2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "ordered-data.h"
56 #include "compression.h"
58 #include "free-space-cache.h"
59 #include "inode-map.h"
63 struct btrfs_iget_args
{
65 struct btrfs_root
*root
;
68 static const struct inode_operations btrfs_dir_inode_operations
;
69 static const struct inode_operations btrfs_symlink_inode_operations
;
70 static const struct inode_operations btrfs_dir_ro_inode_operations
;
71 static const struct inode_operations btrfs_special_inode_operations
;
72 static const struct inode_operations btrfs_file_inode_operations
;
73 static const struct address_space_operations btrfs_aops
;
74 static const struct address_space_operations btrfs_symlink_aops
;
75 static const struct file_operations btrfs_dir_file_operations
;
76 static struct extent_io_ops btrfs_extent_io_ops
;
78 static struct kmem_cache
*btrfs_inode_cachep
;
79 static struct kmem_cache
*btrfs_delalloc_work_cachep
;
80 struct kmem_cache
*btrfs_trans_handle_cachep
;
81 struct kmem_cache
*btrfs_transaction_cachep
;
82 struct kmem_cache
*btrfs_path_cachep
;
83 struct kmem_cache
*btrfs_free_space_cachep
;
86 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
87 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
88 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
89 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
90 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
91 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
92 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
93 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
96 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
97 static int btrfs_truncate(struct inode
*inode
);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
99 static noinline
int cow_file_range(struct inode
*inode
,
100 struct page
*locked_page
,
101 u64 start
, u64 end
, int *page_started
,
102 unsigned long *nr_written
, int unlock
);
103 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
104 u64 len
, u64 orig_start
,
105 u64 block_start
, u64 block_len
,
106 u64 orig_block_len
, u64 ram_bytes
,
109 static int btrfs_dirty_inode(struct inode
*inode
);
111 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
112 struct inode
*inode
, struct inode
*dir
,
113 const struct qstr
*qstr
)
117 err
= btrfs_init_acl(trans
, inode
, dir
);
119 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
128 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
129 struct btrfs_root
*root
, struct inode
*inode
,
130 u64 start
, size_t size
, size_t compressed_size
,
132 struct page
**compressed_pages
)
134 struct btrfs_key key
;
135 struct btrfs_path
*path
;
136 struct extent_buffer
*leaf
;
137 struct page
*page
= NULL
;
140 struct btrfs_file_extent_item
*ei
;
143 size_t cur_size
= size
;
145 unsigned long offset
;
147 if (compressed_size
&& compressed_pages
)
148 cur_size
= compressed_size
;
150 path
= btrfs_alloc_path();
154 path
->leave_spinning
= 1;
156 key
.objectid
= btrfs_ino(inode
);
158 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
159 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
161 inode_add_bytes(inode
, size
);
162 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
168 leaf
= path
->nodes
[0];
169 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
170 struct btrfs_file_extent_item
);
171 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
172 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
173 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
174 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
175 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
176 ptr
= btrfs_file_extent_inline_start(ei
);
178 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
181 while (compressed_size
> 0) {
182 cpage
= compressed_pages
[i
];
183 cur_size
= min_t(unsigned long, compressed_size
,
186 kaddr
= kmap_atomic(cpage
);
187 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
188 kunmap_atomic(kaddr
);
192 compressed_size
-= cur_size
;
194 btrfs_set_file_extent_compression(leaf
, ei
,
197 page
= find_get_page(inode
->i_mapping
,
198 start
>> PAGE_CACHE_SHIFT
);
199 btrfs_set_file_extent_compression(leaf
, ei
, 0);
200 kaddr
= kmap_atomic(page
);
201 offset
= start
& (PAGE_CACHE_SIZE
- 1);
202 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
203 kunmap_atomic(kaddr
);
204 page_cache_release(page
);
206 btrfs_mark_buffer_dirty(leaf
);
207 btrfs_free_path(path
);
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
218 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
219 ret
= btrfs_update_inode(trans
, root
, inode
);
223 btrfs_free_path(path
);
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
233 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
234 struct inode
*inode
, u64 start
,
235 u64 end
, size_t compressed_size
,
237 struct page
**compressed_pages
)
239 struct btrfs_trans_handle
*trans
;
240 u64 isize
= i_size_read(inode
);
241 u64 actual_end
= min(end
+ 1, isize
);
242 u64 inline_len
= actual_end
- start
;
243 u64 aligned_end
= ALIGN(end
, root
->sectorsize
);
244 u64 data_len
= inline_len
;
248 data_len
= compressed_size
;
251 actual_end
>= PAGE_CACHE_SIZE
||
252 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
254 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
256 data_len
> root
->fs_info
->max_inline
) {
260 trans
= btrfs_join_transaction(root
);
262 return PTR_ERR(trans
);
263 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
265 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, aligned_end
, 1);
267 btrfs_abort_transaction(trans
, root
, ret
);
271 if (isize
> actual_end
)
272 inline_len
= min_t(u64
, isize
, actual_end
);
273 ret
= insert_inline_extent(trans
, root
, inode
, start
,
274 inline_len
, compressed_size
,
275 compress_type
, compressed_pages
);
276 if (ret
&& ret
!= -ENOSPC
) {
277 btrfs_abort_transaction(trans
, root
, ret
);
279 } else if (ret
== -ENOSPC
) {
284 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
285 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
286 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
288 btrfs_end_transaction(trans
, root
);
292 struct async_extent
{
297 unsigned long nr_pages
;
299 struct list_head list
;
304 struct btrfs_root
*root
;
305 struct page
*locked_page
;
308 struct list_head extents
;
309 struct btrfs_work work
;
312 static noinline
int add_async_extent(struct async_cow
*cow
,
313 u64 start
, u64 ram_size
,
316 unsigned long nr_pages
,
319 struct async_extent
*async_extent
;
321 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
322 BUG_ON(!async_extent
); /* -ENOMEM */
323 async_extent
->start
= start
;
324 async_extent
->ram_size
= ram_size
;
325 async_extent
->compressed_size
= compressed_size
;
326 async_extent
->pages
= pages
;
327 async_extent
->nr_pages
= nr_pages
;
328 async_extent
->compress_type
= compress_type
;
329 list_add_tail(&async_extent
->list
, &cow
->extents
);
334 * we create compressed extents in two phases. The first
335 * phase compresses a range of pages that have already been
336 * locked (both pages and state bits are locked).
338 * This is done inside an ordered work queue, and the compression
339 * is spread across many cpus. The actual IO submission is step
340 * two, and the ordered work queue takes care of making sure that
341 * happens in the same order things were put onto the queue by
342 * writepages and friends.
344 * If this code finds it can't get good compression, it puts an
345 * entry onto the work queue to write the uncompressed bytes. This
346 * makes sure that both compressed inodes and uncompressed inodes
347 * are written in the same order that the flusher thread sent them
350 static noinline
int compress_file_range(struct inode
*inode
,
351 struct page
*locked_page
,
353 struct async_cow
*async_cow
,
356 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
358 u64 blocksize
= root
->sectorsize
;
360 u64 isize
= i_size_read(inode
);
362 struct page
**pages
= NULL
;
363 unsigned long nr_pages
;
364 unsigned long nr_pages_ret
= 0;
365 unsigned long total_compressed
= 0;
366 unsigned long total_in
= 0;
367 unsigned long max_compressed
= 128 * 1024;
368 unsigned long max_uncompressed
= 128 * 1024;
371 int compress_type
= root
->fs_info
->compress_type
;
374 /* if this is a small write inside eof, kick off a defrag */
375 if ((end
- start
+ 1) < 16 * 1024 &&
376 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
377 btrfs_add_inode_defrag(NULL
, inode
);
379 actual_end
= min_t(u64
, isize
, end
+ 1);
382 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
383 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
386 * we don't want to send crud past the end of i_size through
387 * compression, that's just a waste of CPU time. So, if the
388 * end of the file is before the start of our current
389 * requested range of bytes, we bail out to the uncompressed
390 * cleanup code that can deal with all of this.
392 * It isn't really the fastest way to fix things, but this is a
393 * very uncommon corner.
395 if (actual_end
<= start
)
396 goto cleanup_and_bail_uncompressed
;
398 total_compressed
= actual_end
- start
;
400 /* we want to make sure that amount of ram required to uncompress
401 * an extent is reasonable, so we limit the total size in ram
402 * of a compressed extent to 128k. This is a crucial number
403 * because it also controls how easily we can spread reads across
404 * cpus for decompression.
406 * We also want to make sure the amount of IO required to do
407 * a random read is reasonably small, so we limit the size of
408 * a compressed extent to 128k.
410 total_compressed
= min(total_compressed
, max_uncompressed
);
411 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
412 num_bytes
= max(blocksize
, num_bytes
);
417 * we do compression for mount -o compress and when the
418 * inode has not been flagged as nocompress. This flag can
419 * change at any time if we discover bad compression ratios.
421 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
422 (btrfs_test_opt(root
, COMPRESS
) ||
423 (BTRFS_I(inode
)->force_compress
) ||
424 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
426 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
428 /* just bail out to the uncompressed code */
432 if (BTRFS_I(inode
)->force_compress
)
433 compress_type
= BTRFS_I(inode
)->force_compress
;
436 * we need to call clear_page_dirty_for_io on each
437 * page in the range. Otherwise applications with the file
438 * mmap'd can wander in and change the page contents while
439 * we are compressing them.
441 * If the compression fails for any reason, we set the pages
442 * dirty again later on.
444 extent_range_clear_dirty_for_io(inode
, start
, end
);
446 ret
= btrfs_compress_pages(compress_type
,
447 inode
->i_mapping
, start
,
448 total_compressed
, pages
,
449 nr_pages
, &nr_pages_ret
,
455 unsigned long offset
= total_compressed
&
456 (PAGE_CACHE_SIZE
- 1);
457 struct page
*page
= pages
[nr_pages_ret
- 1];
460 /* zero the tail end of the last page, we might be
461 * sending it down to disk
464 kaddr
= kmap_atomic(page
);
465 memset(kaddr
+ offset
, 0,
466 PAGE_CACHE_SIZE
- offset
);
467 kunmap_atomic(kaddr
);
474 /* lets try to make an inline extent */
475 if (ret
|| total_in
< (actual_end
- start
)) {
476 /* we didn't compress the entire range, try
477 * to make an uncompressed inline extent.
479 ret
= cow_file_range_inline(root
, inode
, start
, end
,
482 /* try making a compressed inline extent */
483 ret
= cow_file_range_inline(root
, inode
, start
, end
,
485 compress_type
, pages
);
488 unsigned long clear_flags
= EXTENT_DELALLOC
|
490 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
493 * inline extent creation worked or returned error,
494 * we don't need to create any more async work items.
495 * Unlock and free up our temp pages.
497 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
498 clear_flags
, PAGE_UNLOCK
|
508 * we aren't doing an inline extent round the compressed size
509 * up to a block size boundary so the allocator does sane
512 total_compressed
= ALIGN(total_compressed
, blocksize
);
515 * one last check to make sure the compression is really a
516 * win, compare the page count read with the blocks on disk
518 total_in
= ALIGN(total_in
, PAGE_CACHE_SIZE
);
519 if (total_compressed
>= total_in
) {
522 num_bytes
= total_in
;
525 if (!will_compress
&& pages
) {
527 * the compression code ran but failed to make things smaller,
528 * free any pages it allocated and our page pointer array
530 for (i
= 0; i
< nr_pages_ret
; i
++) {
531 WARN_ON(pages
[i
]->mapping
);
532 page_cache_release(pages
[i
]);
536 total_compressed
= 0;
539 /* flag the file so we don't compress in the future */
540 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
541 !(BTRFS_I(inode
)->force_compress
)) {
542 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
548 /* the async work queues will take care of doing actual
549 * allocation on disk for these compressed pages,
550 * and will submit them to the elevator.
552 add_async_extent(async_cow
, start
, num_bytes
,
553 total_compressed
, pages
, nr_pages_ret
,
556 if (start
+ num_bytes
< end
) {
563 cleanup_and_bail_uncompressed
:
565 * No compression, but we still need to write the pages in
566 * the file we've been given so far. redirty the locked
567 * page if it corresponds to our extent and set things up
568 * for the async work queue to run cow_file_range to do
569 * the normal delalloc dance
571 if (page_offset(locked_page
) >= start
&&
572 page_offset(locked_page
) <= end
) {
573 __set_page_dirty_nobuffers(locked_page
);
574 /* unlocked later on in the async handlers */
577 extent_range_redirty_for_io(inode
, start
, end
);
578 add_async_extent(async_cow
, start
, end
- start
+ 1,
579 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
587 for (i
= 0; i
< nr_pages_ret
; i
++) {
588 WARN_ON(pages
[i
]->mapping
);
589 page_cache_release(pages
[i
]);
597 * phase two of compressed writeback. This is the ordered portion
598 * of the code, which only gets called in the order the work was
599 * queued. We walk all the async extents created by compress_file_range
600 * and send them down to the disk.
602 static noinline
int submit_compressed_extents(struct inode
*inode
,
603 struct async_cow
*async_cow
)
605 struct async_extent
*async_extent
;
607 struct btrfs_key ins
;
608 struct extent_map
*em
;
609 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
610 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
611 struct extent_io_tree
*io_tree
;
614 if (list_empty(&async_cow
->extents
))
618 while (!list_empty(&async_cow
->extents
)) {
619 async_extent
= list_entry(async_cow
->extents
.next
,
620 struct async_extent
, list
);
621 list_del(&async_extent
->list
);
623 io_tree
= &BTRFS_I(inode
)->io_tree
;
626 /* did the compression code fall back to uncompressed IO? */
627 if (!async_extent
->pages
) {
628 int page_started
= 0;
629 unsigned long nr_written
= 0;
631 lock_extent(io_tree
, async_extent
->start
,
632 async_extent
->start
+
633 async_extent
->ram_size
- 1);
635 /* allocate blocks */
636 ret
= cow_file_range(inode
, async_cow
->locked_page
,
638 async_extent
->start
+
639 async_extent
->ram_size
- 1,
640 &page_started
, &nr_written
, 0);
645 * if page_started, cow_file_range inserted an
646 * inline extent and took care of all the unlocking
647 * and IO for us. Otherwise, we need to submit
648 * all those pages down to the drive.
650 if (!page_started
&& !ret
)
651 extent_write_locked_range(io_tree
,
652 inode
, async_extent
->start
,
653 async_extent
->start
+
654 async_extent
->ram_size
- 1,
658 unlock_page(async_cow
->locked_page
);
664 lock_extent(io_tree
, async_extent
->start
,
665 async_extent
->start
+ async_extent
->ram_size
- 1);
667 ret
= btrfs_reserve_extent(root
,
668 async_extent
->compressed_size
,
669 async_extent
->compressed_size
,
670 0, alloc_hint
, &ins
, 1);
674 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
675 WARN_ON(async_extent
->pages
[i
]->mapping
);
676 page_cache_release(async_extent
->pages
[i
]);
678 kfree(async_extent
->pages
);
679 async_extent
->nr_pages
= 0;
680 async_extent
->pages
= NULL
;
682 if (ret
== -ENOSPC
) {
683 unlock_extent(io_tree
, async_extent
->start
,
684 async_extent
->start
+
685 async_extent
->ram_size
- 1);
692 * here we're doing allocation and writeback of the
695 btrfs_drop_extent_cache(inode
, async_extent
->start
,
696 async_extent
->start
+
697 async_extent
->ram_size
- 1, 0);
699 em
= alloc_extent_map();
702 goto out_free_reserve
;
704 em
->start
= async_extent
->start
;
705 em
->len
= async_extent
->ram_size
;
706 em
->orig_start
= em
->start
;
707 em
->mod_start
= em
->start
;
708 em
->mod_len
= em
->len
;
710 em
->block_start
= ins
.objectid
;
711 em
->block_len
= ins
.offset
;
712 em
->orig_block_len
= ins
.offset
;
713 em
->ram_bytes
= async_extent
->ram_size
;
714 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
715 em
->compress_type
= async_extent
->compress_type
;
716 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
717 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
721 write_lock(&em_tree
->lock
);
722 ret
= add_extent_mapping(em_tree
, em
, 1);
723 write_unlock(&em_tree
->lock
);
724 if (ret
!= -EEXIST
) {
728 btrfs_drop_extent_cache(inode
, async_extent
->start
,
729 async_extent
->start
+
730 async_extent
->ram_size
- 1, 0);
734 goto out_free_reserve
;
736 ret
= btrfs_add_ordered_extent_compress(inode
,
739 async_extent
->ram_size
,
741 BTRFS_ORDERED_COMPRESSED
,
742 async_extent
->compress_type
);
744 goto out_free_reserve
;
747 * clear dirty, set writeback and unlock the pages.
749 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
750 async_extent
->start
+
751 async_extent
->ram_size
- 1,
752 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
753 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
755 ret
= btrfs_submit_compressed_write(inode
,
757 async_extent
->ram_size
,
759 ins
.offset
, async_extent
->pages
,
760 async_extent
->nr_pages
);
761 alloc_hint
= ins
.objectid
+ ins
.offset
;
771 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
773 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
774 async_extent
->start
+
775 async_extent
->ram_size
- 1,
776 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
777 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
778 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
779 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
784 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
787 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
788 struct extent_map
*em
;
791 read_lock(&em_tree
->lock
);
792 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
795 * if block start isn't an actual block number then find the
796 * first block in this inode and use that as a hint. If that
797 * block is also bogus then just don't worry about it.
799 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
801 em
= search_extent_mapping(em_tree
, 0, 0);
802 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
803 alloc_hint
= em
->block_start
;
807 alloc_hint
= em
->block_start
;
811 read_unlock(&em_tree
->lock
);
817 * when extent_io.c finds a delayed allocation range in the file,
818 * the call backs end up in this code. The basic idea is to
819 * allocate extents on disk for the range, and create ordered data structs
820 * in ram to track those extents.
822 * locked_page is the page that writepage had locked already. We use
823 * it to make sure we don't do extra locks or unlocks.
825 * *page_started is set to one if we unlock locked_page and do everything
826 * required to start IO on it. It may be clean and already done with
829 static noinline
int cow_file_range(struct inode
*inode
,
830 struct page
*locked_page
,
831 u64 start
, u64 end
, int *page_started
,
832 unsigned long *nr_written
,
835 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
838 unsigned long ram_size
;
841 u64 blocksize
= root
->sectorsize
;
842 struct btrfs_key ins
;
843 struct extent_map
*em
;
844 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
847 BUG_ON(btrfs_is_free_space_inode(inode
));
849 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
850 num_bytes
= max(blocksize
, num_bytes
);
851 disk_num_bytes
= num_bytes
;
853 /* if this is a small write inside eof, kick off defrag */
854 if (num_bytes
< 64 * 1024 &&
855 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
856 btrfs_add_inode_defrag(NULL
, inode
);
859 /* lets try to make an inline extent */
860 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0, 0,
863 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
864 EXTENT_LOCKED
| EXTENT_DELALLOC
|
865 EXTENT_DEFRAG
, PAGE_UNLOCK
|
866 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
869 *nr_written
= *nr_written
+
870 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
873 } else if (ret
< 0) {
878 BUG_ON(disk_num_bytes
>
879 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
881 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
882 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
884 while (disk_num_bytes
> 0) {
887 cur_alloc_size
= disk_num_bytes
;
888 ret
= btrfs_reserve_extent(root
, cur_alloc_size
,
889 root
->sectorsize
, 0, alloc_hint
,
894 em
= alloc_extent_map();
900 em
->orig_start
= em
->start
;
901 ram_size
= ins
.offset
;
902 em
->len
= ins
.offset
;
903 em
->mod_start
= em
->start
;
904 em
->mod_len
= em
->len
;
906 em
->block_start
= ins
.objectid
;
907 em
->block_len
= ins
.offset
;
908 em
->orig_block_len
= ins
.offset
;
909 em
->ram_bytes
= ram_size
;
910 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
911 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
915 write_lock(&em_tree
->lock
);
916 ret
= add_extent_mapping(em_tree
, em
, 1);
917 write_unlock(&em_tree
->lock
);
918 if (ret
!= -EEXIST
) {
922 btrfs_drop_extent_cache(inode
, start
,
923 start
+ ram_size
- 1, 0);
928 cur_alloc_size
= ins
.offset
;
929 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
930 ram_size
, cur_alloc_size
, 0);
934 if (root
->root_key
.objectid
==
935 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
936 ret
= btrfs_reloc_clone_csums(inode
, start
,
942 if (disk_num_bytes
< cur_alloc_size
)
945 /* we're not doing compressed IO, don't unlock the first
946 * page (which the caller expects to stay locked), don't
947 * clear any dirty bits and don't set any writeback bits
949 * Do set the Private2 bit so we know this page was properly
950 * setup for writepage
952 op
= unlock
? PAGE_UNLOCK
: 0;
953 op
|= PAGE_SET_PRIVATE2
;
955 extent_clear_unlock_delalloc(inode
, start
,
956 start
+ ram_size
- 1, locked_page
,
957 EXTENT_LOCKED
| EXTENT_DELALLOC
,
959 disk_num_bytes
-= cur_alloc_size
;
960 num_bytes
-= cur_alloc_size
;
961 alloc_hint
= ins
.objectid
+ ins
.offset
;
962 start
+= cur_alloc_size
;
968 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
970 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
971 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
972 EXTENT_DELALLOC
| EXTENT_DEFRAG
,
973 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
974 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
979 * work queue call back to started compression on a file and pages
981 static noinline
void async_cow_start(struct btrfs_work
*work
)
983 struct async_cow
*async_cow
;
985 async_cow
= container_of(work
, struct async_cow
, work
);
987 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
988 async_cow
->start
, async_cow
->end
, async_cow
,
990 if (num_added
== 0) {
991 btrfs_add_delayed_iput(async_cow
->inode
);
992 async_cow
->inode
= NULL
;
997 * work queue call back to submit previously compressed pages
999 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1001 struct async_cow
*async_cow
;
1002 struct btrfs_root
*root
;
1003 unsigned long nr_pages
;
1005 async_cow
= container_of(work
, struct async_cow
, work
);
1007 root
= async_cow
->root
;
1008 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
1011 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1013 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1014 wake_up(&root
->fs_info
->async_submit_wait
);
1016 if (async_cow
->inode
)
1017 submit_compressed_extents(async_cow
->inode
, async_cow
);
1020 static noinline
void async_cow_free(struct btrfs_work
*work
)
1022 struct async_cow
*async_cow
;
1023 async_cow
= container_of(work
, struct async_cow
, work
);
1024 if (async_cow
->inode
)
1025 btrfs_add_delayed_iput(async_cow
->inode
);
1029 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1030 u64 start
, u64 end
, int *page_started
,
1031 unsigned long *nr_written
)
1033 struct async_cow
*async_cow
;
1034 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1035 unsigned long nr_pages
;
1037 int limit
= 10 * 1024 * 1024;
1039 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1040 1, 0, NULL
, GFP_NOFS
);
1041 while (start
< end
) {
1042 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1043 BUG_ON(!async_cow
); /* -ENOMEM */
1044 async_cow
->inode
= igrab(inode
);
1045 async_cow
->root
= root
;
1046 async_cow
->locked_page
= locked_page
;
1047 async_cow
->start
= start
;
1049 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
1052 cur_end
= min(end
, start
+ 512 * 1024 - 1);
1054 async_cow
->end
= cur_end
;
1055 INIT_LIST_HEAD(&async_cow
->extents
);
1057 async_cow
->work
.func
= async_cow_start
;
1058 async_cow
->work
.ordered_func
= async_cow_submit
;
1059 async_cow
->work
.ordered_free
= async_cow_free
;
1060 async_cow
->work
.flags
= 0;
1062 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1064 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1066 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
1069 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1070 wait_event(root
->fs_info
->async_submit_wait
,
1071 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1075 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1076 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1077 wait_event(root
->fs_info
->async_submit_wait
,
1078 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1082 *nr_written
+= nr_pages
;
1083 start
= cur_end
+ 1;
1089 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1090 u64 bytenr
, u64 num_bytes
)
1093 struct btrfs_ordered_sum
*sums
;
1096 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1097 bytenr
+ num_bytes
- 1, &list
, 0);
1098 if (ret
== 0 && list_empty(&list
))
1101 while (!list_empty(&list
)) {
1102 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1103 list_del(&sums
->list
);
1110 * when nowcow writeback call back. This checks for snapshots or COW copies
1111 * of the extents that exist in the file, and COWs the file as required.
1113 * If no cow copies or snapshots exist, we write directly to the existing
1116 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1117 struct page
*locked_page
,
1118 u64 start
, u64 end
, int *page_started
, int force
,
1119 unsigned long *nr_written
)
1121 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1122 struct btrfs_trans_handle
*trans
;
1123 struct extent_buffer
*leaf
;
1124 struct btrfs_path
*path
;
1125 struct btrfs_file_extent_item
*fi
;
1126 struct btrfs_key found_key
;
1141 u64 ino
= btrfs_ino(inode
);
1143 path
= btrfs_alloc_path();
1145 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1146 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1147 EXTENT_DO_ACCOUNTING
|
1148 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1150 PAGE_SET_WRITEBACK
|
1151 PAGE_END_WRITEBACK
);
1155 nolock
= btrfs_is_free_space_inode(inode
);
1158 trans
= btrfs_join_transaction_nolock(root
);
1160 trans
= btrfs_join_transaction(root
);
1162 if (IS_ERR(trans
)) {
1163 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1164 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1165 EXTENT_DO_ACCOUNTING
|
1166 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1168 PAGE_SET_WRITEBACK
|
1169 PAGE_END_WRITEBACK
);
1170 btrfs_free_path(path
);
1171 return PTR_ERR(trans
);
1174 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1176 cow_start
= (u64
)-1;
1179 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1182 btrfs_abort_transaction(trans
, root
, ret
);
1185 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1186 leaf
= path
->nodes
[0];
1187 btrfs_item_key_to_cpu(leaf
, &found_key
,
1188 path
->slots
[0] - 1);
1189 if (found_key
.objectid
== ino
&&
1190 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1195 leaf
= path
->nodes
[0];
1196 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1197 ret
= btrfs_next_leaf(root
, path
);
1199 btrfs_abort_transaction(trans
, root
, ret
);
1204 leaf
= path
->nodes
[0];
1210 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1212 if (found_key
.objectid
> ino
||
1213 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1214 found_key
.offset
> end
)
1217 if (found_key
.offset
> cur_offset
) {
1218 extent_end
= found_key
.offset
;
1223 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1224 struct btrfs_file_extent_item
);
1225 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1227 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1228 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1229 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1230 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1231 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1232 extent_end
= found_key
.offset
+
1233 btrfs_file_extent_num_bytes(leaf
, fi
);
1235 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1236 if (extent_end
<= start
) {
1240 if (disk_bytenr
== 0)
1242 if (btrfs_file_extent_compression(leaf
, fi
) ||
1243 btrfs_file_extent_encryption(leaf
, fi
) ||
1244 btrfs_file_extent_other_encoding(leaf
, fi
))
1246 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1248 if (btrfs_extent_readonly(root
, disk_bytenr
))
1250 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1252 extent_offset
, disk_bytenr
))
1254 disk_bytenr
+= extent_offset
;
1255 disk_bytenr
+= cur_offset
- found_key
.offset
;
1256 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1258 * force cow if csum exists in the range.
1259 * this ensure that csum for a given extent are
1260 * either valid or do not exist.
1262 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1265 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1266 extent_end
= found_key
.offset
+
1267 btrfs_file_extent_inline_len(leaf
, fi
);
1268 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1273 if (extent_end
<= start
) {
1278 if (cow_start
== (u64
)-1)
1279 cow_start
= cur_offset
;
1280 cur_offset
= extent_end
;
1281 if (cur_offset
> end
)
1287 btrfs_release_path(path
);
1288 if (cow_start
!= (u64
)-1) {
1289 ret
= cow_file_range(inode
, locked_page
,
1290 cow_start
, found_key
.offset
- 1,
1291 page_started
, nr_written
, 1);
1293 btrfs_abort_transaction(trans
, root
, ret
);
1296 cow_start
= (u64
)-1;
1299 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1300 struct extent_map
*em
;
1301 struct extent_map_tree
*em_tree
;
1302 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1303 em
= alloc_extent_map();
1304 BUG_ON(!em
); /* -ENOMEM */
1305 em
->start
= cur_offset
;
1306 em
->orig_start
= found_key
.offset
- extent_offset
;
1307 em
->len
= num_bytes
;
1308 em
->block_len
= num_bytes
;
1309 em
->block_start
= disk_bytenr
;
1310 em
->orig_block_len
= disk_num_bytes
;
1311 em
->ram_bytes
= ram_bytes
;
1312 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1313 em
->mod_start
= em
->start
;
1314 em
->mod_len
= em
->len
;
1315 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1316 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1317 em
->generation
= -1;
1319 write_lock(&em_tree
->lock
);
1320 ret
= add_extent_mapping(em_tree
, em
, 1);
1321 write_unlock(&em_tree
->lock
);
1322 if (ret
!= -EEXIST
) {
1323 free_extent_map(em
);
1326 btrfs_drop_extent_cache(inode
, em
->start
,
1327 em
->start
+ em
->len
- 1, 0);
1329 type
= BTRFS_ORDERED_PREALLOC
;
1331 type
= BTRFS_ORDERED_NOCOW
;
1334 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1335 num_bytes
, num_bytes
, type
);
1336 BUG_ON(ret
); /* -ENOMEM */
1338 if (root
->root_key
.objectid
==
1339 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1340 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1343 btrfs_abort_transaction(trans
, root
, ret
);
1348 extent_clear_unlock_delalloc(inode
, cur_offset
,
1349 cur_offset
+ num_bytes
- 1,
1350 locked_page
, EXTENT_LOCKED
|
1351 EXTENT_DELALLOC
, PAGE_UNLOCK
|
1353 cur_offset
= extent_end
;
1354 if (cur_offset
> end
)
1357 btrfs_release_path(path
);
1359 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1360 cow_start
= cur_offset
;
1364 if (cow_start
!= (u64
)-1) {
1365 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1366 page_started
, nr_written
, 1);
1368 btrfs_abort_transaction(trans
, root
, ret
);
1374 err
= btrfs_end_transaction(trans
, root
);
1378 if (ret
&& cur_offset
< end
)
1379 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1380 locked_page
, EXTENT_LOCKED
|
1381 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1382 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1384 PAGE_SET_WRITEBACK
|
1385 PAGE_END_WRITEBACK
);
1386 btrfs_free_path(path
);
1391 * extent_io.c call back to do delayed allocation processing
1393 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1394 u64 start
, u64 end
, int *page_started
,
1395 unsigned long *nr_written
)
1398 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1400 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) {
1401 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1402 page_started
, 1, nr_written
);
1403 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
) {
1404 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1405 page_started
, 0, nr_written
);
1406 } else if (!btrfs_test_opt(root
, COMPRESS
) &&
1407 !(BTRFS_I(inode
)->force_compress
) &&
1408 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
)) {
1409 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1410 page_started
, nr_written
, 1);
1412 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1413 &BTRFS_I(inode
)->runtime_flags
);
1414 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1415 page_started
, nr_written
);
1420 static void btrfs_split_extent_hook(struct inode
*inode
,
1421 struct extent_state
*orig
, u64 split
)
1423 /* not delalloc, ignore it */
1424 if (!(orig
->state
& EXTENT_DELALLOC
))
1427 spin_lock(&BTRFS_I(inode
)->lock
);
1428 BTRFS_I(inode
)->outstanding_extents
++;
1429 spin_unlock(&BTRFS_I(inode
)->lock
);
1433 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1434 * extents so we can keep track of new extents that are just merged onto old
1435 * extents, such as when we are doing sequential writes, so we can properly
1436 * account for the metadata space we'll need.
1438 static void btrfs_merge_extent_hook(struct inode
*inode
,
1439 struct extent_state
*new,
1440 struct extent_state
*other
)
1442 /* not delalloc, ignore it */
1443 if (!(other
->state
& EXTENT_DELALLOC
))
1446 spin_lock(&BTRFS_I(inode
)->lock
);
1447 BTRFS_I(inode
)->outstanding_extents
--;
1448 spin_unlock(&BTRFS_I(inode
)->lock
);
1451 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1452 struct inode
*inode
)
1454 spin_lock(&root
->delalloc_lock
);
1455 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1456 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1457 &root
->delalloc_inodes
);
1458 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1459 &BTRFS_I(inode
)->runtime_flags
);
1460 root
->nr_delalloc_inodes
++;
1461 if (root
->nr_delalloc_inodes
== 1) {
1462 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1463 BUG_ON(!list_empty(&root
->delalloc_root
));
1464 list_add_tail(&root
->delalloc_root
,
1465 &root
->fs_info
->delalloc_roots
);
1466 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1469 spin_unlock(&root
->delalloc_lock
);
1472 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1473 struct inode
*inode
)
1475 spin_lock(&root
->delalloc_lock
);
1476 if (!list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1477 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1478 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1479 &BTRFS_I(inode
)->runtime_flags
);
1480 root
->nr_delalloc_inodes
--;
1481 if (!root
->nr_delalloc_inodes
) {
1482 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1483 BUG_ON(list_empty(&root
->delalloc_root
));
1484 list_del_init(&root
->delalloc_root
);
1485 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1488 spin_unlock(&root
->delalloc_lock
);
1492 * extent_io.c set_bit_hook, used to track delayed allocation
1493 * bytes in this file, and to maintain the list of inodes that
1494 * have pending delalloc work to be done.
1496 static void btrfs_set_bit_hook(struct inode
*inode
,
1497 struct extent_state
*state
, unsigned long *bits
)
1501 * set_bit and clear bit hooks normally require _irqsave/restore
1502 * but in this case, we are only testing for the DELALLOC
1503 * bit, which is only set or cleared with irqs on
1505 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1506 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1507 u64 len
= state
->end
+ 1 - state
->start
;
1508 bool do_list
= !btrfs_is_free_space_inode(inode
);
1510 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1511 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1513 spin_lock(&BTRFS_I(inode
)->lock
);
1514 BTRFS_I(inode
)->outstanding_extents
++;
1515 spin_unlock(&BTRFS_I(inode
)->lock
);
1518 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, len
,
1519 root
->fs_info
->delalloc_batch
);
1520 spin_lock(&BTRFS_I(inode
)->lock
);
1521 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1522 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1523 &BTRFS_I(inode
)->runtime_flags
))
1524 btrfs_add_delalloc_inodes(root
, inode
);
1525 spin_unlock(&BTRFS_I(inode
)->lock
);
1530 * extent_io.c clear_bit_hook, see set_bit_hook for why
1532 static void btrfs_clear_bit_hook(struct inode
*inode
,
1533 struct extent_state
*state
,
1534 unsigned long *bits
)
1537 * set_bit and clear bit hooks normally require _irqsave/restore
1538 * but in this case, we are only testing for the DELALLOC
1539 * bit, which is only set or cleared with irqs on
1541 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1542 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1543 u64 len
= state
->end
+ 1 - state
->start
;
1544 bool do_list
= !btrfs_is_free_space_inode(inode
);
1546 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1547 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1548 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1549 spin_lock(&BTRFS_I(inode
)->lock
);
1550 BTRFS_I(inode
)->outstanding_extents
--;
1551 spin_unlock(&BTRFS_I(inode
)->lock
);
1555 * We don't reserve metadata space for space cache inodes so we
1556 * don't need to call dellalloc_release_metadata if there is an
1559 if (*bits
& EXTENT_DO_ACCOUNTING
&&
1560 root
!= root
->fs_info
->tree_root
)
1561 btrfs_delalloc_release_metadata(inode
, len
);
1563 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1564 && do_list
&& !(state
->state
& EXTENT_NORESERVE
))
1565 btrfs_free_reserved_data_space(inode
, len
);
1567 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, -len
,
1568 root
->fs_info
->delalloc_batch
);
1569 spin_lock(&BTRFS_I(inode
)->lock
);
1570 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1571 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1572 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1573 &BTRFS_I(inode
)->runtime_flags
))
1574 btrfs_del_delalloc_inode(root
, inode
);
1575 spin_unlock(&BTRFS_I(inode
)->lock
);
1580 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1581 * we don't create bios that span stripes or chunks
1583 int btrfs_merge_bio_hook(int rw
, struct page
*page
, unsigned long offset
,
1584 size_t size
, struct bio
*bio
,
1585 unsigned long bio_flags
)
1587 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1588 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1593 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1596 length
= bio
->bi_size
;
1597 map_length
= length
;
1598 ret
= btrfs_map_block(root
->fs_info
, rw
, logical
,
1599 &map_length
, NULL
, 0);
1600 /* Will always return 0 with map_multi == NULL */
1602 if (map_length
< length
+ size
)
1608 * in order to insert checksums into the metadata in large chunks,
1609 * we wait until bio submission time. All the pages in the bio are
1610 * checksummed and sums are attached onto the ordered extent record.
1612 * At IO completion time the cums attached on the ordered extent record
1613 * are inserted into the btree
1615 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1616 struct bio
*bio
, int mirror_num
,
1617 unsigned long bio_flags
,
1620 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1623 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1624 BUG_ON(ret
); /* -ENOMEM */
1629 * in order to insert checksums into the metadata in large chunks,
1630 * we wait until bio submission time. All the pages in the bio are
1631 * checksummed and sums are attached onto the ordered extent record.
1633 * At IO completion time the cums attached on the ordered extent record
1634 * are inserted into the btree
1636 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1637 int mirror_num
, unsigned long bio_flags
,
1640 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1643 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1645 bio_endio(bio
, ret
);
1650 * extent_io.c submission hook. This does the right thing for csum calculation
1651 * on write, or reading the csums from the tree before a read
1653 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1654 int mirror_num
, unsigned long bio_flags
,
1657 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1661 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1663 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1665 if (btrfs_is_free_space_inode(inode
))
1668 if (!(rw
& REQ_WRITE
)) {
1669 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1673 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1674 ret
= btrfs_submit_compressed_read(inode
, bio
,
1678 } else if (!skip_sum
) {
1679 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1684 } else if (async
&& !skip_sum
) {
1685 /* csum items have already been cloned */
1686 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1688 /* we're doing a write, do the async checksumming */
1689 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1690 inode
, rw
, bio
, mirror_num
,
1691 bio_flags
, bio_offset
,
1692 __btrfs_submit_bio_start
,
1693 __btrfs_submit_bio_done
);
1695 } else if (!skip_sum
) {
1696 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1702 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1706 bio_endio(bio
, ret
);
1711 * given a list of ordered sums record them in the inode. This happens
1712 * at IO completion time based on sums calculated at bio submission time.
1714 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1715 struct inode
*inode
, u64 file_offset
,
1716 struct list_head
*list
)
1718 struct btrfs_ordered_sum
*sum
;
1720 list_for_each_entry(sum
, list
, list
) {
1721 trans
->adding_csums
= 1;
1722 btrfs_csum_file_blocks(trans
,
1723 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1724 trans
->adding_csums
= 0;
1729 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1730 struct extent_state
**cached_state
)
1732 WARN_ON((end
& (PAGE_CACHE_SIZE
- 1)) == 0);
1733 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1734 cached_state
, GFP_NOFS
);
1737 /* see btrfs_writepage_start_hook for details on why this is required */
1738 struct btrfs_writepage_fixup
{
1740 struct btrfs_work work
;
1743 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1745 struct btrfs_writepage_fixup
*fixup
;
1746 struct btrfs_ordered_extent
*ordered
;
1747 struct extent_state
*cached_state
= NULL
;
1749 struct inode
*inode
;
1754 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1758 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1759 ClearPageChecked(page
);
1763 inode
= page
->mapping
->host
;
1764 page_start
= page_offset(page
);
1765 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1767 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1770 /* already ordered? We're done */
1771 if (PagePrivate2(page
))
1774 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1776 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1777 page_end
, &cached_state
, GFP_NOFS
);
1779 btrfs_start_ordered_extent(inode
, ordered
, 1);
1780 btrfs_put_ordered_extent(ordered
);
1784 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1786 mapping_set_error(page
->mapping
, ret
);
1787 end_extent_writepage(page
, ret
, page_start
, page_end
);
1788 ClearPageChecked(page
);
1792 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1793 ClearPageChecked(page
);
1794 set_page_dirty(page
);
1796 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1797 &cached_state
, GFP_NOFS
);
1800 page_cache_release(page
);
1805 * There are a few paths in the higher layers of the kernel that directly
1806 * set the page dirty bit without asking the filesystem if it is a
1807 * good idea. This causes problems because we want to make sure COW
1808 * properly happens and the data=ordered rules are followed.
1810 * In our case any range that doesn't have the ORDERED bit set
1811 * hasn't been properly setup for IO. We kick off an async process
1812 * to fix it up. The async helper will wait for ordered extents, set
1813 * the delalloc bit and make it safe to write the page.
1815 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1817 struct inode
*inode
= page
->mapping
->host
;
1818 struct btrfs_writepage_fixup
*fixup
;
1819 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1821 /* this page is properly in the ordered list */
1822 if (TestClearPagePrivate2(page
))
1825 if (PageChecked(page
))
1828 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1832 SetPageChecked(page
);
1833 page_cache_get(page
);
1834 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1836 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1840 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1841 struct inode
*inode
, u64 file_pos
,
1842 u64 disk_bytenr
, u64 disk_num_bytes
,
1843 u64 num_bytes
, u64 ram_bytes
,
1844 u8 compression
, u8 encryption
,
1845 u16 other_encoding
, int extent_type
)
1847 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1848 struct btrfs_file_extent_item
*fi
;
1849 struct btrfs_path
*path
;
1850 struct extent_buffer
*leaf
;
1851 struct btrfs_key ins
;
1854 path
= btrfs_alloc_path();
1858 path
->leave_spinning
= 1;
1861 * we may be replacing one extent in the tree with another.
1862 * The new extent is pinned in the extent map, and we don't want
1863 * to drop it from the cache until it is completely in the btree.
1865 * So, tell btrfs_drop_extents to leave this extent in the cache.
1866 * the caller is expected to unpin it and allow it to be merged
1869 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1870 file_pos
+ num_bytes
, 0);
1874 ins
.objectid
= btrfs_ino(inode
);
1875 ins
.offset
= file_pos
;
1876 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1877 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1880 leaf
= path
->nodes
[0];
1881 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1882 struct btrfs_file_extent_item
);
1883 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1884 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1885 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1886 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1887 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1888 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1889 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1890 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1891 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1892 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1894 btrfs_mark_buffer_dirty(leaf
);
1895 btrfs_release_path(path
);
1897 inode_add_bytes(inode
, num_bytes
);
1899 ins
.objectid
= disk_bytenr
;
1900 ins
.offset
= disk_num_bytes
;
1901 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1902 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1903 root
->root_key
.objectid
,
1904 btrfs_ino(inode
), file_pos
, &ins
);
1906 btrfs_free_path(path
);
1911 /* snapshot-aware defrag */
1912 struct sa_defrag_extent_backref
{
1913 struct rb_node node
;
1914 struct old_sa_defrag_extent
*old
;
1923 struct old_sa_defrag_extent
{
1924 struct list_head list
;
1925 struct new_sa_defrag_extent
*new;
1934 struct new_sa_defrag_extent
{
1935 struct rb_root root
;
1936 struct list_head head
;
1937 struct btrfs_path
*path
;
1938 struct inode
*inode
;
1946 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
1947 struct sa_defrag_extent_backref
*b2
)
1949 if (b1
->root_id
< b2
->root_id
)
1951 else if (b1
->root_id
> b2
->root_id
)
1954 if (b1
->inum
< b2
->inum
)
1956 else if (b1
->inum
> b2
->inum
)
1959 if (b1
->file_pos
< b2
->file_pos
)
1961 else if (b1
->file_pos
> b2
->file_pos
)
1965 * [------------------------------] ===> (a range of space)
1966 * |<--->| |<---->| =============> (fs/file tree A)
1967 * |<---------------------------->| ===> (fs/file tree B)
1969 * A range of space can refer to two file extents in one tree while
1970 * refer to only one file extent in another tree.
1972 * So we may process a disk offset more than one time(two extents in A)
1973 * and locate at the same extent(one extent in B), then insert two same
1974 * backrefs(both refer to the extent in B).
1979 static void backref_insert(struct rb_root
*root
,
1980 struct sa_defrag_extent_backref
*backref
)
1982 struct rb_node
**p
= &root
->rb_node
;
1983 struct rb_node
*parent
= NULL
;
1984 struct sa_defrag_extent_backref
*entry
;
1989 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
1991 ret
= backref_comp(backref
, entry
);
1995 p
= &(*p
)->rb_right
;
1998 rb_link_node(&backref
->node
, parent
, p
);
1999 rb_insert_color(&backref
->node
, root
);
2003 * Note the backref might has changed, and in this case we just return 0.
2005 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2008 struct btrfs_file_extent_item
*extent
;
2009 struct btrfs_fs_info
*fs_info
;
2010 struct old_sa_defrag_extent
*old
= ctx
;
2011 struct new_sa_defrag_extent
*new = old
->new;
2012 struct btrfs_path
*path
= new->path
;
2013 struct btrfs_key key
;
2014 struct btrfs_root
*root
;
2015 struct sa_defrag_extent_backref
*backref
;
2016 struct extent_buffer
*leaf
;
2017 struct inode
*inode
= new->inode
;
2023 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2024 inum
== btrfs_ino(inode
))
2027 key
.objectid
= root_id
;
2028 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2029 key
.offset
= (u64
)-1;
2031 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2032 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2034 if (PTR_ERR(root
) == -ENOENT
)
2037 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2038 inum
, offset
, root_id
);
2039 return PTR_ERR(root
);
2042 key
.objectid
= inum
;
2043 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2044 if (offset
> (u64
)-1 << 32)
2047 key
.offset
= offset
;
2049 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2059 leaf
= path
->nodes
[0];
2060 slot
= path
->slots
[0];
2062 if (slot
>= btrfs_header_nritems(leaf
)) {
2063 ret
= btrfs_next_leaf(root
, path
);
2066 } else if (ret
> 0) {
2075 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2077 if (key
.objectid
> inum
)
2080 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2083 extent
= btrfs_item_ptr(leaf
, slot
,
2084 struct btrfs_file_extent_item
);
2086 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2090 * 'offset' refers to the exact key.offset,
2091 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2092 * (key.offset - extent_offset).
2094 if (key
.offset
!= offset
)
2097 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2098 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2100 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2101 old
->len
|| extent_offset
+ num_bytes
<=
2102 old
->extent_offset
+ old
->offset
)
2107 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2113 backref
->root_id
= root_id
;
2114 backref
->inum
= inum
;
2115 backref
->file_pos
= offset
;
2116 backref
->num_bytes
= num_bytes
;
2117 backref
->extent_offset
= extent_offset
;
2118 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2120 backref_insert(&new->root
, backref
);
2123 btrfs_release_path(path
);
2128 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2129 struct new_sa_defrag_extent
*new)
2131 struct btrfs_fs_info
*fs_info
= BTRFS_I(new->inode
)->root
->fs_info
;
2132 struct old_sa_defrag_extent
*old
, *tmp
;
2137 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2138 ret
= iterate_inodes_from_logical(old
->bytenr
+
2139 old
->extent_offset
, fs_info
,
2140 path
, record_one_backref
,
2142 BUG_ON(ret
< 0 && ret
!= -ENOENT
);
2144 /* no backref to be processed for this extent */
2146 list_del(&old
->list
);
2151 if (list_empty(&new->head
))
2157 static int relink_is_mergable(struct extent_buffer
*leaf
,
2158 struct btrfs_file_extent_item
*fi
,
2159 struct new_sa_defrag_extent
*new)
2161 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2164 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2167 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2170 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2171 btrfs_file_extent_other_encoding(leaf
, fi
))
2178 * Note the backref might has changed, and in this case we just return 0.
2180 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2181 struct sa_defrag_extent_backref
*prev
,
2182 struct sa_defrag_extent_backref
*backref
)
2184 struct btrfs_file_extent_item
*extent
;
2185 struct btrfs_file_extent_item
*item
;
2186 struct btrfs_ordered_extent
*ordered
;
2187 struct btrfs_trans_handle
*trans
;
2188 struct btrfs_fs_info
*fs_info
;
2189 struct btrfs_root
*root
;
2190 struct btrfs_key key
;
2191 struct extent_buffer
*leaf
;
2192 struct old_sa_defrag_extent
*old
= backref
->old
;
2193 struct new_sa_defrag_extent
*new = old
->new;
2194 struct inode
*src_inode
= new->inode
;
2195 struct inode
*inode
;
2196 struct extent_state
*cached
= NULL
;
2205 if (prev
&& prev
->root_id
== backref
->root_id
&&
2206 prev
->inum
== backref
->inum
&&
2207 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2210 /* step 1: get root */
2211 key
.objectid
= backref
->root_id
;
2212 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2213 key
.offset
= (u64
)-1;
2215 fs_info
= BTRFS_I(src_inode
)->root
->fs_info
;
2216 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2218 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2220 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2221 if (PTR_ERR(root
) == -ENOENT
)
2223 return PTR_ERR(root
);
2226 /* step 2: get inode */
2227 key
.objectid
= backref
->inum
;
2228 key
.type
= BTRFS_INODE_ITEM_KEY
;
2231 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2232 if (IS_ERR(inode
)) {
2233 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2237 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2239 /* step 3: relink backref */
2240 lock_start
= backref
->file_pos
;
2241 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2242 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2245 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2247 btrfs_put_ordered_extent(ordered
);
2251 trans
= btrfs_join_transaction(root
);
2252 if (IS_ERR(trans
)) {
2253 ret
= PTR_ERR(trans
);
2257 key
.objectid
= backref
->inum
;
2258 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2259 key
.offset
= backref
->file_pos
;
2261 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2264 } else if (ret
> 0) {
2269 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2270 struct btrfs_file_extent_item
);
2272 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2273 backref
->generation
)
2276 btrfs_release_path(path
);
2278 start
= backref
->file_pos
;
2279 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2280 start
+= old
->extent_offset
+ old
->offset
-
2281 backref
->extent_offset
;
2283 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2284 old
->extent_offset
+ old
->offset
+ old
->len
);
2285 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2287 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2292 key
.objectid
= btrfs_ino(inode
);
2293 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2296 path
->leave_spinning
= 1;
2298 struct btrfs_file_extent_item
*fi
;
2300 struct btrfs_key found_key
;
2302 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 1, 1);
2307 leaf
= path
->nodes
[0];
2308 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2310 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2311 struct btrfs_file_extent_item
);
2312 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2314 if (extent_len
+ found_key
.offset
== start
&&
2315 relink_is_mergable(leaf
, fi
, new)) {
2316 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2318 btrfs_mark_buffer_dirty(leaf
);
2319 inode_add_bytes(inode
, len
);
2325 btrfs_release_path(path
);
2330 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2333 btrfs_abort_transaction(trans
, root
, ret
);
2337 leaf
= path
->nodes
[0];
2338 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2339 struct btrfs_file_extent_item
);
2340 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2341 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2342 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2343 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2344 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2345 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2346 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2347 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2348 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2349 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2351 btrfs_mark_buffer_dirty(leaf
);
2352 inode_add_bytes(inode
, len
);
2353 btrfs_release_path(path
);
2355 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2357 backref
->root_id
, backref
->inum
,
2358 new->file_pos
, 0); /* start - extent_offset */
2360 btrfs_abort_transaction(trans
, root
, ret
);
2366 btrfs_release_path(path
);
2367 path
->leave_spinning
= 0;
2368 btrfs_end_transaction(trans
, root
);
2370 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2376 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2378 struct old_sa_defrag_extent
*old
, *tmp
;
2383 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2384 list_del(&old
->list
);
2390 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2392 struct btrfs_path
*path
;
2393 struct sa_defrag_extent_backref
*backref
;
2394 struct sa_defrag_extent_backref
*prev
= NULL
;
2395 struct inode
*inode
;
2396 struct btrfs_root
*root
;
2397 struct rb_node
*node
;
2401 root
= BTRFS_I(inode
)->root
;
2403 path
= btrfs_alloc_path();
2407 if (!record_extent_backrefs(path
, new)) {
2408 btrfs_free_path(path
);
2411 btrfs_release_path(path
);
2414 node
= rb_first(&new->root
);
2417 rb_erase(node
, &new->root
);
2419 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2421 ret
= relink_extent_backref(path
, prev
, backref
);
2434 btrfs_free_path(path
);
2436 free_sa_defrag_extent(new);
2438 atomic_dec(&root
->fs_info
->defrag_running
);
2439 wake_up(&root
->fs_info
->transaction_wait
);
2442 static struct new_sa_defrag_extent
*
2443 record_old_file_extents(struct inode
*inode
,
2444 struct btrfs_ordered_extent
*ordered
)
2446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2447 struct btrfs_path
*path
;
2448 struct btrfs_key key
;
2449 struct old_sa_defrag_extent
*old
;
2450 struct new_sa_defrag_extent
*new;
2453 new = kmalloc(sizeof(*new), GFP_NOFS
);
2458 new->file_pos
= ordered
->file_offset
;
2459 new->len
= ordered
->len
;
2460 new->bytenr
= ordered
->start
;
2461 new->disk_len
= ordered
->disk_len
;
2462 new->compress_type
= ordered
->compress_type
;
2463 new->root
= RB_ROOT
;
2464 INIT_LIST_HEAD(&new->head
);
2466 path
= btrfs_alloc_path();
2470 key
.objectid
= btrfs_ino(inode
);
2471 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2472 key
.offset
= new->file_pos
;
2474 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2477 if (ret
> 0 && path
->slots
[0] > 0)
2480 /* find out all the old extents for the file range */
2482 struct btrfs_file_extent_item
*extent
;
2483 struct extent_buffer
*l
;
2492 slot
= path
->slots
[0];
2494 if (slot
>= btrfs_header_nritems(l
)) {
2495 ret
= btrfs_next_leaf(root
, path
);
2503 btrfs_item_key_to_cpu(l
, &key
, slot
);
2505 if (key
.objectid
!= btrfs_ino(inode
))
2507 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2509 if (key
.offset
>= new->file_pos
+ new->len
)
2512 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2514 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2515 if (key
.offset
+ num_bytes
< new->file_pos
)
2518 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2522 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2524 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2528 offset
= max(new->file_pos
, key
.offset
);
2529 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2531 old
->bytenr
= disk_bytenr
;
2532 old
->extent_offset
= extent_offset
;
2533 old
->offset
= offset
- key
.offset
;
2534 old
->len
= end
- offset
;
2537 list_add_tail(&old
->list
, &new->head
);
2543 btrfs_free_path(path
);
2544 atomic_inc(&root
->fs_info
->defrag_running
);
2549 btrfs_free_path(path
);
2551 free_sa_defrag_extent(new);
2556 * helper function for btrfs_finish_ordered_io, this
2557 * just reads in some of the csum leaves to prime them into ram
2558 * before we start the transaction. It limits the amount of btree
2559 * reads required while inside the transaction.
2561 /* as ordered data IO finishes, this gets called so we can finish
2562 * an ordered extent if the range of bytes in the file it covers are
2565 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2567 struct inode
*inode
= ordered_extent
->inode
;
2568 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2569 struct btrfs_trans_handle
*trans
= NULL
;
2570 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2571 struct extent_state
*cached_state
= NULL
;
2572 struct new_sa_defrag_extent
*new = NULL
;
2573 int compress_type
= 0;
2575 u64 logical_len
= ordered_extent
->len
;
2577 bool truncated
= false;
2579 nolock
= btrfs_is_free_space_inode(inode
);
2581 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2586 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2588 logical_len
= ordered_extent
->truncated_len
;
2589 /* Truncated the entire extent, don't bother adding */
2594 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2595 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2596 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2598 trans
= btrfs_join_transaction_nolock(root
);
2600 trans
= btrfs_join_transaction(root
);
2601 if (IS_ERR(trans
)) {
2602 ret
= PTR_ERR(trans
);
2606 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2607 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2608 if (ret
) /* -ENOMEM or corruption */
2609 btrfs_abort_transaction(trans
, root
, ret
);
2613 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2614 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2617 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2618 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2619 EXTENT_DEFRAG
, 1, cached_state
);
2621 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2622 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2623 /* the inode is shared */
2624 new = record_old_file_extents(inode
, ordered_extent
);
2626 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2627 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2628 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2632 trans
= btrfs_join_transaction_nolock(root
);
2634 trans
= btrfs_join_transaction(root
);
2635 if (IS_ERR(trans
)) {
2636 ret
= PTR_ERR(trans
);
2640 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2642 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2643 compress_type
= ordered_extent
->compress_type
;
2644 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2645 BUG_ON(compress_type
);
2646 ret
= btrfs_mark_extent_written(trans
, inode
,
2647 ordered_extent
->file_offset
,
2648 ordered_extent
->file_offset
+
2651 BUG_ON(root
== root
->fs_info
->tree_root
);
2652 ret
= insert_reserved_file_extent(trans
, inode
,
2653 ordered_extent
->file_offset
,
2654 ordered_extent
->start
,
2655 ordered_extent
->disk_len
,
2656 logical_len
, logical_len
,
2657 compress_type
, 0, 0,
2658 BTRFS_FILE_EXTENT_REG
);
2660 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2661 ordered_extent
->file_offset
, ordered_extent
->len
,
2664 btrfs_abort_transaction(trans
, root
, ret
);
2668 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
2669 &ordered_extent
->list
);
2671 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2672 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2673 if (ret
) { /* -ENOMEM or corruption */
2674 btrfs_abort_transaction(trans
, root
, ret
);
2679 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
2680 ordered_extent
->file_offset
+
2681 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
2683 if (root
!= root
->fs_info
->tree_root
)
2684 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2686 btrfs_end_transaction(trans
, root
);
2688 if (ret
|| truncated
) {
2692 start
= ordered_extent
->file_offset
+ logical_len
;
2694 start
= ordered_extent
->file_offset
;
2695 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
2696 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
2698 /* Drop the cache for the part of the extent we didn't write. */
2699 btrfs_drop_extent_cache(inode
, start
, end
, 0);
2702 * If the ordered extent had an IOERR or something else went
2703 * wrong we need to return the space for this ordered extent
2704 * back to the allocator. We only free the extent in the
2705 * truncated case if we didn't write out the extent at all.
2707 if ((ret
|| !logical_len
) &&
2708 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2709 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
2710 btrfs_free_reserved_extent(root
, ordered_extent
->start
,
2711 ordered_extent
->disk_len
);
2716 * This needs to be done to make sure anybody waiting knows we are done
2717 * updating everything for this ordered extent.
2719 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2721 /* for snapshot-aware defrag */
2724 free_sa_defrag_extent(new);
2725 atomic_dec(&root
->fs_info
->defrag_running
);
2727 relink_file_extents(new);
2732 btrfs_put_ordered_extent(ordered_extent
);
2733 /* once for the tree */
2734 btrfs_put_ordered_extent(ordered_extent
);
2739 static void finish_ordered_fn(struct btrfs_work
*work
)
2741 struct btrfs_ordered_extent
*ordered_extent
;
2742 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2743 btrfs_finish_ordered_io(ordered_extent
);
2746 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2747 struct extent_state
*state
, int uptodate
)
2749 struct inode
*inode
= page
->mapping
->host
;
2750 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2751 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2752 struct btrfs_workers
*workers
;
2754 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2756 ClearPagePrivate2(page
);
2757 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2758 end
- start
+ 1, uptodate
))
2761 ordered_extent
->work
.func
= finish_ordered_fn
;
2762 ordered_extent
->work
.flags
= 0;
2764 if (btrfs_is_free_space_inode(inode
))
2765 workers
= &root
->fs_info
->endio_freespace_worker
;
2767 workers
= &root
->fs_info
->endio_write_workers
;
2768 btrfs_queue_worker(workers
, &ordered_extent
->work
);
2774 * when reads are done, we need to check csums to verify the data is correct
2775 * if there's a match, we allow the bio to finish. If not, the code in
2776 * extent_io.c will try to find good copies for us.
2778 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
2779 u64 phy_offset
, struct page
*page
,
2780 u64 start
, u64 end
, int mirror
)
2782 size_t offset
= start
- page_offset(page
);
2783 struct inode
*inode
= page
->mapping
->host
;
2784 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2786 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2789 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2790 DEFAULT_RATELIMIT_BURST
);
2792 if (PageChecked(page
)) {
2793 ClearPageChecked(page
);
2797 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2800 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2801 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2802 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
2807 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2808 csum_expected
= *(((u32
*)io_bio
->csum
) + phy_offset
);
2810 kaddr
= kmap_atomic(page
);
2811 csum
= btrfs_csum_data(kaddr
+ offset
, csum
, end
- start
+ 1);
2812 btrfs_csum_final(csum
, (char *)&csum
);
2813 if (csum
!= csum_expected
)
2816 kunmap_atomic(kaddr
);
2821 if (__ratelimit(&_rs
))
2822 btrfs_info(root
->fs_info
, "csum failed ino %llu off %llu csum %u expected csum %u",
2823 btrfs_ino(page
->mapping
->host
), start
, csum
, csum_expected
);
2824 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2825 flush_dcache_page(page
);
2826 kunmap_atomic(kaddr
);
2827 if (csum_expected
== 0)
2832 struct delayed_iput
{
2833 struct list_head list
;
2834 struct inode
*inode
;
2837 /* JDM: If this is fs-wide, why can't we add a pointer to
2838 * btrfs_inode instead and avoid the allocation? */
2839 void btrfs_add_delayed_iput(struct inode
*inode
)
2841 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2842 struct delayed_iput
*delayed
;
2844 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2847 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2848 delayed
->inode
= inode
;
2850 spin_lock(&fs_info
->delayed_iput_lock
);
2851 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2852 spin_unlock(&fs_info
->delayed_iput_lock
);
2855 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2858 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2859 struct delayed_iput
*delayed
;
2862 spin_lock(&fs_info
->delayed_iput_lock
);
2863 empty
= list_empty(&fs_info
->delayed_iputs
);
2864 spin_unlock(&fs_info
->delayed_iput_lock
);
2868 spin_lock(&fs_info
->delayed_iput_lock
);
2869 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2870 spin_unlock(&fs_info
->delayed_iput_lock
);
2872 while (!list_empty(&list
)) {
2873 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2874 list_del(&delayed
->list
);
2875 iput(delayed
->inode
);
2881 * This is called in transaction commit time. If there are no orphan
2882 * files in the subvolume, it removes orphan item and frees block_rsv
2885 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2886 struct btrfs_root
*root
)
2888 struct btrfs_block_rsv
*block_rsv
;
2891 if (atomic_read(&root
->orphan_inodes
) ||
2892 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2895 spin_lock(&root
->orphan_lock
);
2896 if (atomic_read(&root
->orphan_inodes
)) {
2897 spin_unlock(&root
->orphan_lock
);
2901 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
2902 spin_unlock(&root
->orphan_lock
);
2906 block_rsv
= root
->orphan_block_rsv
;
2907 root
->orphan_block_rsv
= NULL
;
2908 spin_unlock(&root
->orphan_lock
);
2910 if (root
->orphan_item_inserted
&&
2911 btrfs_root_refs(&root
->root_item
) > 0) {
2912 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2913 root
->root_key
.objectid
);
2915 btrfs_abort_transaction(trans
, root
, ret
);
2917 root
->orphan_item_inserted
= 0;
2921 WARN_ON(block_rsv
->size
> 0);
2922 btrfs_free_block_rsv(root
, block_rsv
);
2927 * This creates an orphan entry for the given inode in case something goes
2928 * wrong in the middle of an unlink/truncate.
2930 * NOTE: caller of this function should reserve 5 units of metadata for
2933 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2935 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2936 struct btrfs_block_rsv
*block_rsv
= NULL
;
2941 if (!root
->orphan_block_rsv
) {
2942 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2947 spin_lock(&root
->orphan_lock
);
2948 if (!root
->orphan_block_rsv
) {
2949 root
->orphan_block_rsv
= block_rsv
;
2950 } else if (block_rsv
) {
2951 btrfs_free_block_rsv(root
, block_rsv
);
2955 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2956 &BTRFS_I(inode
)->runtime_flags
)) {
2959 * For proper ENOSPC handling, we should do orphan
2960 * cleanup when mounting. But this introduces backward
2961 * compatibility issue.
2963 if (!xchg(&root
->orphan_item_inserted
, 1))
2969 atomic_inc(&root
->orphan_inodes
);
2972 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2973 &BTRFS_I(inode
)->runtime_flags
))
2975 spin_unlock(&root
->orphan_lock
);
2977 /* grab metadata reservation from transaction handle */
2979 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2980 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
2983 /* insert an orphan item to track this unlinked/truncated file */
2985 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2987 atomic_dec(&root
->orphan_inodes
);
2989 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2990 &BTRFS_I(inode
)->runtime_flags
);
2991 btrfs_orphan_release_metadata(inode
);
2993 if (ret
!= -EEXIST
) {
2994 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2995 &BTRFS_I(inode
)->runtime_flags
);
2996 btrfs_abort_transaction(trans
, root
, ret
);
3003 /* insert an orphan item to track subvolume contains orphan files */
3005 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
3006 root
->root_key
.objectid
);
3007 if (ret
&& ret
!= -EEXIST
) {
3008 btrfs_abort_transaction(trans
, root
, ret
);
3016 * We have done the truncate/delete so we can go ahead and remove the orphan
3017 * item for this particular inode.
3019 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3020 struct inode
*inode
)
3022 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3023 int delete_item
= 0;
3024 int release_rsv
= 0;
3027 spin_lock(&root
->orphan_lock
);
3028 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3029 &BTRFS_I(inode
)->runtime_flags
))
3032 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3033 &BTRFS_I(inode
)->runtime_flags
))
3035 spin_unlock(&root
->orphan_lock
);
3038 atomic_dec(&root
->orphan_inodes
);
3040 ret
= btrfs_del_orphan_item(trans
, root
,
3045 btrfs_orphan_release_metadata(inode
);
3051 * this cleans up any orphans that may be left on the list from the last use
3054 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3056 struct btrfs_path
*path
;
3057 struct extent_buffer
*leaf
;
3058 struct btrfs_key key
, found_key
;
3059 struct btrfs_trans_handle
*trans
;
3060 struct inode
*inode
;
3061 u64 last_objectid
= 0;
3062 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3064 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3067 path
= btrfs_alloc_path();
3074 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3075 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
3076 key
.offset
= (u64
)-1;
3079 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3084 * if ret == 0 means we found what we were searching for, which
3085 * is weird, but possible, so only screw with path if we didn't
3086 * find the key and see if we have stuff that matches
3090 if (path
->slots
[0] == 0)
3095 /* pull out the item */
3096 leaf
= path
->nodes
[0];
3097 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3099 /* make sure the item matches what we want */
3100 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3102 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
3105 /* release the path since we're done with it */
3106 btrfs_release_path(path
);
3109 * this is where we are basically btrfs_lookup, without the
3110 * crossing root thing. we store the inode number in the
3111 * offset of the orphan item.
3114 if (found_key
.offset
== last_objectid
) {
3115 btrfs_err(root
->fs_info
,
3116 "Error removing orphan entry, stopping orphan cleanup");
3121 last_objectid
= found_key
.offset
;
3123 found_key
.objectid
= found_key
.offset
;
3124 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3125 found_key
.offset
= 0;
3126 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
3127 ret
= PTR_ERR_OR_ZERO(inode
);
3128 if (ret
&& ret
!= -ESTALE
)
3131 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
3132 struct btrfs_root
*dead_root
;
3133 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3134 int is_dead_root
= 0;
3137 * this is an orphan in the tree root. Currently these
3138 * could come from 2 sources:
3139 * a) a snapshot deletion in progress
3140 * b) a free space cache inode
3141 * We need to distinguish those two, as the snapshot
3142 * orphan must not get deleted.
3143 * find_dead_roots already ran before us, so if this
3144 * is a snapshot deletion, we should find the root
3145 * in the dead_roots list
3147 spin_lock(&fs_info
->trans_lock
);
3148 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3150 if (dead_root
->root_key
.objectid
==
3151 found_key
.objectid
) {
3156 spin_unlock(&fs_info
->trans_lock
);
3158 /* prevent this orphan from being found again */
3159 key
.offset
= found_key
.objectid
- 1;
3164 * Inode is already gone but the orphan item is still there,
3165 * kill the orphan item.
3167 if (ret
== -ESTALE
) {
3168 trans
= btrfs_start_transaction(root
, 1);
3169 if (IS_ERR(trans
)) {
3170 ret
= PTR_ERR(trans
);
3173 btrfs_debug(root
->fs_info
, "auto deleting %Lu",
3174 found_key
.objectid
);
3175 ret
= btrfs_del_orphan_item(trans
, root
,
3176 found_key
.objectid
);
3177 btrfs_end_transaction(trans
, root
);
3184 * add this inode to the orphan list so btrfs_orphan_del does
3185 * the proper thing when we hit it
3187 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3188 &BTRFS_I(inode
)->runtime_flags
);
3189 atomic_inc(&root
->orphan_inodes
);
3191 /* if we have links, this was a truncate, lets do that */
3192 if (inode
->i_nlink
) {
3193 if (!S_ISREG(inode
->i_mode
)) {
3200 /* 1 for the orphan item deletion. */
3201 trans
= btrfs_start_transaction(root
, 1);
3202 if (IS_ERR(trans
)) {
3204 ret
= PTR_ERR(trans
);
3207 ret
= btrfs_orphan_add(trans
, inode
);
3208 btrfs_end_transaction(trans
, root
);
3214 ret
= btrfs_truncate(inode
);
3216 btrfs_orphan_del(NULL
, inode
);
3221 /* this will do delete_inode and everything for us */
3226 /* release the path since we're done with it */
3227 btrfs_release_path(path
);
3229 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3231 if (root
->orphan_block_rsv
)
3232 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
3235 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
3236 trans
= btrfs_join_transaction(root
);
3238 btrfs_end_transaction(trans
, root
);
3242 btrfs_debug(root
->fs_info
, "unlinked %d orphans", nr_unlink
);
3244 btrfs_debug(root
->fs_info
, "truncated %d orphans", nr_truncate
);
3248 btrfs_crit(root
->fs_info
,
3249 "could not do orphan cleanup %d", ret
);
3250 btrfs_free_path(path
);
3255 * very simple check to peek ahead in the leaf looking for xattrs. If we
3256 * don't find any xattrs, we know there can't be any acls.
3258 * slot is the slot the inode is in, objectid is the objectid of the inode
3260 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3261 int slot
, u64 objectid
)
3263 u32 nritems
= btrfs_header_nritems(leaf
);
3264 struct btrfs_key found_key
;
3265 static u64 xattr_access
= 0;
3266 static u64 xattr_default
= 0;
3269 if (!xattr_access
) {
3270 xattr_access
= btrfs_name_hash(POSIX_ACL_XATTR_ACCESS
,
3271 strlen(POSIX_ACL_XATTR_ACCESS
));
3272 xattr_default
= btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT
,
3273 strlen(POSIX_ACL_XATTR_DEFAULT
));
3277 while (slot
< nritems
) {
3278 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3280 /* we found a different objectid, there must not be acls */
3281 if (found_key
.objectid
!= objectid
)
3284 /* we found an xattr, assume we've got an acl */
3285 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3286 if (found_key
.offset
== xattr_access
||
3287 found_key
.offset
== xattr_default
)
3292 * we found a key greater than an xattr key, there can't
3293 * be any acls later on
3295 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3302 * it goes inode, inode backrefs, xattrs, extents,
3303 * so if there are a ton of hard links to an inode there can
3304 * be a lot of backrefs. Don't waste time searching too hard,
3305 * this is just an optimization
3310 /* we hit the end of the leaf before we found an xattr or
3311 * something larger than an xattr. We have to assume the inode
3318 * read an inode from the btree into the in-memory inode
3320 static void btrfs_read_locked_inode(struct inode
*inode
)
3322 struct btrfs_path
*path
;
3323 struct extent_buffer
*leaf
;
3324 struct btrfs_inode_item
*inode_item
;
3325 struct btrfs_timespec
*tspec
;
3326 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3327 struct btrfs_key location
;
3331 bool filled
= false;
3333 ret
= btrfs_fill_inode(inode
, &rdev
);
3337 path
= btrfs_alloc_path();
3341 path
->leave_spinning
= 1;
3342 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3344 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3348 leaf
= path
->nodes
[0];
3353 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3354 struct btrfs_inode_item
);
3355 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3356 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3357 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3358 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3359 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
3361 tspec
= btrfs_inode_atime(inode_item
);
3362 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3363 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3365 tspec
= btrfs_inode_mtime(inode_item
);
3366 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3367 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3369 tspec
= btrfs_inode_ctime(inode_item
);
3370 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
3371 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
3373 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3374 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3375 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3378 * If we were modified in the current generation and evicted from memory
3379 * and then re-read we need to do a full sync since we don't have any
3380 * idea about which extents were modified before we were evicted from
3383 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
3384 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3385 &BTRFS_I(inode
)->runtime_flags
);
3387 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3388 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3390 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3392 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3393 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3396 * try to precache a NULL acl entry for files that don't have
3397 * any xattrs or acls
3399 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3402 cache_no_acl(inode
);
3404 btrfs_free_path(path
);
3406 switch (inode
->i_mode
& S_IFMT
) {
3408 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3409 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3410 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3411 inode
->i_fop
= &btrfs_file_operations
;
3412 inode
->i_op
= &btrfs_file_inode_operations
;
3415 inode
->i_fop
= &btrfs_dir_file_operations
;
3416 if (root
== root
->fs_info
->tree_root
)
3417 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
3419 inode
->i_op
= &btrfs_dir_inode_operations
;
3422 inode
->i_op
= &btrfs_symlink_inode_operations
;
3423 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3424 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3427 inode
->i_op
= &btrfs_special_inode_operations
;
3428 init_special_inode(inode
, inode
->i_mode
, rdev
);
3432 btrfs_update_iflags(inode
);
3436 btrfs_free_path(path
);
3437 make_bad_inode(inode
);
3441 * given a leaf and an inode, copy the inode fields into the leaf
3443 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3444 struct extent_buffer
*leaf
,
3445 struct btrfs_inode_item
*item
,
3446 struct inode
*inode
)
3448 struct btrfs_map_token token
;
3450 btrfs_init_map_token(&token
);
3452 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3453 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3454 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3456 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3457 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3459 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_atime(item
),
3460 inode
->i_atime
.tv_sec
, &token
);
3461 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_atime(item
),
3462 inode
->i_atime
.tv_nsec
, &token
);
3464 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_mtime(item
),
3465 inode
->i_mtime
.tv_sec
, &token
);
3466 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
3467 inode
->i_mtime
.tv_nsec
, &token
);
3469 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_ctime(item
),
3470 inode
->i_ctime
.tv_sec
, &token
);
3471 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
3472 inode
->i_ctime
.tv_nsec
, &token
);
3474 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3476 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3478 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3479 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3480 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3481 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3482 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3486 * copy everything in the in-memory inode into the btree.
3488 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3489 struct btrfs_root
*root
, struct inode
*inode
)
3491 struct btrfs_inode_item
*inode_item
;
3492 struct btrfs_path
*path
;
3493 struct extent_buffer
*leaf
;
3496 path
= btrfs_alloc_path();
3500 path
->leave_spinning
= 1;
3501 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3509 btrfs_unlock_up_safe(path
, 1);
3510 leaf
= path
->nodes
[0];
3511 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3512 struct btrfs_inode_item
);
3514 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3515 btrfs_mark_buffer_dirty(leaf
);
3516 btrfs_set_inode_last_trans(trans
, inode
);
3519 btrfs_free_path(path
);
3524 * copy everything in the in-memory inode into the btree.
3526 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3527 struct btrfs_root
*root
, struct inode
*inode
)
3532 * If the inode is a free space inode, we can deadlock during commit
3533 * if we put it into the delayed code.
3535 * The data relocation inode should also be directly updated
3538 if (!btrfs_is_free_space_inode(inode
)
3539 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
3540 btrfs_update_root_times(trans
, root
);
3542 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3544 btrfs_set_inode_last_trans(trans
, inode
);
3548 return btrfs_update_inode_item(trans
, root
, inode
);
3551 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3552 struct btrfs_root
*root
,
3553 struct inode
*inode
)
3557 ret
= btrfs_update_inode(trans
, root
, inode
);
3559 return btrfs_update_inode_item(trans
, root
, inode
);
3564 * unlink helper that gets used here in inode.c and in the tree logging
3565 * recovery code. It remove a link in a directory with a given name, and
3566 * also drops the back refs in the inode to the directory
3568 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3569 struct btrfs_root
*root
,
3570 struct inode
*dir
, struct inode
*inode
,
3571 const char *name
, int name_len
)
3573 struct btrfs_path
*path
;
3575 struct extent_buffer
*leaf
;
3576 struct btrfs_dir_item
*di
;
3577 struct btrfs_key key
;
3579 u64 ino
= btrfs_ino(inode
);
3580 u64 dir_ino
= btrfs_ino(dir
);
3582 path
= btrfs_alloc_path();
3588 path
->leave_spinning
= 1;
3589 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3590 name
, name_len
, -1);
3599 leaf
= path
->nodes
[0];
3600 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3601 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3604 btrfs_release_path(path
);
3606 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3609 btrfs_info(root
->fs_info
,
3610 "failed to delete reference to %.*s, inode %llu parent %llu",
3611 name_len
, name
, ino
, dir_ino
);
3612 btrfs_abort_transaction(trans
, root
, ret
);
3616 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3618 btrfs_abort_transaction(trans
, root
, ret
);
3622 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
3624 if (ret
!= 0 && ret
!= -ENOENT
) {
3625 btrfs_abort_transaction(trans
, root
, ret
);
3629 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
3634 btrfs_abort_transaction(trans
, root
, ret
);
3636 btrfs_free_path(path
);
3640 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3641 inode_inc_iversion(inode
);
3642 inode_inc_iversion(dir
);
3643 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3644 ret
= btrfs_update_inode(trans
, root
, dir
);
3649 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3650 struct btrfs_root
*root
,
3651 struct inode
*dir
, struct inode
*inode
,
3652 const char *name
, int name_len
)
3655 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3657 btrfs_drop_nlink(inode
);
3658 ret
= btrfs_update_inode(trans
, root
, inode
);
3664 * helper to start transaction for unlink and rmdir.
3666 * unlink and rmdir are special in btrfs, they do not always free space, so
3667 * if we cannot make our reservations the normal way try and see if there is
3668 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3669 * allow the unlink to occur.
3671 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3673 struct btrfs_trans_handle
*trans
;
3674 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3678 * 1 for the possible orphan item
3679 * 1 for the dir item
3680 * 1 for the dir index
3681 * 1 for the inode ref
3684 trans
= btrfs_start_transaction(root
, 5);
3685 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
3688 if (PTR_ERR(trans
) == -ENOSPC
) {
3689 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
3691 trans
= btrfs_start_transaction(root
, 0);
3694 ret
= btrfs_cond_migrate_bytes(root
->fs_info
,
3695 &root
->fs_info
->trans_block_rsv
,
3698 btrfs_end_transaction(trans
, root
);
3699 return ERR_PTR(ret
);
3701 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3702 trans
->bytes_reserved
= num_bytes
;
3707 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3709 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3710 struct btrfs_trans_handle
*trans
;
3711 struct inode
*inode
= dentry
->d_inode
;
3714 trans
= __unlink_start_trans(dir
);
3716 return PTR_ERR(trans
);
3718 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
3720 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3721 dentry
->d_name
.name
, dentry
->d_name
.len
);
3725 if (inode
->i_nlink
== 0) {
3726 ret
= btrfs_orphan_add(trans
, inode
);
3732 btrfs_end_transaction(trans
, root
);
3733 btrfs_btree_balance_dirty(root
);
3737 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3738 struct btrfs_root
*root
,
3739 struct inode
*dir
, u64 objectid
,
3740 const char *name
, int name_len
)
3742 struct btrfs_path
*path
;
3743 struct extent_buffer
*leaf
;
3744 struct btrfs_dir_item
*di
;
3745 struct btrfs_key key
;
3748 u64 dir_ino
= btrfs_ino(dir
);
3750 path
= btrfs_alloc_path();
3754 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3755 name
, name_len
, -1);
3756 if (IS_ERR_OR_NULL(di
)) {
3764 leaf
= path
->nodes
[0];
3765 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3766 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3767 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3769 btrfs_abort_transaction(trans
, root
, ret
);
3772 btrfs_release_path(path
);
3774 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3775 objectid
, root
->root_key
.objectid
,
3776 dir_ino
, &index
, name
, name_len
);
3778 if (ret
!= -ENOENT
) {
3779 btrfs_abort_transaction(trans
, root
, ret
);
3782 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3784 if (IS_ERR_OR_NULL(di
)) {
3789 btrfs_abort_transaction(trans
, root
, ret
);
3793 leaf
= path
->nodes
[0];
3794 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3795 btrfs_release_path(path
);
3798 btrfs_release_path(path
);
3800 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3802 btrfs_abort_transaction(trans
, root
, ret
);
3806 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3807 inode_inc_iversion(dir
);
3808 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3809 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3811 btrfs_abort_transaction(trans
, root
, ret
);
3813 btrfs_free_path(path
);
3817 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3819 struct inode
*inode
= dentry
->d_inode
;
3821 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3822 struct btrfs_trans_handle
*trans
;
3824 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
3826 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
3829 trans
= __unlink_start_trans(dir
);
3831 return PTR_ERR(trans
);
3833 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3834 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3835 BTRFS_I(inode
)->location
.objectid
,
3836 dentry
->d_name
.name
,
3837 dentry
->d_name
.len
);
3841 err
= btrfs_orphan_add(trans
, inode
);
3845 /* now the directory is empty */
3846 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3847 dentry
->d_name
.name
, dentry
->d_name
.len
);
3849 btrfs_i_size_write(inode
, 0);
3851 btrfs_end_transaction(trans
, root
);
3852 btrfs_btree_balance_dirty(root
);
3858 * this can truncate away extent items, csum items and directory items.
3859 * It starts at a high offset and removes keys until it can't find
3860 * any higher than new_size
3862 * csum items that cross the new i_size are truncated to the new size
3865 * min_type is the minimum key type to truncate down to. If set to 0, this
3866 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3868 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3869 struct btrfs_root
*root
,
3870 struct inode
*inode
,
3871 u64 new_size
, u32 min_type
)
3873 struct btrfs_path
*path
;
3874 struct extent_buffer
*leaf
;
3875 struct btrfs_file_extent_item
*fi
;
3876 struct btrfs_key key
;
3877 struct btrfs_key found_key
;
3878 u64 extent_start
= 0;
3879 u64 extent_num_bytes
= 0;
3880 u64 extent_offset
= 0;
3882 u64 last_size
= (u64
)-1;
3883 u32 found_type
= (u8
)-1;
3886 int pending_del_nr
= 0;
3887 int pending_del_slot
= 0;
3888 int extent_type
= -1;
3891 u64 ino
= btrfs_ino(inode
);
3893 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3895 path
= btrfs_alloc_path();
3901 * We want to drop from the next block forward in case this new size is
3902 * not block aligned since we will be keeping the last block of the
3903 * extent just the way it is.
3905 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3906 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
3907 root
->sectorsize
), (u64
)-1, 0);
3910 * This function is also used to drop the items in the log tree before
3911 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3912 * it is used to drop the loged items. So we shouldn't kill the delayed
3915 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3916 btrfs_kill_delayed_inode_items(inode
);
3919 key
.offset
= (u64
)-1;
3923 path
->leave_spinning
= 1;
3924 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3931 /* there are no items in the tree for us to truncate, we're
3934 if (path
->slots
[0] == 0)
3941 leaf
= path
->nodes
[0];
3942 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3943 found_type
= btrfs_key_type(&found_key
);
3945 if (found_key
.objectid
!= ino
)
3948 if (found_type
< min_type
)
3951 item_end
= found_key
.offset
;
3952 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3953 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3954 struct btrfs_file_extent_item
);
3955 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3956 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3958 btrfs_file_extent_num_bytes(leaf
, fi
);
3959 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3960 item_end
+= btrfs_file_extent_inline_len(leaf
,
3965 if (found_type
> min_type
) {
3968 if (item_end
< new_size
)
3970 if (found_key
.offset
>= new_size
)
3976 /* FIXME, shrink the extent if the ref count is only 1 */
3977 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3981 last_size
= found_key
.offset
;
3983 last_size
= new_size
;
3985 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3987 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3989 u64 orig_num_bytes
=
3990 btrfs_file_extent_num_bytes(leaf
, fi
);
3991 extent_num_bytes
= ALIGN(new_size
-
3994 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3996 num_dec
= (orig_num_bytes
-
3998 if (root
->ref_cows
&& extent_start
!= 0)
3999 inode_sub_bytes(inode
, num_dec
);
4000 btrfs_mark_buffer_dirty(leaf
);
4003 btrfs_file_extent_disk_num_bytes(leaf
,
4005 extent_offset
= found_key
.offset
-
4006 btrfs_file_extent_offset(leaf
, fi
);
4008 /* FIXME blocksize != 4096 */
4009 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4010 if (extent_start
!= 0) {
4013 inode_sub_bytes(inode
, num_dec
);
4016 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4018 * we can't truncate inline items that have had
4022 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
4023 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4024 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4025 u32 size
= new_size
- found_key
.offset
;
4027 if (root
->ref_cows
) {
4028 inode_sub_bytes(inode
, item_end
+ 1 -
4032 btrfs_file_extent_calc_inline_size(size
);
4033 btrfs_truncate_item(root
, path
, size
, 1);
4034 } else if (root
->ref_cows
) {
4035 inode_sub_bytes(inode
, item_end
+ 1 -
4041 if (!pending_del_nr
) {
4042 /* no pending yet, add ourselves */
4043 pending_del_slot
= path
->slots
[0];
4045 } else if (pending_del_nr
&&
4046 path
->slots
[0] + 1 == pending_del_slot
) {
4047 /* hop on the pending chunk */
4049 pending_del_slot
= path
->slots
[0];
4056 if (found_extent
&& (root
->ref_cows
||
4057 root
== root
->fs_info
->tree_root
)) {
4058 btrfs_set_path_blocking(path
);
4059 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4060 extent_num_bytes
, 0,
4061 btrfs_header_owner(leaf
),
4062 ino
, extent_offset
, 0);
4066 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4069 if (path
->slots
[0] == 0 ||
4070 path
->slots
[0] != pending_del_slot
) {
4071 if (pending_del_nr
) {
4072 ret
= btrfs_del_items(trans
, root
, path
,
4076 btrfs_abort_transaction(trans
,
4082 btrfs_release_path(path
);
4089 if (pending_del_nr
) {
4090 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4093 btrfs_abort_transaction(trans
, root
, ret
);
4096 if (last_size
!= (u64
)-1)
4097 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4098 btrfs_free_path(path
);
4103 * btrfs_truncate_page - read, zero a chunk and write a page
4104 * @inode - inode that we're zeroing
4105 * @from - the offset to start zeroing
4106 * @len - the length to zero, 0 to zero the entire range respective to the
4108 * @front - zero up to the offset instead of from the offset on
4110 * This will find the page for the "from" offset and cow the page and zero the
4111 * part we want to zero. This is used with truncate and hole punching.
4113 int btrfs_truncate_page(struct inode
*inode
, loff_t from
, loff_t len
,
4116 struct address_space
*mapping
= inode
->i_mapping
;
4117 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4118 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4119 struct btrfs_ordered_extent
*ordered
;
4120 struct extent_state
*cached_state
= NULL
;
4122 u32 blocksize
= root
->sectorsize
;
4123 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
4124 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
4126 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4131 if ((offset
& (blocksize
- 1)) == 0 &&
4132 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4134 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
4139 page
= find_or_create_page(mapping
, index
, mask
);
4141 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4146 page_start
= page_offset(page
);
4147 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4149 if (!PageUptodate(page
)) {
4150 ret
= btrfs_readpage(NULL
, page
);
4152 if (page
->mapping
!= mapping
) {
4154 page_cache_release(page
);
4157 if (!PageUptodate(page
)) {
4162 wait_on_page_writeback(page
);
4164 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
4165 set_page_extent_mapped(page
);
4167 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4169 unlock_extent_cached(io_tree
, page_start
, page_end
,
4170 &cached_state
, GFP_NOFS
);
4172 page_cache_release(page
);
4173 btrfs_start_ordered_extent(inode
, ordered
, 1);
4174 btrfs_put_ordered_extent(ordered
);
4178 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
4179 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4180 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4181 0, 0, &cached_state
, GFP_NOFS
);
4183 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
4186 unlock_extent_cached(io_tree
, page_start
, page_end
,
4187 &cached_state
, GFP_NOFS
);
4191 if (offset
!= PAGE_CACHE_SIZE
) {
4193 len
= PAGE_CACHE_SIZE
- offset
;
4196 memset(kaddr
, 0, offset
);
4198 memset(kaddr
+ offset
, 0, len
);
4199 flush_dcache_page(page
);
4202 ClearPageChecked(page
);
4203 set_page_dirty(page
);
4204 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
4209 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
4211 page_cache_release(page
);
4217 * This function puts in dummy file extents for the area we're creating a hole
4218 * for. So if we are truncating this file to a larger size we need to insert
4219 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4220 * the range between oldsize and size
4222 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4224 struct btrfs_trans_handle
*trans
;
4225 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4226 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4227 struct extent_map
*em
= NULL
;
4228 struct extent_state
*cached_state
= NULL
;
4229 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4230 u64 hole_start
= ALIGN(oldsize
, root
->sectorsize
);
4231 u64 block_end
= ALIGN(size
, root
->sectorsize
);
4238 * If our size started in the middle of a page we need to zero out the
4239 * rest of the page before we expand the i_size, otherwise we could
4240 * expose stale data.
4242 err
= btrfs_truncate_page(inode
, oldsize
, 0, 0);
4246 if (size
<= hole_start
)
4250 struct btrfs_ordered_extent
*ordered
;
4251 btrfs_wait_ordered_range(inode
, hole_start
,
4252 block_end
- hole_start
);
4253 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
4255 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
4258 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4259 &cached_state
, GFP_NOFS
);
4260 btrfs_put_ordered_extent(ordered
);
4263 cur_offset
= hole_start
;
4265 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4266 block_end
- cur_offset
, 0);
4272 last_byte
= min(extent_map_end(em
), block_end
);
4273 last_byte
= ALIGN(last_byte
, root
->sectorsize
);
4274 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4275 struct extent_map
*hole_em
;
4276 hole_size
= last_byte
- cur_offset
;
4278 trans
= btrfs_start_transaction(root
, 3);
4279 if (IS_ERR(trans
)) {
4280 err
= PTR_ERR(trans
);
4284 err
= btrfs_drop_extents(trans
, root
, inode
,
4286 cur_offset
+ hole_size
, 1);
4288 btrfs_abort_transaction(trans
, root
, err
);
4289 btrfs_end_transaction(trans
, root
);
4293 err
= btrfs_insert_file_extent(trans
, root
,
4294 btrfs_ino(inode
), cur_offset
, 0,
4295 0, hole_size
, 0, hole_size
,
4298 btrfs_abort_transaction(trans
, root
, err
);
4299 btrfs_end_transaction(trans
, root
);
4303 btrfs_drop_extent_cache(inode
, cur_offset
,
4304 cur_offset
+ hole_size
- 1, 0);
4305 hole_em
= alloc_extent_map();
4307 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4308 &BTRFS_I(inode
)->runtime_flags
);
4311 hole_em
->start
= cur_offset
;
4312 hole_em
->len
= hole_size
;
4313 hole_em
->orig_start
= cur_offset
;
4315 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4316 hole_em
->block_len
= 0;
4317 hole_em
->orig_block_len
= 0;
4318 hole_em
->ram_bytes
= hole_size
;
4319 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4320 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4321 hole_em
->generation
= trans
->transid
;
4324 write_lock(&em_tree
->lock
);
4325 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4326 write_unlock(&em_tree
->lock
);
4329 btrfs_drop_extent_cache(inode
, cur_offset
,
4333 free_extent_map(hole_em
);
4335 btrfs_update_inode(trans
, root
, inode
);
4336 btrfs_end_transaction(trans
, root
);
4338 free_extent_map(em
);
4340 cur_offset
= last_byte
;
4341 if (cur_offset
>= block_end
)
4345 free_extent_map(em
);
4346 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4351 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4353 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4354 struct btrfs_trans_handle
*trans
;
4355 loff_t oldsize
= i_size_read(inode
);
4356 loff_t newsize
= attr
->ia_size
;
4357 int mask
= attr
->ia_valid
;
4361 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4362 * special case where we need to update the times despite not having
4363 * these flags set. For all other operations the VFS set these flags
4364 * explicitly if it wants a timestamp update.
4366 if (newsize
!= oldsize
) {
4367 inode_inc_iversion(inode
);
4368 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4369 inode
->i_ctime
= inode
->i_mtime
=
4370 current_fs_time(inode
->i_sb
);
4373 if (newsize
> oldsize
) {
4374 truncate_pagecache(inode
, newsize
);
4375 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4379 trans
= btrfs_start_transaction(root
, 1);
4381 return PTR_ERR(trans
);
4383 i_size_write(inode
, newsize
);
4384 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
4385 ret
= btrfs_update_inode(trans
, root
, inode
);
4386 btrfs_end_transaction(trans
, root
);
4390 * We're truncating a file that used to have good data down to
4391 * zero. Make sure it gets into the ordered flush list so that
4392 * any new writes get down to disk quickly.
4395 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4396 &BTRFS_I(inode
)->runtime_flags
);
4399 * 1 for the orphan item we're going to add
4400 * 1 for the orphan item deletion.
4402 trans
= btrfs_start_transaction(root
, 2);
4404 return PTR_ERR(trans
);
4407 * We need to do this in case we fail at _any_ point during the
4408 * actual truncate. Once we do the truncate_setsize we could
4409 * invalidate pages which forces any outstanding ordered io to
4410 * be instantly completed which will give us extents that need
4411 * to be truncated. If we fail to get an orphan inode down we
4412 * could have left over extents that were never meant to live,
4413 * so we need to garuntee from this point on that everything
4414 * will be consistent.
4416 ret
= btrfs_orphan_add(trans
, inode
);
4417 btrfs_end_transaction(trans
, root
);
4421 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4422 truncate_setsize(inode
, newsize
);
4424 /* Disable nonlocked read DIO to avoid the end less truncate */
4425 btrfs_inode_block_unlocked_dio(inode
);
4426 inode_dio_wait(inode
);
4427 btrfs_inode_resume_unlocked_dio(inode
);
4429 ret
= btrfs_truncate(inode
);
4430 if (ret
&& inode
->i_nlink
) {
4434 * failed to truncate, disk_i_size is only adjusted down
4435 * as we remove extents, so it should represent the true
4436 * size of the inode, so reset the in memory size and
4437 * delete our orphan entry.
4439 trans
= btrfs_join_transaction(root
);
4440 if (IS_ERR(trans
)) {
4441 btrfs_orphan_del(NULL
, inode
);
4444 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
4445 err
= btrfs_orphan_del(trans
, inode
);
4447 btrfs_abort_transaction(trans
, root
, err
);
4448 btrfs_end_transaction(trans
, root
);
4455 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4457 struct inode
*inode
= dentry
->d_inode
;
4458 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4461 if (btrfs_root_readonly(root
))
4464 err
= inode_change_ok(inode
, attr
);
4468 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
4469 err
= btrfs_setsize(inode
, attr
);
4474 if (attr
->ia_valid
) {
4475 setattr_copy(inode
, attr
);
4476 inode_inc_iversion(inode
);
4477 err
= btrfs_dirty_inode(inode
);
4479 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
4480 err
= btrfs_acl_chmod(inode
);
4486 void btrfs_evict_inode(struct inode
*inode
)
4488 struct btrfs_trans_handle
*trans
;
4489 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4490 struct btrfs_block_rsv
*rsv
, *global_rsv
;
4491 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
4494 trace_btrfs_inode_evict(inode
);
4496 truncate_inode_pages(&inode
->i_data
, 0);
4497 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
4498 btrfs_is_free_space_inode(inode
)))
4501 if (is_bad_inode(inode
)) {
4502 btrfs_orphan_del(NULL
, inode
);
4505 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4506 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
4508 if (root
->fs_info
->log_root_recovering
) {
4509 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
4510 &BTRFS_I(inode
)->runtime_flags
));
4514 if (inode
->i_nlink
> 0) {
4515 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
4519 ret
= btrfs_commit_inode_delayed_inode(inode
);
4521 btrfs_orphan_del(NULL
, inode
);
4525 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
4527 btrfs_orphan_del(NULL
, inode
);
4530 rsv
->size
= min_size
;
4532 global_rsv
= &root
->fs_info
->global_block_rsv
;
4534 btrfs_i_size_write(inode
, 0);
4537 * This is a bit simpler than btrfs_truncate since we've already
4538 * reserved our space for our orphan item in the unlink, so we just
4539 * need to reserve some slack space in case we add bytes and update
4540 * inode item when doing the truncate.
4543 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
4544 BTRFS_RESERVE_FLUSH_LIMIT
);
4547 * Try and steal from the global reserve since we will
4548 * likely not use this space anyway, we want to try as
4549 * hard as possible to get this to work.
4552 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
4555 btrfs_warn(root
->fs_info
,
4556 "Could not get space for a delete, will truncate on mount %d",
4558 btrfs_orphan_del(NULL
, inode
);
4559 btrfs_free_block_rsv(root
, rsv
);
4563 trans
= btrfs_join_transaction(root
);
4564 if (IS_ERR(trans
)) {
4565 btrfs_orphan_del(NULL
, inode
);
4566 btrfs_free_block_rsv(root
, rsv
);
4570 trans
->block_rsv
= rsv
;
4572 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
4576 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4577 btrfs_end_transaction(trans
, root
);
4579 btrfs_btree_balance_dirty(root
);
4582 btrfs_free_block_rsv(root
, rsv
);
4585 * Errors here aren't a big deal, it just means we leave orphan items
4586 * in the tree. They will be cleaned up on the next mount.
4589 trans
->block_rsv
= root
->orphan_block_rsv
;
4590 btrfs_orphan_del(trans
, inode
);
4592 btrfs_orphan_del(NULL
, inode
);
4595 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
4596 if (!(root
== root
->fs_info
->tree_root
||
4597 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
4598 btrfs_return_ino(root
, btrfs_ino(inode
));
4600 btrfs_end_transaction(trans
, root
);
4601 btrfs_btree_balance_dirty(root
);
4603 btrfs_remove_delayed_node(inode
);
4609 * this returns the key found in the dir entry in the location pointer.
4610 * If no dir entries were found, location->objectid is 0.
4612 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
4613 struct btrfs_key
*location
)
4615 const char *name
= dentry
->d_name
.name
;
4616 int namelen
= dentry
->d_name
.len
;
4617 struct btrfs_dir_item
*di
;
4618 struct btrfs_path
*path
;
4619 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4622 path
= btrfs_alloc_path();
4626 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
4631 if (IS_ERR_OR_NULL(di
))
4634 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
4636 btrfs_free_path(path
);
4639 location
->objectid
= 0;
4644 * when we hit a tree root in a directory, the btrfs part of the inode
4645 * needs to be changed to reflect the root directory of the tree root. This
4646 * is kind of like crossing a mount point.
4648 static int fixup_tree_root_location(struct btrfs_root
*root
,
4650 struct dentry
*dentry
,
4651 struct btrfs_key
*location
,
4652 struct btrfs_root
**sub_root
)
4654 struct btrfs_path
*path
;
4655 struct btrfs_root
*new_root
;
4656 struct btrfs_root_ref
*ref
;
4657 struct extent_buffer
*leaf
;
4661 path
= btrfs_alloc_path();
4668 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
4669 BTRFS_I(dir
)->root
->root_key
.objectid
,
4670 location
->objectid
);
4677 leaf
= path
->nodes
[0];
4678 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
4679 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
4680 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
4683 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
4684 (unsigned long)(ref
+ 1),
4685 dentry
->d_name
.len
);
4689 btrfs_release_path(path
);
4691 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
4692 if (IS_ERR(new_root
)) {
4693 err
= PTR_ERR(new_root
);
4697 *sub_root
= new_root
;
4698 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
4699 location
->type
= BTRFS_INODE_ITEM_KEY
;
4700 location
->offset
= 0;
4703 btrfs_free_path(path
);
4707 static void inode_tree_add(struct inode
*inode
)
4709 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4710 struct btrfs_inode
*entry
;
4712 struct rb_node
*parent
;
4713 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
4714 u64 ino
= btrfs_ino(inode
);
4716 if (inode_unhashed(inode
))
4719 spin_lock(&root
->inode_lock
);
4720 p
= &root
->inode_tree
.rb_node
;
4723 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
4725 if (ino
< btrfs_ino(&entry
->vfs_inode
))
4726 p
= &parent
->rb_left
;
4727 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
4728 p
= &parent
->rb_right
;
4730 WARN_ON(!(entry
->vfs_inode
.i_state
&
4731 (I_WILL_FREE
| I_FREEING
)));
4732 rb_replace_node(parent
, new, &root
->inode_tree
);
4733 RB_CLEAR_NODE(parent
);
4734 spin_unlock(&root
->inode_lock
);
4738 rb_link_node(new, parent
, p
);
4739 rb_insert_color(new, &root
->inode_tree
);
4740 spin_unlock(&root
->inode_lock
);
4743 static void inode_tree_del(struct inode
*inode
)
4745 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4748 spin_lock(&root
->inode_lock
);
4749 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
4750 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4751 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
4752 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4754 spin_unlock(&root
->inode_lock
);
4757 * Free space cache has inodes in the tree root, but the tree root has a
4758 * root_refs of 0, so this could end up dropping the tree root as a
4759 * snapshot, so we need the extra !root->fs_info->tree_root check to
4760 * make sure we don't drop it.
4762 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
4763 root
!= root
->fs_info
->tree_root
) {
4764 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
4765 spin_lock(&root
->inode_lock
);
4766 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4767 spin_unlock(&root
->inode_lock
);
4769 btrfs_add_dead_root(root
);
4773 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
4775 struct rb_node
*node
;
4776 struct rb_node
*prev
;
4777 struct btrfs_inode
*entry
;
4778 struct inode
*inode
;
4781 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4783 spin_lock(&root
->inode_lock
);
4785 node
= root
->inode_tree
.rb_node
;
4789 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4791 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
4792 node
= node
->rb_left
;
4793 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
4794 node
= node
->rb_right
;
4800 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4801 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
4805 prev
= rb_next(prev
);
4809 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4810 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
4811 inode
= igrab(&entry
->vfs_inode
);
4813 spin_unlock(&root
->inode_lock
);
4814 if (atomic_read(&inode
->i_count
) > 1)
4815 d_prune_aliases(inode
);
4817 * btrfs_drop_inode will have it removed from
4818 * the inode cache when its usage count
4823 spin_lock(&root
->inode_lock
);
4827 if (cond_resched_lock(&root
->inode_lock
))
4830 node
= rb_next(node
);
4832 spin_unlock(&root
->inode_lock
);
4835 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4837 struct btrfs_iget_args
*args
= p
;
4838 inode
->i_ino
= args
->ino
;
4839 BTRFS_I(inode
)->root
= args
->root
;
4843 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4845 struct btrfs_iget_args
*args
= opaque
;
4846 return args
->ino
== btrfs_ino(inode
) &&
4847 args
->root
== BTRFS_I(inode
)->root
;
4850 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4852 struct btrfs_root
*root
)
4854 struct inode
*inode
;
4855 struct btrfs_iget_args args
;
4856 args
.ino
= objectid
;
4859 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4860 btrfs_init_locked_inode
,
4865 /* Get an inode object given its location and corresponding root.
4866 * Returns in *is_new if the inode was read from disk
4868 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4869 struct btrfs_root
*root
, int *new)
4871 struct inode
*inode
;
4873 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4875 return ERR_PTR(-ENOMEM
);
4877 if (inode
->i_state
& I_NEW
) {
4878 BTRFS_I(inode
)->root
= root
;
4879 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4880 btrfs_read_locked_inode(inode
);
4881 if (!is_bad_inode(inode
)) {
4882 inode_tree_add(inode
);
4883 unlock_new_inode(inode
);
4887 unlock_new_inode(inode
);
4889 inode
= ERR_PTR(-ESTALE
);
4896 static struct inode
*new_simple_dir(struct super_block
*s
,
4897 struct btrfs_key
*key
,
4898 struct btrfs_root
*root
)
4900 struct inode
*inode
= new_inode(s
);
4903 return ERR_PTR(-ENOMEM
);
4905 BTRFS_I(inode
)->root
= root
;
4906 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4907 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
4909 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4910 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
4911 inode
->i_fop
= &simple_dir_operations
;
4912 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4913 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4918 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4920 struct inode
*inode
;
4921 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4922 struct btrfs_root
*sub_root
= root
;
4923 struct btrfs_key location
;
4927 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4928 return ERR_PTR(-ENAMETOOLONG
);
4930 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4932 return ERR_PTR(ret
);
4934 if (location
.objectid
== 0)
4937 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4938 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4942 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4944 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4945 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4946 &location
, &sub_root
);
4949 inode
= ERR_PTR(ret
);
4951 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4953 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4955 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4957 if (!IS_ERR(inode
) && root
!= sub_root
) {
4958 down_read(&root
->fs_info
->cleanup_work_sem
);
4959 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4960 ret
= btrfs_orphan_cleanup(sub_root
);
4961 up_read(&root
->fs_info
->cleanup_work_sem
);
4964 inode
= ERR_PTR(ret
);
4971 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4973 struct btrfs_root
*root
;
4974 struct inode
*inode
= dentry
->d_inode
;
4976 if (!inode
&& !IS_ROOT(dentry
))
4977 inode
= dentry
->d_parent
->d_inode
;
4980 root
= BTRFS_I(inode
)->root
;
4981 if (btrfs_root_refs(&root
->root_item
) == 0)
4984 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
4990 static void btrfs_dentry_release(struct dentry
*dentry
)
4992 if (dentry
->d_fsdata
)
4993 kfree(dentry
->d_fsdata
);
4996 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5001 ret
= d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
5005 unsigned char btrfs_filetype_table
[] = {
5006 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5009 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5011 struct inode
*inode
= file_inode(file
);
5012 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5013 struct btrfs_item
*item
;
5014 struct btrfs_dir_item
*di
;
5015 struct btrfs_key key
;
5016 struct btrfs_key found_key
;
5017 struct btrfs_path
*path
;
5018 struct list_head ins_list
;
5019 struct list_head del_list
;
5021 struct extent_buffer
*leaf
;
5023 unsigned char d_type
;
5028 int key_type
= BTRFS_DIR_INDEX_KEY
;
5032 int is_curr
= 0; /* ctx->pos points to the current index? */
5034 /* FIXME, use a real flag for deciding about the key type */
5035 if (root
->fs_info
->tree_root
== root
)
5036 key_type
= BTRFS_DIR_ITEM_KEY
;
5038 if (!dir_emit_dots(file
, ctx
))
5041 path
= btrfs_alloc_path();
5047 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5048 INIT_LIST_HEAD(&ins_list
);
5049 INIT_LIST_HEAD(&del_list
);
5050 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
5053 btrfs_set_key_type(&key
, key_type
);
5054 key
.offset
= ctx
->pos
;
5055 key
.objectid
= btrfs_ino(inode
);
5057 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5062 leaf
= path
->nodes
[0];
5063 slot
= path
->slots
[0];
5064 if (slot
>= btrfs_header_nritems(leaf
)) {
5065 ret
= btrfs_next_leaf(root
, path
);
5073 item
= btrfs_item_nr(leaf
, slot
);
5074 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5076 if (found_key
.objectid
!= key
.objectid
)
5078 if (btrfs_key_type(&found_key
) != key_type
)
5080 if (found_key
.offset
< ctx
->pos
)
5082 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
5083 btrfs_should_delete_dir_index(&del_list
,
5087 ctx
->pos
= found_key
.offset
;
5090 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5092 di_total
= btrfs_item_size(leaf
, item
);
5094 while (di_cur
< di_total
) {
5095 struct btrfs_key location
;
5097 if (verify_dir_item(root
, leaf
, di
))
5100 name_len
= btrfs_dir_name_len(leaf
, di
);
5101 if (name_len
<= sizeof(tmp_name
)) {
5102 name_ptr
= tmp_name
;
5104 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
5110 read_extent_buffer(leaf
, name_ptr
,
5111 (unsigned long)(di
+ 1), name_len
);
5113 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5114 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5117 /* is this a reference to our own snapshot? If so
5120 * In contrast to old kernels, we insert the snapshot's
5121 * dir item and dir index after it has been created, so
5122 * we won't find a reference to our own snapshot. We
5123 * still keep the following code for backward
5126 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
5127 location
.objectid
== root
->root_key
.objectid
) {
5131 over
= !dir_emit(ctx
, name_ptr
, name_len
,
5132 location
.objectid
, d_type
);
5135 if (name_ptr
!= tmp_name
)
5140 di_len
= btrfs_dir_name_len(leaf
, di
) +
5141 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
5143 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
5149 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5152 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5157 /* Reached end of directory/root. Bump pos past the last item. */
5161 * Stop new entries from being returned after we return the last
5164 * New directory entries are assigned a strictly increasing
5165 * offset. This means that new entries created during readdir
5166 * are *guaranteed* to be seen in the future by that readdir.
5167 * This has broken buggy programs which operate on names as
5168 * they're returned by readdir. Until we re-use freed offsets
5169 * we have this hack to stop new entries from being returned
5170 * under the assumption that they'll never reach this huge
5173 * This is being careful not to overflow 32bit loff_t unless the
5174 * last entry requires it because doing so has broken 32bit apps
5177 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5178 if (ctx
->pos
>= INT_MAX
)
5179 ctx
->pos
= LLONG_MAX
;
5186 if (key_type
== BTRFS_DIR_INDEX_KEY
)
5187 btrfs_put_delayed_items(&ins_list
, &del_list
);
5188 btrfs_free_path(path
);
5192 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5194 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5195 struct btrfs_trans_handle
*trans
;
5197 bool nolock
= false;
5199 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5202 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
5205 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
5207 trans
= btrfs_join_transaction_nolock(root
);
5209 trans
= btrfs_join_transaction(root
);
5211 return PTR_ERR(trans
);
5212 ret
= btrfs_commit_transaction(trans
, root
);
5218 * This is somewhat expensive, updating the tree every time the
5219 * inode changes. But, it is most likely to find the inode in cache.
5220 * FIXME, needs more benchmarking...there are no reasons other than performance
5221 * to keep or drop this code.
5223 static int btrfs_dirty_inode(struct inode
*inode
)
5225 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5226 struct btrfs_trans_handle
*trans
;
5229 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5232 trans
= btrfs_join_transaction(root
);
5234 return PTR_ERR(trans
);
5236 ret
= btrfs_update_inode(trans
, root
, inode
);
5237 if (ret
&& ret
== -ENOSPC
) {
5238 /* whoops, lets try again with the full transaction */
5239 btrfs_end_transaction(trans
, root
);
5240 trans
= btrfs_start_transaction(root
, 1);
5242 return PTR_ERR(trans
);
5244 ret
= btrfs_update_inode(trans
, root
, inode
);
5246 btrfs_end_transaction(trans
, root
);
5247 if (BTRFS_I(inode
)->delayed_node
)
5248 btrfs_balance_delayed_items(root
);
5254 * This is a copy of file_update_time. We need this so we can return error on
5255 * ENOSPC for updating the inode in the case of file write and mmap writes.
5257 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
5260 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5262 if (btrfs_root_readonly(root
))
5265 if (flags
& S_VERSION
)
5266 inode_inc_iversion(inode
);
5267 if (flags
& S_CTIME
)
5268 inode
->i_ctime
= *now
;
5269 if (flags
& S_MTIME
)
5270 inode
->i_mtime
= *now
;
5271 if (flags
& S_ATIME
)
5272 inode
->i_atime
= *now
;
5273 return btrfs_dirty_inode(inode
);
5277 * find the highest existing sequence number in a directory
5278 * and then set the in-memory index_cnt variable to reflect
5279 * free sequence numbers
5281 static int btrfs_set_inode_index_count(struct inode
*inode
)
5283 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5284 struct btrfs_key key
, found_key
;
5285 struct btrfs_path
*path
;
5286 struct extent_buffer
*leaf
;
5289 key
.objectid
= btrfs_ino(inode
);
5290 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
5291 key
.offset
= (u64
)-1;
5293 path
= btrfs_alloc_path();
5297 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5300 /* FIXME: we should be able to handle this */
5306 * MAGIC NUMBER EXPLANATION:
5307 * since we search a directory based on f_pos we have to start at 2
5308 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5309 * else has to start at 2
5311 if (path
->slots
[0] == 0) {
5312 BTRFS_I(inode
)->index_cnt
= 2;
5318 leaf
= path
->nodes
[0];
5319 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5321 if (found_key
.objectid
!= btrfs_ino(inode
) ||
5322 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
5323 BTRFS_I(inode
)->index_cnt
= 2;
5327 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
5329 btrfs_free_path(path
);
5334 * helper to find a free sequence number in a given directory. This current
5335 * code is very simple, later versions will do smarter things in the btree
5337 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
5341 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
5342 ret
= btrfs_inode_delayed_dir_index_count(dir
);
5344 ret
= btrfs_set_inode_index_count(dir
);
5350 *index
= BTRFS_I(dir
)->index_cnt
;
5351 BTRFS_I(dir
)->index_cnt
++;
5356 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
5357 struct btrfs_root
*root
,
5359 const char *name
, int name_len
,
5360 u64 ref_objectid
, u64 objectid
,
5361 umode_t mode
, u64
*index
)
5363 struct inode
*inode
;
5364 struct btrfs_inode_item
*inode_item
;
5365 struct btrfs_key
*location
;
5366 struct btrfs_path
*path
;
5367 struct btrfs_inode_ref
*ref
;
5368 struct btrfs_key key
[2];
5374 path
= btrfs_alloc_path();
5376 return ERR_PTR(-ENOMEM
);
5378 inode
= new_inode(root
->fs_info
->sb
);
5380 btrfs_free_path(path
);
5381 return ERR_PTR(-ENOMEM
);
5385 * we have to initialize this early, so we can reclaim the inode
5386 * number if we fail afterwards in this function.
5388 inode
->i_ino
= objectid
;
5391 trace_btrfs_inode_request(dir
);
5393 ret
= btrfs_set_inode_index(dir
, index
);
5395 btrfs_free_path(path
);
5397 return ERR_PTR(ret
);
5401 * index_cnt is ignored for everything but a dir,
5402 * btrfs_get_inode_index_count has an explanation for the magic
5405 BTRFS_I(inode
)->index_cnt
= 2;
5406 BTRFS_I(inode
)->root
= root
;
5407 BTRFS_I(inode
)->generation
= trans
->transid
;
5408 inode
->i_generation
= BTRFS_I(inode
)->generation
;
5411 * We could have gotten an inode number from somebody who was fsynced
5412 * and then removed in this same transaction, so let's just set full
5413 * sync since it will be a full sync anyway and this will blow away the
5414 * old info in the log.
5416 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
5423 key
[0].objectid
= objectid
;
5424 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
5428 * Start new inodes with an inode_ref. This is slightly more
5429 * efficient for small numbers of hard links since they will
5430 * be packed into one item. Extended refs will kick in if we
5431 * add more hard links than can fit in the ref item.
5433 key
[1].objectid
= objectid
;
5434 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
5435 key
[1].offset
= ref_objectid
;
5437 sizes
[0] = sizeof(struct btrfs_inode_item
);
5438 sizes
[1] = name_len
+ sizeof(*ref
);
5440 path
->leave_spinning
= 1;
5441 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
5445 inode_init_owner(inode
, dir
, mode
);
5446 inode_set_bytes(inode
, 0);
5447 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
5448 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5449 struct btrfs_inode_item
);
5450 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
5451 sizeof(*inode_item
));
5452 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
5454 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
5455 struct btrfs_inode_ref
);
5456 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
5457 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
5458 ptr
= (unsigned long)(ref
+ 1);
5459 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
5461 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5462 btrfs_free_path(path
);
5464 location
= &BTRFS_I(inode
)->location
;
5465 location
->objectid
= objectid
;
5466 location
->offset
= 0;
5467 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
5469 btrfs_inherit_iflags(inode
, dir
);
5471 if (S_ISREG(mode
)) {
5472 if (btrfs_test_opt(root
, NODATASUM
))
5473 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
5474 if (btrfs_test_opt(root
, NODATACOW
))
5475 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
5476 BTRFS_INODE_NODATASUM
;
5479 insert_inode_hash(inode
);
5480 inode_tree_add(inode
);
5482 trace_btrfs_inode_new(inode
);
5483 btrfs_set_inode_last_trans(trans
, inode
);
5485 btrfs_update_root_times(trans
, root
);
5490 BTRFS_I(dir
)->index_cnt
--;
5491 btrfs_free_path(path
);
5493 return ERR_PTR(ret
);
5496 static inline u8
btrfs_inode_type(struct inode
*inode
)
5498 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
5502 * utility function to add 'inode' into 'parent_inode' with
5503 * a give name and a given sequence number.
5504 * if 'add_backref' is true, also insert a backref from the
5505 * inode to the parent directory.
5507 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
5508 struct inode
*parent_inode
, struct inode
*inode
,
5509 const char *name
, int name_len
, int add_backref
, u64 index
)
5512 struct btrfs_key key
;
5513 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
5514 u64 ino
= btrfs_ino(inode
);
5515 u64 parent_ino
= btrfs_ino(parent_inode
);
5517 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5518 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
5521 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
5525 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5526 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
5527 key
.objectid
, root
->root_key
.objectid
,
5528 parent_ino
, index
, name
, name_len
);
5529 } else if (add_backref
) {
5530 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
5534 /* Nothing to clean up yet */
5538 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
5540 btrfs_inode_type(inode
), index
);
5541 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
5544 btrfs_abort_transaction(trans
, root
, ret
);
5548 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
5550 inode_inc_iversion(parent_inode
);
5551 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
5552 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
5554 btrfs_abort_transaction(trans
, root
, ret
);
5558 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5561 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
5562 key
.objectid
, root
->root_key
.objectid
,
5563 parent_ino
, &local_index
, name
, name_len
);
5565 } else if (add_backref
) {
5569 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
5570 ino
, parent_ino
, &local_index
);
5575 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
5576 struct inode
*dir
, struct dentry
*dentry
,
5577 struct inode
*inode
, int backref
, u64 index
)
5579 int err
= btrfs_add_link(trans
, dir
, inode
,
5580 dentry
->d_name
.name
, dentry
->d_name
.len
,
5587 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
5588 umode_t mode
, dev_t rdev
)
5590 struct btrfs_trans_handle
*trans
;
5591 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5592 struct inode
*inode
= NULL
;
5598 if (!new_valid_dev(rdev
))
5602 * 2 for inode item and ref
5604 * 1 for xattr if selinux is on
5606 trans
= btrfs_start_transaction(root
, 5);
5608 return PTR_ERR(trans
);
5610 err
= btrfs_find_free_ino(root
, &objectid
);
5614 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5615 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5617 if (IS_ERR(inode
)) {
5618 err
= PTR_ERR(inode
);
5622 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5629 * If the active LSM wants to access the inode during
5630 * d_instantiate it needs these. Smack checks to see
5631 * if the filesystem supports xattrs by looking at the
5635 inode
->i_op
= &btrfs_special_inode_operations
;
5636 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5640 init_special_inode(inode
, inode
->i_mode
, rdev
);
5641 btrfs_update_inode(trans
, root
, inode
);
5642 d_instantiate(dentry
, inode
);
5645 btrfs_end_transaction(trans
, root
);
5646 btrfs_btree_balance_dirty(root
);
5648 inode_dec_link_count(inode
);
5654 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
5655 umode_t mode
, bool excl
)
5657 struct btrfs_trans_handle
*trans
;
5658 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5659 struct inode
*inode
= NULL
;
5660 int drop_inode_on_err
= 0;
5666 * 2 for inode item and ref
5668 * 1 for xattr if selinux is on
5670 trans
= btrfs_start_transaction(root
, 5);
5672 return PTR_ERR(trans
);
5674 err
= btrfs_find_free_ino(root
, &objectid
);
5678 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5679 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5681 if (IS_ERR(inode
)) {
5682 err
= PTR_ERR(inode
);
5685 drop_inode_on_err
= 1;
5687 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5691 err
= btrfs_update_inode(trans
, root
, inode
);
5696 * If the active LSM wants to access the inode during
5697 * d_instantiate it needs these. Smack checks to see
5698 * if the filesystem supports xattrs by looking at the
5701 inode
->i_fop
= &btrfs_file_operations
;
5702 inode
->i_op
= &btrfs_file_inode_operations
;
5704 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5708 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5709 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5710 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5711 d_instantiate(dentry
, inode
);
5714 btrfs_end_transaction(trans
, root
);
5715 if (err
&& drop_inode_on_err
) {
5716 inode_dec_link_count(inode
);
5719 btrfs_btree_balance_dirty(root
);
5723 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
5724 struct dentry
*dentry
)
5726 struct btrfs_trans_handle
*trans
;
5727 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5728 struct inode
*inode
= old_dentry
->d_inode
;
5733 /* do not allow sys_link's with other subvols of the same device */
5734 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
5737 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
5740 err
= btrfs_set_inode_index(dir
, &index
);
5745 * 2 items for inode and inode ref
5746 * 2 items for dir items
5747 * 1 item for parent inode
5749 trans
= btrfs_start_transaction(root
, 5);
5750 if (IS_ERR(trans
)) {
5751 err
= PTR_ERR(trans
);
5755 btrfs_inc_nlink(inode
);
5756 inode_inc_iversion(inode
);
5757 inode
->i_ctime
= CURRENT_TIME
;
5759 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
5761 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
5766 struct dentry
*parent
= dentry
->d_parent
;
5767 err
= btrfs_update_inode(trans
, root
, inode
);
5770 d_instantiate(dentry
, inode
);
5771 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
5774 btrfs_end_transaction(trans
, root
);
5777 inode_dec_link_count(inode
);
5780 btrfs_btree_balance_dirty(root
);
5784 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
5786 struct inode
*inode
= NULL
;
5787 struct btrfs_trans_handle
*trans
;
5788 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5790 int drop_on_err
= 0;
5795 * 2 items for inode and ref
5796 * 2 items for dir items
5797 * 1 for xattr if selinux is on
5799 trans
= btrfs_start_transaction(root
, 5);
5801 return PTR_ERR(trans
);
5803 err
= btrfs_find_free_ino(root
, &objectid
);
5807 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5808 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5809 S_IFDIR
| mode
, &index
);
5810 if (IS_ERR(inode
)) {
5811 err
= PTR_ERR(inode
);
5817 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5821 inode
->i_op
= &btrfs_dir_inode_operations
;
5822 inode
->i_fop
= &btrfs_dir_file_operations
;
5824 btrfs_i_size_write(inode
, 0);
5825 err
= btrfs_update_inode(trans
, root
, inode
);
5829 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
5830 dentry
->d_name
.len
, 0, index
);
5834 d_instantiate(dentry
, inode
);
5838 btrfs_end_transaction(trans
, root
);
5841 btrfs_btree_balance_dirty(root
);
5845 /* helper for btfs_get_extent. Given an existing extent in the tree,
5846 * and an extent that you want to insert, deal with overlap and insert
5847 * the new extent into the tree.
5849 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
5850 struct extent_map
*existing
,
5851 struct extent_map
*em
,
5852 u64 map_start
, u64 map_len
)
5856 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
5857 start_diff
= map_start
- em
->start
;
5858 em
->start
= map_start
;
5860 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
5861 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
5862 em
->block_start
+= start_diff
;
5863 em
->block_len
-= start_diff
;
5865 return add_extent_mapping(em_tree
, em
, 0);
5868 static noinline
int uncompress_inline(struct btrfs_path
*path
,
5869 struct inode
*inode
, struct page
*page
,
5870 size_t pg_offset
, u64 extent_offset
,
5871 struct btrfs_file_extent_item
*item
)
5874 struct extent_buffer
*leaf
= path
->nodes
[0];
5877 unsigned long inline_size
;
5881 WARN_ON(pg_offset
!= 0);
5882 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5883 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
5884 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
5885 btrfs_item_nr(leaf
, path
->slots
[0]));
5886 tmp
= kmalloc(inline_size
, GFP_NOFS
);
5889 ptr
= btrfs_file_extent_inline_start(item
);
5891 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
5893 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
5894 ret
= btrfs_decompress(compress_type
, tmp
, page
,
5895 extent_offset
, inline_size
, max_size
);
5897 char *kaddr
= kmap_atomic(page
);
5898 unsigned long copy_size
= min_t(u64
,
5899 PAGE_CACHE_SIZE
- pg_offset
,
5900 max_size
- extent_offset
);
5901 memset(kaddr
+ pg_offset
, 0, copy_size
);
5902 kunmap_atomic(kaddr
);
5909 * a bit scary, this does extent mapping from logical file offset to the disk.
5910 * the ugly parts come from merging extents from the disk with the in-ram
5911 * representation. This gets more complex because of the data=ordered code,
5912 * where the in-ram extents might be locked pending data=ordered completion.
5914 * This also copies inline extents directly into the page.
5917 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
5918 size_t pg_offset
, u64 start
, u64 len
,
5924 u64 extent_start
= 0;
5926 u64 objectid
= btrfs_ino(inode
);
5928 struct btrfs_path
*path
= NULL
;
5929 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5930 struct btrfs_file_extent_item
*item
;
5931 struct extent_buffer
*leaf
;
5932 struct btrfs_key found_key
;
5933 struct extent_map
*em
= NULL
;
5934 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5935 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5936 struct btrfs_trans_handle
*trans
= NULL
;
5940 read_lock(&em_tree
->lock
);
5941 em
= lookup_extent_mapping(em_tree
, start
, len
);
5943 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5944 read_unlock(&em_tree
->lock
);
5947 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5948 free_extent_map(em
);
5949 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5950 free_extent_map(em
);
5954 em
= alloc_extent_map();
5959 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5960 em
->start
= EXTENT_MAP_HOLE
;
5961 em
->orig_start
= EXTENT_MAP_HOLE
;
5963 em
->block_len
= (u64
)-1;
5966 path
= btrfs_alloc_path();
5972 * Chances are we'll be called again, so go ahead and do
5978 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5979 objectid
, start
, trans
!= NULL
);
5986 if (path
->slots
[0] == 0)
5991 leaf
= path
->nodes
[0];
5992 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5993 struct btrfs_file_extent_item
);
5994 /* are we inside the extent that was found? */
5995 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5996 found_type
= btrfs_key_type(&found_key
);
5997 if (found_key
.objectid
!= objectid
||
5998 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6002 found_type
= btrfs_file_extent_type(leaf
, item
);
6003 extent_start
= found_key
.offset
;
6004 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6005 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6006 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6007 extent_end
= extent_start
+
6008 btrfs_file_extent_num_bytes(leaf
, item
);
6009 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6011 size
= btrfs_file_extent_inline_len(leaf
, item
);
6012 extent_end
= ALIGN(extent_start
+ size
, root
->sectorsize
);
6015 if (start
>= extent_end
) {
6017 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6018 ret
= btrfs_next_leaf(root
, path
);
6025 leaf
= path
->nodes
[0];
6027 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6028 if (found_key
.objectid
!= objectid
||
6029 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6031 if (start
+ len
<= found_key
.offset
)
6034 em
->orig_start
= start
;
6035 em
->len
= found_key
.offset
- start
;
6039 em
->ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, item
);
6040 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6041 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6042 em
->start
= extent_start
;
6043 em
->len
= extent_end
- extent_start
;
6044 em
->orig_start
= extent_start
-
6045 btrfs_file_extent_offset(leaf
, item
);
6046 em
->orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
6048 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
6050 em
->block_start
= EXTENT_MAP_HOLE
;
6053 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
6054 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
6055 em
->compress_type
= compress_type
;
6056 em
->block_start
= bytenr
;
6057 em
->block_len
= em
->orig_block_len
;
6059 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
6060 em
->block_start
= bytenr
;
6061 em
->block_len
= em
->len
;
6062 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
6063 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6066 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6070 size_t extent_offset
;
6073 em
->block_start
= EXTENT_MAP_INLINE
;
6074 if (!page
|| create
) {
6075 em
->start
= extent_start
;
6076 em
->len
= extent_end
- extent_start
;
6080 size
= btrfs_file_extent_inline_len(leaf
, item
);
6081 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6082 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
6083 size
- extent_offset
);
6084 em
->start
= extent_start
+ extent_offset
;
6085 em
->len
= ALIGN(copy_size
, root
->sectorsize
);
6086 em
->orig_block_len
= em
->len
;
6087 em
->orig_start
= em
->start
;
6088 if (compress_type
) {
6089 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
6090 em
->compress_type
= compress_type
;
6092 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6093 if (create
== 0 && !PageUptodate(page
)) {
6094 if (btrfs_file_extent_compression(leaf
, item
) !=
6095 BTRFS_COMPRESS_NONE
) {
6096 ret
= uncompress_inline(path
, inode
, page
,
6098 extent_offset
, item
);
6099 BUG_ON(ret
); /* -ENOMEM */
6102 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6104 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
6105 memset(map
+ pg_offset
+ copy_size
, 0,
6106 PAGE_CACHE_SIZE
- pg_offset
-
6111 flush_dcache_page(page
);
6112 } else if (create
&& PageUptodate(page
)) {
6116 free_extent_map(em
);
6119 btrfs_release_path(path
);
6120 trans
= btrfs_join_transaction(root
);
6123 return ERR_CAST(trans
);
6127 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6130 btrfs_mark_buffer_dirty(leaf
);
6132 set_extent_uptodate(io_tree
, em
->start
,
6133 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6136 WARN(1, KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
6140 em
->orig_start
= start
;
6143 em
->block_start
= EXTENT_MAP_HOLE
;
6144 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
6146 btrfs_release_path(path
);
6147 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6148 btrfs_err(root
->fs_info
, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6149 em
->start
, em
->len
, start
, len
);
6155 write_lock(&em_tree
->lock
);
6156 ret
= add_extent_mapping(em_tree
, em
, 0);
6157 /* it is possible that someone inserted the extent into the tree
6158 * while we had the lock dropped. It is also possible that
6159 * an overlapping map exists in the tree
6161 if (ret
== -EEXIST
) {
6162 struct extent_map
*existing
;
6166 existing
= lookup_extent_mapping(em_tree
, start
, len
);
6167 if (existing
&& (existing
->start
> start
||
6168 existing
->start
+ existing
->len
<= start
)) {
6169 free_extent_map(existing
);
6173 existing
= lookup_extent_mapping(em_tree
, em
->start
,
6176 err
= merge_extent_mapping(em_tree
, existing
,
6179 free_extent_map(existing
);
6181 free_extent_map(em
);
6186 free_extent_map(em
);
6190 free_extent_map(em
);
6195 write_unlock(&em_tree
->lock
);
6199 trace_btrfs_get_extent(root
, em
);
6202 btrfs_free_path(path
);
6204 ret
= btrfs_end_transaction(trans
, root
);
6209 free_extent_map(em
);
6210 return ERR_PTR(err
);
6212 BUG_ON(!em
); /* Error is always set */
6216 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
6217 size_t pg_offset
, u64 start
, u64 len
,
6220 struct extent_map
*em
;
6221 struct extent_map
*hole_em
= NULL
;
6222 u64 range_start
= start
;
6228 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
6235 * - a pre-alloc extent,
6236 * there might actually be delalloc bytes behind it.
6238 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6239 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6245 /* check to see if we've wrapped (len == -1 or similar) */
6254 /* ok, we didn't find anything, lets look for delalloc */
6255 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
6256 end
, len
, EXTENT_DELALLOC
, 1);
6257 found_end
= range_start
+ found
;
6258 if (found_end
< range_start
)
6259 found_end
= (u64
)-1;
6262 * we didn't find anything useful, return
6263 * the original results from get_extent()
6265 if (range_start
> end
|| found_end
<= start
) {
6271 /* adjust the range_start to make sure it doesn't
6272 * go backwards from the start they passed in
6274 range_start
= max(start
,range_start
);
6275 found
= found_end
- range_start
;
6278 u64 hole_start
= start
;
6281 em
= alloc_extent_map();
6287 * when btrfs_get_extent can't find anything it
6288 * returns one huge hole
6290 * make sure what it found really fits our range, and
6291 * adjust to make sure it is based on the start from
6295 u64 calc_end
= extent_map_end(hole_em
);
6297 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
6298 free_extent_map(hole_em
);
6301 hole_start
= max(hole_em
->start
, start
);
6302 hole_len
= calc_end
- hole_start
;
6306 if (hole_em
&& range_start
> hole_start
) {
6307 /* our hole starts before our delalloc, so we
6308 * have to return just the parts of the hole
6309 * that go until the delalloc starts
6311 em
->len
= min(hole_len
,
6312 range_start
- hole_start
);
6313 em
->start
= hole_start
;
6314 em
->orig_start
= hole_start
;
6316 * don't adjust block start at all,
6317 * it is fixed at EXTENT_MAP_HOLE
6319 em
->block_start
= hole_em
->block_start
;
6320 em
->block_len
= hole_len
;
6321 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
6322 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6324 em
->start
= range_start
;
6326 em
->orig_start
= range_start
;
6327 em
->block_start
= EXTENT_MAP_DELALLOC
;
6328 em
->block_len
= found
;
6330 } else if (hole_em
) {
6335 free_extent_map(hole_em
);
6337 free_extent_map(em
);
6338 return ERR_PTR(err
);
6343 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
6346 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6347 struct extent_map
*em
;
6348 struct btrfs_key ins
;
6352 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
6353 ret
= btrfs_reserve_extent(root
, len
, root
->sectorsize
, 0,
6354 alloc_hint
, &ins
, 1);
6356 return ERR_PTR(ret
);
6358 em
= create_pinned_em(inode
, start
, ins
.offset
, start
, ins
.objectid
,
6359 ins
.offset
, ins
.offset
, ins
.offset
, 0);
6361 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
6365 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
6366 ins
.offset
, ins
.offset
, 0);
6368 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
6369 free_extent_map(em
);
6370 return ERR_PTR(ret
);
6377 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6378 * block must be cow'd
6380 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
6381 u64
*orig_start
, u64
*orig_block_len
,
6384 struct btrfs_trans_handle
*trans
;
6385 struct btrfs_path
*path
;
6387 struct extent_buffer
*leaf
;
6388 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6389 struct btrfs_file_extent_item
*fi
;
6390 struct btrfs_key key
;
6397 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
6398 path
= btrfs_alloc_path();
6402 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
),
6407 slot
= path
->slots
[0];
6410 /* can't find the item, must cow */
6417 leaf
= path
->nodes
[0];
6418 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
6419 if (key
.objectid
!= btrfs_ino(inode
) ||
6420 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6421 /* not our file or wrong item type, must cow */
6425 if (key
.offset
> offset
) {
6426 /* Wrong offset, must cow */
6430 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
6431 found_type
= btrfs_file_extent_type(leaf
, fi
);
6432 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
6433 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
6434 /* not a regular extent, must cow */
6438 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
6441 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6442 if (disk_bytenr
== 0)
6445 if (btrfs_file_extent_compression(leaf
, fi
) ||
6446 btrfs_file_extent_encryption(leaf
, fi
) ||
6447 btrfs_file_extent_other_encoding(leaf
, fi
))
6450 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
6453 *orig_start
= key
.offset
- backref_offset
;
6454 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6455 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6458 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
6460 if (btrfs_extent_readonly(root
, disk_bytenr
))
6462 btrfs_release_path(path
);
6465 * look for other files referencing this extent, if we
6466 * find any we must cow
6468 trans
= btrfs_join_transaction(root
);
6469 if (IS_ERR(trans
)) {
6474 ret
= btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
6475 key
.offset
- backref_offset
, disk_bytenr
);
6476 btrfs_end_transaction(trans
, root
);
6483 * adjust disk_bytenr and num_bytes to cover just the bytes
6484 * in this extent we are about to write. If there
6485 * are any csums in that range we have to cow in order
6486 * to keep the csums correct
6488 disk_bytenr
+= backref_offset
;
6489 disk_bytenr
+= offset
- key
.offset
;
6490 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
6491 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
6494 * all of the above have passed, it is safe to overwrite this extent
6500 btrfs_free_path(path
);
6504 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
6505 struct extent_state
**cached_state
, int writing
)
6507 struct btrfs_ordered_extent
*ordered
;
6511 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6514 * We're concerned with the entire range that we're going to be
6515 * doing DIO to, so we need to make sure theres no ordered
6516 * extents in this range.
6518 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6519 lockend
- lockstart
+ 1);
6522 * We need to make sure there are no buffered pages in this
6523 * range either, we could have raced between the invalidate in
6524 * generic_file_direct_write and locking the extent. The
6525 * invalidate needs to happen so that reads after a write do not
6528 if (!ordered
&& (!writing
||
6529 !test_range_bit(&BTRFS_I(inode
)->io_tree
,
6530 lockstart
, lockend
, EXTENT_UPTODATE
, 0,
6534 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6535 cached_state
, GFP_NOFS
);
6538 btrfs_start_ordered_extent(inode
, ordered
, 1);
6539 btrfs_put_ordered_extent(ordered
);
6541 /* Screw you mmap */
6542 ret
= filemap_write_and_wait_range(inode
->i_mapping
,
6549 * If we found a page that couldn't be invalidated just
6550 * fall back to buffered.
6552 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
6553 lockstart
>> PAGE_CACHE_SHIFT
,
6554 lockend
>> PAGE_CACHE_SHIFT
);
6565 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
6566 u64 len
, u64 orig_start
,
6567 u64 block_start
, u64 block_len
,
6568 u64 orig_block_len
, u64 ram_bytes
,
6571 struct extent_map_tree
*em_tree
;
6572 struct extent_map
*em
;
6573 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6576 em_tree
= &BTRFS_I(inode
)->extent_tree
;
6577 em
= alloc_extent_map();
6579 return ERR_PTR(-ENOMEM
);
6582 em
->orig_start
= orig_start
;
6583 em
->mod_start
= start
;
6586 em
->block_len
= block_len
;
6587 em
->block_start
= block_start
;
6588 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6589 em
->orig_block_len
= orig_block_len
;
6590 em
->ram_bytes
= ram_bytes
;
6591 em
->generation
= -1;
6592 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
6593 if (type
== BTRFS_ORDERED_PREALLOC
)
6594 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
6597 btrfs_drop_extent_cache(inode
, em
->start
,
6598 em
->start
+ em
->len
- 1, 0);
6599 write_lock(&em_tree
->lock
);
6600 ret
= add_extent_mapping(em_tree
, em
, 1);
6601 write_unlock(&em_tree
->lock
);
6602 } while (ret
== -EEXIST
);
6605 free_extent_map(em
);
6606 return ERR_PTR(ret
);
6613 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
6614 struct buffer_head
*bh_result
, int create
)
6616 struct extent_map
*em
;
6617 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6618 struct extent_state
*cached_state
= NULL
;
6619 u64 start
= iblock
<< inode
->i_blkbits
;
6620 u64 lockstart
, lockend
;
6621 u64 len
= bh_result
->b_size
;
6622 int unlock_bits
= EXTENT_LOCKED
;
6626 unlock_bits
|= EXTENT_DELALLOC
| EXTENT_DIRTY
;
6628 len
= min_t(u64
, len
, root
->sectorsize
);
6631 lockend
= start
+ len
- 1;
6634 * If this errors out it's because we couldn't invalidate pagecache for
6635 * this range and we need to fallback to buffered.
6637 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, create
))
6640 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
6647 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6648 * io. INLINE is special, and we could probably kludge it in here, but
6649 * it's still buffered so for safety lets just fall back to the generic
6652 * For COMPRESSED we _have_ to read the entire extent in so we can
6653 * decompress it, so there will be buffering required no matter what we
6654 * do, so go ahead and fallback to buffered.
6656 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6657 * to buffered IO. Don't blame me, this is the price we pay for using
6660 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
6661 em
->block_start
== EXTENT_MAP_INLINE
) {
6662 free_extent_map(em
);
6667 /* Just a good old fashioned hole, return */
6668 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
6669 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
6670 free_extent_map(em
);
6675 * We don't allocate a new extent in the following cases
6677 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6679 * 2) The extent is marked as PREALLOC. We're good to go here and can
6680 * just use the extent.
6684 len
= min(len
, em
->len
- (start
- em
->start
));
6685 lockstart
= start
+ len
;
6689 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
6690 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
6691 em
->block_start
!= EXTENT_MAP_HOLE
)) {
6694 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
6696 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6697 type
= BTRFS_ORDERED_PREALLOC
;
6699 type
= BTRFS_ORDERED_NOCOW
;
6700 len
= min(len
, em
->len
- (start
- em
->start
));
6701 block_start
= em
->block_start
+ (start
- em
->start
);
6703 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
6704 &orig_block_len
, &ram_bytes
) == 1) {
6705 if (type
== BTRFS_ORDERED_PREALLOC
) {
6706 free_extent_map(em
);
6707 em
= create_pinned_em(inode
, start
, len
,
6716 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
6717 block_start
, len
, len
, type
);
6719 free_extent_map(em
);
6727 * this will cow the extent, reset the len in case we changed
6730 len
= bh_result
->b_size
;
6731 free_extent_map(em
);
6732 em
= btrfs_new_extent_direct(inode
, start
, len
);
6737 len
= min(len
, em
->len
- (start
- em
->start
));
6739 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
6741 bh_result
->b_size
= len
;
6742 bh_result
->b_bdev
= em
->bdev
;
6743 set_buffer_mapped(bh_result
);
6745 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6746 set_buffer_new(bh_result
);
6749 * Need to update the i_size under the extent lock so buffered
6750 * readers will get the updated i_size when we unlock.
6752 if (start
+ len
> i_size_read(inode
))
6753 i_size_write(inode
, start
+ len
);
6755 spin_lock(&BTRFS_I(inode
)->lock
);
6756 BTRFS_I(inode
)->outstanding_extents
++;
6757 spin_unlock(&BTRFS_I(inode
)->lock
);
6759 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6760 lockstart
+ len
- 1, EXTENT_DELALLOC
, NULL
,
6761 &cached_state
, GFP_NOFS
);
6766 * In the case of write we need to clear and unlock the entire range,
6767 * in the case of read we need to unlock only the end area that we
6768 * aren't using if there is any left over space.
6770 if (lockstart
< lockend
) {
6771 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6772 lockend
, unlock_bits
, 1, 0,
6773 &cached_state
, GFP_NOFS
);
6775 free_extent_state(cached_state
);
6778 free_extent_map(em
);
6783 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6784 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
6788 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
6790 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6791 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
6792 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6793 struct inode
*inode
= dip
->inode
;
6794 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6795 struct bio
*dio_bio
;
6796 u32
*csums
= (u32
*)dip
->csum
;
6800 start
= dip
->logical_offset
;
6802 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
6803 struct page
*page
= bvec
->bv_page
;
6806 unsigned long flags
;
6808 local_irq_save(flags
);
6809 kaddr
= kmap_atomic(page
);
6810 csum
= btrfs_csum_data(kaddr
+ bvec
->bv_offset
,
6811 csum
, bvec
->bv_len
);
6812 btrfs_csum_final(csum
, (char *)&csum
);
6813 kunmap_atomic(kaddr
);
6814 local_irq_restore(flags
);
6816 flush_dcache_page(bvec
->bv_page
);
6817 if (csum
!= csums
[index
]) {
6818 btrfs_err(root
->fs_info
, "csum failed ino %llu off %llu csum %u expected csum %u",
6819 btrfs_ino(inode
), start
, csum
,
6825 start
+= bvec
->bv_len
;
6828 } while (bvec
<= bvec_end
);
6830 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
6831 dip
->logical_offset
+ dip
->bytes
- 1);
6832 dio_bio
= dip
->dio_bio
;
6836 /* If we had a csum failure make sure to clear the uptodate flag */
6838 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
6839 dio_end_io(dio_bio
, err
);
6843 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
6845 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6846 struct inode
*inode
= dip
->inode
;
6847 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6848 struct btrfs_ordered_extent
*ordered
= NULL
;
6849 u64 ordered_offset
= dip
->logical_offset
;
6850 u64 ordered_bytes
= dip
->bytes
;
6851 struct bio
*dio_bio
;
6857 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
6859 ordered_bytes
, !err
);
6863 ordered
->work
.func
= finish_ordered_fn
;
6864 ordered
->work
.flags
= 0;
6865 btrfs_queue_worker(&root
->fs_info
->endio_write_workers
,
6869 * our bio might span multiple ordered extents. If we haven't
6870 * completed the accounting for the whole dio, go back and try again
6872 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
6873 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
6879 dio_bio
= dip
->dio_bio
;
6883 /* If we had an error make sure to clear the uptodate flag */
6885 clear_bit(BIO_UPTODATE
, &dio_bio
->bi_flags
);
6886 dio_end_io(dio_bio
, err
);
6890 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
6891 struct bio
*bio
, int mirror_num
,
6892 unsigned long bio_flags
, u64 offset
)
6895 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6896 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
6897 BUG_ON(ret
); /* -ENOMEM */
6901 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
6903 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6906 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
6907 "sector %#Lx len %u err no %d\n",
6908 btrfs_ino(dip
->inode
), bio
->bi_rw
,
6909 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
6913 * before atomic variable goto zero, we must make sure
6914 * dip->errors is perceived to be set.
6916 smp_mb__before_atomic_dec();
6919 /* if there are more bios still pending for this dio, just exit */
6920 if (!atomic_dec_and_test(&dip
->pending_bios
))
6924 bio_io_error(dip
->orig_bio
);
6926 set_bit(BIO_UPTODATE
, &dip
->dio_bio
->bi_flags
);
6927 bio_endio(dip
->orig_bio
, 0);
6933 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
6934 u64 first_sector
, gfp_t gfp_flags
)
6936 int nr_vecs
= bio_get_nr_vecs(bdev
);
6937 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
6940 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
6941 int rw
, u64 file_offset
, int skip_sum
,
6944 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6945 int write
= rw
& REQ_WRITE
;
6946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6950 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
6955 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
6963 if (write
&& async_submit
) {
6964 ret
= btrfs_wq_submit_bio(root
->fs_info
,
6965 inode
, rw
, bio
, 0, 0,
6967 __btrfs_submit_bio_start_direct_io
,
6968 __btrfs_submit_bio_done
);
6972 * If we aren't doing async submit, calculate the csum of the
6975 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
6978 } else if (!skip_sum
) {
6979 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, dip
, bio
,
6986 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
6992 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
6995 struct inode
*inode
= dip
->inode
;
6996 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6998 struct bio
*orig_bio
= dip
->orig_bio
;
6999 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
7000 u64 start_sector
= orig_bio
->bi_sector
;
7001 u64 file_offset
= dip
->logical_offset
;
7006 int async_submit
= 0;
7008 map_length
= orig_bio
->bi_size
;
7009 ret
= btrfs_map_block(root
->fs_info
, rw
, start_sector
<< 9,
7010 &map_length
, NULL
, 0);
7016 if (map_length
>= orig_bio
->bi_size
) {
7021 /* async crcs make it difficult to collect full stripe writes. */
7022 if (btrfs_get_alloc_profile(root
, 1) &
7023 (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
))
7028 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
7031 bio
->bi_private
= dip
;
7032 bio
->bi_end_io
= btrfs_end_dio_bio
;
7033 atomic_inc(&dip
->pending_bios
);
7035 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
7036 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
7037 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
7038 bvec
->bv_offset
) < bvec
->bv_len
)) {
7040 * inc the count before we submit the bio so
7041 * we know the end IO handler won't happen before
7042 * we inc the count. Otherwise, the dip might get freed
7043 * before we're done setting it up
7045 atomic_inc(&dip
->pending_bios
);
7046 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
7047 file_offset
, skip_sum
,
7051 atomic_dec(&dip
->pending_bios
);
7055 start_sector
+= submit_len
>> 9;
7056 file_offset
+= submit_len
;
7061 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
7062 start_sector
, GFP_NOFS
);
7065 bio
->bi_private
= dip
;
7066 bio
->bi_end_io
= btrfs_end_dio_bio
;
7068 map_length
= orig_bio
->bi_size
;
7069 ret
= btrfs_map_block(root
->fs_info
, rw
,
7071 &map_length
, NULL
, 0);
7077 submit_len
+= bvec
->bv_len
;
7084 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
7093 * before atomic variable goto zero, we must
7094 * make sure dip->errors is perceived to be set.
7096 smp_mb__before_atomic_dec();
7097 if (atomic_dec_and_test(&dip
->pending_bios
))
7098 bio_io_error(dip
->orig_bio
);
7100 /* bio_end_io() will handle error, so we needn't return it */
7104 static void btrfs_submit_direct(int rw
, struct bio
*dio_bio
,
7105 struct inode
*inode
, loff_t file_offset
)
7107 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7108 struct btrfs_dio_private
*dip
;
7112 int write
= rw
& REQ_WRITE
;
7116 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
7118 io_bio
= btrfs_bio_clone(dio_bio
, GFP_NOFS
);
7124 if (!skip_sum
&& !write
) {
7125 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
7126 sum_len
= dio_bio
->bi_size
>> inode
->i_sb
->s_blocksize_bits
;
7127 sum_len
*= csum_size
;
7132 dip
= kmalloc(sizeof(*dip
) + sum_len
, GFP_NOFS
);
7138 dip
->private = dio_bio
->bi_private
;
7140 dip
->logical_offset
= file_offset
;
7141 dip
->bytes
= dio_bio
->bi_size
;
7142 dip
->disk_bytenr
= (u64
)dio_bio
->bi_sector
<< 9;
7143 io_bio
->bi_private
= dip
;
7145 dip
->orig_bio
= io_bio
;
7146 dip
->dio_bio
= dio_bio
;
7147 atomic_set(&dip
->pending_bios
, 0);
7150 io_bio
->bi_end_io
= btrfs_endio_direct_write
;
7152 io_bio
->bi_end_io
= btrfs_endio_direct_read
;
7154 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
7163 * If this is a write, we need to clean up the reserved space and kill
7164 * the ordered extent.
7167 struct btrfs_ordered_extent
*ordered
;
7168 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
7169 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
7170 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
7171 btrfs_free_reserved_extent(root
, ordered
->start
,
7173 btrfs_put_ordered_extent(ordered
);
7174 btrfs_put_ordered_extent(ordered
);
7176 bio_endio(dio_bio
, ret
);
7179 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
7180 const struct iovec
*iov
, loff_t offset
,
7181 unsigned long nr_segs
)
7187 unsigned blocksize_mask
= root
->sectorsize
- 1;
7188 ssize_t retval
= -EINVAL
;
7189 loff_t end
= offset
;
7191 if (offset
& blocksize_mask
)
7194 /* Check the memory alignment. Blocks cannot straddle pages */
7195 for (seg
= 0; seg
< nr_segs
; seg
++) {
7196 addr
= (unsigned long)iov
[seg
].iov_base
;
7197 size
= iov
[seg
].iov_len
;
7199 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
7202 /* If this is a write we don't need to check anymore */
7207 * Check to make sure we don't have duplicate iov_base's in this
7208 * iovec, if so return EINVAL, otherwise we'll get csum errors
7209 * when reading back.
7211 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
7212 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
7221 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
7222 const struct iovec
*iov
, loff_t offset
,
7223 unsigned long nr_segs
)
7225 struct file
*file
= iocb
->ki_filp
;
7226 struct inode
*inode
= file
->f_mapping
->host
;
7230 bool relock
= false;
7233 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
7237 atomic_inc(&inode
->i_dio_count
);
7238 smp_mb__after_atomic_inc();
7241 * The generic stuff only does filemap_write_and_wait_range, which isn't
7242 * enough if we've written compressed pages to this area, so we need to
7243 * call btrfs_wait_ordered_range to make absolutely sure that any
7244 * outstanding dirty pages are on disk.
7246 count
= iov_length(iov
, nr_segs
);
7247 btrfs_wait_ordered_range(inode
, offset
, count
);
7251 * If the write DIO is beyond the EOF, we need update
7252 * the isize, but it is protected by i_mutex. So we can
7253 * not unlock the i_mutex at this case.
7255 if (offset
+ count
<= inode
->i_size
) {
7256 mutex_unlock(&inode
->i_mutex
);
7259 ret
= btrfs_delalloc_reserve_space(inode
, count
);
7262 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
7263 &BTRFS_I(inode
)->runtime_flags
))) {
7264 inode_dio_done(inode
);
7265 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
7269 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
7270 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
7271 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
7272 btrfs_submit_direct
, flags
);
7274 if (ret
< 0 && ret
!= -EIOCBQUEUED
)
7275 btrfs_delalloc_release_space(inode
, count
);
7276 else if (ret
>= 0 && (size_t)ret
< count
)
7277 btrfs_delalloc_release_space(inode
,
7278 count
- (size_t)ret
);
7280 btrfs_delalloc_release_metadata(inode
, 0);
7284 inode_dio_done(inode
);
7286 mutex_lock(&inode
->i_mutex
);
7291 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7293 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
7294 __u64 start
, __u64 len
)
7298 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
7302 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
7305 int btrfs_readpage(struct file
*file
, struct page
*page
)
7307 struct extent_io_tree
*tree
;
7308 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7309 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
7312 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
7314 struct extent_io_tree
*tree
;
7317 if (current
->flags
& PF_MEMALLOC
) {
7318 redirty_page_for_writepage(wbc
, page
);
7322 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7323 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
7326 static int btrfs_writepages(struct address_space
*mapping
,
7327 struct writeback_control
*wbc
)
7329 struct extent_io_tree
*tree
;
7331 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
7332 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
7336 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
7337 struct list_head
*pages
, unsigned nr_pages
)
7339 struct extent_io_tree
*tree
;
7340 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
7341 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
7344 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
7346 struct extent_io_tree
*tree
;
7347 struct extent_map_tree
*map
;
7350 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
7351 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
7352 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
7354 ClearPagePrivate(page
);
7355 set_page_private(page
, 0);
7356 page_cache_release(page
);
7361 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
7363 if (PageWriteback(page
) || PageDirty(page
))
7365 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
7368 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
7369 unsigned int length
)
7371 struct inode
*inode
= page
->mapping
->host
;
7372 struct extent_io_tree
*tree
;
7373 struct btrfs_ordered_extent
*ordered
;
7374 struct extent_state
*cached_state
= NULL
;
7375 u64 page_start
= page_offset(page
);
7376 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
7379 * we have the page locked, so new writeback can't start,
7380 * and the dirty bit won't be cleared while we are here.
7382 * Wait for IO on this page so that we can safely clear
7383 * the PagePrivate2 bit and do ordered accounting
7385 wait_on_page_writeback(page
);
7387 tree
= &BTRFS_I(inode
)->io_tree
;
7389 btrfs_releasepage(page
, GFP_NOFS
);
7392 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
7393 ordered
= btrfs_lookup_ordered_extent(inode
, page_offset(page
));
7396 * IO on this page will never be started, so we need
7397 * to account for any ordered extents now
7399 clear_extent_bit(tree
, page_start
, page_end
,
7400 EXTENT_DIRTY
| EXTENT_DELALLOC
|
7401 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
7402 EXTENT_DEFRAG
, 1, 0, &cached_state
, GFP_NOFS
);
7404 * whoever cleared the private bit is responsible
7405 * for the finish_ordered_io
7407 if (TestClearPagePrivate2(page
)) {
7408 struct btrfs_ordered_inode_tree
*tree
;
7411 tree
= &BTRFS_I(inode
)->ordered_tree
;
7413 spin_lock_irq(&tree
->lock
);
7414 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
7415 new_len
= page_start
- ordered
->file_offset
;
7416 if (new_len
< ordered
->truncated_len
)
7417 ordered
->truncated_len
= new_len
;
7418 spin_unlock_irq(&tree
->lock
);
7420 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
7422 PAGE_CACHE_SIZE
, 1))
7423 btrfs_finish_ordered_io(ordered
);
7425 btrfs_put_ordered_extent(ordered
);
7426 cached_state
= NULL
;
7427 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
7429 clear_extent_bit(tree
, page_start
, page_end
,
7430 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
7431 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
7432 &cached_state
, GFP_NOFS
);
7433 __btrfs_releasepage(page
, GFP_NOFS
);
7435 ClearPageChecked(page
);
7436 if (PagePrivate(page
)) {
7437 ClearPagePrivate(page
);
7438 set_page_private(page
, 0);
7439 page_cache_release(page
);
7444 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7445 * called from a page fault handler when a page is first dirtied. Hence we must
7446 * be careful to check for EOF conditions here. We set the page up correctly
7447 * for a written page which means we get ENOSPC checking when writing into
7448 * holes and correct delalloc and unwritten extent mapping on filesystems that
7449 * support these features.
7451 * We are not allowed to take the i_mutex here so we have to play games to
7452 * protect against truncate races as the page could now be beyond EOF. Because
7453 * vmtruncate() writes the inode size before removing pages, once we have the
7454 * page lock we can determine safely if the page is beyond EOF. If it is not
7455 * beyond EOF, then the page is guaranteed safe against truncation until we
7458 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
7460 struct page
*page
= vmf
->page
;
7461 struct inode
*inode
= file_inode(vma
->vm_file
);
7462 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7463 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7464 struct btrfs_ordered_extent
*ordered
;
7465 struct extent_state
*cached_state
= NULL
;
7467 unsigned long zero_start
;
7474 sb_start_pagefault(inode
->i_sb
);
7475 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
7477 ret
= file_update_time(vma
->vm_file
);
7483 else /* -ENOSPC, -EIO, etc */
7484 ret
= VM_FAULT_SIGBUS
;
7490 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
7493 size
= i_size_read(inode
);
7494 page_start
= page_offset(page
);
7495 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
7497 if ((page
->mapping
!= inode
->i_mapping
) ||
7498 (page_start
>= size
)) {
7499 /* page got truncated out from underneath us */
7502 wait_on_page_writeback(page
);
7504 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
7505 set_page_extent_mapped(page
);
7508 * we can't set the delalloc bits if there are pending ordered
7509 * extents. Drop our locks and wait for them to finish
7511 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
7513 unlock_extent_cached(io_tree
, page_start
, page_end
,
7514 &cached_state
, GFP_NOFS
);
7516 btrfs_start_ordered_extent(inode
, ordered
, 1);
7517 btrfs_put_ordered_extent(ordered
);
7522 * XXX - page_mkwrite gets called every time the page is dirtied, even
7523 * if it was already dirty, so for space accounting reasons we need to
7524 * clear any delalloc bits for the range we are fixing to save. There
7525 * is probably a better way to do this, but for now keep consistent with
7526 * prepare_pages in the normal write path.
7528 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
7529 EXTENT_DIRTY
| EXTENT_DELALLOC
|
7530 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
7531 0, 0, &cached_state
, GFP_NOFS
);
7533 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
7536 unlock_extent_cached(io_tree
, page_start
, page_end
,
7537 &cached_state
, GFP_NOFS
);
7538 ret
= VM_FAULT_SIGBUS
;
7543 /* page is wholly or partially inside EOF */
7544 if (page_start
+ PAGE_CACHE_SIZE
> size
)
7545 zero_start
= size
& ~PAGE_CACHE_MASK
;
7547 zero_start
= PAGE_CACHE_SIZE
;
7549 if (zero_start
!= PAGE_CACHE_SIZE
) {
7551 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
7552 flush_dcache_page(page
);
7555 ClearPageChecked(page
);
7556 set_page_dirty(page
);
7557 SetPageUptodate(page
);
7559 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
7560 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
7561 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
7563 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
7567 sb_end_pagefault(inode
->i_sb
);
7568 return VM_FAULT_LOCKED
;
7572 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
7574 sb_end_pagefault(inode
->i_sb
);
7578 static int btrfs_truncate(struct inode
*inode
)
7580 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7581 struct btrfs_block_rsv
*rsv
;
7584 struct btrfs_trans_handle
*trans
;
7585 u64 mask
= root
->sectorsize
- 1;
7586 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
7588 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
7591 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7592 * 3 things going on here
7594 * 1) We need to reserve space for our orphan item and the space to
7595 * delete our orphan item. Lord knows we don't want to have a dangling
7596 * orphan item because we didn't reserve space to remove it.
7598 * 2) We need to reserve space to update our inode.
7600 * 3) We need to have something to cache all the space that is going to
7601 * be free'd up by the truncate operation, but also have some slack
7602 * space reserved in case it uses space during the truncate (thank you
7603 * very much snapshotting).
7605 * And we need these to all be seperate. The fact is we can use alot of
7606 * space doing the truncate, and we have no earthly idea how much space
7607 * we will use, so we need the truncate reservation to be seperate so it
7608 * doesn't end up using space reserved for updating the inode or
7609 * removing the orphan item. We also need to be able to stop the
7610 * transaction and start a new one, which means we need to be able to
7611 * update the inode several times, and we have no idea of knowing how
7612 * many times that will be, so we can't just reserve 1 item for the
7613 * entirety of the opration, so that has to be done seperately as well.
7614 * Then there is the orphan item, which does indeed need to be held on
7615 * to for the whole operation, and we need nobody to touch this reserved
7616 * space except the orphan code.
7618 * So that leaves us with
7620 * 1) root->orphan_block_rsv - for the orphan deletion.
7621 * 2) rsv - for the truncate reservation, which we will steal from the
7622 * transaction reservation.
7623 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7624 * updating the inode.
7626 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
7629 rsv
->size
= min_size
;
7633 * 1 for the truncate slack space
7634 * 1 for updating the inode.
7636 trans
= btrfs_start_transaction(root
, 2);
7637 if (IS_ERR(trans
)) {
7638 err
= PTR_ERR(trans
);
7642 /* Migrate the slack space for the truncate to our reserve */
7643 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
7648 * setattr is responsible for setting the ordered_data_close flag,
7649 * but that is only tested during the last file release. That
7650 * could happen well after the next commit, leaving a great big
7651 * window where new writes may get lost if someone chooses to write
7652 * to this file after truncating to zero
7654 * The inode doesn't have any dirty data here, and so if we commit
7655 * this is a noop. If someone immediately starts writing to the inode
7656 * it is very likely we'll catch some of their writes in this
7657 * transaction, and the commit will find this file on the ordered
7658 * data list with good things to send down.
7660 * This is a best effort solution, there is still a window where
7661 * using truncate to replace the contents of the file will
7662 * end up with a zero length file after a crash.
7664 if (inode
->i_size
== 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
7665 &BTRFS_I(inode
)->runtime_flags
))
7666 btrfs_add_ordered_operation(trans
, root
, inode
);
7669 * So if we truncate and then write and fsync we normally would just
7670 * write the extents that changed, which is a problem if we need to
7671 * first truncate that entire inode. So set this flag so we write out
7672 * all of the extents in the inode to the sync log so we're completely
7675 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
7676 trans
->block_rsv
= rsv
;
7679 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
7681 BTRFS_EXTENT_DATA_KEY
);
7682 if (ret
!= -ENOSPC
) {
7687 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7688 ret
= btrfs_update_inode(trans
, root
, inode
);
7694 btrfs_end_transaction(trans
, root
);
7695 btrfs_btree_balance_dirty(root
);
7697 trans
= btrfs_start_transaction(root
, 2);
7698 if (IS_ERR(trans
)) {
7699 ret
= err
= PTR_ERR(trans
);
7704 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
7706 BUG_ON(ret
); /* shouldn't happen */
7707 trans
->block_rsv
= rsv
;
7710 if (ret
== 0 && inode
->i_nlink
> 0) {
7711 trans
->block_rsv
= root
->orphan_block_rsv
;
7712 ret
= btrfs_orphan_del(trans
, inode
);
7718 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7719 ret
= btrfs_update_inode(trans
, root
, inode
);
7723 ret
= btrfs_end_transaction(trans
, root
);
7724 btrfs_btree_balance_dirty(root
);
7728 btrfs_free_block_rsv(root
, rsv
);
7737 * create a new subvolume directory/inode (helper for the ioctl).
7739 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
7740 struct btrfs_root
*new_root
, u64 new_dirid
)
7742 struct inode
*inode
;
7746 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
7747 new_dirid
, new_dirid
,
7748 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
7751 return PTR_ERR(inode
);
7752 inode
->i_op
= &btrfs_dir_inode_operations
;
7753 inode
->i_fop
= &btrfs_dir_file_operations
;
7755 set_nlink(inode
, 1);
7756 btrfs_i_size_write(inode
, 0);
7758 err
= btrfs_update_inode(trans
, new_root
, inode
);
7764 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
7766 struct btrfs_inode
*ei
;
7767 struct inode
*inode
;
7769 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
7776 ei
->last_sub_trans
= 0;
7777 ei
->logged_trans
= 0;
7778 ei
->delalloc_bytes
= 0;
7779 ei
->disk_i_size
= 0;
7782 ei
->index_cnt
= (u64
)-1;
7783 ei
->last_unlink_trans
= 0;
7784 ei
->last_log_commit
= 0;
7786 spin_lock_init(&ei
->lock
);
7787 ei
->outstanding_extents
= 0;
7788 ei
->reserved_extents
= 0;
7790 ei
->runtime_flags
= 0;
7791 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
7793 ei
->delayed_node
= NULL
;
7795 inode
= &ei
->vfs_inode
;
7796 extent_map_tree_init(&ei
->extent_tree
);
7797 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
7798 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
7799 ei
->io_tree
.track_uptodate
= 1;
7800 ei
->io_failure_tree
.track_uptodate
= 1;
7801 atomic_set(&ei
->sync_writers
, 0);
7802 mutex_init(&ei
->log_mutex
);
7803 mutex_init(&ei
->delalloc_mutex
);
7804 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
7805 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
7806 INIT_LIST_HEAD(&ei
->ordered_operations
);
7807 RB_CLEAR_NODE(&ei
->rb_node
);
7812 static void btrfs_i_callback(struct rcu_head
*head
)
7814 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
7815 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
7818 void btrfs_destroy_inode(struct inode
*inode
)
7820 struct btrfs_ordered_extent
*ordered
;
7821 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7823 WARN_ON(!hlist_empty(&inode
->i_dentry
));
7824 WARN_ON(inode
->i_data
.nrpages
);
7825 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
7826 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
7827 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
7828 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
7831 * This can happen where we create an inode, but somebody else also
7832 * created the same inode and we need to destroy the one we already
7839 * Make sure we're properly removed from the ordered operation
7843 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
7844 spin_lock(&root
->fs_info
->ordered_root_lock
);
7845 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
7846 spin_unlock(&root
->fs_info
->ordered_root_lock
);
7849 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
7850 &BTRFS_I(inode
)->runtime_flags
)) {
7851 btrfs_info(root
->fs_info
, "inode %llu still on the orphan list",
7853 atomic_dec(&root
->orphan_inodes
);
7857 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
7861 btrfs_err(root
->fs_info
, "found ordered extent %llu %llu on inode cleanup",
7862 ordered
->file_offset
, ordered
->len
);
7863 btrfs_remove_ordered_extent(inode
, ordered
);
7864 btrfs_put_ordered_extent(ordered
);
7865 btrfs_put_ordered_extent(ordered
);
7868 inode_tree_del(inode
);
7869 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
7871 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
7874 int btrfs_drop_inode(struct inode
*inode
)
7876 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7881 /* the snap/subvol tree is on deleting */
7882 if (btrfs_root_refs(&root
->root_item
) == 0 &&
7883 root
!= root
->fs_info
->tree_root
)
7886 return generic_drop_inode(inode
);
7889 static void init_once(void *foo
)
7891 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
7893 inode_init_once(&ei
->vfs_inode
);
7896 void btrfs_destroy_cachep(void)
7899 * Make sure all delayed rcu free inodes are flushed before we
7903 if (btrfs_inode_cachep
)
7904 kmem_cache_destroy(btrfs_inode_cachep
);
7905 if (btrfs_trans_handle_cachep
)
7906 kmem_cache_destroy(btrfs_trans_handle_cachep
);
7907 if (btrfs_transaction_cachep
)
7908 kmem_cache_destroy(btrfs_transaction_cachep
);
7909 if (btrfs_path_cachep
)
7910 kmem_cache_destroy(btrfs_path_cachep
);
7911 if (btrfs_free_space_cachep
)
7912 kmem_cache_destroy(btrfs_free_space_cachep
);
7913 if (btrfs_delalloc_work_cachep
)
7914 kmem_cache_destroy(btrfs_delalloc_work_cachep
);
7917 int btrfs_init_cachep(void)
7919 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
7920 sizeof(struct btrfs_inode
), 0,
7921 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
7922 if (!btrfs_inode_cachep
)
7925 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
7926 sizeof(struct btrfs_trans_handle
), 0,
7927 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7928 if (!btrfs_trans_handle_cachep
)
7931 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
7932 sizeof(struct btrfs_transaction
), 0,
7933 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7934 if (!btrfs_transaction_cachep
)
7937 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
7938 sizeof(struct btrfs_path
), 0,
7939 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7940 if (!btrfs_path_cachep
)
7943 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
7944 sizeof(struct btrfs_free_space
), 0,
7945 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7946 if (!btrfs_free_space_cachep
)
7949 btrfs_delalloc_work_cachep
= kmem_cache_create("btrfs_delalloc_work",
7950 sizeof(struct btrfs_delalloc_work
), 0,
7951 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
7953 if (!btrfs_delalloc_work_cachep
)
7958 btrfs_destroy_cachep();
7962 static int btrfs_getattr(struct vfsmount
*mnt
,
7963 struct dentry
*dentry
, struct kstat
*stat
)
7966 struct inode
*inode
= dentry
->d_inode
;
7967 u32 blocksize
= inode
->i_sb
->s_blocksize
;
7969 generic_fillattr(inode
, stat
);
7970 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
7971 stat
->blksize
= PAGE_CACHE_SIZE
;
7973 spin_lock(&BTRFS_I(inode
)->lock
);
7974 delalloc_bytes
= BTRFS_I(inode
)->delalloc_bytes
;
7975 spin_unlock(&BTRFS_I(inode
)->lock
);
7976 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
7977 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
7981 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
7982 struct inode
*new_dir
, struct dentry
*new_dentry
)
7984 struct btrfs_trans_handle
*trans
;
7985 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
7986 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
7987 struct inode
*new_inode
= new_dentry
->d_inode
;
7988 struct inode
*old_inode
= old_dentry
->d_inode
;
7989 struct timespec ctime
= CURRENT_TIME
;
7993 u64 old_ino
= btrfs_ino(old_inode
);
7995 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
7998 /* we only allow rename subvolume link between subvolumes */
7999 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
8002 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
8003 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
8006 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
8007 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
8011 /* check for collisions, even if the name isn't there */
8012 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
8013 new_dentry
->d_name
.name
,
8014 new_dentry
->d_name
.len
);
8017 if (ret
== -EEXIST
) {
8019 * eexist without a new_inode */
8025 /* maybe -EOVERFLOW */
8032 * we're using rename to replace one file with another.
8033 * and the replacement file is large. Start IO on it now so
8034 * we don't add too much work to the end of the transaction
8036 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
8037 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
8038 filemap_flush(old_inode
->i_mapping
);
8040 /* close the racy window with snapshot create/destroy ioctl */
8041 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8042 down_read(&root
->fs_info
->subvol_sem
);
8044 * We want to reserve the absolute worst case amount of items. So if
8045 * both inodes are subvols and we need to unlink them then that would
8046 * require 4 item modifications, but if they are both normal inodes it
8047 * would require 5 item modifications, so we'll assume their normal
8048 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8049 * should cover the worst case number of items we'll modify.
8051 trans
= btrfs_start_transaction(root
, 11);
8052 if (IS_ERR(trans
)) {
8053 ret
= PTR_ERR(trans
);
8058 btrfs_record_root_in_trans(trans
, dest
);
8060 ret
= btrfs_set_inode_index(new_dir
, &index
);
8064 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
8065 /* force full log commit if subvolume involved. */
8066 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
8068 ret
= btrfs_insert_inode_ref(trans
, dest
,
8069 new_dentry
->d_name
.name
,
8070 new_dentry
->d_name
.len
,
8072 btrfs_ino(new_dir
), index
);
8076 * this is an ugly little race, but the rename is required
8077 * to make sure that if we crash, the inode is either at the
8078 * old name or the new one. pinning the log transaction lets
8079 * us make sure we don't allow a log commit to come in after
8080 * we unlink the name but before we add the new name back in.
8082 btrfs_pin_log_trans(root
);
8085 * make sure the inode gets flushed if it is replacing
8088 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
8089 btrfs_add_ordered_operation(trans
, root
, old_inode
);
8091 inode_inc_iversion(old_dir
);
8092 inode_inc_iversion(new_dir
);
8093 inode_inc_iversion(old_inode
);
8094 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
8095 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
8096 old_inode
->i_ctime
= ctime
;
8098 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
8099 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
8101 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
8102 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
8103 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
8104 old_dentry
->d_name
.name
,
8105 old_dentry
->d_name
.len
);
8107 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
8108 old_dentry
->d_inode
,
8109 old_dentry
->d_name
.name
,
8110 old_dentry
->d_name
.len
);
8112 ret
= btrfs_update_inode(trans
, root
, old_inode
);
8115 btrfs_abort_transaction(trans
, root
, ret
);
8120 inode_inc_iversion(new_inode
);
8121 new_inode
->i_ctime
= CURRENT_TIME
;
8122 if (unlikely(btrfs_ino(new_inode
) ==
8123 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
8124 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
8125 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
8127 new_dentry
->d_name
.name
,
8128 new_dentry
->d_name
.len
);
8129 BUG_ON(new_inode
->i_nlink
== 0);
8131 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
8132 new_dentry
->d_inode
,
8133 new_dentry
->d_name
.name
,
8134 new_dentry
->d_name
.len
);
8136 if (!ret
&& new_inode
->i_nlink
== 0)
8137 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
8139 btrfs_abort_transaction(trans
, root
, ret
);
8144 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
8145 new_dentry
->d_name
.name
,
8146 new_dentry
->d_name
.len
, 0, index
);
8148 btrfs_abort_transaction(trans
, root
, ret
);
8152 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
8153 struct dentry
*parent
= new_dentry
->d_parent
;
8154 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
8155 btrfs_end_log_trans(root
);
8158 btrfs_end_transaction(trans
, root
);
8160 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8161 up_read(&root
->fs_info
->subvol_sem
);
8166 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
8168 struct btrfs_delalloc_work
*delalloc_work
;
8170 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
8172 if (delalloc_work
->wait
)
8173 btrfs_wait_ordered_range(delalloc_work
->inode
, 0, (u64
)-1);
8175 filemap_flush(delalloc_work
->inode
->i_mapping
);
8177 if (delalloc_work
->delay_iput
)
8178 btrfs_add_delayed_iput(delalloc_work
->inode
);
8180 iput(delalloc_work
->inode
);
8181 complete(&delalloc_work
->completion
);
8184 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
8185 int wait
, int delay_iput
)
8187 struct btrfs_delalloc_work
*work
;
8189 work
= kmem_cache_zalloc(btrfs_delalloc_work_cachep
, GFP_NOFS
);
8193 init_completion(&work
->completion
);
8194 INIT_LIST_HEAD(&work
->list
);
8195 work
->inode
= inode
;
8197 work
->delay_iput
= delay_iput
;
8198 work
->work
.func
= btrfs_run_delalloc_work
;
8203 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
8205 wait_for_completion(&work
->completion
);
8206 kmem_cache_free(btrfs_delalloc_work_cachep
, work
);
8210 * some fairly slow code that needs optimization. This walks the list
8211 * of all the inodes with pending delalloc and forces them to disk.
8213 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
8215 struct btrfs_inode
*binode
;
8216 struct inode
*inode
;
8217 struct btrfs_delalloc_work
*work
, *next
;
8218 struct list_head works
;
8219 struct list_head splice
;
8222 INIT_LIST_HEAD(&works
);
8223 INIT_LIST_HEAD(&splice
);
8225 spin_lock(&root
->delalloc_lock
);
8226 list_splice_init(&root
->delalloc_inodes
, &splice
);
8227 while (!list_empty(&splice
)) {
8228 binode
= list_entry(splice
.next
, struct btrfs_inode
,
8231 list_move_tail(&binode
->delalloc_inodes
,
8232 &root
->delalloc_inodes
);
8233 inode
= igrab(&binode
->vfs_inode
);
8235 cond_resched_lock(&root
->delalloc_lock
);
8238 spin_unlock(&root
->delalloc_lock
);
8240 work
= btrfs_alloc_delalloc_work(inode
, 0, delay_iput
);
8241 if (unlikely(!work
)) {
8243 btrfs_add_delayed_iput(inode
);
8249 list_add_tail(&work
->list
, &works
);
8250 btrfs_queue_worker(&root
->fs_info
->flush_workers
,
8254 spin_lock(&root
->delalloc_lock
);
8256 spin_unlock(&root
->delalloc_lock
);
8258 list_for_each_entry_safe(work
, next
, &works
, list
) {
8259 list_del_init(&work
->list
);
8260 btrfs_wait_and_free_delalloc_work(work
);
8264 list_for_each_entry_safe(work
, next
, &works
, list
) {
8265 list_del_init(&work
->list
);
8266 btrfs_wait_and_free_delalloc_work(work
);
8269 if (!list_empty_careful(&splice
)) {
8270 spin_lock(&root
->delalloc_lock
);
8271 list_splice_tail(&splice
, &root
->delalloc_inodes
);
8272 spin_unlock(&root
->delalloc_lock
);
8277 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
8281 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
8284 ret
= __start_delalloc_inodes(root
, delay_iput
);
8286 * the filemap_flush will queue IO into the worker threads, but
8287 * we have to make sure the IO is actually started and that
8288 * ordered extents get created before we return
8290 atomic_inc(&root
->fs_info
->async_submit_draining
);
8291 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
8292 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
8293 wait_event(root
->fs_info
->async_submit_wait
,
8294 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
8295 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
8297 atomic_dec(&root
->fs_info
->async_submit_draining
);
8301 int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
,
8304 struct btrfs_root
*root
;
8305 struct list_head splice
;
8308 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
8311 INIT_LIST_HEAD(&splice
);
8313 spin_lock(&fs_info
->delalloc_root_lock
);
8314 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
8315 while (!list_empty(&splice
)) {
8316 root
= list_first_entry(&splice
, struct btrfs_root
,
8318 root
= btrfs_grab_fs_root(root
);
8320 list_move_tail(&root
->delalloc_root
,
8321 &fs_info
->delalloc_roots
);
8322 spin_unlock(&fs_info
->delalloc_root_lock
);
8324 ret
= __start_delalloc_inodes(root
, delay_iput
);
8325 btrfs_put_fs_root(root
);
8329 spin_lock(&fs_info
->delalloc_root_lock
);
8331 spin_unlock(&fs_info
->delalloc_root_lock
);
8333 atomic_inc(&fs_info
->async_submit_draining
);
8334 while (atomic_read(&fs_info
->nr_async_submits
) ||
8335 atomic_read(&fs_info
->async_delalloc_pages
)) {
8336 wait_event(fs_info
->async_submit_wait
,
8337 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
8338 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
8340 atomic_dec(&fs_info
->async_submit_draining
);
8343 if (!list_empty_careful(&splice
)) {
8344 spin_lock(&fs_info
->delalloc_root_lock
);
8345 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
8346 spin_unlock(&fs_info
->delalloc_root_lock
);
8351 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
8352 const char *symname
)
8354 struct btrfs_trans_handle
*trans
;
8355 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
8356 struct btrfs_path
*path
;
8357 struct btrfs_key key
;
8358 struct inode
*inode
= NULL
;
8366 struct btrfs_file_extent_item
*ei
;
8367 struct extent_buffer
*leaf
;
8369 name_len
= strlen(symname
) + 1;
8370 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
8371 return -ENAMETOOLONG
;
8374 * 2 items for inode item and ref
8375 * 2 items for dir items
8376 * 1 item for xattr if selinux is on
8378 trans
= btrfs_start_transaction(root
, 5);
8380 return PTR_ERR(trans
);
8382 err
= btrfs_find_free_ino(root
, &objectid
);
8386 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
8387 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
8388 S_IFLNK
|S_IRWXUGO
, &index
);
8389 if (IS_ERR(inode
)) {
8390 err
= PTR_ERR(inode
);
8394 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
8401 * If the active LSM wants to access the inode during
8402 * d_instantiate it needs these. Smack checks to see
8403 * if the filesystem supports xattrs by looking at the
8406 inode
->i_fop
= &btrfs_file_operations
;
8407 inode
->i_op
= &btrfs_file_inode_operations
;
8409 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
8413 inode
->i_mapping
->a_ops
= &btrfs_aops
;
8414 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
8415 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
8420 path
= btrfs_alloc_path();
8426 key
.objectid
= btrfs_ino(inode
);
8428 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
8429 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
8430 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
8434 btrfs_free_path(path
);
8437 leaf
= path
->nodes
[0];
8438 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
8439 struct btrfs_file_extent_item
);
8440 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
8441 btrfs_set_file_extent_type(leaf
, ei
,
8442 BTRFS_FILE_EXTENT_INLINE
);
8443 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
8444 btrfs_set_file_extent_compression(leaf
, ei
, 0);
8445 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
8446 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
8448 ptr
= btrfs_file_extent_inline_start(ei
);
8449 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
8450 btrfs_mark_buffer_dirty(leaf
);
8451 btrfs_free_path(path
);
8453 inode
->i_op
= &btrfs_symlink_inode_operations
;
8454 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
8455 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
8456 inode_set_bytes(inode
, name_len
);
8457 btrfs_i_size_write(inode
, name_len
- 1);
8458 err
= btrfs_update_inode(trans
, root
, inode
);
8464 d_instantiate(dentry
, inode
);
8465 btrfs_end_transaction(trans
, root
);
8467 inode_dec_link_count(inode
);
8470 btrfs_btree_balance_dirty(root
);
8474 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
8475 u64 start
, u64 num_bytes
, u64 min_size
,
8476 loff_t actual_len
, u64
*alloc_hint
,
8477 struct btrfs_trans_handle
*trans
)
8479 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
8480 struct extent_map
*em
;
8481 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8482 struct btrfs_key ins
;
8483 u64 cur_offset
= start
;
8487 bool own_trans
= true;
8491 while (num_bytes
> 0) {
8493 trans
= btrfs_start_transaction(root
, 3);
8494 if (IS_ERR(trans
)) {
8495 ret
= PTR_ERR(trans
);
8500 cur_bytes
= min(num_bytes
, 256ULL * 1024 * 1024);
8501 cur_bytes
= max(cur_bytes
, min_size
);
8502 ret
= btrfs_reserve_extent(root
, cur_bytes
, min_size
, 0,
8503 *alloc_hint
, &ins
, 1);
8506 btrfs_end_transaction(trans
, root
);
8510 ret
= insert_reserved_file_extent(trans
, inode
,
8511 cur_offset
, ins
.objectid
,
8512 ins
.offset
, ins
.offset
,
8513 ins
.offset
, 0, 0, 0,
8514 BTRFS_FILE_EXTENT_PREALLOC
);
8516 btrfs_abort_transaction(trans
, root
, ret
);
8518 btrfs_end_transaction(trans
, root
);
8521 btrfs_drop_extent_cache(inode
, cur_offset
,
8522 cur_offset
+ ins
.offset
-1, 0);
8524 em
= alloc_extent_map();
8526 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
8527 &BTRFS_I(inode
)->runtime_flags
);
8531 em
->start
= cur_offset
;
8532 em
->orig_start
= cur_offset
;
8533 em
->len
= ins
.offset
;
8534 em
->block_start
= ins
.objectid
;
8535 em
->block_len
= ins
.offset
;
8536 em
->orig_block_len
= ins
.offset
;
8537 em
->ram_bytes
= ins
.offset
;
8538 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
8539 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
8540 em
->generation
= trans
->transid
;
8543 write_lock(&em_tree
->lock
);
8544 ret
= add_extent_mapping(em_tree
, em
, 1);
8545 write_unlock(&em_tree
->lock
);
8548 btrfs_drop_extent_cache(inode
, cur_offset
,
8549 cur_offset
+ ins
.offset
- 1,
8552 free_extent_map(em
);
8554 num_bytes
-= ins
.offset
;
8555 cur_offset
+= ins
.offset
;
8556 *alloc_hint
= ins
.objectid
+ ins
.offset
;
8558 inode_inc_iversion(inode
);
8559 inode
->i_ctime
= CURRENT_TIME
;
8560 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
8561 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
8562 (actual_len
> inode
->i_size
) &&
8563 (cur_offset
> inode
->i_size
)) {
8564 if (cur_offset
> actual_len
)
8565 i_size
= actual_len
;
8567 i_size
= cur_offset
;
8568 i_size_write(inode
, i_size
);
8569 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
8572 ret
= btrfs_update_inode(trans
, root
, inode
);
8575 btrfs_abort_transaction(trans
, root
, ret
);
8577 btrfs_end_transaction(trans
, root
);
8582 btrfs_end_transaction(trans
, root
);
8587 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
8588 u64 start
, u64 num_bytes
, u64 min_size
,
8589 loff_t actual_len
, u64
*alloc_hint
)
8591 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
8592 min_size
, actual_len
, alloc_hint
,
8596 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
8597 struct btrfs_trans_handle
*trans
, int mode
,
8598 u64 start
, u64 num_bytes
, u64 min_size
,
8599 loff_t actual_len
, u64
*alloc_hint
)
8601 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
8602 min_size
, actual_len
, alloc_hint
, trans
);
8605 static int btrfs_set_page_dirty(struct page
*page
)
8607 return __set_page_dirty_nobuffers(page
);
8610 static int btrfs_permission(struct inode
*inode
, int mask
)
8612 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8613 umode_t mode
= inode
->i_mode
;
8615 if (mask
& MAY_WRITE
&&
8616 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
8617 if (btrfs_root_readonly(root
))
8619 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
8622 return generic_permission(inode
, mask
);
8625 static const struct inode_operations btrfs_dir_inode_operations
= {
8626 .getattr
= btrfs_getattr
,
8627 .lookup
= btrfs_lookup
,
8628 .create
= btrfs_create
,
8629 .unlink
= btrfs_unlink
,
8631 .mkdir
= btrfs_mkdir
,
8632 .rmdir
= btrfs_rmdir
,
8633 .rename
= btrfs_rename
,
8634 .symlink
= btrfs_symlink
,
8635 .setattr
= btrfs_setattr
,
8636 .mknod
= btrfs_mknod
,
8637 .setxattr
= btrfs_setxattr
,
8638 .getxattr
= btrfs_getxattr
,
8639 .listxattr
= btrfs_listxattr
,
8640 .removexattr
= btrfs_removexattr
,
8641 .permission
= btrfs_permission
,
8642 .get_acl
= btrfs_get_acl
,
8643 .update_time
= btrfs_update_time
,
8645 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
8646 .lookup
= btrfs_lookup
,
8647 .permission
= btrfs_permission
,
8648 .get_acl
= btrfs_get_acl
,
8649 .update_time
= btrfs_update_time
,
8652 static const struct file_operations btrfs_dir_file_operations
= {
8653 .llseek
= generic_file_llseek
,
8654 .read
= generic_read_dir
,
8655 .iterate
= btrfs_real_readdir
,
8656 .unlocked_ioctl
= btrfs_ioctl
,
8657 #ifdef CONFIG_COMPAT
8658 .compat_ioctl
= btrfs_ioctl
,
8660 .release
= btrfs_release_file
,
8661 .fsync
= btrfs_sync_file
,
8664 static struct extent_io_ops btrfs_extent_io_ops
= {
8665 .fill_delalloc
= run_delalloc_range
,
8666 .submit_bio_hook
= btrfs_submit_bio_hook
,
8667 .merge_bio_hook
= btrfs_merge_bio_hook
,
8668 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
8669 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
8670 .writepage_start_hook
= btrfs_writepage_start_hook
,
8671 .set_bit_hook
= btrfs_set_bit_hook
,
8672 .clear_bit_hook
= btrfs_clear_bit_hook
,
8673 .merge_extent_hook
= btrfs_merge_extent_hook
,
8674 .split_extent_hook
= btrfs_split_extent_hook
,
8678 * btrfs doesn't support the bmap operation because swapfiles
8679 * use bmap to make a mapping of extents in the file. They assume
8680 * these extents won't change over the life of the file and they
8681 * use the bmap result to do IO directly to the drive.
8683 * the btrfs bmap call would return logical addresses that aren't
8684 * suitable for IO and they also will change frequently as COW
8685 * operations happen. So, swapfile + btrfs == corruption.
8687 * For now we're avoiding this by dropping bmap.
8689 static const struct address_space_operations btrfs_aops
= {
8690 .readpage
= btrfs_readpage
,
8691 .writepage
= btrfs_writepage
,
8692 .writepages
= btrfs_writepages
,
8693 .readpages
= btrfs_readpages
,
8694 .direct_IO
= btrfs_direct_IO
,
8695 .invalidatepage
= btrfs_invalidatepage
,
8696 .releasepage
= btrfs_releasepage
,
8697 .set_page_dirty
= btrfs_set_page_dirty
,
8698 .error_remove_page
= generic_error_remove_page
,
8701 static const struct address_space_operations btrfs_symlink_aops
= {
8702 .readpage
= btrfs_readpage
,
8703 .writepage
= btrfs_writepage
,
8704 .invalidatepage
= btrfs_invalidatepage
,
8705 .releasepage
= btrfs_releasepage
,
8708 static const struct inode_operations btrfs_file_inode_operations
= {
8709 .getattr
= btrfs_getattr
,
8710 .setattr
= btrfs_setattr
,
8711 .setxattr
= btrfs_setxattr
,
8712 .getxattr
= btrfs_getxattr
,
8713 .listxattr
= btrfs_listxattr
,
8714 .removexattr
= btrfs_removexattr
,
8715 .permission
= btrfs_permission
,
8716 .fiemap
= btrfs_fiemap
,
8717 .get_acl
= btrfs_get_acl
,
8718 .update_time
= btrfs_update_time
,
8720 static const struct inode_operations btrfs_special_inode_operations
= {
8721 .getattr
= btrfs_getattr
,
8722 .setattr
= btrfs_setattr
,
8723 .permission
= btrfs_permission
,
8724 .setxattr
= btrfs_setxattr
,
8725 .getxattr
= btrfs_getxattr
,
8726 .listxattr
= btrfs_listxattr
,
8727 .removexattr
= btrfs_removexattr
,
8728 .get_acl
= btrfs_get_acl
,
8729 .update_time
= btrfs_update_time
,
8731 static const struct inode_operations btrfs_symlink_inode_operations
= {
8732 .readlink
= generic_readlink
,
8733 .follow_link
= page_follow_link_light
,
8734 .put_link
= page_put_link
,
8735 .getattr
= btrfs_getattr
,
8736 .setattr
= btrfs_setattr
,
8737 .permission
= btrfs_permission
,
8738 .setxattr
= btrfs_setxattr
,
8739 .getxattr
= btrfs_getxattr
,
8740 .listxattr
= btrfs_listxattr
,
8741 .removexattr
= btrfs_removexattr
,
8742 .get_acl
= btrfs_get_acl
,
8743 .update_time
= btrfs_update_time
,
8746 const struct dentry_operations btrfs_dentry_operations
= {
8747 .d_delete
= btrfs_dentry_delete
,
8748 .d_release
= btrfs_dentry_release
,