure_record *)(unsigned long)private;
2207 pr_debug("bio_readpage_error: (found) logical=%llu, "
2208 "start=%llu, len=%llu, validation=%d\n",
2209 failrec->logical, failrec->start, failrec->len,
2210 failrec->in_validation);
2212 * when data can be on disk more than twice, add to failrec here
2213 * (e.g. with a list for failed_mirror) to make
2214 * clean_io_failure() clean all those errors at once.
2217 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2218 failrec->logical, failrec->len);
2219 if (num_copies == 1) {
2221 * we only have a single copy of the data, so don't bother with
2222 * all the retry and error correction code that follows. no
2223 * matter what the error is, it is very likely to persist.
2225 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2226 num_copies, failrec->this_mirror, failed_mirror);
2227 free_io_failure(inode, failrec, 0);
2228 return -EIO;
2232 * there are two premises:
2233 * a) deliver good data to the caller
2234 * b) correct the bad sectors on disk
2236 if (failed_bio->bi_vcnt > 1) {
2238 * to fulfill b), we need to know the exact failing sectors, as
2239 * we don't want to rewrite any more than the failed ones. thus,
2240 * we need separate read requests for the failed bio
2242 * if the following BUG_ON triggers, our validation request got
2243 * merged. we need separate requests for our algorithm to work.
2245 BUG_ON(failrec->in_validation);
2246 failrec->in_validation = 1;
2247 failrec->this_mirror = failed_mirror;
2248 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2249 } else {
2251 * we're ready to fulfill a) and b) alongside. get a good copy
2252 * of the failed sector and if we succeed, we have setup
2253 * everything for repair_io_failure to do the rest for us.
2255 if (failrec->in_validation) {
2256 BUG_ON(failrec->this_mirror != failed_mirror);
2257 failrec->in_validation = 0;
2258 failrec->this_mirror = 0;
2260 failrec->failed_mirror = failed_mirror;
2261 failrec->this_mirror++;
2262 if (failrec->this_mirror == failed_mirror)
2263 failrec->this_mirror++;
2264 read_mode = READ_SYNC;
2267 if (failrec->this_mirror > num_copies) {
2268 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2269 num_copies, failrec->this_mirror, failed_mirror);
2270 free_io_failure(inode, failrec, 0);
2271 return -EIO;
2274 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2275 if (!bio) {
2276 free_io_failure(inode, failrec, 0);
2277 return -EIO;
2279 bio->bi_end_io = failed_bio->bi_end_io;
2280 bio->bi_sector = failrec->logical >> 9;
2281 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2282 bio->bi_size = 0;
2284 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2285 if (btrfs_failed_bio->csum) {
2286 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2289 btrfs_bio = btrfs_io_bio(bio);
2290 btrfs_bio->csum = btrfs_bio->csum_inline;
2291 phy_offset >>= inode->i_sb->s_blocksize_bits;
2292 phy_offset *= csum_size;
2293 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2294 csum_size);
2297 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2299 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2300 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2301 failrec->this_mirror, num_copies, failrec->in_validation);
2303 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2304 failrec->this_mirror,
2305 failrec->bio_flags, 0);
2306 return ret;
2309 /* lots and lots of room for performance fixes in the end_bio funcs */
2311 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2313 int uptodate = (err == 0);
2314 struct extent_io_tree *tree;
2315 int ret = 0;
2317 tree = &BTRFS_I(page->mapping->host)->io_tree;
2319 if (tree->ops && tree->ops->writepage_end_io_hook) {
2320 ret = tree->ops->writepage_end_io_hook(page, start,
2321 end, NULL, uptodate);
2322 if (ret)
2323 uptodate = 0;
2326 if (!uptodate) {
2327 ClearPageUptodate(page);
2328 SetPageError(page);
2329 ret = ret < 0 ? ret : -EIO;
2330 mapping_set_error(page->mapping, ret);
2332 return 0;
2336 * after a writepage IO is done, we need to:
2337 * clear the uptodate bits on error
2338 * clear the writeback bits in the extent tree for this IO
2339 * end_page_writeback if the page has no more pending IO
2341 * Scheduling is not allowed, so the extent state tree is expected
2342 * to have one and only one object corresponding to this IO.
2344 static void end_bio_extent_writepage(struct bio *bio, int err)
2346 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2347 struct extent_io_tree *tree;
2348 u64 start;
2349 u64 end;
2351 do {
2352 struct page *page = bvec->bv_page;
2353 tree = &BTRFS_I(page->mapping->host)->io_tree;
2355 /* We always issue full-page reads, but if some block
2356 * in a page fails to read, blk_update_request() will
2357 * advance bv_offset and adjust bv_len to compensate.
2358 * Print a warning for nonzero offsets, and an error
2359 * if they don't add up to a full page. */
2360 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2361 printk("%s page write in btrfs with offset %u and length %u\n",
2362 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2363 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2364 bvec->bv_offset, bvec->bv_len);
2366 start = page_offset(page);
2367 end = start + bvec->bv_offset + bvec->bv_len - 1;
2369 if (--bvec >= bio->bi_io_vec)
2370 prefetchw(&bvec->bv_page->flags);
2372 if (end_extent_writepage(page, err, start, end))
2373 continue;
2375 end_page_writeback(page);
2376 } while (bvec >= bio->bi_io_vec);
2378 bio_put(bio);
2381 static void
2382 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2383 int uptodate)
2385 struct extent_state *cached = NULL;
2386 u64 end = start + len - 1;
2388 if (uptodate && tree->track_uptodate)
2389 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2390 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2394 * after a readpage IO is done, we need to:
2395 * clear the uptodate bits on error
2396 * set the uptodate bits if things worked
2397 * set the page up to date if all extents in the tree are uptodate
2398 * clear the lock bit in the extent tree
2399 * unlock the page if there are no other extents locked for it
2401 * Scheduling is not allowed, so the extent state tree is expected
2402 * to have one and only one object corresponding to this IO.
2404 static void end_bio_extent_readpage(struct bio *bio, int err)
2406 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2407 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2408 struct bio_vec *bvec = bio->bi_io_vec;
2409 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2410 struct extent_io_tree *tree;
2411 u64 offset = 0;
2412 u64 start;
2413 u64 end;
2414 u64 len;
2415 u64 extent_start = 0;
2416 u64 extent_len = 0;
2417 int mirror;
2418 int ret;
2420 if (err)
2421 uptodate = 0;
2423 do {
2424 struct page *page = bvec->bv_page;
2425 struct inode *inode = page->mapping->host;
2427 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2428 "mirror=%lu\n", (u64)bio->bi_sector, err,
2429 io_bio->mirror_num);
2430 tree = &BTRFS_I(inode)->io_tree;
2432 /* We always issue full-page reads, but if some block
2433 * in a page fails to read, blk_update_request() will
2434 * advance bv_offset and adjust bv_len to compensate.
2435 * Print a warning for nonzero offsets, and an error
2436 * if they don't add up to a full page. */
2437 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2438 printk("%s page read in btrfs with offset %u and length %u\n",
2439 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2440 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2441 bvec->bv_offset, bvec->bv_len);
2443 start = page_offset(page);
2444 end = start + bvec->bv_offset + bvec->bv_len - 1;
2445 len = bvec->bv_len;
2447 if (++bvec <= bvec_end)
2448 prefetchw(&bvec->bv_page->flags);
2450 mirror = io_bio->mirror_num;
2451 if (likely(uptodate && tree->ops &&
2452 tree->ops->readpage_end_io_hook)) {
2453 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2454 page, start, end,
2455 mirror);
2456 if (ret)
2457 uptodate = 0;
2458 else
2459 clean_io_failure(start, page);
2462 if (likely(uptodate))
2463 goto readpage_ok;
2465 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2466 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2467 if (!ret && !err &&
2468 test_bit(BIO_UPTODATE, &bio->bi_flags))
2469 uptodate = 1;
2470 } else {
2472 * The generic bio_readpage_error handles errors the
2473 * following way: If possible, new read requests are
2474 * created and submitted and will end up in
2475 * end_bio_extent_readpage as well (if we're lucky, not
2476 * in the !uptodate case). In that case it returns 0 and
2477 * we just go on with the next page in our bio. If it
2478 * can't handle the error it will return -EIO and we
2479 * remain responsible for that page.
2481 ret = bio_readpage_error(bio, offset, page, start, end,
2482 mirror);
2483 if (ret == 0) {
2484 uptodate =
2485 test_bit(BIO_UPTODATE, &bio->bi_flags);
2486 if (err)
2487 uptodate = 0;
2488 continue;
2491 readpage_ok:
2492 if (likely(uptodate)) {
2493 loff_t i_size = i_size_read(inode);
2494 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2495 unsigned offset;
2497 /* Zero out the end if this page straddles i_size */
2498 offset = i_size & (PAGE_CACHE_SIZE-1);
2499 if (page->index == end_index && offset)
2500 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2501 SetPageUptodate(page);
2502 } else {
2503 ClearPageUptodate(page);
2504 SetPageError(page);
2506 unlock_page(page);
2507 offset += len;
2509 if (unlikely(!uptodate)) {
2510 if (extent_len) {
2511 endio_readpage_release_extent(tree,
2512 extent_start,
2513 extent_len, 1);
2514 extent_start = 0;
2515 extent_len = 0;
2517 endio_readpage_release_extent(tree, start,
2518 end - start + 1, 0);
2519 } else if (!extent_len) {
2520 extent_start = start;
2521 extent_len = end + 1 - start;
2522 } else if (extent_start + extent_len == start) {
2523 extent_len += end + 1 - start;
2524 } else {
2525 endio_readpage_release_extent(tree, extent_start,
2526 extent_len, uptodate);
2527 extent_start = start;
2528 extent_len = end + 1 - start;
2530 } while (bvec <= bvec_end);
2532 if (extent_len)
2533 endio_readpage_release_extent(tree, extent_start, extent_len,
2534 uptodate);
2535 if (io_bio->end_io)
2536 io_bio->end_io(io_bio, err);
2537 bio_put(bio);
2541 * this allocates from the btrfs_bioset. We're returning a bio right now
2542 * but you can call btrfs_io_bio for the appropriate container_of magic
2544 struct bio *
2545 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2546 gfp_t gfp_flags)
2548 struct btrfs_io_bio *btrfs_bio;
2549 struct bio *bio;
2551 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2553 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2554 while (!bio && (nr_vecs /= 2)) {
2555 bio = bio_alloc_bioset(gfp_flags,
2556 nr_vecs, btrfs_bioset);
2560 if (bio) {
2561 bio->bi_size = 0;
2562 bio->bi_bdev = bdev;
2563 bio->bi_sector = first_sector;
2564 btrfs_bio = btrfs_io_bio(bio);
2565 btrfs_bio->csum = NULL;
2566 btrfs_bio->csum_allocated = NULL;
2567 btrfs_bio->end_io = NULL;
2569 return bio;
2572 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2574 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2578 /* this also allocates from the btrfs_bioset */
2579 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2581 struct btrfs_io_bio *btrfs_bio;
2582 struct bio *bio;
2584 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2585 if (bio) {
2586 btrfs_bio = btrfs_io_bio(bio);
2587 btrfs_bio->csum = NULL;
2588 btrfs_bio->csum_allocated = NULL;
2589 btrfs_bio->end_io = NULL;
2591 return bio;
2595 static int __must_check submit_one_bio(int rw, struct bio *bio,
2596 int mirror_num, unsigned long bio_flags)
2598 int ret = 0;
2599 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2600 struct page *page = bvec->bv_page;
2601 struct extent_io_tree *tree = bio->bi_private;
2602 u64 start;
2604 start = page_offset(page) + bvec->bv_offset;
2606 bio->bi_private = NULL;
2608 bio_get(bio);
2610 if (tree->ops && tree->ops->submit_bio_hook)
2611 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2612 mirror_num, bio_flags, start);
2613 else
2614 btrfsic_submit_bio(rw, bio);
2616 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2617 ret = -EOPNOTSUPP;
2618 bio_put(bio);
2619 return ret;
2622 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2623 unsigned long offset, size_t size, struct bio *bio,
2624 unsigned long bio_flags)
2626 int ret = 0;
2627 if (tree->ops && tree->ops->merge_bio_hook)
2628 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2629 bio_flags);
2630 BUG_ON(ret < 0);
2631 return ret;
2635 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2636 struct page *page, sector_t sector,
2637 size_t size, unsigned long offset,
2638 struct block_device *bdev,
2639 struct bio **bio_ret,
2640 unsigned long max_pages,
2641 bio_end_io_t end_io_func,
2642 int mirror_num,
2643 unsigned long prev_bio_flags,
2644 unsigned long bio_flags)
2646 int ret = 0;
2647 struct bio *bio;
2648 int nr;
2649 int contig = 0;
2650 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2651 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2652 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2654 if (bio_ret && *bio_ret) {
2655 bio = *bio_ret;
2656 if (old_compressed)
2657 contig = bio->bi_sector == sector;
2658 else
2659 contig = bio_end_sector(bio) == sector;
2661 if (prev_bio_flags != bio_flags || !contig ||
2662 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2663 bio_add_page(bio, page, page_size, offset) < page_size) {
2664 ret = submit_one_bio(rw, bio, mirror_num,
2665 prev_bio_flags);
2666 if (ret < 0)
2667 return ret;
2668 bio = NULL;
2669 } else {
2670 return 0;
2673 if (this_compressed)
2674 nr = BIO_MAX_PAGES;
2675 else
2676 nr = bio_get_nr_vecs(bdev);
2678 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2679 if (!bio)
2680 return -ENOMEM;
2682 bio_add_page(bio, page, page_size, offset);
2683 bio->bi_end_io = end_io_func;
2684 bio->bi_private = tree;
2686 if (bio_ret)
2687 *bio_ret = bio;
2688 else
2689 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2691 return ret;
2694 static void attach_extent_buffer_page(struct extent_buffer *eb,
2695 struct page *page)
2697 if (!PagePrivate(page)) {
2698 SetPagePrivate(page);
2699 page_cache_get(page);
2700 set_page_private(page, (unsigned long)eb);
2701 } else {
2702 WARN_ON(page->private != (unsigned long)eb);
2706 void set_page_extent_mapped(struct page *page)
2708 if (!PagePrivate(page)) {
2709 SetPagePrivate(page);
2710 page_cache_get(page);
2711 set_page_private(page, EXTENT_PAGE_PRIVATE);
2715 static struct extent_map *
2716 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2717 u64 start, u64 len, get_extent_t *get_extent,
2718 struct extent_map **em_cached)
2720 struct extent_map *em;
2722 if (em_cached && *em_cached) {
2723 em = *em_cached;
2724 if (em->in_tree && start >= em->start &&
2725 start < extent_map_end(em)) {
2726 atomic_inc(&em->refs);
2727 return em;
2730 free_extent_map(em);
2731 *em_cached = NULL;
2734 em = get_extent(inode, page, pg_offset, start, len, 0);
2735 if (em_cached && !IS_ERR_OR_NULL(em)) {
2736 BUG_ON(*em_cached);
2737 atomic_inc(&em->refs);
2738 *em_cached = em;
2740 return em;
2743 * basic readpage implementation. Locked extent state structs are inserted
2744 * into the tree that are removed when the IO is done (by the end_io
2745 * handlers)
2746 * XXX JDM: This needs looking at to ensure proper page locking
2748 static int __do_readpage(struct extent_io_tree *tree,
2749 struct page *page,
2750 get_extent_t *get_extent,
2751 struct extent_map **em_cached,
2752 struct bio **bio, int mirror_num,
2753 unsigned long *bio_flags, int rw)
2755 struct inode *inode = page->mapping->host;
2756 u64 start = page_offset(page);
2757 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2758 u64 end;
2759 u64 cur = start;
2760 u64 extent_offset;
2761 u64 last_byte = i_size_read(inode);
2762 u64 block_start;
2763 u64 cur_end;
2764 sector_t sector;
2765 struct extent_map *em;
2766 struct block_device *bdev;
2767 int ret;
2768 int nr = 0;
2769 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2770 size_t pg_offset = 0;
2771 size_t iosize;
2772 size_t disk_io_size;
2773 size_t blocksize = inode->i_sb->s_blocksize;
2774 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2776 set_page_extent_mapped(page);
2778 end = page_end;
2779 if (!PageUptodate(page)) {
2780 if (cleancache_get_page(page) == 0) {
2781 BUG_ON(blocksize != PAGE_SIZE);
2782 unlock_extent(tree, start, end);
2783 goto out;
2787 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2788 char *userpage;
2789 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2791 if (zero_offset) {
2792 iosize = PAGE_CACHE_SIZE - zero_offset;
2793 userpage = kmap_atomic(page);
2794 memset(userpage + zero_offset, 0, iosize);
2795 flush_dcache_page(page);
2796 kunmap_atomic(userpage);
2799 while (cur <= end) {
2800 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2802 if (cur >= last_byte) {
2803 char *userpage;
2804 struct extent_state *cached = NULL;
2806 iosize = PAGE_CACHE_SIZE - pg_offset;
2807 userpage = kmap_atomic(page);
2808 memset(userpage + pg_offset, 0, iosize);
2809 flush_dcache_page(page);
2810 kunmap_atomic(userpage);
2811 set_extent_uptodate(tree, cur, cur + iosize - 1,
2812 &cached, GFP_NOFS);
2813 if (!parent_locked)
2814 unlock_extent_cached(tree, cur,
2815 cur + iosize - 1,
2816 &cached, GFP_NOFS);
2817 break;
2819 em = __get_extent_map(inode, page, pg_offset, cur,
2820 end - cur + 1, get_extent, em_cached);
2821 if (IS_ERR_OR_NULL(em)) {
2822 SetPageError(page);
2823 if (!parent_locked)
2824 unlock_extent(tree, cur, end);
2825 break;
2827 extent_offset = cur - em->start;
2828 BUG_ON(extent_map_end(em) <= cur);
2829 BUG_ON(end < cur);
2831 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2832 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2833 extent_set_compress_type(&this_bio_flag,
2834 em->compress_type);
2837 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2838 cur_end = min(extent_map_end(em) - 1, end);
2839 iosize = ALIGN(iosize, blocksize);
2840 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2841 disk_io_size = em->block_len;
2842 sector = em->block_start >> 9;
2843 } else {
2844 sector = (em->block_start + extent_offset) >> 9;
2845 disk_io_size = iosize;
2847 bdev = em->bdev;
2848 block_start = em->block_start;
2849 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2850 block_start = EXTENT_MAP_HOLE;
2851 free_extent_map(em);
2852 em = NULL;
2854 /* we've found a hole, just zero and go on */
2855 if (block_start == EXTENT_MAP_HOLE) {
2856 char *userpage;
2857 struct extent_state *cached = NULL;
2859 userpage = kmap_atomic(page);
2860 memset(userpage + pg_offset, 0, iosize);
2861 flush_dcache_page(page);
2862 kunmap_atomic(userpage);
2864 set_extent_uptodate(tree, cur, cur + iosize - 1,
2865 &cached, GFP_NOFS);
2866 unlock_extent_cached(tree, cur, cur + iosize - 1,
2867 &cached, GFP_NOFS);
2868 cur = cur + iosize;
2869 pg_offset += iosize;
2870 continue;
2872 /* the get_extent function already copied into the page */
2873 if (test_range_bit(tree, cur, cur_end,
2874 EXTENT_UPTODATE, 1, NULL)) {
2875 check_page_uptodate(tree, page);
2876 if (!parent_locked)
2877 unlock_extent(tree, cur, cur + iosize - 1);
2878 cur = cur + iosize;
2879 pg_offset += iosize;
2880 continue;
2882 /* we have an inline extent but it didn't get marked up
2883 * to date. Error out
2885 if (block_start == EXTENT_MAP_INLINE) {
2886 SetPageError(page);
2887 if (!parent_locked)
2888 unlock_extent(tree, cur, cur + iosize - 1);
2889 cur = cur + iosize;
2890 pg_offset += iosize;
2891 continue;
2894 pnr -= page->index;
2895 ret = submit_extent_page(rw, tree, page,
2896 sector, disk_io_size, pg_offset,
2897 bdev, bio, pnr,
2898 end_bio_extent_readpage, mirror_num,
2899 *bio_flags,
2900 this_bio_flag);
2901 if (!ret) {
2902 nr++;
2903 *bio_flags = this_bio_flag;
2904 } else {
2905 SetPageError(page);
2906 if (!parent_locked)
2907 unlock_extent(tree, cur, cur + iosize - 1);
2909 cur = cur + iosize;
2910 pg_offset += iosize;
2912 out:
2913 if (!nr) {
2914 if (!PageError(page))
2915 SetPageUptodate(page);
2916 unlock_page(page);
2918 return 0;
2921 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2922 struct page *pages[], int nr_pages,
2923 u64 start, u64 end,
2924 get_extent_t *get_extent,
2925 struct extent_map **em_cached,
2926 struct bio **bio, int mirror_num,
2927 unsigned long *bio_flags, int rw)
2929 struct inode *inode;
2930 struct btrfs_ordered_extent *ordered;
2931 int index;
2933 inode = pages[0]->mapping->host;
2934 while (1) {
2935 lock_extent(tree, start, end);
2936 ordered = btrfs_lookup_ordered_range(inode, start,
2937 end - start + 1);
2938 if (!ordered)
2939 break;
2940 unlock_extent(tree, start, end);
2941 btrfs_start_ordered_extent(inode, ordered, 1);
2942 btrfs_put_ordered_extent(ordered);
2945 for (index = 0; index < nr_pages; index++) {
2946 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2947 mirror_num, bio_flags, rw);
2948 page_cache_release(pages[index]);
2952 static void __extent_readpages(struct extent_io_tree *tree,
2953 struct page *pages[],
2954 int nr_pages, get_extent_t *get_extent,
2955 struct extent_map **em_cached,
2956 struct bio **bio, int mirror_num,
2957 unsigned long *bio_flags, int rw)
2959 u64 start = 0;
2960 u64 end = 0;
2961 u64 page_start;
2962 int index;
2963 int first_index = 0;
2965 for (index = 0; index < nr_pages; index++) {
2966 page_start = page_offset(pages[index]);
2967 if (!end) {
2968 start = page_start;
2969 end = start + PAGE_CACHE_SIZE - 1;
2970 first_index = index;
2971 } else if (end + 1 == page_start) {
2972 end += PAGE_CACHE_SIZE;
2973 } else {
2974 __do_contiguous_readpages(tree, &pages[first_index],
2975 index - first_index, start,
2976 end, get_extent, em_cached,
2977 bio, mirror_num, bio_flags,
2978 rw);
2979 start = page_start;
2980 end = start + PAGE_CACHE_SIZE - 1;
2981 first_index = index;
2985 if (end)
2986 __do_contiguous_readpages(tree, &pages[first_index],
2987 index - first_index, start,
2988 end, get_extent, em_cached, bio,
2989 mirror_num, bio_flags, rw);
2992 static int __extent_read_full_page(struct extent_io_tree *tree,
2993 struct page *page,
2994 get_extent_t *get_extent,
2995 struct bio **bio, int mirror_num,
2996 unsigned long *bio_flags, int rw)
2998 struct inode *inode = page->mapping->host;
2999 struct btrfs_ordered_extent *ordered;
3000 u64 start = page_offset(page);
3001 u64 end = start + PAGE_CACHE_SIZE - 1;
3002 int ret;
3004 while (1) {
3005 lock_extent(tree, start, end);
3006 ordered = btrfs_lookup_ordered_extent(inode, start);
3007 if (!ordered)
3008 break;
3009 unlock_extent(tree, start, end);
3010 btrfs_start_ordered_extent(inode, ordered, 1);
3011 btrfs_put_ordered_extent(ordered);
3014 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3015 bio_flags, rw);
3016 return ret;
3019 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3020 get_extent_t *get_extent, int mirror_num)
3022 struct bio *bio = NULL;
3023 unsigned long bio_flags = 0;
3024 int ret;
3026 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3027 &bio_flags, READ);
3028 if (bio)
3029 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3030 return ret;
3033 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3034 get_extent_t *get_extent, int mirror_num)
3036 struct bio *bio = NULL;
3037 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3038 int ret;
3040 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3041 &bio_flags, READ);
3042 if (bio)
3043 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3044 return ret;
3047 static noinline void update_nr_written(struct page *page,
3048 struct writeback_control *wbc,
3049 unsigned long nr_written)
3051 wbc->nr_to_write -= nr_written;
3052 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3053 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3054 page->mapping->writeback_index = page->index + nr_written;
3058 * the writepage semantics are similar to regular writepage. extent
3059 * records are inserted to lock ranges in the tree, and as dirty areas
3060 * are found, they are marked writeback. Then the lock bits are removed
3061 * and the end_io handler clears the writeback ranges
3063 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3064 void *data)
3066 struct inode *inode = page->mapping->host;
3067 struct extent_page_data *epd = data;
3068 struct extent_io_tree *tree = epd->tree;
3069 u64 start = page_offset(page);
3070 u64 delalloc_start;
3071 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3072 u64 end;
3073 u64 cur = start;
3074 u64 extent_offset;
3075 u64 last_byte = i_size_read(inode);
3076 u64 block_start;
3077 u64 iosize;
3078 sector_t sector;
3079 struct extent_state *cached_state = NULL;
3080 struct extent_map *em;
3081 struct block_device *bdev;
3082 int ret;
3083 int nr = 0;
3084 size_t pg_offset = 0;
3085 size_t blocksize;
3086 loff_t i_size = i_size_read(inode);
3087 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3088 u64 nr_delalloc;
3089 u64 delalloc_end;
3090 int page_started;
3091 int compressed;
3092 int write_flags;
3093 unsigned long nr_written = 0;
3094 bool fill_delalloc = true;
3096 if (wbc->sync_mode == WB_SYNC_ALL)
3097 write_flags = WRITE_SYNC;
3098 else
3099 write_flags = WRITE;
3101 trace___extent_writepage(page, inode, wbc);
3103 WARN_ON(!PageLocked(page));
3105 ClearPageError(page);
3107 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3108 if (page->index > end_index ||
3109 (page->index == end_index && !pg_offset)) {
3110 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3111 unlock_page(page);
3112 return 0;
3115 if (page->index == end_index) {
3116 char *userpage;
3118 userpage = kmap_atomic(page);
3119 memset(userpage + pg_offset, 0,
3120 PAGE_CACHE_SIZE - pg_offset);
3121 kunmap_atomic(userpage);
3122 flush_dcache_page(page);
3124 pg_offset = 0;
3126 set_page_extent_mapped(page);
3128 if (!tree->ops || !tree->ops->fill_delalloc)
3129 fill_delalloc = false;
3131 delalloc_start = start;
3132 delalloc_end = 0;
3133 page_started = 0;
3134 if (!epd->extent_locked && fill_delalloc) {
3135 u64 delalloc_to_write = 0;
3137 * make sure the wbc mapping index is at least updated
3138 * to this page.
3140 update_nr_written(page, wbc, 0);
3142 while (delalloc_end < page_end) {
3143 nr_delalloc = find_lock_delalloc_range(inode, tree,
3144 page,
3145 &delalloc_start,
3146 &delalloc_end,
3147 128 * 1024 * 1024);
3148 if (nr_delalloc == 0) {
3149 delalloc_start = delalloc_end + 1;
3150 continue;
3152 ret = tree->ops->fill_delalloc(inode, page,
3153 delalloc_start,
3154 delalloc_end,
3155 &page_started,
3156 &nr_written);
3157 /* File system has been set read-only */
3158 if (ret) {
3159 SetPageError(page);
3160 goto done;
3163 * delalloc_end is already one less than the total
3164 * length, so we don't subtract one from
3165 * PAGE_CACHE_SIZE
3167 delalloc_to_write += (delalloc_end - delalloc_start +
3168 PAGE_CACHE_SIZE) >>
3169 PAGE_CACHE_SHIFT;
3170 delalloc_start = delalloc_end + 1;
3172 if (wbc->nr_to_write < delalloc_to_write) {
3173 int thresh = 8192;
3175 if (delalloc_to_write < thresh * 2)
3176 thresh = delalloc_to_write;
3177 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3178 thresh);
3181 /* did the fill delalloc function already unlock and start
3182 * the IO?
3184 if (page_started) {
3185 ret = 0;
3187 * we've unlocked the page, so we can't update
3188 * the mapping's writeback index, just update
3189 * nr_to_write.
3191 wbc->nr_to_write -= nr_written;
3192 goto done_unlocked;
3195 if (tree->ops && tree->ops->writepage_start_hook) {
3196 ret = tree->ops->writepage_start_hook(page, start,
3197 page_end);
3198 if (ret) {
3199 /* Fixup worker will requeue */
3200 if (ret == -EBUSY)
3201 wbc->pages_skipped++;
3202 else
3203 redirty_page_for_writepage(wbc, page);
3204 update_nr_written(page, wbc, nr_written);
3205 unlock_page(page);
3206 ret = 0;
3207 goto done_unlocked;
3212 * we don't want to touch the inode after unlocking the page,
3213 * so we update the mapping writeback index now
3215 update_nr_written(page, wbc, nr_written + 1);
3217 end = page_end;
3218 if (last_byte <= start) {
3219 if (tree->ops && tree->ops->writepage_end_io_hook)
3220 tree->ops->writepage_end_io_hook(page, start,
3221 page_end, NULL, 1);
3222 goto done;
3225 blocksize = inode->i_sb->s_blocksize;
3227 while (cur <= end) {
3228 if (cur >= last_byte) {
3229 if (tree->ops && tree->ops->writepage_end_io_hook)
3230 tree->ops->writepage_end_io_hook(page, cur,
3231 page_end, NULL, 1);
3232 break;
3234 em = epd->get_extent(inode, page, pg_offset, cur,
3235 end - cur + 1, 1);
3236 if (IS_ERR_OR_NULL(em)) {
3237 SetPageError(page);
3238 break;
3241 extent_offset = cur - em->start;
3242 BUG_ON(extent_map_end(em) <= cur);
3243 BUG_ON(end < cur);
3244 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3245 iosize = ALIGN(iosize, blocksize);
3246 sector = (em->block_start + extent_offset) >> 9;
3247 bdev = em->bdev;
3248 block_start = em->block_start;
3249 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3250 free_extent_map(em);
3251 em = NULL;
3254 * compressed and inline extents are written through other
3255 * paths in the FS
3257 if (compressed || block_start == EXTENT_MAP_HOLE ||
3258 block_start == EXTENT_MAP_INLINE) {
3260 * end_io notification does not happen here for
3261 * compressed extents
3263 if (!compressed && tree->ops &&
3264 tree->ops->writepage_end_io_hook)
3265 tree->ops->writepage_end_io_hook(page, cur,
3266 cur + iosize - 1,
3267 NULL, 1);
3268 else if (compressed) {
3269 /* we don't want to end_page_writeback on
3270 * a compressed extent. this happens
3271 * elsewhere
3273 nr++;
3276 cur += iosize;
3277 pg_offset += iosize;
3278 continue;
3280 /* leave this out until we have a page_mkwrite call */
3281 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3282 EXTENT_DIRTY, 0, NULL)) {
3283 cur = cur + iosize;
3284 pg_offset += iosize;
3285 continue;
3288 if (tree->ops && tree->ops->writepage_io_hook) {
3289 ret = tree->ops->writepage_io_hook(page, cur,
3290 cur + iosize - 1);
3291 } else {
3292 ret = 0;
3294 if (ret) {
3295 SetPageError(page);
3296 } else {
3297 unsigned long max_nr = end_index + 1;
3299 set_range_writeback(tree, cur, cur + iosize - 1);
3300 if (!PageWriteback(page)) {
3301 printk(KERN_ERR "btrfs warning page %lu not "
3302 "writeback, cur %llu end %llu\n",
3303 page->index, cur, end);
3306 ret = submit_extent_page(write_flags, tree, page,
3307 sector, iosize, pg_offset,
3308 bdev, &epd->bio, max_nr,
3309 end_bio_extent_writepage,
3310 0, 0, 0);
3311 if (ret)
3312 SetPageError(page);
3314 cur = cur + iosize;
3315 pg_offset += iosize;
3316 nr++;
3318 done:
3319 if (nr == 0) {
3320 /* make sure the mapping tag for page dirty gets cleared */
3321 set_page_writeback(page);
3322 end_page_writeback(page);
3324 unlock_page(page);
3326 done_unlocked:
3328 /* drop our reference on any cached states */
3329 free_extent_state(cached_state);
3330 return 0;
3333 static int eb_wait(void *word)
3335 io_schedule();
3336 return 0;
3339 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3341 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3342 TASK_UNINTERRUPTIBLE);
3345 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3346 struct btrfs_fs_info *fs_info,
3347 struct extent_page_data *epd)
3349 unsigned long i, num_pages;
3350 int flush = 0;
3351 int ret = 0;
3353 if (!btrfs_try_tree_write_lock(eb)) {
3354 flush = 1;
3355 flush_write_bio(epd);
3356 btrfs_tree_lock(eb);
3359 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3360 btrfs_tree_unlock(eb);
3361 if (!epd->sync_io)
3362 return 0;
3363 if (!flush) {
3364 flush_write_bio(epd);
3365 flush = 1;
3367 while (1) {
3368 wait_on_extent_buffer_writeback(eb);
3369 btrfs_tree_lock(eb);
3370 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3371 break;
3372 btrfs_tree_unlock(eb);
3377 * We need to do this to prevent races in people who check if the eb is
3378 * under IO since we can end up having no IO bits set for a short period
3379 * of time.
3381 spin_lock(&eb->refs_lock);
3382 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3383 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3384 spin_unlock(&eb->refs_lock);
3385 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3386 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3387 -eb->len,
3388 fs_info->dirty_metadata_batch);
3389 ret = 1;
3390 } else {
3391 spin_unlock(&eb->refs_lock);
3394 btrfs_tree_unlock(eb);
3396 if (!ret)
3397 return ret;
3399 num_pages = num_extent_pages(eb->start, eb->len);
3400 for (i = 0; i < num_pages; i++) {
3401 struct page *p = extent_buffer_page(eb, i);
3403 if (!trylock_page(p)) {
3404 if (!flush) {
3405 flush_write_bio(epd);
3406 flush = 1;
3408 lock_page(p);
3412 return ret;
3415 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3417 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3418 smp_mb__after_clear_bit();
3419 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3422 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3424 int uptodate = err == 0;
3425 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3426 struct extent_buffer *eb;
3427 int done;
3429 do {
3430 struct page *page = bvec->bv_page;
3432 bvec--;
3433 eb = (struct extent_buffer *)page->private;
3434 BUG_ON(!eb);
3435 done = atomic_dec_and_test(&eb->io_pages);
3437 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3438 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3439 ClearPageUptodate(page);
3440 SetPageError(page);
3443 end_page_writeback(page);
3445 if (!done)
3446 continue;
3448 end_extent_buffer_writeback(eb);
3449 } while (bvec >= bio->bi_io_vec);
3451 bio_put(bio);
3455 static int write_one_eb(struct extent_buffer *eb,
3456 struct btrfs_fs_info *fs_info,
3457 struct writeback_control *wbc,
3458 struct extent_page_data *epd)
3460 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3461 u64 offset = eb->start;
3462 unsigned long i, num_pages;
3463 unsigned long bio_flags = 0;
3464 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3465 int ret = 0;
3467 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3468 num_pages = num_extent_pages(eb->start, eb->len);
3469 atomic_set(&eb->io_pages, num_pages);
3470 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3471 bio_flags = EXTENT_BIO_TREE_LOG;
3473 for (i = 0; i < num_pages; i++) {
3474 struct page *p = extent_buffer_page(eb, i);
3476 clear_page_dirty_for_io(p);
3477 set_page_writeback(p);
3478 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3479 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3480 -1, end_bio_extent_buffer_writepage,
3481 0, epd->bio_flags, bio_flags);
3482 epd->bio_flags = bio_flags;
3483 if (ret) {
3484 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3485 SetPageError(p);
3486 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3487 end_extent_buffer_writeback(eb);
3488 ret = -EIO;
3489 break;
3491 offset += PAGE_CACHE_SIZE;
3492 update_nr_written(p, wbc, 1);
3493 unlock_page(p);
3496 if (unlikely(ret)) {
3497 for (; i < num_pages; i++) {
3498 struct page *p = extent_buffer_page(eb, i);
3499 unlock_page(p);
3503 return ret;
3506 int btree_write_cache_pages(struct address_space *mapping,
3507 struct writeback_control *wbc)
3509 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3510 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3511 struct extent_buffer *eb, *prev_eb = NULL;
3512 struct extent_page_data epd = {
3513 .bio = NULL,
3514 .tree = tree,
3515 .extent_locked = 0,
3516 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3517 .bio_flags = 0,
3519 int ret = 0;
3520 int done = 0;
3521 int nr_to_write_done = 0;
3522 struct pagevec pvec;
3523 int nr_pages;
3524 pgoff_t index;
3525 pgoff_t end; /* Inclusive */
3526 int scanned = 0;
3527 int tag;
3529 pagevec_init(&pvec, 0);
3530 if (wbc->range_cyclic) {
3531 index = mapping->writeback_index; /* Start from prev offset */
3532 end = -1;
3533 } else {
3534 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3535 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3536 scanned = 1;
3538 if (wbc->sync_mode == WB_SYNC_ALL)
3539 tag = PAGECACHE_TAG_TOWRITE;
3540 else
3541 tag = PAGECACHE_TAG_DIRTY;
3542 retry:
3543 if (wbc->sync_mode == WB_SYNC_ALL)
3544 tag_pages_for_writeback(mapping, index, end);
3545 while (!done && !nr_to_write_done && (index <= end) &&
3546 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3547 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3548 unsigned i;
3550 scanned = 1;
3551 for (i = 0; i < nr_pages; i++) {
3552 struct page *page = pvec.pages[i];
3554 if (!PagePrivate(page))
3555 continue;
3557 if (!wbc->range_cyclic && page->index > end) {
3558 done = 1;
3559 break;
3562 spin_lock(&mapping->private_lock);
3563 if (!PagePrivate(page)) {
3564 spin_unlock(&mapping->private_lock);
3565 continue;
3568 eb = (struct extent_buffer *)page->private;
3571 * Shouldn't happen and normally this would be a BUG_ON
3572 * but no sense in crashing the users box for something
3573 * we can survive anyway.
3575 if (!eb) {
3576 spin_unlock(&mapping->private_lock);
3577 WARN_ON(1);
3578 continue;
3581 if (eb == prev_eb) {
3582 spin_unlock(&mapping->private_lock);
3583 continue;
3586 ret = atomic_inc_not_zero(&eb->refs);
3587 spin_unlock(&mapping->private_lock);
3588 if (!ret)
3589 continue;
3591 prev_eb = eb;
3592 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3593 if (!ret) {
3594 free_extent_buffer(eb);
3595 continue;
3598 ret = write_one_eb(eb, fs_info, wbc, &epd);
3599 if (ret) {
3600 done = 1;
3601 free_extent_buffer(eb);
3602 break;
3604 free_extent_buffer(eb);
3607 * the filesystem may choose to bump up nr_to_write.
3608 * We have to make sure to honor the new nr_to_write
3609 * at any time
3611 nr_to_write_done = wbc->nr_to_write <= 0;
3613 pagevec_release(&pvec);
3614 cond_resched();
3616 if (!scanned && !done) {
3618 * We hit the last page and there is more work to be done: wrap
3619 * back to the start of the file
3621 scanned = 1;
3622 index = 0;
3623 goto retry;
3625 flush_write_bio(&epd);
3626 return ret;
3630 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3631 * @mapping: address space structure to write
3632 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3633 * @writepage: function called for each page
3634 * @data: data passed to writepage function
3636 * If a page is already under I/O, write_cache_pages() skips it, even
3637 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3638 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3639 * and msync() need to guarantee that all the data which was dirty at the time
3640 * the call was made get new I/O started against them. If wbc->sync_mode is
3641 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3642 * existing IO to complete.
3644 static int extent_write_cache_pages(struct extent_io_tree *tree,
3645 struct address_space *mapping,
3646 struct writeback_control *wbc,
3647 writepage_t writepage, void *data,
3648 void (*flush_fn)(void *))
3650 struct inode *inode = mapping->host;
3651 int ret = 0;
3652 int done = 0;
3653 int nr_to_write_done = 0;
3654 struct pagevec pvec;
3655 int nr_pages;
3656 pgoff_t index;
3657 pgoff_t end; /* Inclusive */
3658 int scanned = 0;
3659 int tag;
3662 * We have to hold onto the inode so that ordered extents can do their
3663 * work when the IO finishes. The alternative to this is failing to add
3664 * an ordered extent if the igrab() fails there and that is a huge pain
3665 * to deal with, so instead just hold onto the inode throughout the
3666 * writepages operation. If it fails here we are freeing up the inode
3667 * anyway and we'd rather not waste our time writing out stuff that is
3668 * going to be truncated anyway.
3670 if (!igrab(inode))
3671 return 0;
3673 pagevec_init(&pvec, 0);
3674 if (wbc->range_cyclic) {
3675 index = mapping->writeback_index; /* Start from prev offset */
3676 end = -1;
3677 } else {
3678 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3679 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3680 scanned = 1;
3682 if (wbc->sync_mode == WB_SYNC_ALL)
3683 tag = PAGECACHE_TAG_TOWRITE;
3684 else
3685 tag = PAGECACHE_TAG_DIRTY;
3686 retry:
3687 if (wbc->sync_mode == WB_SYNC_ALL)
3688 tag_pages_for_writeback(mapping, index, end);
3689 while (!done && !nr_to_write_done && (index <= end) &&
3690 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3691 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3692 unsigned i;
3694 scanned = 1;
3695 for (i = 0; i < nr_pages; i++) {
3696 struct page *page = pvec.pages[i];
3699 * At this point we hold neither mapping->tree_lock nor
3700 * lock on the page itself: the page may be truncated or
3701 * invalidated (changing page->mapping to NULL), or even
3702 * swizzled back from swapper_space to tmpfs file
3703 * mapping
3705 if (!trylock_page(page)) {
3706 flush_fn(data);
3707 lock_page(page);
3710 if (unlikely(page->mapping != mapping)) {
3711 unlock_page(page);
3712 continue;
3715 if (!wbc->range_cyclic && page->index > end) {
3716 done = 1;
3717 unlock_page(page);
3718 continue;
3721 if (wbc->sync_mode != WB_SYNC_NONE) {
3722 if (PageWriteback(page))
3723 flush_fn(data);
3724 wait_on_page_writeback(page);
3727 if (PageWriteback(page) ||
3728 !clear_page_dirty_for_io(page)) {
3729 unlock_page(page);
3730 continue;
3733 ret = (*writepage)(page, wbc, data);
3735 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3736 unlock_page(page);
3737 ret = 0;
3739 if (ret)
3740 done = 1;
3743 * the filesystem may choose to bump up nr_to_write.
3744 * We have to make sure to honor the new nr_to_write
3745 * at any time
3747 nr_to_write_done = wbc->nr_to_write <= 0;
3749 pagevec_release(&pvec);
3750 cond_resched();
3752 if (!scanned && !done) {
3754 * We hit the last page and there is more work to be done: wrap
3755 * back to the start of the file
3757 scanned = 1;
3758 index = 0;
3759 goto retry;
3761 btrfs_add_delayed_iput(inode);
3762 return ret;
3765 static void flush_epd_write_bio(struct extent_page_data *epd)
3767 if (epd->bio) {
3768 int rw = WRITE;
3769 int ret;
3771 if (epd->sync_io)
3772 rw = WRITE_SYNC;
3774 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3775 BUG_ON(ret < 0); /* -ENOMEM */
3776 epd->bio = NULL;
3780 static noinline void flush_write_bio(void *data)
3782 struct extent_page_data *epd = data;
3783 flush_epd_write_bio(epd);
3786 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3787 get_extent_t *get_extent,
3788 struct writeback_control *wbc)
3790 int ret;
3791 struct extent_page_data epd = {
3792 .bio = NULL,
3793 .tree = tree,
3794 .get_extent = get_extent,
3795 .extent_locked = 0,
3796 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3797 .bio_flags = 0,
3800 ret = __extent_writepage(page, wbc, &epd);
3802 flush_epd_write_bio(&epd);
3803 return ret;
3806 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3807 u64 start, u64 end, get_extent_t *get_extent,
3808 int mode)
3810 int ret = 0;
3811 struct address_space *mapping = inode->i_mapping;
3812 struct page *page;
3813 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3814 PAGE_CACHE_SHIFT;
3816 struct extent_page_data epd = {
3817 .bio = NULL,
3818 .tree = tree,
3819 .get_extent = get_extent,
3820 .extent_locked = 1,
3821 .sync_io = mode == WB_SYNC_ALL,
3822 .bio_flags = 0,
3824 struct writeback_control wbc_writepages = {
3825 .sync_mode = mode,
3826 .nr_to_write = nr_pages * 2,
3827 .range_start = start,
3828 .range_end = end + 1,
3831 while (start <= end) {
3832 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3833 if (clear_page_dirty_for_io(page))
3834 ret = __extent_writepage(page, &wbc_writepages, &epd);
3835 else {
3836 if (tree->ops && tree->ops->writepage_end_io_hook)
3837 tree->ops->writepage_end_io_hook(page, start,
3838 start + PAGE_CACHE_SIZE - 1,
3839 NULL, 1);
3840 unlock_page(page);
3842 page_cache_release(page);
3843 start += PAGE_CACHE_SIZE;
3846 flush_epd_write_bio(&epd);
3847 return ret;
3850 int extent_writepages(struct extent_io_tree *tree,
3851 struct address_space *mapping,
3852 get_extent_t *get_extent,
3853 struct writeback_control *wbc)
3855 int ret = 0;
3856 struct extent_page_data epd = {
3857 .bio = NULL,
3858 .tree = tree,
3859 .get_extent = get_extent,
3860 .extent_locked = 0,
3861 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3862 .bio_flags = 0,
3865 ret = extent_write_cache_pages(tree, mapping, wbc,
3866 __extent_writepage, &epd,
3867 flush_write_bio);
3868 flush_epd_write_bio(&epd);
3869 return ret;
3872 int extent_readpages(struct extent_io_tree *tree,
3873 struct address_space *mapping,
3874 struct list_head *pages, unsigned nr_pages,
3875 get_extent_t get_extent)
3877 struct bio *bio = NULL;
3878 unsigned page_idx;
3879 unsigned long bio_flags = 0;
3880 struct page *pagepool[16];
3881 struct page *page;
3882 struct extent_map *em_cached = NULL;
3883 int nr = 0;
3885 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3886 page = list_entry(pages->prev, struct page, lru);
3888 prefetchw(&page->flags);
3889 list_del(&page->lru);
3890 if (add_to_page_cache_lru(page, mapping,
3891 page->index, GFP_NOFS)) {
3892 page_cache_release(page);
3893 continue;
3896 pagepool[nr++] = page;
3897 if (nr < ARRAY_SIZE(pagepool))
3898 continue;
3899 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3900 &bio, 0, &bio_flags, READ);
3901 nr = 0;
3903 if (nr)
3904 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3905 &bio, 0, &bio_flags, READ);
3907 if (em_cached)
3908 free_extent_map(em_cached);
3910 BUG_ON(!list_empty(pages));
3911 if (bio)
3912 return submit_one_bio(READ, bio, 0, bio_flags);
3913 return 0;
3917 * basic invalidatepage code, this waits on any locked or writeback
3918 * ranges corresponding to the page, and then deletes any extent state
3919 * records from the tree
3921 int extent_invalidatepage(struct extent_io_tree *tree,
3922 struct page *page, unsigned long offset)
3924 struct extent_state *cached_state = NULL;
3925 u64 start = page_offset(page);
3926 u64 end = start + PAGE_CACHE_SIZE - 1;
3927 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3929 start += ALIGN(offset, blocksize);
3930 if (start > end)
3931 return 0;
3933 lock_extent_bits(tree, start, end, 0, &cached_state);
3934 wait_on_page_writeback(page);
3935 clear_extent_bit(tree, start, end,
3936 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3937 EXTENT_DO_ACCOUNTING,
3938 1, 1, &cached_state, GFP_NOFS);
3939 return 0;
3943 * a helper for releasepage, this tests for areas of the page that
3944 * are locked or under IO and drops the related state bits if it is safe
3945 * to drop the page.
3947 static int try_release_extent_state(struct extent_map_tree *map,
3948 struct extent_io_tree *tree,
3949 struct page *page, gfp_t mask)
3951 u64 start = page_offset(page);
3952 u64 end = start + PAGE_CACHE_SIZE - 1;
3953 int ret = 1;
3955 if (test_range_bit(tree, start, end,
3956 EXTENT_IOBITS, 0, NULL))
3957 ret = 0;
3958 else {
3959 if ((mask & GFP_NOFS) == GFP_NOFS)
3960 mask = GFP_NOFS;
3962 * at this point we can safely clear everything except the
3963 * locked bit and the nodatasum bit
3965 ret = clear_extent_bit(tree, start, end,
3966 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3967 0, 0, NULL, mask);
3969 /* if clear_extent_bit failed for enomem reasons,
3970 * we can't allow the release to continue.
3972 if (ret < 0)
3973 ret = 0;
3974 else
3975 ret = 1;
3977 return ret;
3981 * a helper for releasepage. As long as there are no locked extents
3982 * in the range corresponding to the page, both state records and extent
3983 * map records are removed
3985 int try_release_extent_mapping(struct extent_map_tree *map,
3986 struct extent_io_tree *tree, struct page *page,
3987 gfp_t mask)
3989 struct extent_map *em;
3990 u64 start = page_offset(page);
3991 u64 end = start + PAGE_CACHE_SIZE - 1;
3993 if ((mask & __GFP_WAIT) &&
3994 page->mapping->host->i_size > 16 * 1024 * 1024) {
3995 u64 len;
3996 while (start <= end) {
3997 len = end - start + 1;
3998 write_lock(&map->lock);
3999 em = lookup_extent_mapping(map, start, len);
4000 if (!em) {
4001 write_unlock(&map->lock);
4002 break;
4004 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4005 em->start != start) {
4006 write_unlock(&map->lock);
4007 free_extent_map(em);
4008 break;
4010 if (!test_range_bit(tree, em->start,
4011 extent_map_end(em) - 1,
4012 EXTENT_LOCKED | EXTENT_WRITEBACK,
4013 0, NULL)) {
4014 remove_extent_mapping(map, em);
4015 /* once for the rb tree */
4016 free_extent_map(em);
4018 start = extent_map_end(em);
4019 write_unlock(&map->lock);
4021 /* once for us */
4022 free_extent_map(em);
4025 return try_release_extent_state(map, tree, page, mask);
4029 * helper function for fiemap, which doesn't want to see any holes.
4030 * This maps until we find something past 'last'
4032 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4033 u64 offset,
4034 u64 last,
4035 get_extent_t *get_extent)
4037 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4038 struct extent_map *em;
4039 u64 len;
4041 if (offset >= last)
4042 return NULL;
4044 while(1) {
4045 len = last - offset;
4046 if (len == 0)
4047 break;
4048 len = ALIGN(len, sectorsize);
4049 em = get_extent(inode, NULL, 0, offset, len, 0);
4050 if (IS_ERR_OR_NULL(em))
4051 return em;
4053 /* if this isn't a hole return it */
4054 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4055 em->block_start != EXTENT_MAP_HOLE) {
4056 return em;
4059 /* this is a hole, advance to the next extent */
4060 offset = extent_map_end(em);
4061 free_extent_map(em);
4062 if (offset >= last)
4063 break;
4065 return NULL;
4068 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4069 __u64 start, __u64 len, get_extent_t *get_extent)
4071 int ret = 0;
4072 u64 off = start;
4073 u64 max = start + len;
4074 u32 flags = 0;
4075 u32 found_type;
4076 u64 last;
4077 u64 last_for_get_extent = 0;
4078 u64 disko = 0;
4079 u64 isize = i_size_read(inode);
4080 struct btrfs_key found_key;
4081 struct extent_map *em = NULL;
4082 struct extent_state *cached_state = NULL;
4083 struct btrfs_path *path;
4084 struct btrfs_file_extent_item *item;
4085 int end = 0;
4086 u64 em_start = 0;
4087 u64 em_len = 0;
4088 u64 em_end = 0;
4089 unsigned long emflags;
4091 if (len == 0)
4092 return -EINVAL;
4094 path = btrfs_alloc_path();
4095 if (!path)
4096 return -ENOMEM;
4097 path->leave_spinning = 1;
4099 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4100 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4103 * lookup the last file extent. We're not using i_size here
4104 * because there might be preallocation past i_size
4106 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4107 path, btrfs_ino(inode), -1, 0);
4108 if (ret < 0) {
4109 btrfs_free_path(path);
4110 return ret;
4112 WARN_ON(!ret);
4113 path->slots[0]--;
4114 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4115 struct btrfs_file_extent_item);
4116 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4117 found_type = btrfs_key_type(&found_key);
4119 /* No extents, but there might be delalloc bits */
4120 if (found_key.objectid != btrfs_ino(inode) ||
4121 found_type != BTRFS_EXTENT_DATA_KEY) {
4122 /* have to trust i_size as the end */
4123 last = (u64)-1;
4124 last_for_get_extent = isize;
4125 } else {
4127 * remember the start of the last extent. There are a
4128 * bunch of different factors that go into the length of the
4129 * extent, so its much less complex to remember where it started
4131 last = found_key.offset;
4132 last_for_get_extent = last + 1;
4134 btrfs_free_path(path);
4137 * we might have some extents allocated but more delalloc past those
4138 * extents. so, we trust isize unless the start of the last extent is
4139 * beyond isize
4141 if (last < isize) {
4142 last = (u64)-1;
4143 last_for_get_extent = isize;
4146 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4147 &cached_state);
4149 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4150 get_extent);
4151 if (!em)
4152 goto out;
4153 if (IS_ERR(em)) {
4154 ret = PTR_ERR(em);
4155 goto out;
4158 while (!end) {
4159 u64 offset_in_extent = 0;
4161 /* break if the extent we found is outside the range */
4162 if (em->start >= max || extent_map_end(em) < off)
4163 break;
4166 * get_extent may return an extent that starts before our
4167 * requested range. We have to make sure the ranges
4168 * we return to fiemap always move forward and don't
4169 * overlap, so adjust the offsets here
4171 em_start = max(em->start, off);
4174 * record the offset from the start of the extent
4175 * for adjusting the disk offset below. Only do this if the
4176 * extent isn't compressed since our in ram offset may be past
4177 * what we have actually allocated on disk.
4179 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4180 offset_in_extent = em_start - em->start;
4181 em_end = extent_map_end(em);
4182 em_len = em_end - em_start;
4183 emflags = em->flags;
4184 disko = 0;
4185 flags = 0;
4188 * bump off for our next call to get_extent
4190 off = extent_map_end(em);
4191 if (off >= max)
4192 end = 1;
4194 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4195 end = 1;
4196 flags |= FIEMAP_EXTENT_LAST;
4197 } else if (em->block_start == EXTENT_MAP_INLINE) {
4198 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4199 FIEMAP_EXTENT_NOT_ALIGNED);
4200 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4201 flags |= (FIEMAP_EXTENT_DELALLOC |
4202 FIEMAP_EXTENT_UNKNOWN);
4203 } else {
4204 disko = em->block_start + offset_in_extent;
4206 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4207 flags |= FIEMAP_EXTENT_ENCODED;
4209 free_extent_map(em);
4210 em = NULL;
4211 if ((em_start >= last) || em_len == (u64)-1 ||
4212 (last == (u64)-1 && isize <= em_end)) {
4213 flags |= FIEMAP_EXTENT_LAST;
4214 end = 1;
4217 /* now scan forward to see if this is really the last extent. */
4218 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4219 get_extent);
4220 if (IS_ERR(em)) {
4221 ret = PTR_ERR(em);
4222 goto out;
4224 if (!em) {
4225 flags |= FIEMAP_EXTENT_LAST;
4226 end = 1;
4228 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4229 em_len, flags);
4230 if (ret)
4231 goto out_free;
4233 out_free:
4234 free_extent_map(em);
4235 out:
4236 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4237 &cached_state, GFP_NOFS);
4238 return ret;
4241 static void __free_extent_buffer(struct extent_buffer *eb)
4243 btrfs_leak_debug_del(&eb->leak_list);
4244 kmem_cache_free(extent_buffer_cache, eb);
4247 static int extent_buffer_under_io(struct extent_buffer *eb)
4249 return (atomic_read(&eb->io_pages) ||
4250 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4251 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4255 * Helper for releasing extent buffer page.
4257 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4258 unsigned long start_idx)
4260 unsigned long index;
4261 unsigned long num_pages;
4262 struct page *page;
4263 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4265 BUG_ON(extent_buffer_under_io(eb));
4267 num_pages = num_extent_pages(eb->start, eb->len);
4268 index = start_idx + num_pages;
4269 if (start_idx >= index)
4270 return;
4272 do {
4273 index--;
4274 page = extent_buffer_page(eb, index);
4275 if (page && mapped) {
4276 spin_lock(&page->mapping->private_lock);
4278 * We do this since we'll remove the pages after we've
4279 * removed the eb from the radix tree, so we could race
4280 * and have this page now attached to the new eb. So
4281 * only clear page_private if it's still connected to
4282 * this eb.
4284 if (PagePrivate(page) &&
4285 page->private == (unsigned long)eb) {
4286 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4287 BUG_ON(PageDirty(page));
4288 BUG_ON(PageWriteback(page));
4290 * We need to make sure we haven't be attached
4291 * to a new eb.
4293 ClearPagePrivate(page);
4294 set_page_private(page, 0);
4295 /* One for the page private */
4296 page_cache_release(page);
4298 spin_unlock(&page->mapping->private_lock);
4301 if (page) {
4302 /* One for when we alloced the page */
4303 page_cache_release(page);
4305 } while (index != start_idx);
4309 * Helper for releasing the extent buffer.
4311 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4313 btrfs_release_extent_buffer_page(eb, 0);
4314 __free_extent_buffer(eb);
4317 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4318 u64 start,
4319 unsigned long len,
4320 gfp_t mask)
4322 struct extent_buffer *eb = NULL;
4324 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4325 if (eb == NULL)
4326 return NULL;
4327 eb->start = start;
4328 eb->len = len;
4329 eb->tree = tree;
4330 eb->bflags = 0;
4331 rwlock_init(&eb->lock);
4332 atomic_set(&eb->write_locks, 0);
4333 atomic_set(&eb->read_locks, 0);
4334 atomic_set(&eb->blocking_readers, 0);
4335 atomic_set(&eb->blocking_writers, 0);
4336 atomic_set(&eb->spinning_readers, 0);
4337 atomic_set(&eb->spinning_writers, 0);
4338 eb->lock_nested = 0;
4339 init_waitqueue_head(&eb->write_lock_wq);
4340 init_waitqueue_head(&eb->read_lock_wq);
4342 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4344 spin_lock_init(&eb->refs_lock);
4345 atomic_set(&eb->refs, 1);
4346 atomic_set(&eb->io_pages, 0);
4349 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4351 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4352 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4353 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4355 return eb;
4358 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4360 unsigned long i;
4361 struct page *p;
4362 struct extent_buffer *new;
4363 unsigned long num_pages = num_extent_pages(src->start, src->len);
4365 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4366 if (new == NULL)
4367 return NULL;
4369 for (i = 0; i < num_pages; i++) {
4370 p = alloc_page(GFP_NOFS);
4371 if (!p) {
4372 btrfs_release_extent_buffer(new);
4373 return NULL;
4375 attach_extent_buffer_page(new, p);
4376 WARN_ON(PageDirty(p));
4377 SetPageUptodate(p);
4378 new->pages[i] = p;
4381 copy_extent_buffer(new, src, 0, 0, src->len);
4382 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4383 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4385 return new;
4388 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4390 struct extent_buffer *eb;
4391 unsigned long num_pages = num_extent_pages(0, len);
4392 unsigned long i;
4394 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4395 if (!eb)
4396 return NULL;
4398 for (i = 0; i < num_pages; i++) {
4399 eb->pages[i] = alloc_page(GFP_NOFS);
4400 if (!eb->pages[i])
4401 goto err;
4403 set_extent_buffer_uptodate(eb);
4404 btrfs_set_header_nritems(eb, 0);
4405 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4407 return eb;
4408 err:
4409 for (; i > 0; i--)
4410 __free_page(eb->pages[i - 1]);
4411 __free_extent_buffer(eb);
4412 return NULL;
4415 static void check_buffer_tree_ref(struct extent_buffer *eb)
4417 int refs;
4418 /* the ref bit is tricky. We have to make sure it is set
4419 * if we have the buffer dirty. Otherwise the
4420 * code to free a buffer can end up dropping a dirty
4421 * page
4423 * Once the ref bit is set, it won't go away while the
4424 * buffer is dirty or in writeback, and it also won't
4425 * go away while we have the reference count on the
4426 * eb bumped.
4428 * We can't just set the ref bit without bumping the
4429 * ref on the eb because free_extent_buffer might
4430 * see the ref bit and try to clear it. If this happens
4431 * free_extent_buffer might end up dropping our original
4432 * ref by mistake and freeing the page before we are able
4433 * to add one more ref.
4435 * So bump the ref count first, then set the bit. If someone
4436 * beat us to it, drop the ref we added.
4438 refs = atomic_read(&eb->refs);
4439 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4440 return;
4442 spin_lock(&eb->refs_lock);
4443 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4444 atomic_inc(&eb->refs);
4445 spin_unlock(&eb->refs_lock);
4448 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4450 unsigned long num_pages, i;
4452 check_buffer_tree_ref(eb);
4454 num_pages = num_extent_pages(eb->start, eb->len);
4455 for (i = 0; i < num_pages; i++) {
4456 struct page *p = extent_buffer_page(eb, i);
4457 mark_page_accessed(p);
4461 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4462 u64 start, unsigned long len)
4464 unsigned long num_pages = num_extent_pages(start, len);
4465 unsigned long i;
4466 unsigned long index = start >> PAGE_CACHE_SHIFT;
4467 struct extent_buffer *eb;
4468 struct extent_buffer *exists = NULL;
4469 struct page *p;
4470 struct address_space *mapping = tree->mapping;
4471 int uptodate = 1;
4472 int ret;
4474 rcu_read_lock();
4475 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4476 if (eb && atomic_inc_not_zero(&eb->refs)) {
4477 rcu_read_unlock();
4478 mark_extent_buffer_accessed(eb);
4479 return eb;
4481 rcu_read_unlock();
4483 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4484 if (!eb)
4485 return NULL;
4487 for (i = 0; i < num_pages; i++, index++) {
4488 p = find_or_create_page(mapping, index, GFP_NOFS);
4489 if (!p)
4490 goto free_eb;
4492 spin_lock(&mapping->private_lock);
4493 if (PagePrivate(p)) {
4495 * We could have already allocated an eb for this page
4496 * and attached one so lets see if we can get a ref on
4497 * the existing eb, and if we can we know it's good and
4498 * we can just return that one, else we know we can just
4499 * overwrite page->private.
4501 exists = (struct extent_buffer *)p->private;
4502 if (atomic_inc_not_zero(&exists->refs)) {
4503 spin_unlock(&mapping->private_lock);
4504 unlock_page(p);
4505 page_cache_release(p);
4506 mark_extent_buffer_accessed(exists);
4507 goto free_eb;
4511 * Do this so attach doesn't complain and we need to
4512 * drop the ref the old guy had.
4514 ClearPagePrivate(p);
4515 WARN_ON(PageDirty(p));
4516 page_cache_release(p);
4518 attach_extent_buffer_page(eb, p);
4519 spin_unlock(&mapping->private_lock);
4520 WARN_ON(PageDirty(p));
4521 mark_page_accessed(p);
4522 eb->pages[i] = p;
4523 if (!PageUptodate(p))
4524 uptodate = 0;
4527 * see below about how we avoid a nasty race with release page
4528 * and why we unlock later
4531 if (uptodate)
4532 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4533 again:
4534 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4535 if (ret)
4536 goto free_eb;
4538 spin_lock(&tree->buffer_lock);
4539 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4540 if (ret == -EEXIST) {
4541 exists = radix_tree_lookup(&tree->buffer,
4542 start >> PAGE_CACHE_SHIFT);
4543 if (!atomic_inc_not_zero(&exists->refs)) {
4544 spin_unlock(&tree->buffer_lock);
4545 radix_tree_preload_end();
4546 exists = NULL;
4547 goto again;
4549 spin_unlock(&tree->buffer_lock);
4550 radix_tree_preload_end();
4551 mark_extent_buffer_accessed(exists);
4552 goto free_eb;
4554 /* add one reference for the tree */
4555 check_buffer_tree_ref(eb);
4556 spin_unlock(&tree->buffer_lock);
4557 radix_tree_preload_end();
4560 * there is a race where release page may have
4561 * tried to find this extent buffer in the radix
4562 * but failed. It will tell the VM it is safe to
4563 * reclaim the, and it will clear the page private bit.
4564 * We must make sure to set the page private bit properly
4565 * after the extent buffer is in the radix tree so
4566 * it doesn't get lost
4568 SetPageChecked(eb->pages[0]);
4569 for (i = 1; i < num_pages; i++) {
4570 p = extent_buffer_page(eb, i);
4571 ClearPageChecked(p);
4572 unlock_page(p);
4574 unlock_page(eb->pages[0]);
4575 return eb;
4577 free_eb:
4578 for (i = 0; i < num_pages; i++) {
4579 if (eb->pages[i])
4580 unlock_page(eb->pages[i]);
4583 WARN_ON(!atomic_dec_and_test(&eb->refs));
4584 btrfs_release_extent_buffer(eb);
4585 return exists;
4588 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4589 u64 start, unsigned long len)
4591 struct extent_buffer *eb;
4593 rcu_read_lock();
4594 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4595 if (eb && atomic_inc_not_zero(&eb->refs)) {
4596 rcu_read_unlock();
4597 mark_extent_buffer_accessed(eb);
4598 return eb;
4600 rcu_read_unlock();
4602 return NULL;
4605 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4607 struct extent_buffer *eb =
4608 container_of(head, struct extent_buffer, rcu_head);
4610 __free_extent_buffer(eb);
4613 /* Expects to have eb->eb_lock already held */
4614 static int release_extent_buffer(struct extent_buffer *eb)
4616 WARN_ON(atomic_read(&eb->refs) == 0);
4617 if (atomic_dec_and_test(&eb->refs)) {
4618 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4619 spin_unlock(&eb->refs_lock);
4620 } else {
4621 struct extent_io_tree *tree = eb->tree;
4623 spin_unlock(&eb->refs_lock);
4625 spin_lock(&tree->buffer_lock);
4626 radix_tree_delete(&tree->buffer,
4627 eb->start >> PAGE_CACHE_SHIFT);
4628 spin_unlock(&tree->buffer_lock);
4631 /* Should be safe to release our pages at this point */
4632 btrfs_release_extent_buffer_page(eb, 0);
4633 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4634 return 1;
4636 spin_unlock(&eb->refs_lock);
4638 return 0;
4641 void free_extent_buffer(struct extent_buffer *eb)
4643 int refs;
4644 int old;
4645 if (!eb)
4646 return;
4648 while (1) {
4649 refs = atomic_read(&eb->refs);
4650 if (refs <= 3)
4651 break;
4652 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4653 if (old == refs)
4654 return;
4657 spin_lock(&eb->refs_lock);
4658 if (atomic_read(&eb->refs) == 2 &&
4659 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4660 atomic_dec(&eb->refs);
4662 if (atomic_read(&eb->refs) == 2 &&
4663 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4664 !extent_buffer_under_io(eb) &&
4665 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4666 atomic_dec(&eb->refs);
4669 * I know this is terrible, but it's temporary until we stop tracking
4670 * the uptodate bits and such for the extent buffers.
4672 release_extent_buffer(eb);
4675 void free_extent_buffer_stale(struct extent_buffer *eb)
4677 if (!eb)
4678 return;
4680 spin_lock(&eb->refs_lock);
4681 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4683 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4684 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4685 atomic_dec(&eb->refs);
4686 release_extent_buffer(eb);
4689 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4691 unsigned long i;
4692 unsigned long num_pages;
4693 struct page *page;
4695 num_pages = num_extent_pages(eb->start, eb->len);
4697 for (i = 0; i < num_pages; i++) {
4698 page = extent_buffer_page(eb, i);
4699 if (!PageDirty(page))
4700 continue;
4702 lock_page(page);
4703 WARN_ON(!PagePrivate(page));
4705 clear_page_dirty_for_io(page);
4706 spin_lock_irq(&page->mapping->tree_lock);
4707 if (!PageDirty(page)) {
4708 radix_tree_tag_clear(&page->mapping->page_tree,
4709 page_index(page),
4710 PAGECACHE_TAG_DIRTY);
4712 spin_unlock_irq(&page->mapping->tree_lock);
4713 ClearPageError(page);
4714 unlock_page(page);
4716 WARN_ON(atomic_read(&eb->refs) == 0);
4719 int set_extent_buffer_dirty(struct extent_buffer *eb)
4721 unsigned long i;
4722 unsigned long num_pages;
4723 int was_dirty = 0;
4725 check_buffer_tree_ref(eb);
4727 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4729 num_pages = num_extent_pages(eb->start, eb->len);
4730 WARN_ON(atomic_read(&eb->refs) == 0);
4731 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4733 for (i = 0; i < num_pages; i++)
4734 set_page_dirty(extent_buffer_page(eb, i));
4735 return was_dirty;
4738 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4740 unsigned long i;
4741 struct page *page;
4742 unsigned long num_pages;
4744 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4745 num_pages = num_extent_pages(eb->start, eb->len);
4746 for (i = 0; i < num_pages; i++) {
4747 page = extent_buffer_page(eb, i);
4748 if (page)
4749 ClearPageUptodate(page);
4751 return 0;
4754 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4756 unsigned long i;
4757 struct page *page;
4758 unsigned long num_pages;
4760 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4761 num_pages = num_extent_pages(eb->start, eb->len);
4762 for (i = 0; i < num_pages; i++) {
4763 page = extent_buffer_page(eb, i);
4764 SetPageUptodate(page);
4766 return 0;
4769 int extent_buffer_uptodate(struct extent_buffer *eb)
4771 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4774 int read_extent_buffer_pages(struct extent_io_tree *tree,
4775 struct extent_buffer *eb, u64 start, int wait,
4776 get_extent_t *get_extent, int mirror_num)
4778 unsigned long i;
4779 unsigned long start_i;
4780 struct page *page;
4781 int err;
4782 int ret = 0;
4783 int locked_pages = 0;
4784 int all_uptodate = 1;
4785 unsigned long num_pages;
4786 unsigned long num_reads = 0;
4787 struct bio *bio = NULL;
4788 unsigned long bio_flags = 0;
4790 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4791 return 0;
4793 if (start) {
4794 WARN_ON(start < eb->start);
4795 start_i = (start >> PAGE_CACHE_SHIFT) -
4796 (eb->start >> PAGE_CACHE_SHIFT);
4797 } else {
4798 start_i = 0;
4801 num_pages = num_extent_pages(eb->start, eb->len);
4802 for (i = start_i; i < num_pages; i++) {
4803 page = extent_buffer_page(eb, i);
4804 if (wait == WAIT_NONE) {
4805 if (!trylock_page(page))
4806 goto unlock_exit;
4807 } else {
4808 lock_page(page);
4810 locked_pages++;
4811 if (!PageUptodate(page)) {
4812 num_reads++;
4813 all_uptodate = 0;
4816 if (all_uptodate) {
4817 if (start_i == 0)
4818 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4819 goto unlock_exit;
4822 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4823 eb->read_mirror = 0;
4824 atomic_set(&eb->io_pages, num_reads);
4825 for (i = start_i; i < num_pages; i++) {
4826 page = extent_buffer_page(eb, i);
4827 if (!PageUptodate(page)) {
4828 ClearPageError(page);
4829 err = __extent_read_full_page(tree, page,
4830 get_extent, &bio,
4831 mirror_num, &bio_flags,
4832 READ | REQ_META);
4833 if (err)
4834 ret = err;
4835 } else {
4836 unlock_page(page);
4840 if (bio) {
4841 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4842 bio_flags);
4843 if (err)
4844 return err;
4847 if (ret || wait != WAIT_COMPLETE)
4848 return ret;
4850 for (i = start_i; i < num_pages; i++) {
4851 page = extent_buffer_page(eb, i);
4852 wait_on_page_locked(page);
4853 if (!PageUptodate(page))
4854 ret = -EIO;
4857 return ret;
4859 unlock_exit:
4860 i = start_i;
4861 while (locked_pages > 0) {
4862 page = extent_buffer_page(eb, i);
4863 i++;
4864 unlock_page(page);
4865 locked_pages--;
4867 return ret;
4870 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4871 unsigned long start,
4872 unsigned long len)
4874 size_t cur;
4875 size_t offset;
4876 struct page *page;
4877 char *kaddr;
4878 char *dst = (char *)dstv;
4879 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4880 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4882 WARN_ON(start > eb->len);
4883 WARN_ON(start + len > eb->start + eb->len);
4885 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4887 while (len > 0) {
4888 page = extent_buffer_page(eb, i);
4890 cur = min(len, (PAGE_CACHE_SIZE - offset));
4891 kaddr = page_address(page);
4892 memcpy(dst, kaddr + offset, cur);
4894 dst += cur;
4895 len -= cur;
4896 offset = 0;
4897 i++;
4901 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4902 unsigned long min_len, char **map,
4903 unsigned long *map_start,
4904 unsigned long *map_len)
4906 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4907 char *kaddr;
4908 struct page *p;
4909 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4910 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4911 unsigned long end_i = (start_offset + start + min_len - 1) >>
4912 PAGE_CACHE_SHIFT;
4914 if (i != end_i)
4915 return -EINVAL;
4917 if (i == 0) {
4918 offset = start_offset;
4919 *map_start = 0;
4920 } else {
4921 offset = 0;
4922 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4925 if (start + min_len > eb->len) {
4926 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4927 "wanted %lu %lu\n",
4928 eb->start, eb->len, start, min_len);
4929 return -EINVAL;
4932 p = extent_buffer_page(eb, i);
4933 kaddr = page_address(p);
4934 *map = kaddr + offset;
4935 *map_len = PAGE_CACHE_SIZE - offset;
4936 return 0;
4939 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4940 unsigned long start,
4941 unsigned long len)
4943 size_t cur;
4944 size_t offset;
4945 struct page *page;
4946 char *kaddr;
4947 char *ptr = (char *)ptrv;
4948 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4949 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4950 int ret = 0;
4952 WARN_ON(start > eb->len);
4953 WARN_ON(start + len > eb->start + eb->len);
4955 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4957 while (len > 0) {
4958 page = extent_buffer_page(eb, i);
4960 cur = min(len, (PAGE_CACHE_SIZE - offset));
4962 kaddr = page_address(page);
4963 ret = memcmp(ptr, kaddr + offset, cur);
4964 if (ret)
4965 break;
4967 ptr += cur;
4968 len -= cur;
4969 offset = 0;
4970 i++;
4972 return ret;
4975 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4976 unsigned long start, unsigned long len)
4978 size_t cur;
4979 size_t offset;
4980 struct page *page;
4981 char *kaddr;
4982 char *src = (char *)srcv;
4983 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4984 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4986 WARN_ON(start > eb->len);
4987 WARN_ON(start + len > eb->start + eb->len);
4989 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4991 while (len > 0) {
4992 page = extent_buffer_page(eb, i);
4993 WARN_ON(!PageUptodate(page));
4995 cur = min(len, PAGE_CACHE_SIZE - offset);
4996 kaddr = page_address(page);
4997 memcpy(kaddr + offset, src, cur);
4999 src += cur;
5000 len -= cur;
5001 offset = 0;
5002 i++;
5006 void memset_extent_buffer(struct extent_buffer *eb, char c,
5007 unsigned long start, unsigned long len)
5009 size_t cur;
5010 size_t offset;
5011 struct page *page;
5012 char *kaddr;
5013 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5014 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5016 WARN_ON(start > eb->len);
5017 WARN_ON(start + len > eb->start + eb->len);
5019 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5021 while (len > 0) {
5022 page = extent_buffer_page(eb, i);
5023 WARN_ON(!PageUptodate(page));
5025 cur = min(len, PAGE_CACHE_SIZE - offset);
5026 kaddr = page_address(page);
5027 memset(kaddr + offset, c, cur);
5029 len -= cur;
5030 offset = 0;
5031 i++;
5035 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5036 unsigned long dst_offset, unsigned long src_offset,
5037 unsigned long len)
5039 u64 dst_len = dst->len;
5040 size_t cur;
5041 size_t offset;
5042 struct page *page;
5043 char *kaddr;
5044 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5045 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5047 WARN_ON(src->len != dst_len);
5049 offset = (start_offset + dst_offset) &
5050 (PAGE_CACHE_SIZE - 1);
5052 while (len > 0) {
5053 page = extent_buffer_page(dst, i);
5054 WARN_ON(!PageUptodate(page));
5056 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5058 kaddr = page_address(page);
5059 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5061 src_offset += cur;
5062 len -= cur;
5063 offset = 0;
5064 i++;
5068 static void move_pages(struct page *dst_page, struct page *src_page,
5069 unsigned long dst_off, unsigned long src_off,
5070 unsigned long len)
5072 char *dst_kaddr = page_address(dst_page);
5073 if (dst_page == src_page) {
5074 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5075 } else {
5076 char *src_kaddr = page_address(src_page);
5077 char *p = dst_kaddr + dst_off + len;
5078 char *s = src_kaddr + src_off + len;
5080 while (len--)
5081 *--p = *--s;
5085 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5087 unsigned long distance = (src > dst) ? src - dst : dst - src;
5088 return distance < len;
5091 static void copy_pages(struct page *dst_page, struct page *src_page,
5092 unsigned long dst_off, unsigned long src_off,
5093 unsigned long len)
5095 char *dst_kaddr = page_address(dst_page);
5096 char *src_kaddr;
5097 int must_memmove = 0;
5099 if (dst_page != src_page) {
5100 src_kaddr = page_address(src_page);
5101 } else {
5102 src_kaddr = dst_kaddr;
5103 if (areas_overlap(src_off, dst_off, len))
5104 must_memmove = 1;
5107 if (must_memmove)
5108 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5109 else
5110 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5113 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5114 unsigned long src_offset, unsigned long len)
5116 size_t cur;
5117 size_t dst_off_in_page;
5118 size_t src_off_in_page;
5119 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5120 unsigned long dst_i;
5121 unsigned long src_i;
5123 if (src_offset + len > dst->len) {
5124 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5125 "len %lu dst len %lu\n", src_offset, len, dst->len);
5126 BUG_ON(1);
5128 if (dst_offset + len > dst->len) {
5129 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5130 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5131 BUG_ON(1);
5134 while (len > 0) {
5135 dst_off_in_page = (start_offset + dst_offset) &
5136 (PAGE_CACHE_SIZE - 1);
5137 src_off_in_page = (start_offset + src_offset) &
5138 (PAGE_CACHE_SIZE - 1);
5140 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5141 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5143 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5144 src_off_in_page));
5145 cur = min_t(unsigned long, cur,
5146 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5148 copy_pages(extent_buffer_page(dst, dst_i),
5149 extent_buffer_page(dst, src_i),
5150 dst_off_in_page, src_off_in_page, cur);
5152 src_offset += cur;
5153 dst_offset += cur;
5154 len -= cur;
5158 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5159 unsigned long src_offset, unsigned long len)
5161 size_t cur;
5162 size_t dst_off_in_page;
5163 size_t src_off_in_page;
5164 unsigned long dst_end = dst_offset + len - 1;
5165 unsigned long src_end = src_offset + len - 1;
5166 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5167 unsigned long dst_i;
5168 unsigned long src_i;
5170 if (src_offset + len > dst->len) {
5171 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5172 "len %lu len %lu\n", src_offset, len, dst->len);
5173 BUG_ON(1);
5175 if (dst_offset + len > dst->len) {
5176 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5177 "len %lu len %lu\n", dst_offset, len, dst->len);
5178 BUG_ON(1);
5180 if (dst_offset < src_offset) {
5181 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5182 return;
5184 while (len > 0) {
5185 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5186 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5188 dst_off_in_page = (start_offset + dst_end) &
5189 (PAGE_CACHE_SIZE - 1);
5190 src_off_in_page = (start_offset + src_end) &
5191 (PAGE_CACHE_SIZE - 1);
5193 cur = min_t(unsigned long, len, src_off_in_page + 1);
5194 cur = min(cur, dst_off_in_page + 1);
5195 move_pages(extent_buffer_page(dst, dst_i),
5196 extent_buffer_page(dst, src_i),
5197 dst_off_in_page - cur + 1,
5198 src_off_in_page - cur + 1, cur);
5200 dst_end -= cur;
5201 src_end -= cur;
5202 len -= cur;
5206 int try_release_extent_buffer(struct page *page)
5208 struct extent_buffer *eb;
5211 * We need to make sure noboody is attaching this page to an eb right
5212 * now.
5214 spin_lock(&page->mapping->private_lock);
5215 if (!PagePrivate(page)) {
5216 spin_unlock(&page->mapping->private_lock);
5217 return 1;
5220 eb = (struct extent_buffer *)page->private;
5221 BUG_ON(!eb);
5224 * This is a little awful but should be ok, we need to make sure that
5225 * the eb doesn't disappear out from under us while we're looking at
5226 * this page.
5228 spin_lock(&eb->refs_lock);
5229 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5230 spin_unlock(&eb->refs_lock);
5231 spin_unlock(&page->mapping->private_lock);
5232 return 0;
5234 spin_unlock(&page->mapping->private_lock);
5237 * If tree ref isn't set then we know the ref on this eb is a real ref,
5238 * so just return, this page will likely be freed soon anyway.
5240 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5241 spin_unlock(&eb->refs_lock);
5242 return 0;
5245 return release_extent_buffer(eb);