2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
50 #include "transaction.h"
51 #include "btrfs_inode.h"
52 #include "print-tree.h"
55 #include "inode-map.h"
57 #include "rcu-string.h"
59 #include "dev-replace.h"
61 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
62 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
);
64 /* Mask out flags that are inappropriate for the given type of inode. */
65 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
69 else if (S_ISREG(mode
))
70 return flags
& ~FS_DIRSYNC_FL
;
72 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
76 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
78 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
80 unsigned int iflags
= 0;
82 if (flags
& BTRFS_INODE_SYNC
)
84 if (flags
& BTRFS_INODE_IMMUTABLE
)
85 iflags
|= FS_IMMUTABLE_FL
;
86 if (flags
& BTRFS_INODE_APPEND
)
87 iflags
|= FS_APPEND_FL
;
88 if (flags
& BTRFS_INODE_NODUMP
)
89 iflags
|= FS_NODUMP_FL
;
90 if (flags
& BTRFS_INODE_NOATIME
)
91 iflags
|= FS_NOATIME_FL
;
92 if (flags
& BTRFS_INODE_DIRSYNC
)
93 iflags
|= FS_DIRSYNC_FL
;
94 if (flags
& BTRFS_INODE_NODATACOW
)
95 iflags
|= FS_NOCOW_FL
;
97 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
98 iflags
|= FS_COMPR_FL
;
99 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
100 iflags
|= FS_NOCOMP_FL
;
106 * Update inode->i_flags based on the btrfs internal flags.
108 void btrfs_update_iflags(struct inode
*inode
)
110 struct btrfs_inode
*ip
= BTRFS_I(inode
);
112 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
114 if (ip
->flags
& BTRFS_INODE_SYNC
)
115 inode
->i_flags
|= S_SYNC
;
116 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
117 inode
->i_flags
|= S_IMMUTABLE
;
118 if (ip
->flags
& BTRFS_INODE_APPEND
)
119 inode
->i_flags
|= S_APPEND
;
120 if (ip
->flags
& BTRFS_INODE_NOATIME
)
121 inode
->i_flags
|= S_NOATIME
;
122 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
123 inode
->i_flags
|= S_DIRSYNC
;
127 * Inherit flags from the parent inode.
129 * Currently only the compression flags and the cow flags are inherited.
131 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
138 flags
= BTRFS_I(dir
)->flags
;
140 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
141 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
142 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
143 } else if (flags
& BTRFS_INODE_COMPRESS
) {
144 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
145 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
148 if (flags
& BTRFS_INODE_NODATACOW
) {
149 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
150 if (S_ISREG(inode
->i_mode
))
151 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
154 btrfs_update_iflags(inode
);
157 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
159 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
160 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
162 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
167 static int check_flags(unsigned int flags
)
169 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
170 FS_NOATIME_FL
| FS_NODUMP_FL
| \
171 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
172 FS_NOCOMP_FL
| FS_COMPR_FL
|
176 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
182 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
184 struct inode
*inode
= file_inode(file
);
185 struct btrfs_inode
*ip
= BTRFS_I(inode
);
186 struct btrfs_root
*root
= ip
->root
;
187 struct btrfs_trans_handle
*trans
;
188 unsigned int flags
, oldflags
;
191 unsigned int i_oldflags
;
194 if (btrfs_root_readonly(root
))
197 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
200 ret
= check_flags(flags
);
204 if (!inode_owner_or_capable(inode
))
207 ret
= mnt_want_write_file(file
);
211 mutex_lock(&inode
->i_mutex
);
213 ip_oldflags
= ip
->flags
;
214 i_oldflags
= inode
->i_flags
;
215 mode
= inode
->i_mode
;
217 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
218 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
219 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
220 if (!capable(CAP_LINUX_IMMUTABLE
)) {
226 if (flags
& FS_SYNC_FL
)
227 ip
->flags
|= BTRFS_INODE_SYNC
;
229 ip
->flags
&= ~BTRFS_INODE_SYNC
;
230 if (flags
& FS_IMMUTABLE_FL
)
231 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
233 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
234 if (flags
& FS_APPEND_FL
)
235 ip
->flags
|= BTRFS_INODE_APPEND
;
237 ip
->flags
&= ~BTRFS_INODE_APPEND
;
238 if (flags
& FS_NODUMP_FL
)
239 ip
->flags
|= BTRFS_INODE_NODUMP
;
241 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
242 if (flags
& FS_NOATIME_FL
)
243 ip
->flags
|= BTRFS_INODE_NOATIME
;
245 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
246 if (flags
& FS_DIRSYNC_FL
)
247 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
249 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
250 if (flags
& FS_NOCOW_FL
) {
253 * It's safe to turn csums off here, no extents exist.
254 * Otherwise we want the flag to reflect the real COW
255 * status of the file and will not set it.
257 if (inode
->i_size
== 0)
258 ip
->flags
|= BTRFS_INODE_NODATACOW
259 | BTRFS_INODE_NODATASUM
;
261 ip
->flags
|= BTRFS_INODE_NODATACOW
;
265 * Revert back under same assuptions as above
268 if (inode
->i_size
== 0)
269 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
270 | BTRFS_INODE_NODATASUM
);
272 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
277 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
278 * flag may be changed automatically if compression code won't make
281 if (flags
& FS_NOCOMP_FL
) {
282 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
283 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
284 } else if (flags
& FS_COMPR_FL
) {
285 ip
->flags
|= BTRFS_INODE_COMPRESS
;
286 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
288 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
291 trans
= btrfs_start_transaction(root
, 1);
293 ret
= PTR_ERR(trans
);
297 btrfs_update_iflags(inode
);
298 inode_inc_iversion(inode
);
299 inode
->i_ctime
= CURRENT_TIME
;
300 ret
= btrfs_update_inode(trans
, root
, inode
);
302 btrfs_end_transaction(trans
, root
);
305 ip
->flags
= ip_oldflags
;
306 inode
->i_flags
= i_oldflags
;
310 mutex_unlock(&inode
->i_mutex
);
311 mnt_drop_write_file(file
);
315 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
317 struct inode
*inode
= file_inode(file
);
319 return put_user(inode
->i_generation
, arg
);
322 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
324 struct btrfs_fs_info
*fs_info
= btrfs_sb(fdentry(file
)->d_sb
);
325 struct btrfs_device
*device
;
326 struct request_queue
*q
;
327 struct fstrim_range range
;
328 u64 minlen
= ULLONG_MAX
;
330 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
333 if (!capable(CAP_SYS_ADMIN
))
337 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
341 q
= bdev_get_queue(device
->bdev
);
342 if (blk_queue_discard(q
)) {
344 minlen
= min((u64
)q
->limits
.discard_granularity
,
352 if (copy_from_user(&range
, arg
, sizeof(range
)))
354 if (range
.start
> total_bytes
||
355 range
.len
< fs_info
->sb
->s_blocksize
)
358 range
.len
= min(range
.len
, total_bytes
- range
.start
);
359 range
.minlen
= max(range
.minlen
, minlen
);
360 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
364 if (copy_to_user(arg
, &range
, sizeof(range
)))
370 int btrfs_is_empty_uuid(u8
*uuid
)
372 static char empty_uuid
[BTRFS_UUID_SIZE
] = {0};
374 return !memcmp(uuid
, empty_uuid
, BTRFS_UUID_SIZE
);
377 static noinline
int create_subvol(struct inode
*dir
,
378 struct dentry
*dentry
,
379 char *name
, int namelen
,
381 struct btrfs_qgroup_inherit
*inherit
)
383 struct btrfs_trans_handle
*trans
;
384 struct btrfs_key key
;
385 struct btrfs_root_item root_item
;
386 struct btrfs_inode_item
*inode_item
;
387 struct extent_buffer
*leaf
;
388 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
389 struct btrfs_root
*new_root
;
390 struct btrfs_block_rsv block_rsv
;
391 struct timespec cur_time
= CURRENT_TIME
;
395 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
400 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
404 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
406 * The same as the snapshot creation, please see the comment
407 * of create_snapshot().
409 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
410 8, &qgroup_reserved
, false);
414 trans
= btrfs_start_transaction(root
, 0);
416 ret
= PTR_ERR(trans
);
419 trans
->block_rsv
= &block_rsv
;
420 trans
->bytes_reserved
= block_rsv
.size
;
422 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
, inherit
);
426 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
427 0, objectid
, NULL
, 0, 0, 0);
433 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
434 btrfs_set_header_bytenr(leaf
, leaf
->start
);
435 btrfs_set_header_generation(leaf
, trans
->transid
);
436 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
437 btrfs_set_header_owner(leaf
, objectid
);
439 write_extent_buffer(leaf
, root
->fs_info
->fsid
, btrfs_header_fsid(leaf
),
441 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
442 btrfs_header_chunk_tree_uuid(leaf
),
444 btrfs_mark_buffer_dirty(leaf
);
446 memset(&root_item
, 0, sizeof(root_item
));
448 inode_item
= &root_item
.inode
;
449 btrfs_set_stack_inode_generation(inode_item
, 1);
450 btrfs_set_stack_inode_size(inode_item
, 3);
451 btrfs_set_stack_inode_nlink(inode_item
, 1);
452 btrfs_set_stack_inode_nbytes(inode_item
, root
->leafsize
);
453 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
455 btrfs_set_root_flags(&root_item
, 0);
456 btrfs_set_root_limit(&root_item
, 0);
457 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
459 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
460 btrfs_set_root_generation(&root_item
, trans
->transid
);
461 btrfs_set_root_level(&root_item
, 0);
462 btrfs_set_root_refs(&root_item
, 1);
463 btrfs_set_root_used(&root_item
, leaf
->len
);
464 btrfs_set_root_last_snapshot(&root_item
, 0);
466 btrfs_set_root_generation_v2(&root_item
,
467 btrfs_root_generation(&root_item
));
468 uuid_le_gen(&new_uuid
);
469 memcpy(root_item
.uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
470 btrfs_set_stack_timespec_sec(&root_item
.otime
, cur_time
.tv_sec
);
471 btrfs_set_stack_timespec_nsec(&root_item
.otime
, cur_time
.tv_nsec
);
472 root_item
.ctime
= root_item
.otime
;
473 btrfs_set_root_ctransid(&root_item
, trans
->transid
);
474 btrfs_set_root_otransid(&root_item
, trans
->transid
);
476 btrfs_tree_unlock(leaf
);
477 free_extent_buffer(leaf
);
480 btrfs_set_root_dirid(&root_item
, new_dirid
);
482 key
.objectid
= objectid
;
484 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
485 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
490 key
.offset
= (u64
)-1;
491 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
492 if (IS_ERR(new_root
)) {
493 btrfs_abort_transaction(trans
, root
, PTR_ERR(new_root
));
494 ret
= PTR_ERR(new_root
);
498 btrfs_record_root_in_trans(trans
, new_root
);
500 ret
= btrfs_create_subvol_root(trans
, new_root
, new_dirid
);
502 /* We potentially lose an unused inode item here */
503 btrfs_abort_transaction(trans
, root
, ret
);
508 * insert the directory item
510 ret
= btrfs_set_inode_index(dir
, &index
);
512 btrfs_abort_transaction(trans
, root
, ret
);
516 ret
= btrfs_insert_dir_item(trans
, root
,
517 name
, namelen
, dir
, &key
,
518 BTRFS_FT_DIR
, index
);
520 btrfs_abort_transaction(trans
, root
, ret
);
524 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
525 ret
= btrfs_update_inode(trans
, root
, dir
);
528 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
529 objectid
, root
->root_key
.objectid
,
530 btrfs_ino(dir
), index
, name
, namelen
);
533 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
534 root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
537 btrfs_abort_transaction(trans
, root
, ret
);
540 trans
->block_rsv
= NULL
;
541 trans
->bytes_reserved
= 0;
543 *async_transid
= trans
->transid
;
544 err
= btrfs_commit_transaction_async(trans
, root
, 1);
546 err
= btrfs_commit_transaction(trans
, root
);
548 err
= btrfs_commit_transaction(trans
, root
);
554 d_instantiate(dentry
, btrfs_lookup_dentry(dir
, dentry
));
556 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
560 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
561 struct dentry
*dentry
, char *name
, int namelen
,
562 u64
*async_transid
, bool readonly
,
563 struct btrfs_qgroup_inherit
*inherit
)
566 struct btrfs_pending_snapshot
*pending_snapshot
;
567 struct btrfs_trans_handle
*trans
;
573 ret
= btrfs_start_delalloc_inodes(root
, 0);
577 btrfs_wait_ordered_extents(root
);
579 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
580 if (!pending_snapshot
)
583 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
584 BTRFS_BLOCK_RSV_TEMP
);
586 * 1 - parent dir inode
589 * 2 - root ref/backref
590 * 1 - root of snapshot
593 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
594 &pending_snapshot
->block_rsv
, 8,
595 &pending_snapshot
->qgroup_reserved
,
600 pending_snapshot
->dentry
= dentry
;
601 pending_snapshot
->root
= root
;
602 pending_snapshot
->readonly
= readonly
;
603 pending_snapshot
->dir
= dir
;
604 pending_snapshot
->inherit
= inherit
;
606 trans
= btrfs_start_transaction(root
, 0);
608 ret
= PTR_ERR(trans
);
612 spin_lock(&root
->fs_info
->trans_lock
);
613 list_add(&pending_snapshot
->list
,
614 &trans
->transaction
->pending_snapshots
);
615 spin_unlock(&root
->fs_info
->trans_lock
);
617 *async_transid
= trans
->transid
;
618 ret
= btrfs_commit_transaction_async(trans
,
619 root
->fs_info
->extent_root
, 1);
621 ret
= btrfs_commit_transaction(trans
, root
);
623 ret
= btrfs_commit_transaction(trans
,
624 root
->fs_info
->extent_root
);
629 ret
= pending_snapshot
->error
;
633 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
637 inode
= btrfs_lookup_dentry(dentry
->d_parent
->d_inode
, dentry
);
639 ret
= PTR_ERR(inode
);
643 d_instantiate(dentry
, inode
);
646 btrfs_subvolume_release_metadata(BTRFS_I(dir
)->root
,
647 &pending_snapshot
->block_rsv
,
648 pending_snapshot
->qgroup_reserved
);
650 kfree(pending_snapshot
);
654 /* copy of check_sticky in fs/namei.c()
655 * It's inline, so penalty for filesystems that don't use sticky bit is
658 static inline int btrfs_check_sticky(struct inode
*dir
, struct inode
*inode
)
660 kuid_t fsuid
= current_fsuid();
662 if (!(dir
->i_mode
& S_ISVTX
))
664 if (uid_eq(inode
->i_uid
, fsuid
))
666 if (uid_eq(dir
->i_uid
, fsuid
))
668 return !capable(CAP_FOWNER
);
671 /* copy of may_delete in fs/namei.c()
672 * Check whether we can remove a link victim from directory dir, check
673 * whether the type of victim is right.
674 * 1. We can't do it if dir is read-only (done in permission())
675 * 2. We should have write and exec permissions on dir
676 * 3. We can't remove anything from append-only dir
677 * 4. We can't do anything with immutable dir (done in permission())
678 * 5. If the sticky bit on dir is set we should either
679 * a. be owner of dir, or
680 * b. be owner of victim, or
681 * c. have CAP_FOWNER capability
682 * 6. If the victim is append-only or immutable we can't do antyhing with
683 * links pointing to it.
684 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
685 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
686 * 9. We can't remove a root or mountpoint.
687 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
688 * nfs_async_unlink().
691 static int btrfs_may_delete(struct inode
*dir
,struct dentry
*victim
,int isdir
)
695 if (!victim
->d_inode
)
698 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
699 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
701 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
706 if (btrfs_check_sticky(dir
, victim
->d_inode
)||
707 IS_APPEND(victim
->d_inode
)||
708 IS_IMMUTABLE(victim
->d_inode
) || IS_SWAPFILE(victim
->d_inode
))
711 if (!S_ISDIR(victim
->d_inode
->i_mode
))
715 } else if (S_ISDIR(victim
->d_inode
->i_mode
))
719 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
724 /* copy of may_create in fs/namei.c() */
725 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
731 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
735 * Create a new subvolume below @parent. This is largely modeled after
736 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
737 * inside this filesystem so it's quite a bit simpler.
739 static noinline
int btrfs_mksubvol(struct path
*parent
,
740 char *name
, int namelen
,
741 struct btrfs_root
*snap_src
,
742 u64
*async_transid
, bool readonly
,
743 struct btrfs_qgroup_inherit
*inherit
)
745 struct inode
*dir
= parent
->dentry
->d_inode
;
746 struct dentry
*dentry
;
749 error
= mutex_lock_killable_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
753 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
754 error
= PTR_ERR(dentry
);
762 error
= btrfs_may_create(dir
, dentry
);
767 * even if this name doesn't exist, we may get hash collisions.
768 * check for them now when we can safely fail
770 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
776 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
778 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
782 error
= create_snapshot(snap_src
, dir
, dentry
, name
, namelen
,
783 async_transid
, readonly
, inherit
);
785 error
= create_subvol(dir
, dentry
, name
, namelen
,
786 async_transid
, inherit
);
789 fsnotify_mkdir(dir
, dentry
);
791 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
795 mutex_unlock(&dir
->i_mutex
);
800 * When we're defragging a range, we don't want to kick it off again
801 * if it is really just waiting for delalloc to send it down.
802 * If we find a nice big extent or delalloc range for the bytes in the
803 * file you want to defrag, we return 0 to let you know to skip this
806 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, int thresh
)
808 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
809 struct extent_map
*em
= NULL
;
810 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
813 read_lock(&em_tree
->lock
);
814 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
815 read_unlock(&em_tree
->lock
);
818 end
= extent_map_end(em
);
820 if (end
- offset
> thresh
)
823 /* if we already have a nice delalloc here, just stop */
825 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
826 thresh
, EXTENT_DELALLOC
, 1);
833 * helper function to walk through a file and find extents
834 * newer than a specific transid, and smaller than thresh.
836 * This is used by the defragging code to find new and small
839 static int find_new_extents(struct btrfs_root
*root
,
840 struct inode
*inode
, u64 newer_than
,
841 u64
*off
, int thresh
)
843 struct btrfs_path
*path
;
844 struct btrfs_key min_key
;
845 struct btrfs_key max_key
;
846 struct extent_buffer
*leaf
;
847 struct btrfs_file_extent_item
*extent
;
850 u64 ino
= btrfs_ino(inode
);
852 path
= btrfs_alloc_path();
856 min_key
.objectid
= ino
;
857 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
858 min_key
.offset
= *off
;
860 max_key
.objectid
= ino
;
861 max_key
.type
= (u8
)-1;
862 max_key
.offset
= (u64
)-1;
864 path
->keep_locks
= 1;
867 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
871 if (min_key
.objectid
!= ino
)
873 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
876 leaf
= path
->nodes
[0];
877 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
878 struct btrfs_file_extent_item
);
880 type
= btrfs_file_extent_type(leaf
, extent
);
881 if (type
== BTRFS_FILE_EXTENT_REG
&&
882 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
883 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
884 *off
= min_key
.offset
;
885 btrfs_free_path(path
);
889 if (min_key
.offset
== (u64
)-1)
893 btrfs_release_path(path
);
896 btrfs_free_path(path
);
900 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
902 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
903 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
904 struct extent_map
*em
;
905 u64 len
= PAGE_CACHE_SIZE
;
908 * hopefully we have this extent in the tree already, try without
909 * the full extent lock
911 read_lock(&em_tree
->lock
);
912 em
= lookup_extent_mapping(em_tree
, start
, len
);
913 read_unlock(&em_tree
->lock
);
916 /* get the big lock and read metadata off disk */
917 lock_extent(io_tree
, start
, start
+ len
- 1);
918 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
919 unlock_extent(io_tree
, start
, start
+ len
- 1);
928 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
930 struct extent_map
*next
;
933 /* this is the last extent */
934 if (em
->start
+ em
->len
>= i_size_read(inode
))
937 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
938 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
941 free_extent_map(next
);
945 static int should_defrag_range(struct inode
*inode
, u64 start
, int thresh
,
946 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
949 struct extent_map
*em
;
951 bool next_mergeable
= true;
954 * make sure that once we start defragging an extent, we keep on
957 if (start
< *defrag_end
)
962 em
= defrag_lookup_extent(inode
, start
);
966 /* this will cover holes, and inline extents */
967 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
972 next_mergeable
= defrag_check_next_extent(inode
, em
);
975 * we hit a real extent, if it is big or the next extent is not a
976 * real extent, don't bother defragging it
978 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
979 (em
->len
>= thresh
|| !next_mergeable
))
983 * last_len ends up being a counter of how many bytes we've defragged.
984 * every time we choose not to defrag an extent, we reset *last_len
985 * so that the next tiny extent will force a defrag.
987 * The end result of this is that tiny extents before a single big
988 * extent will force at least part of that big extent to be defragged.
991 *defrag_end
= extent_map_end(em
);
994 *skip
= extent_map_end(em
);
1003 * it doesn't do much good to defrag one or two pages
1004 * at a time. This pulls in a nice chunk of pages
1005 * to COW and defrag.
1007 * It also makes sure the delalloc code has enough
1008 * dirty data to avoid making new small extents as part
1011 * It's a good idea to start RA on this range
1012 * before calling this.
1014 static int cluster_pages_for_defrag(struct inode
*inode
,
1015 struct page
**pages
,
1016 unsigned long start_index
,
1017 unsigned long num_pages
)
1019 unsigned long file_end
;
1020 u64 isize
= i_size_read(inode
);
1027 struct btrfs_ordered_extent
*ordered
;
1028 struct extent_state
*cached_state
= NULL
;
1029 struct extent_io_tree
*tree
;
1030 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1032 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1033 if (!isize
|| start_index
> file_end
)
1036 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1038 ret
= btrfs_delalloc_reserve_space(inode
,
1039 page_cnt
<< PAGE_CACHE_SHIFT
);
1043 tree
= &BTRFS_I(inode
)->io_tree
;
1045 /* step one, lock all the pages */
1046 for (i
= 0; i
< page_cnt
; i
++) {
1049 page
= find_or_create_page(inode
->i_mapping
,
1050 start_index
+ i
, mask
);
1054 page_start
= page_offset(page
);
1055 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
1057 lock_extent(tree
, page_start
, page_end
);
1058 ordered
= btrfs_lookup_ordered_extent(inode
,
1060 unlock_extent(tree
, page_start
, page_end
);
1065 btrfs_start_ordered_extent(inode
, ordered
, 1);
1066 btrfs_put_ordered_extent(ordered
);
1069 * we unlocked the page above, so we need check if
1070 * it was released or not.
1072 if (page
->mapping
!= inode
->i_mapping
) {
1074 page_cache_release(page
);
1079 if (!PageUptodate(page
)) {
1080 btrfs_readpage(NULL
, page
);
1082 if (!PageUptodate(page
)) {
1084 page_cache_release(page
);
1090 if (page
->mapping
!= inode
->i_mapping
) {
1092 page_cache_release(page
);
1102 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1106 * so now we have a nice long stream of locked
1107 * and up to date pages, lets wait on them
1109 for (i
= 0; i
< i_done
; i
++)
1110 wait_on_page_writeback(pages
[i
]);
1112 page_start
= page_offset(pages
[0]);
1113 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
1115 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1116 page_start
, page_end
- 1, 0, &cached_state
);
1117 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1118 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1119 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1120 &cached_state
, GFP_NOFS
);
1122 if (i_done
!= page_cnt
) {
1123 spin_lock(&BTRFS_I(inode
)->lock
);
1124 BTRFS_I(inode
)->outstanding_extents
++;
1125 spin_unlock(&BTRFS_I(inode
)->lock
);
1126 btrfs_delalloc_release_space(inode
,
1127 (page_cnt
- i_done
) << PAGE_CACHE_SHIFT
);
1131 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1132 &cached_state
, GFP_NOFS
);
1134 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1135 page_start
, page_end
- 1, &cached_state
,
1138 for (i
= 0; i
< i_done
; i
++) {
1139 clear_page_dirty_for_io(pages
[i
]);
1140 ClearPageChecked(pages
[i
]);
1141 set_page_extent_mapped(pages
[i
]);
1142 set_page_dirty(pages
[i
]);
1143 unlock_page(pages
[i
]);
1144 page_cache_release(pages
[i
]);
1148 for (i
= 0; i
< i_done
; i
++) {
1149 unlock_page(pages
[i
]);
1150 page_cache_release(pages
[i
]);
1152 btrfs_delalloc_release_space(inode
, page_cnt
<< PAGE_CACHE_SHIFT
);
1157 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1158 struct btrfs_ioctl_defrag_range_args
*range
,
1159 u64 newer_than
, unsigned long max_to_defrag
)
1161 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1162 struct file_ra_state
*ra
= NULL
;
1163 unsigned long last_index
;
1164 u64 isize
= i_size_read(inode
);
1168 u64 newer_off
= range
->start
;
1170 unsigned long ra_index
= 0;
1172 int defrag_count
= 0;
1173 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1174 int extent_thresh
= range
->extent_thresh
;
1175 unsigned long max_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
1176 unsigned long cluster
= max_cluster
;
1177 u64 new_align
= ~((u64
)128 * 1024 - 1);
1178 struct page
**pages
= NULL
;
1183 if (range
->start
>= isize
)
1186 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1187 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1189 if (range
->compress_type
)
1190 compress_type
= range
->compress_type
;
1193 if (extent_thresh
== 0)
1194 extent_thresh
= 256 * 1024;
1197 * if we were not given a file, allocate a readahead
1201 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1204 file_ra_state_init(ra
, inode
->i_mapping
);
1209 pages
= kmalloc(sizeof(struct page
*) * max_cluster
,
1216 /* find the last page to defrag */
1217 if (range
->start
+ range
->len
> range
->start
) {
1218 last_index
= min_t(u64
, isize
- 1,
1219 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1221 last_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1225 ret
= find_new_extents(root
, inode
, newer_than
,
1226 &newer_off
, 64 * 1024);
1228 range
->start
= newer_off
;
1230 * we always align our defrag to help keep
1231 * the extents in the file evenly spaced
1233 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1237 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1240 max_to_defrag
= last_index
+ 1;
1243 * make writeback starts from i, so the defrag range can be
1244 * written sequentially.
1246 if (i
< inode
->i_mapping
->writeback_index
)
1247 inode
->i_mapping
->writeback_index
= i
;
1249 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1250 (i
< (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
1251 PAGE_CACHE_SHIFT
)) {
1253 * make sure we stop running if someone unmounts
1256 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1259 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1260 printk(KERN_DEBUG
"btrfs: defrag_file cancelled\n");
1265 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1266 extent_thresh
, &last_len
, &skip
,
1267 &defrag_end
, range
->flags
&
1268 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1271 * the should_defrag function tells us how much to skip
1272 * bump our counter by the suggested amount
1274 next
= (skip
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1275 i
= max(i
+ 1, next
);
1280 cluster
= (PAGE_CACHE_ALIGN(defrag_end
) >>
1281 PAGE_CACHE_SHIFT
) - i
;
1282 cluster
= min(cluster
, max_cluster
);
1284 cluster
= max_cluster
;
1287 if (i
+ cluster
> ra_index
) {
1288 ra_index
= max(i
, ra_index
);
1289 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1291 ra_index
+= max_cluster
;
1294 mutex_lock(&inode
->i_mutex
);
1295 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1296 BTRFS_I(inode
)->force_compress
= compress_type
;
1297 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1299 mutex_unlock(&inode
->i_mutex
);
1303 defrag_count
+= ret
;
1304 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1305 mutex_unlock(&inode
->i_mutex
);
1308 if (newer_off
== (u64
)-1)
1314 newer_off
= max(newer_off
+ 1,
1315 (u64
)i
<< PAGE_CACHE_SHIFT
);
1317 ret
= find_new_extents(root
, inode
,
1318 newer_than
, &newer_off
,
1321 range
->start
= newer_off
;
1322 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1329 last_len
+= ret
<< PAGE_CACHE_SHIFT
;
1337 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
))
1338 filemap_flush(inode
->i_mapping
);
1340 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1341 /* the filemap_flush will queue IO into the worker threads, but
1342 * we have to make sure the IO is actually started and that
1343 * ordered extents get created before we return
1345 atomic_inc(&root
->fs_info
->async_submit_draining
);
1346 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1347 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1348 wait_event(root
->fs_info
->async_submit_wait
,
1349 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1350 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1352 atomic_dec(&root
->fs_info
->async_submit_draining
);
1355 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1356 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1362 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1363 mutex_lock(&inode
->i_mutex
);
1364 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1365 mutex_unlock(&inode
->i_mutex
);
1373 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1379 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
1380 struct btrfs_ioctl_vol_args
*vol_args
;
1381 struct btrfs_trans_handle
*trans
;
1382 struct btrfs_device
*device
= NULL
;
1384 char *devstr
= NULL
;
1388 if (!capable(CAP_SYS_ADMIN
))
1391 ret
= mnt_want_write_file(file
);
1395 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1397 mnt_drop_write_file(file
);
1398 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1401 mutex_lock(&root
->fs_info
->volume_mutex
);
1402 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1403 if (IS_ERR(vol_args
)) {
1404 ret
= PTR_ERR(vol_args
);
1408 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1410 sizestr
= vol_args
->name
;
1411 devstr
= strchr(sizestr
, ':');
1414 sizestr
= devstr
+ 1;
1416 devstr
= vol_args
->name
;
1417 devid
= simple_strtoull(devstr
, &end
, 10);
1422 printk(KERN_INFO
"btrfs: resizing devid %llu\n", devid
);
1425 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1427 printk(KERN_INFO
"btrfs: resizer unable to find device %llu\n",
1433 if (!device
->writeable
) {
1434 printk(KERN_INFO
"btrfs: resizer unable to apply on "
1435 "readonly device %llu\n",
1441 if (!strcmp(sizestr
, "max"))
1442 new_size
= device
->bdev
->bd_inode
->i_size
;
1444 if (sizestr
[0] == '-') {
1447 } else if (sizestr
[0] == '+') {
1451 new_size
= memparse(sizestr
, NULL
);
1452 if (new_size
== 0) {
1458 if (device
->is_tgtdev_for_dev_replace
) {
1463 old_size
= device
->total_bytes
;
1466 if (new_size
> old_size
) {
1470 new_size
= old_size
- new_size
;
1471 } else if (mod
> 0) {
1472 new_size
= old_size
+ new_size
;
1475 if (new_size
< 256 * 1024 * 1024) {
1479 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1484 do_div(new_size
, root
->sectorsize
);
1485 new_size
*= root
->sectorsize
;
1487 printk_in_rcu(KERN_INFO
"btrfs: new size for %s is %llu\n",
1488 rcu_str_deref(device
->name
), new_size
);
1490 if (new_size
> old_size
) {
1491 trans
= btrfs_start_transaction(root
, 0);
1492 if (IS_ERR(trans
)) {
1493 ret
= PTR_ERR(trans
);
1496 ret
= btrfs_grow_device(trans
, device
, new_size
);
1497 btrfs_commit_transaction(trans
, root
);
1498 } else if (new_size
< old_size
) {
1499 ret
= btrfs_shrink_device(device
, new_size
);
1500 } /* equal, nothing need to do */
1505 mutex_unlock(&root
->fs_info
->volume_mutex
);
1506 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1507 mnt_drop_write_file(file
);
1511 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1512 char *name
, unsigned long fd
, int subvol
,
1513 u64
*transid
, bool readonly
,
1514 struct btrfs_qgroup_inherit
*inherit
)
1519 ret
= mnt_want_write_file(file
);
1523 namelen
= strlen(name
);
1524 if (strchr(name
, '/')) {
1526 goto out_drop_write
;
1529 if (name
[0] == '.' &&
1530 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1532 goto out_drop_write
;
1536 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1537 NULL
, transid
, readonly
, inherit
);
1539 struct fd src
= fdget(fd
);
1540 struct inode
*src_inode
;
1543 goto out_drop_write
;
1546 src_inode
= file_inode(src
.file
);
1547 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1548 printk(KERN_INFO
"btrfs: Snapshot src from "
1551 } else if (!inode_owner_or_capable(src_inode
)) {
1553 * Subvolume creation is not restricted, but snapshots
1554 * are limited to own subvolumes only
1558 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1559 BTRFS_I(src_inode
)->root
,
1560 transid
, readonly
, inherit
);
1565 mnt_drop_write_file(file
);
1570 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1571 void __user
*arg
, int subvol
)
1573 struct btrfs_ioctl_vol_args
*vol_args
;
1576 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1577 if (IS_ERR(vol_args
))
1578 return PTR_ERR(vol_args
);
1579 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1581 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1582 vol_args
->fd
, subvol
,
1589 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1590 void __user
*arg
, int subvol
)
1592 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1596 bool readonly
= false;
1597 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1599 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1600 if (IS_ERR(vol_args
))
1601 return PTR_ERR(vol_args
);
1602 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1604 if (vol_args
->flags
&
1605 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1606 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1611 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1613 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1615 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1616 if (vol_args
->size
> PAGE_CACHE_SIZE
) {
1620 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1621 if (IS_ERR(inherit
)) {
1622 ret
= PTR_ERR(inherit
);
1627 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1628 vol_args
->fd
, subvol
, ptr
,
1631 if (ret
== 0 && ptr
&&
1633 offsetof(struct btrfs_ioctl_vol_args_v2
,
1634 transid
), ptr
, sizeof(*ptr
)))
1642 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1645 struct inode
*inode
= file_inode(file
);
1646 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1650 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1653 down_read(&root
->fs_info
->subvol_sem
);
1654 if (btrfs_root_readonly(root
))
1655 flags
|= BTRFS_SUBVOL_RDONLY
;
1656 up_read(&root
->fs_info
->subvol_sem
);
1658 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1664 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1667 struct inode
*inode
= file_inode(file
);
1668 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1669 struct btrfs_trans_handle
*trans
;
1674 ret
= mnt_want_write_file(file
);
1678 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1680 goto out_drop_write
;
1683 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1685 goto out_drop_write
;
1688 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1690 goto out_drop_write
;
1693 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1695 goto out_drop_write
;
1698 if (!inode_owner_or_capable(inode
)) {
1700 goto out_drop_write
;
1703 down_write(&root
->fs_info
->subvol_sem
);
1706 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1709 root_flags
= btrfs_root_flags(&root
->root_item
);
1710 if (flags
& BTRFS_SUBVOL_RDONLY
)
1711 btrfs_set_root_flags(&root
->root_item
,
1712 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1714 btrfs_set_root_flags(&root
->root_item
,
1715 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1717 trans
= btrfs_start_transaction(root
, 1);
1718 if (IS_ERR(trans
)) {
1719 ret
= PTR_ERR(trans
);
1723 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1724 &root
->root_key
, &root
->root_item
);
1726 btrfs_commit_transaction(trans
, root
);
1729 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1731 up_write(&root
->fs_info
->subvol_sem
);
1733 mnt_drop_write_file(file
);
1739 * helper to check if the subvolume references other subvolumes
1741 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1743 struct btrfs_path
*path
;
1744 struct btrfs_dir_item
*di
;
1745 struct btrfs_key key
;
1749 path
= btrfs_alloc_path();
1753 /* Make sure this root isn't set as the default subvol */
1754 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
1755 di
= btrfs_lookup_dir_item(NULL
, root
->fs_info
->tree_root
, path
,
1756 dir_id
, "default", 7, 0);
1757 if (di
&& !IS_ERR(di
)) {
1758 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1759 if (key
.objectid
== root
->root_key
.objectid
) {
1763 btrfs_release_path(path
);
1766 key
.objectid
= root
->root_key
.objectid
;
1767 key
.type
= BTRFS_ROOT_REF_KEY
;
1768 key
.offset
= (u64
)-1;
1770 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1777 if (path
->slots
[0] > 0) {
1779 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1780 if (key
.objectid
== root
->root_key
.objectid
&&
1781 key
.type
== BTRFS_ROOT_REF_KEY
)
1785 btrfs_free_path(path
);
1789 static noinline
int key_in_sk(struct btrfs_key
*key
,
1790 struct btrfs_ioctl_search_key
*sk
)
1792 struct btrfs_key test
;
1795 test
.objectid
= sk
->min_objectid
;
1796 test
.type
= sk
->min_type
;
1797 test
.offset
= sk
->min_offset
;
1799 ret
= btrfs_comp_cpu_keys(key
, &test
);
1803 test
.objectid
= sk
->max_objectid
;
1804 test
.type
= sk
->max_type
;
1805 test
.offset
= sk
->max_offset
;
1807 ret
= btrfs_comp_cpu_keys(key
, &test
);
1813 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1814 struct btrfs_path
*path
,
1815 struct btrfs_key
*key
,
1816 struct btrfs_ioctl_search_key
*sk
,
1818 unsigned long *sk_offset
,
1822 struct extent_buffer
*leaf
;
1823 struct btrfs_ioctl_search_header sh
;
1824 unsigned long item_off
;
1825 unsigned long item_len
;
1831 leaf
= path
->nodes
[0];
1832 slot
= path
->slots
[0];
1833 nritems
= btrfs_header_nritems(leaf
);
1835 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1839 found_transid
= btrfs_header_generation(leaf
);
1841 for (i
= slot
; i
< nritems
; i
++) {
1842 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1843 item_len
= btrfs_item_size_nr(leaf
, i
);
1845 btrfs_item_key_to_cpu(leaf
, key
, i
);
1846 if (!key_in_sk(key
, sk
))
1849 if (sizeof(sh
) + item_len
> BTRFS_SEARCH_ARGS_BUFSIZE
)
1852 if (sizeof(sh
) + item_len
+ *sk_offset
>
1853 BTRFS_SEARCH_ARGS_BUFSIZE
) {
1858 sh
.objectid
= key
->objectid
;
1859 sh
.offset
= key
->offset
;
1860 sh
.type
= key
->type
;
1862 sh
.transid
= found_transid
;
1864 /* copy search result header */
1865 memcpy(buf
+ *sk_offset
, &sh
, sizeof(sh
));
1866 *sk_offset
+= sizeof(sh
);
1869 char *p
= buf
+ *sk_offset
;
1871 read_extent_buffer(leaf
, p
,
1872 item_off
, item_len
);
1873 *sk_offset
+= item_len
;
1877 if (*num_found
>= sk
->nr_items
)
1882 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
1884 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
1887 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
1897 static noinline
int search_ioctl(struct inode
*inode
,
1898 struct btrfs_ioctl_search_args
*args
)
1900 struct btrfs_root
*root
;
1901 struct btrfs_key key
;
1902 struct btrfs_key max_key
;
1903 struct btrfs_path
*path
;
1904 struct btrfs_ioctl_search_key
*sk
= &args
->key
;
1905 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
1908 unsigned long sk_offset
= 0;
1910 path
= btrfs_alloc_path();
1914 if (sk
->tree_id
== 0) {
1915 /* search the root of the inode that was passed */
1916 root
= BTRFS_I(inode
)->root
;
1918 key
.objectid
= sk
->tree_id
;
1919 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1920 key
.offset
= (u64
)-1;
1921 root
= btrfs_read_fs_root_no_name(info
, &key
);
1923 printk(KERN_ERR
"could not find root %llu\n",
1925 btrfs_free_path(path
);
1930 key
.objectid
= sk
->min_objectid
;
1931 key
.type
= sk
->min_type
;
1932 key
.offset
= sk
->min_offset
;
1934 max_key
.objectid
= sk
->max_objectid
;
1935 max_key
.type
= sk
->max_type
;
1936 max_key
.offset
= sk
->max_offset
;
1938 path
->keep_locks
= 1;
1941 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
,
1948 ret
= copy_to_sk(root
, path
, &key
, sk
, args
->buf
,
1949 &sk_offset
, &num_found
);
1950 btrfs_release_path(path
);
1951 if (ret
|| num_found
>= sk
->nr_items
)
1957 sk
->nr_items
= num_found
;
1958 btrfs_free_path(path
);
1962 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
1965 struct btrfs_ioctl_search_args
*args
;
1966 struct inode
*inode
;
1969 if (!capable(CAP_SYS_ADMIN
))
1972 args
= memdup_user(argp
, sizeof(*args
));
1974 return PTR_ERR(args
);
1976 inode
= file_inode(file
);
1977 ret
= search_ioctl(inode
, args
);
1978 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1985 * Search INODE_REFs to identify path name of 'dirid' directory
1986 * in a 'tree_id' tree. and sets path name to 'name'.
1988 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
1989 u64 tree_id
, u64 dirid
, char *name
)
1991 struct btrfs_root
*root
;
1992 struct btrfs_key key
;
1998 struct btrfs_inode_ref
*iref
;
1999 struct extent_buffer
*l
;
2000 struct btrfs_path
*path
;
2002 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2007 path
= btrfs_alloc_path();
2011 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
2013 key
.objectid
= tree_id
;
2014 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2015 key
.offset
= (u64
)-1;
2016 root
= btrfs_read_fs_root_no_name(info
, &key
);
2018 printk(KERN_ERR
"could not find root %llu\n", tree_id
);
2023 key
.objectid
= dirid
;
2024 key
.type
= BTRFS_INODE_REF_KEY
;
2025 key
.offset
= (u64
)-1;
2028 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2032 ret
= btrfs_previous_item(root
, path
, dirid
,
2033 BTRFS_INODE_REF_KEY
);
2043 slot
= path
->slots
[0];
2044 btrfs_item_key_to_cpu(l
, &key
, slot
);
2046 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2047 len
= btrfs_inode_ref_name_len(l
, iref
);
2049 total_len
+= len
+ 1;
2051 ret
= -ENAMETOOLONG
;
2056 read_extent_buffer(l
, ptr
,(unsigned long)(iref
+ 1), len
);
2058 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2061 btrfs_release_path(path
);
2062 key
.objectid
= key
.offset
;
2063 key
.offset
= (u64
)-1;
2064 dirid
= key
.objectid
;
2066 memmove(name
, ptr
, total_len
);
2067 name
[total_len
]='\0';
2070 btrfs_free_path(path
);
2074 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2077 struct btrfs_ioctl_ino_lookup_args
*args
;
2078 struct inode
*inode
;
2081 if (!capable(CAP_SYS_ADMIN
))
2084 args
= memdup_user(argp
, sizeof(*args
));
2086 return PTR_ERR(args
);
2088 inode
= file_inode(file
);
2090 if (args
->treeid
== 0)
2091 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2093 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2094 args
->treeid
, args
->objectid
,
2097 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2104 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2107 struct dentry
*parent
= fdentry(file
);
2108 struct dentry
*dentry
;
2109 struct inode
*dir
= parent
->d_inode
;
2110 struct inode
*inode
;
2111 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2112 struct btrfs_root
*dest
= NULL
;
2113 struct btrfs_ioctl_vol_args
*vol_args
;
2114 struct btrfs_trans_handle
*trans
;
2115 struct btrfs_block_rsv block_rsv
;
2116 u64 qgroup_reserved
;
2121 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2122 if (IS_ERR(vol_args
))
2123 return PTR_ERR(vol_args
);
2125 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2126 namelen
= strlen(vol_args
->name
);
2127 if (strchr(vol_args
->name
, '/') ||
2128 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2133 err
= mnt_want_write_file(file
);
2137 err
= mutex_lock_killable_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
2139 goto out_drop_write
;
2140 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2141 if (IS_ERR(dentry
)) {
2142 err
= PTR_ERR(dentry
);
2143 goto out_unlock_dir
;
2146 if (!dentry
->d_inode
) {
2151 inode
= dentry
->d_inode
;
2152 dest
= BTRFS_I(inode
)->root
;
2153 if (!capable(CAP_SYS_ADMIN
)){
2155 * Regular user. Only allow this with a special mount
2156 * option, when the user has write+exec access to the
2157 * subvol root, and when rmdir(2) would have been
2160 * Note that this is _not_ check that the subvol is
2161 * empty or doesn't contain data that we wouldn't
2162 * otherwise be able to delete.
2164 * Users who want to delete empty subvols should try
2168 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
2172 * Do not allow deletion if the parent dir is the same
2173 * as the dir to be deleted. That means the ioctl
2174 * must be called on the dentry referencing the root
2175 * of the subvol, not a random directory contained
2182 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2187 /* check if subvolume may be deleted by a user */
2188 err
= btrfs_may_delete(dir
, dentry
, 1);
2192 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2197 mutex_lock(&inode
->i_mutex
);
2198 err
= d_invalidate(dentry
);
2202 down_write(&root
->fs_info
->subvol_sem
);
2204 err
= may_destroy_subvol(dest
);
2208 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2210 * One for dir inode, two for dir entries, two for root
2213 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2214 5, &qgroup_reserved
, true);
2218 trans
= btrfs_start_transaction(root
, 0);
2219 if (IS_ERR(trans
)) {
2220 err
= PTR_ERR(trans
);
2223 trans
->block_rsv
= &block_rsv
;
2224 trans
->bytes_reserved
= block_rsv
.size
;
2226 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2227 dest
->root_key
.objectid
,
2228 dentry
->d_name
.name
,
2229 dentry
->d_name
.len
);
2232 btrfs_abort_transaction(trans
, root
, ret
);
2236 btrfs_record_root_in_trans(trans
, dest
);
2238 memset(&dest
->root_item
.drop_progress
, 0,
2239 sizeof(dest
->root_item
.drop_progress
));
2240 dest
->root_item
.drop_level
= 0;
2241 btrfs_set_root_refs(&dest
->root_item
, 0);
2243 if (!xchg(&dest
->orphan_item_inserted
, 1)) {
2244 ret
= btrfs_insert_orphan_item(trans
,
2245 root
->fs_info
->tree_root
,
2246 dest
->root_key
.objectid
);
2248 btrfs_abort_transaction(trans
, root
, ret
);
2254 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2255 dest
->root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
2256 dest
->root_key
.objectid
);
2257 if (ret
&& ret
!= -ENOENT
) {
2258 btrfs_abort_transaction(trans
, root
, ret
);
2262 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2263 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2264 dest
->root_item
.received_uuid
,
2265 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2266 dest
->root_key
.objectid
);
2267 if (ret
&& ret
!= -ENOENT
) {
2268 btrfs_abort_transaction(trans
, root
, ret
);
2275 trans
->block_rsv
= NULL
;
2276 trans
->bytes_reserved
= 0;
2277 ret
= btrfs_end_transaction(trans
, root
);
2280 inode
->i_flags
|= S_DEAD
;
2282 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
2284 up_write(&root
->fs_info
->subvol_sem
);
2286 mutex_unlock(&inode
->i_mutex
);
2288 shrink_dcache_sb(root
->fs_info
->sb
);
2289 btrfs_invalidate_inodes(dest
);
2293 if (dest
->cache_inode
) {
2294 iput(dest
->cache_inode
);
2295 dest
->cache_inode
= NULL
;
2301 mutex_unlock(&dir
->i_mutex
);
2303 mnt_drop_write_file(file
);
2309 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2311 struct inode
*inode
= file_inode(file
);
2312 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2313 struct btrfs_ioctl_defrag_range_args
*range
;
2316 ret
= mnt_want_write_file(file
);
2320 if (btrfs_root_readonly(root
)) {
2325 switch (inode
->i_mode
& S_IFMT
) {
2327 if (!capable(CAP_SYS_ADMIN
)) {
2331 ret
= btrfs_defrag_root(root
);
2334 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
);
2337 if (!(file
->f_mode
& FMODE_WRITE
)) {
2342 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2349 if (copy_from_user(range
, argp
,
2355 /* compression requires us to start the IO */
2356 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2357 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2358 range
->extent_thresh
= (u32
)-1;
2361 /* the rest are all set to zero by kzalloc */
2362 range
->len
= (u64
)-1;
2364 ret
= btrfs_defrag_file(file_inode(file
), file
,
2374 mnt_drop_write_file(file
);
2378 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2380 struct btrfs_ioctl_vol_args
*vol_args
;
2383 if (!capable(CAP_SYS_ADMIN
))
2386 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2388 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2391 mutex_lock(&root
->fs_info
->volume_mutex
);
2392 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2393 if (IS_ERR(vol_args
)) {
2394 ret
= PTR_ERR(vol_args
);
2398 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2399 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2403 mutex_unlock(&root
->fs_info
->volume_mutex
);
2404 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2408 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2410 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2411 struct btrfs_ioctl_vol_args
*vol_args
;
2414 if (!capable(CAP_SYS_ADMIN
))
2417 ret
= mnt_want_write_file(file
);
2421 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2422 if (IS_ERR(vol_args
)) {
2423 ret
= PTR_ERR(vol_args
);
2427 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2429 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2431 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2435 mutex_lock(&root
->fs_info
->volume_mutex
);
2436 ret
= btrfs_rm_device(root
, vol_args
->name
);
2437 mutex_unlock(&root
->fs_info
->volume_mutex
);
2438 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2442 mnt_drop_write_file(file
);
2446 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2448 struct btrfs_ioctl_fs_info_args
*fi_args
;
2449 struct btrfs_device
*device
;
2450 struct btrfs_device
*next
;
2451 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2454 if (!capable(CAP_SYS_ADMIN
))
2457 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2461 mutex_lock(&fs_devices
->device_list_mutex
);
2462 fi_args
->num_devices
= fs_devices
->num_devices
;
2463 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2465 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2466 if (device
->devid
> fi_args
->max_id
)
2467 fi_args
->max_id
= device
->devid
;
2469 mutex_unlock(&fs_devices
->device_list_mutex
);
2471 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2478 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2480 struct btrfs_ioctl_dev_info_args
*di_args
;
2481 struct btrfs_device
*dev
;
2482 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2484 char *s_uuid
= NULL
;
2486 if (!capable(CAP_SYS_ADMIN
))
2489 di_args
= memdup_user(arg
, sizeof(*di_args
));
2490 if (IS_ERR(di_args
))
2491 return PTR_ERR(di_args
);
2493 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2494 s_uuid
= di_args
->uuid
;
2496 mutex_lock(&fs_devices
->device_list_mutex
);
2497 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2504 di_args
->devid
= dev
->devid
;
2505 di_args
->bytes_used
= dev
->bytes_used
;
2506 di_args
->total_bytes
= dev
->total_bytes
;
2507 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2509 struct rcu_string
*name
;
2512 name
= rcu_dereference(dev
->name
);
2513 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2515 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2517 di_args
->path
[0] = '\0';
2521 mutex_unlock(&fs_devices
->device_list_mutex
);
2522 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2529 static struct page
*extent_same_get_page(struct inode
*inode
, u64 off
)
2533 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2535 index
= off
>> PAGE_CACHE_SHIFT
;
2537 page
= grab_cache_page(inode
->i_mapping
, index
);
2541 if (!PageUptodate(page
)) {
2542 if (extent_read_full_page_nolock(tree
, page
, btrfs_get_extent
,
2546 if (!PageUptodate(page
)) {
2548 page_cache_release(page
);
2557 static inline void lock_extent_range(struct inode
*inode
, u64 off
, u64 len
)
2559 /* do any pending delalloc/csum calc on src, one way or
2560 another, and lock file content */
2562 struct btrfs_ordered_extent
*ordered
;
2563 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2564 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2567 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2568 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
))
2570 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2572 btrfs_put_ordered_extent(ordered
);
2573 btrfs_wait_ordered_range(inode
, off
, len
);
2577 static void btrfs_double_unlock(struct inode
*inode1
, u64 loff1
,
2578 struct inode
*inode2
, u64 loff2
, u64 len
)
2580 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2581 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2583 mutex_unlock(&inode1
->i_mutex
);
2584 mutex_unlock(&inode2
->i_mutex
);
2587 static void btrfs_double_lock(struct inode
*inode1
, u64 loff1
,
2588 struct inode
*inode2
, u64 loff2
, u64 len
)
2590 if (inode1
< inode2
) {
2591 swap(inode1
, inode2
);
2595 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_PARENT
);
2596 lock_extent_range(inode1
, loff1
, len
);
2597 if (inode1
!= inode2
) {
2598 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_CHILD
);
2599 lock_extent_range(inode2
, loff2
, len
);
2603 static int btrfs_cmp_data(struct inode
*src
, u64 loff
, struct inode
*dst
,
2604 u64 dst_loff
, u64 len
)
2607 struct page
*src_page
, *dst_page
;
2608 unsigned int cmp_len
= PAGE_CACHE_SIZE
;
2609 void *addr
, *dst_addr
;
2612 if (len
< PAGE_CACHE_SIZE
)
2615 src_page
= extent_same_get_page(src
, loff
);
2618 dst_page
= extent_same_get_page(dst
, dst_loff
);
2620 page_cache_release(src_page
);
2623 addr
= kmap_atomic(src_page
);
2624 dst_addr
= kmap_atomic(dst_page
);
2626 flush_dcache_page(src_page
);
2627 flush_dcache_page(dst_page
);
2629 if (memcmp(addr
, dst_addr
, cmp_len
))
2630 ret
= BTRFS_SAME_DATA_DIFFERS
;
2632 kunmap_atomic(addr
);
2633 kunmap_atomic(dst_addr
);
2634 page_cache_release(src_page
);
2635 page_cache_release(dst_page
);
2641 dst_loff
+= cmp_len
;
2648 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64 len
)
2650 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
2652 if (off
+ len
> inode
->i_size
|| off
+ len
< off
)
2654 /* Check that we are block aligned - btrfs_clone() requires this */
2655 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
2661 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 len
,
2662 struct inode
*dst
, u64 dst_loff
)
2667 * btrfs_clone() can't handle extents in the same file
2668 * yet. Once that works, we can drop this check and replace it
2669 * with a check for the same inode, but overlapping extents.
2674 btrfs_double_lock(src
, loff
, dst
, dst_loff
, len
);
2676 ret
= extent_same_check_offsets(src
, loff
, len
);
2680 ret
= extent_same_check_offsets(dst
, dst_loff
, len
);
2684 /* don't make the dst file partly checksummed */
2685 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
2686 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
2691 ret
= btrfs_cmp_data(src
, loff
, dst
, dst_loff
, len
);
2693 ret
= btrfs_clone(src
, dst
, loff
, len
, len
, dst_loff
);
2696 btrfs_double_unlock(src
, loff
, dst
, dst_loff
, len
);
2701 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
2703 static long btrfs_ioctl_file_extent_same(struct file
*file
,
2706 struct btrfs_ioctl_same_args tmp
;
2707 struct btrfs_ioctl_same_args
*same
;
2708 struct btrfs_ioctl_same_extent_info
*info
;
2709 struct inode
*src
= file
->f_dentry
->d_inode
;
2710 struct file
*dst_file
= NULL
;
2717 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
2718 bool is_admin
= capable(CAP_SYS_ADMIN
);
2720 if (!(file
->f_mode
& FMODE_READ
))
2723 ret
= mnt_want_write_file(file
);
2727 if (copy_from_user(&tmp
,
2728 (struct btrfs_ioctl_same_args __user
*)argp
,
2734 size
= sizeof(tmp
) +
2735 tmp
.dest_count
* sizeof(struct btrfs_ioctl_same_extent_info
);
2737 same
= kmalloc(size
, GFP_NOFS
);
2743 if (copy_from_user(same
,
2744 (struct btrfs_ioctl_same_args __user
*)argp
, size
)) {
2749 off
= same
->logical_offset
;
2753 * Limit the total length we will dedupe for each operation.
2754 * This is intended to bound the total time spent in this
2755 * ioctl to something sane.
2757 if (len
> BTRFS_MAX_DEDUPE_LEN
)
2758 len
= BTRFS_MAX_DEDUPE_LEN
;
2760 if (WARN_ON_ONCE(bs
< PAGE_CACHE_SIZE
)) {
2762 * Btrfs does not support blocksize < page_size. As a
2763 * result, btrfs_cmp_data() won't correctly handle
2764 * this situation without an update.
2771 if (S_ISDIR(src
->i_mode
))
2775 if (!S_ISREG(src
->i_mode
))
2778 /* pre-format output fields to sane values */
2779 for (i
= 0; i
< same
->dest_count
; i
++) {
2780 same
->info
[i
].bytes_deduped
= 0ULL;
2781 same
->info
[i
].status
= 0;
2785 for (i
= 0; i
< same
->dest_count
; i
++) {
2786 info
= &same
->info
[i
];
2788 dst_file
= fget(info
->fd
);
2790 info
->status
= -EBADF
;
2794 if (!(is_admin
|| (dst_file
->f_mode
& FMODE_WRITE
))) {
2795 info
->status
= -EINVAL
;
2799 info
->status
= -EXDEV
;
2800 if (file
->f_path
.mnt
!= dst_file
->f_path
.mnt
)
2803 dst
= dst_file
->f_dentry
->d_inode
;
2804 if (src
->i_sb
!= dst
->i_sb
)
2807 if (S_ISDIR(dst
->i_mode
)) {
2808 info
->status
= -EISDIR
;
2812 if (!S_ISREG(dst
->i_mode
)) {
2813 info
->status
= -EACCES
;
2817 info
->status
= btrfs_extent_same(src
, off
, len
, dst
,
2818 info
->logical_offset
);
2819 if (info
->status
== 0)
2820 info
->bytes_deduped
+= len
;
2827 ret
= copy_to_user(argp
, same
, size
);
2832 mnt_drop_write_file(file
);
2837 * btrfs_clone() - clone a range from inode file to another
2839 * @src: Inode to clone from
2840 * @inode: Inode to clone to
2841 * @off: Offset within source to start clone from
2842 * @olen: Original length, passed by user, of range to clone
2843 * @olen_aligned: Block-aligned value of olen, extent_same uses
2844 * identical values here
2845 * @destoff: Offset within @inode to start clone
2847 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
2848 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
)
2850 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2851 struct btrfs_path
*path
= NULL
;
2852 struct extent_buffer
*leaf
;
2853 struct btrfs_trans_handle
*trans
;
2855 struct btrfs_key key
;
2859 u64 len
= olen_aligned
;
2862 buf
= vmalloc(btrfs_level_size(root
, 0));
2866 path
= btrfs_alloc_path();
2874 key
.objectid
= btrfs_ino(src
);
2875 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2880 * note the key will change type as we walk through the
2883 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
2888 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2889 if (path
->slots
[0] >= nritems
) {
2890 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
2895 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2897 leaf
= path
->nodes
[0];
2898 slot
= path
->slots
[0];
2900 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2901 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
2902 key
.objectid
!= btrfs_ino(src
))
2905 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
2906 struct btrfs_file_extent_item
*extent
;
2909 struct btrfs_key new_key
;
2910 u64 disko
= 0, diskl
= 0;
2911 u64 datao
= 0, datal
= 0;
2915 size
= btrfs_item_size_nr(leaf
, slot
);
2916 read_extent_buffer(leaf
, buf
,
2917 btrfs_item_ptr_offset(leaf
, slot
),
2920 extent
= btrfs_item_ptr(leaf
, slot
,
2921 struct btrfs_file_extent_item
);
2922 comp
= btrfs_file_extent_compression(leaf
, extent
);
2923 type
= btrfs_file_extent_type(leaf
, extent
);
2924 if (type
== BTRFS_FILE_EXTENT_REG
||
2925 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2926 disko
= btrfs_file_extent_disk_bytenr(leaf
,
2928 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
2930 datao
= btrfs_file_extent_offset(leaf
, extent
);
2931 datal
= btrfs_file_extent_num_bytes(leaf
,
2933 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2934 /* take upper bound, may be compressed */
2935 datal
= btrfs_file_extent_ram_bytes(leaf
,
2938 btrfs_release_path(path
);
2940 if (key
.offset
+ datal
<= off
||
2941 key
.offset
>= off
+ len
- 1)
2944 memcpy(&new_key
, &key
, sizeof(new_key
));
2945 new_key
.objectid
= btrfs_ino(inode
);
2946 if (off
<= key
.offset
)
2947 new_key
.offset
= key
.offset
+ destoff
- off
;
2949 new_key
.offset
= destoff
;
2952 * 1 - adjusting old extent (we may have to split it)
2953 * 1 - add new extent
2956 trans
= btrfs_start_transaction(root
, 3);
2957 if (IS_ERR(trans
)) {
2958 ret
= PTR_ERR(trans
);
2962 if (type
== BTRFS_FILE_EXTENT_REG
||
2963 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2965 * a | --- range to clone ---| b
2966 * | ------------- extent ------------- |
2969 /* substract range b */
2970 if (key
.offset
+ datal
> off
+ len
)
2971 datal
= off
+ len
- key
.offset
;
2973 /* substract range a */
2974 if (off
> key
.offset
) {
2975 datao
+= off
- key
.offset
;
2976 datal
-= off
- key
.offset
;
2979 ret
= btrfs_drop_extents(trans
, root
, inode
,
2981 new_key
.offset
+ datal
,
2984 btrfs_abort_transaction(trans
, root
,
2986 btrfs_end_transaction(trans
, root
);
2990 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2993 btrfs_abort_transaction(trans
, root
,
2995 btrfs_end_transaction(trans
, root
);
2999 leaf
= path
->nodes
[0];
3000 slot
= path
->slots
[0];
3001 write_extent_buffer(leaf
, buf
,
3002 btrfs_item_ptr_offset(leaf
, slot
),
3005 extent
= btrfs_item_ptr(leaf
, slot
,
3006 struct btrfs_file_extent_item
);
3008 /* disko == 0 means it's a hole */
3012 btrfs_set_file_extent_offset(leaf
, extent
,
3014 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3017 inode_add_bytes(inode
, datal
);
3018 ret
= btrfs_inc_extent_ref(trans
, root
,
3020 root
->root_key
.objectid
,
3022 new_key
.offset
- datao
,
3025 btrfs_abort_transaction(trans
,
3028 btrfs_end_transaction(trans
,
3034 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3037 if (off
> key
.offset
) {
3038 skip
= off
- key
.offset
;
3039 new_key
.offset
+= skip
;
3042 if (key
.offset
+ datal
> off
+ len
)
3043 trim
= key
.offset
+ datal
- (off
+ len
);
3045 if (comp
&& (skip
|| trim
)) {
3047 btrfs_end_transaction(trans
, root
);
3050 size
-= skip
+ trim
;
3051 datal
-= skip
+ trim
;
3053 ret
= btrfs_drop_extents(trans
, root
, inode
,
3055 new_key
.offset
+ datal
,
3058 btrfs_abort_transaction(trans
, root
,
3060 btrfs_end_transaction(trans
, root
);
3064 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3067 btrfs_abort_transaction(trans
, root
,
3069 btrfs_end_transaction(trans
, root
);
3075 btrfs_file_extent_calc_inline_size(0);
3076 memmove(buf
+start
, buf
+start
+skip
,
3080 leaf
= path
->nodes
[0];
3081 slot
= path
->slots
[0];
3082 write_extent_buffer(leaf
, buf
,
3083 btrfs_item_ptr_offset(leaf
, slot
),
3085 inode_add_bytes(inode
, datal
);
3088 btrfs_mark_buffer_dirty(leaf
);
3089 btrfs_release_path(path
);
3091 inode_inc_iversion(inode
);
3092 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
3095 * we round up to the block size at eof when
3096 * determining which extents to clone above,
3097 * but shouldn't round up the file size
3099 endoff
= new_key
.offset
+ datal
;
3100 if (endoff
> destoff
+olen
)
3101 endoff
= destoff
+olen
;
3102 if (endoff
> inode
->i_size
)
3103 btrfs_i_size_write(inode
, endoff
);
3105 ret
= btrfs_update_inode(trans
, root
, inode
);
3107 btrfs_abort_transaction(trans
, root
, ret
);
3108 btrfs_end_transaction(trans
, root
);
3111 ret
= btrfs_end_transaction(trans
, root
);
3114 btrfs_release_path(path
);
3120 btrfs_release_path(path
);
3121 btrfs_free_path(path
);
3126 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
3127 u64 off
, u64 olen
, u64 destoff
)
3129 struct inode
*inode
= fdentry(file
)->d_inode
;
3130 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3135 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
3140 * - split compressed inline extents. annoying: we need to
3141 * decompress into destination's address_space (the file offset
3142 * may change, so source mapping won't do), then recompress (or
3143 * otherwise reinsert) a subrange.
3144 * - allow ranges within the same file to be cloned (provided
3145 * they don't overlap)?
3148 /* the destination must be opened for writing */
3149 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
3152 if (btrfs_root_readonly(root
))
3155 ret
= mnt_want_write_file(file
);
3159 src_file
= fdget(srcfd
);
3160 if (!src_file
.file
) {
3162 goto out_drop_write
;
3166 if (src_file
.file
->f_path
.mnt
!= file
->f_path
.mnt
)
3169 src
= file_inode(src_file
.file
);
3175 /* the src must be open for reading */
3176 if (!(src_file
.file
->f_mode
& FMODE_READ
))
3179 /* don't make the dst file partly checksummed */
3180 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3181 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3185 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3189 if (src
->i_sb
!= inode
->i_sb
)
3194 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
3195 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
3197 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
3198 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
3201 mutex_lock(&src
->i_mutex
);
3204 /* determine range to clone */
3206 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3209 olen
= len
= src
->i_size
- off
;
3210 /* if we extend to eof, continue to block boundary */
3211 if (off
+ len
== src
->i_size
)
3212 len
= ALIGN(src
->i_size
, bs
) - off
;
3214 /* verify the end result is block aligned */
3215 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3216 !IS_ALIGNED(destoff
, bs
))
3219 /* verify if ranges are overlapped within the same file */
3221 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3225 if (destoff
> inode
->i_size
) {
3226 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3231 /* truncate page cache pages from target inode range */
3232 truncate_inode_pages_range(&inode
->i_data
, destoff
,
3233 PAGE_CACHE_ALIGN(destoff
+ len
) - 1);
3235 lock_extent_range(src
, off
, len
);
3237 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
);
3239 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
3241 mutex_unlock(&src
->i_mutex
);
3243 mutex_unlock(&inode
->i_mutex
);
3247 mnt_drop_write_file(file
);
3251 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
3253 struct btrfs_ioctl_clone_range_args args
;
3255 if (copy_from_user(&args
, argp
, sizeof(args
)))
3257 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
3258 args
.src_length
, args
.dest_offset
);
3262 * there are many ways the trans_start and trans_end ioctls can lead
3263 * to deadlocks. They should only be used by applications that
3264 * basically own the machine, and have a very in depth understanding
3265 * of all the possible deadlocks and enospc problems.
3267 static long btrfs_ioctl_trans_start(struct file
*file
)
3269 struct inode
*inode
= file_inode(file
);
3270 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3271 struct btrfs_trans_handle
*trans
;
3275 if (!capable(CAP_SYS_ADMIN
))
3279 if (file
->private_data
)
3283 if (btrfs_root_readonly(root
))
3286 ret
= mnt_want_write_file(file
);
3290 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
3293 trans
= btrfs_start_ioctl_transaction(root
);
3297 file
->private_data
= trans
;
3301 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
3302 mnt_drop_write_file(file
);
3307 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
3309 struct inode
*inode
= file_inode(file
);
3310 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3311 struct btrfs_root
*new_root
;
3312 struct btrfs_dir_item
*di
;
3313 struct btrfs_trans_handle
*trans
;
3314 struct btrfs_path
*path
;
3315 struct btrfs_key location
;
3316 struct btrfs_disk_key disk_key
;
3321 if (!capable(CAP_SYS_ADMIN
))
3324 ret
= mnt_want_write_file(file
);
3328 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
3334 objectid
= BTRFS_FS_TREE_OBJECTID
;
3336 location
.objectid
= objectid
;
3337 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3338 location
.offset
= (u64
)-1;
3340 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
3341 if (IS_ERR(new_root
)) {
3342 ret
= PTR_ERR(new_root
);
3346 path
= btrfs_alloc_path();
3351 path
->leave_spinning
= 1;
3353 trans
= btrfs_start_transaction(root
, 1);
3354 if (IS_ERR(trans
)) {
3355 btrfs_free_path(path
);
3356 ret
= PTR_ERR(trans
);
3360 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
3361 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
3362 dir_id
, "default", 7, 1);
3363 if (IS_ERR_OR_NULL(di
)) {
3364 btrfs_free_path(path
);
3365 btrfs_end_transaction(trans
, root
);
3366 printk(KERN_ERR
"Umm, you don't have the default dir item, "
3367 "this isn't going to work\n");
3372 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
3373 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
3374 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3375 btrfs_free_path(path
);
3377 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
3378 btrfs_end_transaction(trans
, root
);
3380 mnt_drop_write_file(file
);
3384 void btrfs_get_block_group_info(struct list_head
*groups_list
,
3385 struct btrfs_ioctl_space_info
*space
)
3387 struct btrfs_block_group_cache
*block_group
;
3389 space
->total_bytes
= 0;
3390 space
->used_bytes
= 0;
3392 list_for_each_entry(block_group
, groups_list
, list
) {
3393 space
->flags
= block_group
->flags
;
3394 space
->total_bytes
+= block_group
->key
.offset
;
3395 space
->used_bytes
+=
3396 btrfs_block_group_used(&block_group
->item
);
3400 static long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
3402 struct btrfs_ioctl_space_args space_args
;
3403 struct btrfs_ioctl_space_info space
;
3404 struct btrfs_ioctl_space_info
*dest
;
3405 struct btrfs_ioctl_space_info
*dest_orig
;
3406 struct btrfs_ioctl_space_info __user
*user_dest
;
3407 struct btrfs_space_info
*info
;
3408 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3409 BTRFS_BLOCK_GROUP_SYSTEM
,
3410 BTRFS_BLOCK_GROUP_METADATA
,
3411 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3418 if (copy_from_user(&space_args
,
3419 (struct btrfs_ioctl_space_args __user
*)arg
,
3420 sizeof(space_args
)))
3423 for (i
= 0; i
< num_types
; i
++) {
3424 struct btrfs_space_info
*tmp
;
3428 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
3430 if (tmp
->flags
== types
[i
]) {
3440 down_read(&info
->groups_sem
);
3441 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3442 if (!list_empty(&info
->block_groups
[c
]))
3445 up_read(&info
->groups_sem
);
3448 /* space_slots == 0 means they are asking for a count */
3449 if (space_args
.space_slots
== 0) {
3450 space_args
.total_spaces
= slot_count
;
3454 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
3456 alloc_size
= sizeof(*dest
) * slot_count
;
3458 /* we generally have at most 6 or so space infos, one for each raid
3459 * level. So, a whole page should be more than enough for everyone
3461 if (alloc_size
> PAGE_CACHE_SIZE
)
3464 space_args
.total_spaces
= 0;
3465 dest
= kmalloc(alloc_size
, GFP_NOFS
);
3470 /* now we have a buffer to copy into */
3471 for (i
= 0; i
< num_types
; i
++) {
3472 struct btrfs_space_info
*tmp
;
3479 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
3481 if (tmp
->flags
== types
[i
]) {
3490 down_read(&info
->groups_sem
);
3491 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3492 if (!list_empty(&info
->block_groups
[c
])) {
3493 btrfs_get_block_group_info(
3494 &info
->block_groups
[c
], &space
);
3495 memcpy(dest
, &space
, sizeof(space
));
3497 space_args
.total_spaces
++;
3503 up_read(&info
->groups_sem
);
3506 user_dest
= (struct btrfs_ioctl_space_info __user
*)
3507 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
3509 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
3514 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
3521 * there are many ways the trans_start and trans_end ioctls can lead
3522 * to deadlocks. They should only be used by applications that
3523 * basically own the machine, and have a very in depth understanding
3524 * of all the possible deadlocks and enospc problems.
3526 long btrfs_ioctl_trans_end(struct file
*file
)
3528 struct inode
*inode
= file_inode(file
);
3529 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3530 struct btrfs_trans_handle
*trans
;
3532 trans
= file
->private_data
;
3535 file
->private_data
= NULL
;
3537 btrfs_end_transaction(trans
, root
);
3539 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
3541 mnt_drop_write_file(file
);
3545 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
3548 struct btrfs_trans_handle
*trans
;
3552 trans
= btrfs_attach_transaction_barrier(root
);
3553 if (IS_ERR(trans
)) {
3554 if (PTR_ERR(trans
) != -ENOENT
)
3555 return PTR_ERR(trans
);
3557 /* No running transaction, don't bother */
3558 transid
= root
->fs_info
->last_trans_committed
;
3561 transid
= trans
->transid
;
3562 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
3564 btrfs_end_transaction(trans
, root
);
3569 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
3574 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
3580 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
3583 transid
= 0; /* current trans */
3585 return btrfs_wait_for_commit(root
, transid
);
3588 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
3590 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3591 struct btrfs_ioctl_scrub_args
*sa
;
3594 if (!capable(CAP_SYS_ADMIN
))
3597 sa
= memdup_user(arg
, sizeof(*sa
));
3601 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
3602 ret
= mnt_want_write_file(file
);
3607 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
3608 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
3611 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3614 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
3615 mnt_drop_write_file(file
);
3621 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
3623 if (!capable(CAP_SYS_ADMIN
))
3626 return btrfs_scrub_cancel(root
->fs_info
);
3629 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
3632 struct btrfs_ioctl_scrub_args
*sa
;
3635 if (!capable(CAP_SYS_ADMIN
))
3638 sa
= memdup_user(arg
, sizeof(*sa
));
3642 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
3644 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3651 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
3654 struct btrfs_ioctl_get_dev_stats
*sa
;
3657 sa
= memdup_user(arg
, sizeof(*sa
));
3661 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
3666 ret
= btrfs_get_dev_stats(root
, sa
);
3668 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3675 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
3677 struct btrfs_ioctl_dev_replace_args
*p
;
3680 if (!capable(CAP_SYS_ADMIN
))
3683 p
= memdup_user(arg
, sizeof(*p
));
3688 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
3689 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
3693 &root
->fs_info
->mutually_exclusive_operation_running
,
3695 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3697 ret
= btrfs_dev_replace_start(root
, p
);
3699 &root
->fs_info
->mutually_exclusive_operation_running
,
3703 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
3704 btrfs_dev_replace_status(root
->fs_info
, p
);
3707 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
3708 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
3715 if (copy_to_user(arg
, p
, sizeof(*p
)))
3722 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
3728 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
3729 struct inode_fs_paths
*ipath
= NULL
;
3730 struct btrfs_path
*path
;
3732 if (!capable(CAP_DAC_READ_SEARCH
))
3735 path
= btrfs_alloc_path();
3741 ipa
= memdup_user(arg
, sizeof(*ipa
));
3748 size
= min_t(u32
, ipa
->size
, 4096);
3749 ipath
= init_ipath(size
, root
, path
);
3750 if (IS_ERR(ipath
)) {
3751 ret
= PTR_ERR(ipath
);
3756 ret
= paths_from_inode(ipa
->inum
, ipath
);
3760 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
3761 rel_ptr
= ipath
->fspath
->val
[i
] -
3762 (u64
)(unsigned long)ipath
->fspath
->val
;
3763 ipath
->fspath
->val
[i
] = rel_ptr
;
3766 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
3767 (void *)(unsigned long)ipath
->fspath
, size
);
3774 btrfs_free_path(path
);
3781 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3783 struct btrfs_data_container
*inodes
= ctx
;
3784 const size_t c
= 3 * sizeof(u64
);
3786 if (inodes
->bytes_left
>= c
) {
3787 inodes
->bytes_left
-= c
;
3788 inodes
->val
[inodes
->elem_cnt
] = inum
;
3789 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
3790 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
3791 inodes
->elem_cnt
+= 3;
3793 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
3794 inodes
->bytes_left
= 0;
3795 inodes
->elem_missed
+= 3;
3801 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
3806 struct btrfs_ioctl_logical_ino_args
*loi
;
3807 struct btrfs_data_container
*inodes
= NULL
;
3808 struct btrfs_path
*path
= NULL
;
3810 if (!capable(CAP_SYS_ADMIN
))
3813 loi
= memdup_user(arg
, sizeof(*loi
));
3820 path
= btrfs_alloc_path();
3826 size
= min_t(u32
, loi
->size
, 64 * 1024);
3827 inodes
= init_data_container(size
);
3828 if (IS_ERR(inodes
)) {
3829 ret
= PTR_ERR(inodes
);
3834 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
3835 build_ino_list
, inodes
);
3841 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
3842 (void *)(unsigned long)inodes
, size
);
3847 btrfs_free_path(path
);
3854 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
3855 struct btrfs_ioctl_balance_args
*bargs
)
3857 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3859 bargs
->flags
= bctl
->flags
;
3861 if (atomic_read(&fs_info
->balance_running
))
3862 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
3863 if (atomic_read(&fs_info
->balance_pause_req
))
3864 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
3865 if (atomic_read(&fs_info
->balance_cancel_req
))
3866 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
3868 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
3869 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
3870 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
3873 spin_lock(&fs_info
->balance_lock
);
3874 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3875 spin_unlock(&fs_info
->balance_lock
);
3877 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3881 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
3883 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
3884 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3885 struct btrfs_ioctl_balance_args
*bargs
;
3886 struct btrfs_balance_control
*bctl
;
3887 bool need_unlock
; /* for mut. excl. ops lock */
3890 if (!capable(CAP_SYS_ADMIN
))
3893 ret
= mnt_want_write_file(file
);
3898 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
3899 mutex_lock(&fs_info
->volume_mutex
);
3900 mutex_lock(&fs_info
->balance_mutex
);
3906 * mut. excl. ops lock is locked. Three possibilites:
3907 * (1) some other op is running
3908 * (2) balance is running
3909 * (3) balance is paused -- special case (think resume)
3911 mutex_lock(&fs_info
->balance_mutex
);
3912 if (fs_info
->balance_ctl
) {
3913 /* this is either (2) or (3) */
3914 if (!atomic_read(&fs_info
->balance_running
)) {
3915 mutex_unlock(&fs_info
->balance_mutex
);
3916 if (!mutex_trylock(&fs_info
->volume_mutex
))
3918 mutex_lock(&fs_info
->balance_mutex
);
3920 if (fs_info
->balance_ctl
&&
3921 !atomic_read(&fs_info
->balance_running
)) {
3923 need_unlock
= false;
3927 mutex_unlock(&fs_info
->balance_mutex
);
3928 mutex_unlock(&fs_info
->volume_mutex
);
3932 mutex_unlock(&fs_info
->balance_mutex
);
3938 mutex_unlock(&fs_info
->balance_mutex
);
3939 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3944 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
3947 bargs
= memdup_user(arg
, sizeof(*bargs
));
3948 if (IS_ERR(bargs
)) {
3949 ret
= PTR_ERR(bargs
);
3953 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
3954 if (!fs_info
->balance_ctl
) {
3959 bctl
= fs_info
->balance_ctl
;
3960 spin_lock(&fs_info
->balance_lock
);
3961 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3962 spin_unlock(&fs_info
->balance_lock
);
3970 if (fs_info
->balance_ctl
) {
3975 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3981 bctl
->fs_info
= fs_info
;
3983 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
3984 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
3985 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
3987 bctl
->flags
= bargs
->flags
;
3989 /* balance everything - no filters */
3990 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
3995 * Ownership of bctl and mutually_exclusive_operation_running
3996 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
3997 * or, if restriper was paused all the way until unmount, in
3998 * free_fs_info. mutually_exclusive_operation_running is
3999 * cleared in __cancel_balance.
4001 need_unlock
= false;
4003 ret
= btrfs_balance(bctl
, bargs
);
4006 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4013 mutex_unlock(&fs_info
->balance_mutex
);
4014 mutex_unlock(&fs_info
->volume_mutex
);
4016 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
4018 mnt_drop_write_file(file
);
4022 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
4024 if (!capable(CAP_SYS_ADMIN
))
4028 case BTRFS_BALANCE_CTL_PAUSE
:
4029 return btrfs_pause_balance(root
->fs_info
);
4030 case BTRFS_BALANCE_CTL_CANCEL
:
4031 return btrfs_cancel_balance(root
->fs_info
);
4037 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
4040 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4041 struct btrfs_ioctl_balance_args
*bargs
;
4044 if (!capable(CAP_SYS_ADMIN
))
4047 mutex_lock(&fs_info
->balance_mutex
);
4048 if (!fs_info
->balance_ctl
) {
4053 bargs
= kzalloc(sizeof(*bargs
), GFP_NOFS
);
4059 update_ioctl_balance_args(fs_info
, 1, bargs
);
4061 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4066 mutex_unlock(&fs_info
->balance_mutex
);
4070 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4072 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4073 struct btrfs_ioctl_quota_ctl_args
*sa
;
4074 struct btrfs_trans_handle
*trans
= NULL
;
4078 if (!capable(CAP_SYS_ADMIN
))
4081 ret
= mnt_want_write_file(file
);
4085 sa
= memdup_user(arg
, sizeof(*sa
));
4091 down_write(&root
->fs_info
->subvol_sem
);
4092 trans
= btrfs_start_transaction(root
->fs_info
->tree_root
, 2);
4093 if (IS_ERR(trans
)) {
4094 ret
= PTR_ERR(trans
);
4099 case BTRFS_QUOTA_CTL_ENABLE
:
4100 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
4102 case BTRFS_QUOTA_CTL_DISABLE
:
4103 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
4110 err
= btrfs_commit_transaction(trans
, root
->fs_info
->tree_root
);
4115 up_write(&root
->fs_info
->subvol_sem
);
4117 mnt_drop_write_file(file
);
4121 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4123 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4124 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4125 struct btrfs_trans_handle
*trans
;
4129 if (!capable(CAP_SYS_ADMIN
))
4132 ret
= mnt_want_write_file(file
);
4136 sa
= memdup_user(arg
, sizeof(*sa
));
4142 trans
= btrfs_join_transaction(root
);
4143 if (IS_ERR(trans
)) {
4144 ret
= PTR_ERR(trans
);
4148 /* FIXME: check if the IDs really exist */
4150 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
4153 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
4157 err
= btrfs_end_transaction(trans
, root
);
4164 mnt_drop_write_file(file
);
4168 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4170 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4171 struct btrfs_ioctl_qgroup_create_args
*sa
;
4172 struct btrfs_trans_handle
*trans
;
4176 if (!capable(CAP_SYS_ADMIN
))
4179 ret
= mnt_want_write_file(file
);
4183 sa
= memdup_user(arg
, sizeof(*sa
));
4189 if (!sa
->qgroupid
) {
4194 trans
= btrfs_join_transaction(root
);
4195 if (IS_ERR(trans
)) {
4196 ret
= PTR_ERR(trans
);
4200 /* FIXME: check if the IDs really exist */
4202 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
,
4205 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4208 err
= btrfs_end_transaction(trans
, root
);
4215 mnt_drop_write_file(file
);
4219 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4221 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4222 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4223 struct btrfs_trans_handle
*trans
;
4228 if (!capable(CAP_SYS_ADMIN
))
4231 ret
= mnt_want_write_file(file
);
4235 sa
= memdup_user(arg
, sizeof(*sa
));
4241 trans
= btrfs_join_transaction(root
);
4242 if (IS_ERR(trans
)) {
4243 ret
= PTR_ERR(trans
);
4247 qgroupid
= sa
->qgroupid
;
4249 /* take the current subvol as qgroup */
4250 qgroupid
= root
->root_key
.objectid
;
4253 /* FIXME: check if the IDs really exist */
4254 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
4256 err
= btrfs_end_transaction(trans
, root
);
4263 mnt_drop_write_file(file
);
4267 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
4269 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4270 struct btrfs_ioctl_quota_rescan_args
*qsa
;
4273 if (!capable(CAP_SYS_ADMIN
))
4276 ret
= mnt_want_write_file(file
);
4280 qsa
= memdup_user(arg
, sizeof(*qsa
));
4291 ret
= btrfs_qgroup_rescan(root
->fs_info
);
4296 mnt_drop_write_file(file
);
4300 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
4302 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4303 struct btrfs_ioctl_quota_rescan_args
*qsa
;
4306 if (!capable(CAP_SYS_ADMIN
))
4309 qsa
= kzalloc(sizeof(*qsa
), GFP_NOFS
);
4313 if (root
->fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
4315 qsa
->progress
= root
->fs_info
->qgroup_rescan_progress
.objectid
;
4318 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
4325 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
4327 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
4329 if (!capable(CAP_SYS_ADMIN
))
4332 return btrfs_qgroup_wait_for_completion(root
->fs_info
);
4335 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
4338 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
4339 struct inode
*inode
= file_inode(file
);
4340 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4341 struct btrfs_root_item
*root_item
= &root
->root_item
;
4342 struct btrfs_trans_handle
*trans
;
4343 struct timespec ct
= CURRENT_TIME
;
4345 int received_uuid_changed
;
4347 ret
= mnt_want_write_file(file
);
4351 down_write(&root
->fs_info
->subvol_sem
);
4353 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
4358 if (btrfs_root_readonly(root
)) {
4363 if (!inode_owner_or_capable(inode
)) {
4368 sa
= memdup_user(arg
, sizeof(*sa
));
4377 * 2 - uuid items (received uuid + subvol uuid)
4379 trans
= btrfs_start_transaction(root
, 3);
4380 if (IS_ERR(trans
)) {
4381 ret
= PTR_ERR(trans
);
4386 sa
->rtransid
= trans
->transid
;
4387 sa
->rtime
.sec
= ct
.tv_sec
;
4388 sa
->rtime
.nsec
= ct
.tv_nsec
;
4390 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
4392 if (received_uuid_changed
&&
4393 !btrfs_is_empty_uuid(root_item
->received_uuid
))
4394 btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
4395 root_item
->received_uuid
,
4396 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4397 root
->root_key
.objectid
);
4398 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
4399 btrfs_set_root_stransid(root_item
, sa
->stransid
);
4400 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
4401 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
4402 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
4403 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
4404 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
4406 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
4407 &root
->root_key
, &root
->root_item
);
4409 btrfs_end_transaction(trans
, root
);
4412 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
4413 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
4415 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4416 root
->root_key
.objectid
);
4417 if (ret
< 0 && ret
!= -EEXIST
) {
4418 btrfs_abort_transaction(trans
, root
, ret
);
4422 ret
= btrfs_commit_transaction(trans
, root
);
4424 btrfs_abort_transaction(trans
, root
, ret
);
4428 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
4434 up_write(&root
->fs_info
->subvol_sem
);
4435 mnt_drop_write_file(file
);
4439 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
4441 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4444 char label
[BTRFS_LABEL_SIZE
];
4446 spin_lock(&root
->fs_info
->super_lock
);
4447 memcpy(label
, root
->fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
4448 spin_unlock(&root
->fs_info
->super_lock
);
4450 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
4452 if (len
== BTRFS_LABEL_SIZE
) {
4453 pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4457 ret
= copy_to_user(arg
, label
, len
);
4459 return ret
? -EFAULT
: 0;
4462 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
4464 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4465 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
4466 struct btrfs_trans_handle
*trans
;
4467 char label
[BTRFS_LABEL_SIZE
];
4470 if (!capable(CAP_SYS_ADMIN
))
4473 if (copy_from_user(label
, arg
, sizeof(label
)))
4476 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
4477 pr_err("btrfs: unable to set label with more than %d bytes\n",
4478 BTRFS_LABEL_SIZE
- 1);
4482 ret
= mnt_want_write_file(file
);
4486 trans
= btrfs_start_transaction(root
, 0);
4487 if (IS_ERR(trans
)) {
4488 ret
= PTR_ERR(trans
);
4492 spin_lock(&root
->fs_info
->super_lock
);
4493 strcpy(super_block
->label
, label
);
4494 spin_unlock(&root
->fs_info
->super_lock
);
4495 ret
= btrfs_end_transaction(trans
, root
);
4498 mnt_drop_write_file(file
);
4502 long btrfs_ioctl(struct file
*file
, unsigned int
4503 cmd
, unsigned long arg
)
4505 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4506 void __user
*argp
= (void __user
*)arg
;
4509 case FS_IOC_GETFLAGS
:
4510 return btrfs_ioctl_getflags(file
, argp
);
4511 case FS_IOC_SETFLAGS
:
4512 return btrfs_ioctl_setflags(file
, argp
);
4513 case FS_IOC_GETVERSION
:
4514 return btrfs_ioctl_getversion(file
, argp
);
4516 return btrfs_ioctl_fitrim(file
, argp
);
4517 case BTRFS_IOC_SNAP_CREATE
:
4518 return btrfs_ioctl_snap_create(file
, argp
, 0);
4519 case BTRFS_IOC_SNAP_CREATE_V2
:
4520 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
4521 case BTRFS_IOC_SUBVOL_CREATE
:
4522 return btrfs_ioctl_snap_create(file
, argp
, 1);
4523 case BTRFS_IOC_SUBVOL_CREATE_V2
:
4524 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
4525 case BTRFS_IOC_SNAP_DESTROY
:
4526 return btrfs_ioctl_snap_destroy(file
, argp
);
4527 case BTRFS_IOC_SUBVOL_GETFLAGS
:
4528 return btrfs_ioctl_subvol_getflags(file
, argp
);
4529 case BTRFS_IOC_SUBVOL_SETFLAGS
:
4530 return btrfs_ioctl_subvol_setflags(file
, argp
);
4531 case BTRFS_IOC_DEFAULT_SUBVOL
:
4532 return btrfs_ioctl_default_subvol(file
, argp
);
4533 case BTRFS_IOC_DEFRAG
:
4534 return btrfs_ioctl_defrag(file
, NULL
);
4535 case BTRFS_IOC_DEFRAG_RANGE
:
4536 return btrfs_ioctl_defrag(file
, argp
);
4537 case BTRFS_IOC_RESIZE
:
4538 return btrfs_ioctl_resize(file
, argp
);
4539 case BTRFS_IOC_ADD_DEV
:
4540 return btrfs_ioctl_add_dev(root
, argp
);
4541 case BTRFS_IOC_RM_DEV
:
4542 return btrfs_ioctl_rm_dev(file
, argp
);
4543 case BTRFS_IOC_FS_INFO
:
4544 return btrfs_ioctl_fs_info(root
, argp
);
4545 case BTRFS_IOC_DEV_INFO
:
4546 return btrfs_ioctl_dev_info(root
, argp
);
4547 case BTRFS_IOC_BALANCE
:
4548 return btrfs_ioctl_balance(file
, NULL
);
4549 case BTRFS_IOC_CLONE
:
4550 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
4551 case BTRFS_IOC_CLONE_RANGE
:
4552 return btrfs_ioctl_clone_range(file
, argp
);
4553 case BTRFS_IOC_TRANS_START
:
4554 return btrfs_ioctl_trans_start(file
);
4555 case BTRFS_IOC_TRANS_END
:
4556 return btrfs_ioctl_trans_end(file
);
4557 case BTRFS_IOC_TREE_SEARCH
:
4558 return btrfs_ioctl_tree_search(file
, argp
);
4559 case BTRFS_IOC_INO_LOOKUP
:
4560 return btrfs_ioctl_ino_lookup(file
, argp
);
4561 case BTRFS_IOC_INO_PATHS
:
4562 return btrfs_ioctl_ino_to_path(root
, argp
);
4563 case BTRFS_IOC_LOGICAL_INO
:
4564 return btrfs_ioctl_logical_to_ino(root
, argp
);
4565 case BTRFS_IOC_SPACE_INFO
:
4566 return btrfs_ioctl_space_info(root
, argp
);
4567 case BTRFS_IOC_SYNC
: {
4570 ret
= btrfs_start_all_delalloc_inodes(root
->fs_info
, 0);
4573 ret
= btrfs_sync_fs(file
->f_dentry
->d_sb
, 1);
4576 case BTRFS_IOC_START_SYNC
:
4577 return btrfs_ioctl_start_sync(root
, argp
);
4578 case BTRFS_IOC_WAIT_SYNC
:
4579 return btrfs_ioctl_wait_sync(root
, argp
);
4580 case BTRFS_IOC_SCRUB
:
4581 return btrfs_ioctl_scrub(file
, argp
);
4582 case BTRFS_IOC_SCRUB_CANCEL
:
4583 return btrfs_ioctl_scrub_cancel(root
, argp
);
4584 case BTRFS_IOC_SCRUB_PROGRESS
:
4585 return btrfs_ioctl_scrub_progress(root
, argp
);
4586 case BTRFS_IOC_BALANCE_V2
:
4587 return btrfs_ioctl_balance(file
, argp
);
4588 case BTRFS_IOC_BALANCE_CTL
:
4589 return btrfs_ioctl_balance_ctl(root
, arg
);
4590 case BTRFS_IOC_BALANCE_PROGRESS
:
4591 return btrfs_ioctl_balance_progress(root
, argp
);
4592 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
4593 return btrfs_ioctl_set_received_subvol(file
, argp
);
4594 case BTRFS_IOC_SEND
:
4595 return btrfs_ioctl_send(file
, argp
);
4596 case BTRFS_IOC_GET_DEV_STATS
:
4597 return btrfs_ioctl_get_dev_stats(root
, argp
);
4598 case BTRFS_IOC_QUOTA_CTL
:
4599 return btrfs_ioctl_quota_ctl(file
, argp
);
4600 case BTRFS_IOC_QGROUP_ASSIGN
:
4601 return btrfs_ioctl_qgroup_assign(file
, argp
);
4602 case BTRFS_IOC_QGROUP_CREATE
:
4603 return btrfs_ioctl_qgroup_create(file
, argp
);
4604 case BTRFS_IOC_QGROUP_LIMIT
:
4605 return btrfs_ioctl_qgroup_limit(file
, argp
);
4606 case BTRFS_IOC_QUOTA_RESCAN
:
4607 return btrfs_ioctl_quota_rescan(file
, argp
);
4608 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
4609 return btrfs_ioctl_quota_rescan_status(file
, argp
);
4610 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
4611 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
4612 case BTRFS_IOC_DEV_REPLACE
:
4613 return btrfs_ioctl_dev_replace(root
, argp
);
4614 case BTRFS_IOC_GET_FSLABEL
:
4615 return btrfs_ioctl_get_fslabel(file
, argp
);
4616 case BTRFS_IOC_SET_FSLABEL
:
4617 return btrfs_ioctl_set_fslabel(file
, argp
);
4618 case BTRFS_IOC_FILE_EXTENT_SAME
:
4619 return btrfs_ioctl_file_extent_same(file
, argp
);