2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
67 struct scrub_block
*sblock
;
69 struct btrfs_device
*dev
;
70 u64 flags
; /* extent flags */
74 u64 physical_for_dev_replace
;
77 unsigned int mirror_num
:8;
78 unsigned int have_csum
:1;
79 unsigned int io_error
:1;
81 u8 csum
[BTRFS_CSUM_SIZE
];
86 struct scrub_ctx
*sctx
;
87 struct btrfs_device
*dev
;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
95 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
99 struct btrfs_work work
;
103 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
105 atomic_t outstanding_pages
;
106 atomic_t ref_count
; /* free mem on transition to zero */
107 struct scrub_ctx
*sctx
;
109 unsigned int header_error
:1;
110 unsigned int checksum_error
:1;
111 unsigned int no_io_error_seen
:1;
112 unsigned int generation_error
:1; /* also sets header_error */
116 struct scrub_wr_ctx
{
117 struct scrub_bio
*wr_curr_bio
;
118 struct btrfs_device
*tgtdev
;
119 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes
;
121 struct mutex wr_lock
;
125 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
126 struct btrfs_root
*dev_root
;
129 atomic_t bios_in_flight
;
130 atomic_t workers_pending
;
131 spinlock_t list_lock
;
132 wait_queue_head_t list_wait
;
134 struct list_head csum_list
;
137 int pages_per_rd_bio
;
143 struct scrub_wr_ctx wr_ctx
;
148 struct btrfs_scrub_progress stat
;
149 spinlock_t stat_lock
;
152 struct scrub_fixup_nodatasum
{
153 struct scrub_ctx
*sctx
;
154 struct btrfs_device
*dev
;
156 struct btrfs_root
*root
;
157 struct btrfs_work work
;
161 struct scrub_nocow_inode
{
165 struct list_head list
;
168 struct scrub_copy_nocow_ctx
{
169 struct scrub_ctx
*sctx
;
173 u64 physical_for_dev_replace
;
174 struct list_head inodes
;
175 struct btrfs_work work
;
178 struct scrub_warning
{
179 struct btrfs_path
*path
;
180 u64 extent_item_size
;
186 struct btrfs_device
*dev
;
192 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
193 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
196 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
197 static int scrub_setup_recheck_block(struct scrub_ctx
*sctx
,
198 struct btrfs_fs_info
*fs_info
,
199 struct scrub_block
*original_sblock
,
200 u64 length
, u64 logical
,
201 struct scrub_block
*sblocks_for_recheck
);
202 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
203 struct scrub_block
*sblock
, int is_metadata
,
204 int have_csum
, u8
*csum
, u64 generation
,
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info
*fs_info
,
207 struct scrub_block
*sblock
,
208 int is_metadata
, int have_csum
,
209 const u8
*csum
, u64 generation
,
211 static void scrub_complete_bio_end_io(struct bio
*bio
, int err
);
212 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
213 struct scrub_block
*sblock_good
,
215 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
216 struct scrub_block
*sblock_good
,
217 int page_num
, int force_write
);
218 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
219 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
221 static int scrub_checksum_data(struct scrub_block
*sblock
);
222 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
223 static int scrub_checksum_super(struct scrub_block
*sblock
);
224 static void scrub_block_get(struct scrub_block
*sblock
);
225 static void scrub_block_put(struct scrub_block
*sblock
);
226 static void scrub_page_get(struct scrub_page
*spage
);
227 static void scrub_page_put(struct scrub_page
*spage
);
228 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
229 struct scrub_page
*spage
);
230 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
231 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
232 u64 gen
, int mirror_num
, u8
*csum
, int force
,
233 u64 physical_for_dev_replace
);
234 static void scrub_bio_end_io(struct bio
*bio
, int err
);
235 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
236 static void scrub_block_complete(struct scrub_block
*sblock
);
237 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
238 u64 extent_logical
, u64 extent_len
,
239 u64
*extent_physical
,
240 struct btrfs_device
**extent_dev
,
241 int *extent_mirror_num
);
242 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
243 struct scrub_wr_ctx
*wr_ctx
,
244 struct btrfs_fs_info
*fs_info
,
245 struct btrfs_device
*dev
,
247 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
);
248 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
249 struct scrub_page
*spage
);
250 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
251 static void scrub_wr_bio_end_io(struct bio
*bio
, int err
);
252 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
253 static int write_page_nocow(struct scrub_ctx
*sctx
,
254 u64 physical_for_dev_replace
, struct page
*page
);
255 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
256 struct scrub_copy_nocow_ctx
*ctx
);
257 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
258 int mirror_num
, u64 physical_for_dev_replace
);
259 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
262 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
264 atomic_inc(&sctx
->bios_in_flight
);
267 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
269 atomic_dec(&sctx
->bios_in_flight
);
270 wake_up(&sctx
->list_wait
);
274 * used for workers that require transaction commits (i.e., for the
277 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
279 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
282 * increment scrubs_running to prevent cancel requests from
283 * completing as long as a worker is running. we must also
284 * increment scrubs_paused to prevent deadlocking on pause
285 * requests used for transactions commits (as the worker uses a
286 * transaction context). it is safe to regard the worker
287 * as paused for all matters practical. effectively, we only
288 * avoid cancellation requests from completing.
290 mutex_lock(&fs_info
->scrub_lock
);
291 atomic_inc(&fs_info
->scrubs_running
);
292 atomic_inc(&fs_info
->scrubs_paused
);
293 mutex_unlock(&fs_info
->scrub_lock
);
294 atomic_inc(&sctx
->workers_pending
);
297 /* used for workers that require transaction commits */
298 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
300 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
303 * see scrub_pending_trans_workers_inc() why we're pretending
304 * to be paused in the scrub counters
306 mutex_lock(&fs_info
->scrub_lock
);
307 atomic_dec(&fs_info
->scrubs_running
);
308 atomic_dec(&fs_info
->scrubs_paused
);
309 mutex_unlock(&fs_info
->scrub_lock
);
310 atomic_dec(&sctx
->workers_pending
);
311 wake_up(&fs_info
->scrub_pause_wait
);
312 wake_up(&sctx
->list_wait
);
315 static void scrub_free_csums(struct scrub_ctx
*sctx
)
317 while (!list_empty(&sctx
->csum_list
)) {
318 struct btrfs_ordered_sum
*sum
;
319 sum
= list_first_entry(&sctx
->csum_list
,
320 struct btrfs_ordered_sum
, list
);
321 list_del(&sum
->list
);
326 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
333 scrub_free_wr_ctx(&sctx
->wr_ctx
);
335 /* this can happen when scrub is cancelled */
336 if (sctx
->curr
!= -1) {
337 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
339 for (i
= 0; i
< sbio
->page_count
; i
++) {
340 WARN_ON(!sbio
->pagev
[i
]->page
);
341 scrub_block_put(sbio
->pagev
[i
]->sblock
);
346 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
347 struct scrub_bio
*sbio
= sctx
->bios
[i
];
354 scrub_free_csums(sctx
);
358 static noinline_for_stack
359 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
361 struct scrub_ctx
*sctx
;
363 struct btrfs_fs_info
*fs_info
= dev
->dev_root
->fs_info
;
364 int pages_per_rd_bio
;
368 * the setting of pages_per_rd_bio is correct for scrub but might
369 * be wrong for the dev_replace code where we might read from
370 * different devices in the initial huge bios. However, that
371 * code is able to correctly handle the case when adding a page
375 pages_per_rd_bio
= min_t(int, SCRUB_PAGES_PER_RD_BIO
,
376 bio_get_nr_vecs(dev
->bdev
));
378 pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
379 sctx
= kzalloc(sizeof(*sctx
), GFP_NOFS
);
382 sctx
->is_dev_replace
= is_dev_replace
;
383 sctx
->pages_per_rd_bio
= pages_per_rd_bio
;
385 sctx
->dev_root
= dev
->dev_root
;
386 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
387 struct scrub_bio
*sbio
;
389 sbio
= kzalloc(sizeof(*sbio
), GFP_NOFS
);
392 sctx
->bios
[i
] = sbio
;
396 sbio
->page_count
= 0;
397 sbio
->work
.func
= scrub_bio_end_io_worker
;
399 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
400 sctx
->bios
[i
]->next_free
= i
+ 1;
402 sctx
->bios
[i
]->next_free
= -1;
404 sctx
->first_free
= 0;
405 sctx
->nodesize
= dev
->dev_root
->nodesize
;
406 sctx
->leafsize
= dev
->dev_root
->leafsize
;
407 sctx
->sectorsize
= dev
->dev_root
->sectorsize
;
408 atomic_set(&sctx
->bios_in_flight
, 0);
409 atomic_set(&sctx
->workers_pending
, 0);
410 atomic_set(&sctx
->cancel_req
, 0);
411 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
412 INIT_LIST_HEAD(&sctx
->csum_list
);
414 spin_lock_init(&sctx
->list_lock
);
415 spin_lock_init(&sctx
->stat_lock
);
416 init_waitqueue_head(&sctx
->list_wait
);
418 ret
= scrub_setup_wr_ctx(sctx
, &sctx
->wr_ctx
, fs_info
,
419 fs_info
->dev_replace
.tgtdev
, is_dev_replace
);
421 scrub_free_ctx(sctx
);
427 scrub_free_ctx(sctx
);
428 return ERR_PTR(-ENOMEM
);
431 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
438 struct extent_buffer
*eb
;
439 struct btrfs_inode_item
*inode_item
;
440 struct scrub_warning
*swarn
= warn_ctx
;
441 struct btrfs_fs_info
*fs_info
= swarn
->dev
->dev_root
->fs_info
;
442 struct inode_fs_paths
*ipath
= NULL
;
443 struct btrfs_root
*local_root
;
444 struct btrfs_key root_key
;
446 root_key
.objectid
= root
;
447 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
448 root_key
.offset
= (u64
)-1;
449 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
450 if (IS_ERR(local_root
)) {
451 ret
= PTR_ERR(local_root
);
455 ret
= inode_item_info(inum
, 0, local_root
, swarn
->path
);
457 btrfs_release_path(swarn
->path
);
461 eb
= swarn
->path
->nodes
[0];
462 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
463 struct btrfs_inode_item
);
464 isize
= btrfs_inode_size(eb
, inode_item
);
465 nlink
= btrfs_inode_nlink(eb
, inode_item
);
466 btrfs_release_path(swarn
->path
);
468 ipath
= init_ipath(4096, local_root
, swarn
->path
);
470 ret
= PTR_ERR(ipath
);
474 ret
= paths_from_inode(inum
, ipath
);
480 * we deliberately ignore the bit ipath might have been too small to
481 * hold all of the paths here
483 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
484 printk_in_rcu(KERN_WARNING
"btrfs: %s at logical %llu on dev "
485 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
486 "length %llu, links %u (path: %s)\n", swarn
->errstr
,
487 swarn
->logical
, rcu_str_deref(swarn
->dev
->name
),
488 (unsigned long long)swarn
->sector
, root
, inum
, offset
,
489 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
490 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
496 printk_in_rcu(KERN_WARNING
"btrfs: %s at logical %llu on dev "
497 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
498 "resolving failed with ret=%d\n", swarn
->errstr
,
499 swarn
->logical
, rcu_str_deref(swarn
->dev
->name
),
500 (unsigned long long)swarn
->sector
, root
, inum
, offset
, ret
);
506 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
508 struct btrfs_device
*dev
;
509 struct btrfs_fs_info
*fs_info
;
510 struct btrfs_path
*path
;
511 struct btrfs_key found_key
;
512 struct extent_buffer
*eb
;
513 struct btrfs_extent_item
*ei
;
514 struct scrub_warning swarn
;
515 unsigned long ptr
= 0;
521 const int bufsize
= 4096;
524 WARN_ON(sblock
->page_count
< 1);
525 dev
= sblock
->pagev
[0]->dev
;
526 fs_info
= sblock
->sctx
->dev_root
->fs_info
;
528 path
= btrfs_alloc_path();
530 swarn
.scratch_buf
= kmalloc(bufsize
, GFP_NOFS
);
531 swarn
.msg_buf
= kmalloc(bufsize
, GFP_NOFS
);
532 swarn
.sector
= (sblock
->pagev
[0]->physical
) >> 9;
533 swarn
.logical
= sblock
->pagev
[0]->logical
;
534 swarn
.errstr
= errstr
;
536 swarn
.msg_bufsize
= bufsize
;
537 swarn
.scratch_bufsize
= bufsize
;
539 if (!path
|| !swarn
.scratch_buf
|| !swarn
.msg_buf
)
542 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
547 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
548 swarn
.extent_item_size
= found_key
.offset
;
551 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
552 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
554 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
556 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
557 item_size
, &ref_root
,
559 printk_in_rcu(KERN_WARNING
560 "btrfs: %s at logical %llu on dev %s, "
561 "sector %llu: metadata %s (level %d) in tree "
562 "%llu\n", errstr
, swarn
.logical
,
563 rcu_str_deref(dev
->name
),
564 (unsigned long long)swarn
.sector
,
565 ref_level
? "node" : "leaf",
566 ret
< 0 ? -1 : ref_level
,
567 ret
< 0 ? -1 : ref_root
);
569 btrfs_release_path(path
);
571 btrfs_release_path(path
);
574 iterate_extent_inodes(fs_info
, found_key
.objectid
,
576 scrub_print_warning_inode
, &swarn
);
580 btrfs_free_path(path
);
581 kfree(swarn
.scratch_buf
);
582 kfree(swarn
.msg_buf
);
585 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
587 struct page
*page
= NULL
;
589 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
592 struct btrfs_key key
;
593 struct inode
*inode
= NULL
;
594 struct btrfs_fs_info
*fs_info
;
595 u64 end
= offset
+ PAGE_SIZE
- 1;
596 struct btrfs_root
*local_root
;
600 key
.type
= BTRFS_ROOT_ITEM_KEY
;
601 key
.offset
= (u64
)-1;
603 fs_info
= fixup
->root
->fs_info
;
604 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
606 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
607 if (IS_ERR(local_root
)) {
608 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
609 return PTR_ERR(local_root
);
612 key
.type
= BTRFS_INODE_ITEM_KEY
;
615 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
616 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
618 return PTR_ERR(inode
);
620 index
= offset
>> PAGE_CACHE_SHIFT
;
622 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
628 if (PageUptodate(page
)) {
629 if (PageDirty(page
)) {
631 * we need to write the data to the defect sector. the
632 * data that was in that sector is not in memory,
633 * because the page was modified. we must not write the
634 * modified page to that sector.
636 * TODO: what could be done here: wait for the delalloc
637 * runner to write out that page (might involve
638 * COW) and see whether the sector is still
639 * referenced afterwards.
641 * For the meantime, we'll treat this error
642 * incorrectable, although there is a chance that a
643 * later scrub will find the bad sector again and that
644 * there's no dirty page in memory, then.
649 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
650 ret
= repair_io_failure(fs_info
, offset
, PAGE_SIZE
,
651 fixup
->logical
, page
,
657 * we need to get good data first. the general readpage path
658 * will call repair_io_failure for us, we just have to make
659 * sure we read the bad mirror.
661 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
662 EXTENT_DAMAGED
, GFP_NOFS
);
664 /* set_extent_bits should give proper error */
671 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
674 wait_on_page_locked(page
);
676 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
677 end
, EXTENT_DAMAGED
, 0, NULL
);
679 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
680 EXTENT_DAMAGED
, GFP_NOFS
);
692 if (ret
== 0 && corrected
) {
694 * we only need to call readpage for one of the inodes belonging
695 * to this extent. so make iterate_extent_inodes stop
703 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
706 struct scrub_fixup_nodatasum
*fixup
;
707 struct scrub_ctx
*sctx
;
708 struct btrfs_trans_handle
*trans
= NULL
;
709 struct btrfs_fs_info
*fs_info
;
710 struct btrfs_path
*path
;
711 int uncorrectable
= 0;
713 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
715 fs_info
= fixup
->root
->fs_info
;
717 path
= btrfs_alloc_path();
719 spin_lock(&sctx
->stat_lock
);
720 ++sctx
->stat
.malloc_errors
;
721 spin_unlock(&sctx
->stat_lock
);
726 trans
= btrfs_join_transaction(fixup
->root
);
733 * the idea is to trigger a regular read through the standard path. we
734 * read a page from the (failed) logical address by specifying the
735 * corresponding copynum of the failed sector. thus, that readpage is
737 * that is the point where on-the-fly error correction will kick in
738 * (once it's finished) and rewrite the failed sector if a good copy
741 ret
= iterate_inodes_from_logical(fixup
->logical
, fixup
->root
->fs_info
,
742 path
, scrub_fixup_readpage
,
750 spin_lock(&sctx
->stat_lock
);
751 ++sctx
->stat
.corrected_errors
;
752 spin_unlock(&sctx
->stat_lock
);
755 if (trans
&& !IS_ERR(trans
))
756 btrfs_end_transaction(trans
, fixup
->root
);
758 spin_lock(&sctx
->stat_lock
);
759 ++sctx
->stat
.uncorrectable_errors
;
760 spin_unlock(&sctx
->stat_lock
);
761 btrfs_dev_replace_stats_inc(
762 &sctx
->dev_root
->fs_info
->dev_replace
.
763 num_uncorrectable_read_errors
);
764 printk_ratelimited_in_rcu(KERN_ERR
765 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
766 fixup
->logical
, rcu_str_deref(fixup
->dev
->name
));
769 btrfs_free_path(path
);
772 scrub_pending_trans_workers_dec(sctx
);
776 * scrub_handle_errored_block gets called when either verification of the
777 * pages failed or the bio failed to read, e.g. with EIO. In the latter
778 * case, this function handles all pages in the bio, even though only one
780 * The goal of this function is to repair the errored block by using the
781 * contents of one of the mirrors.
783 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
785 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
786 struct btrfs_device
*dev
;
787 struct btrfs_fs_info
*fs_info
;
791 unsigned int failed_mirror_index
;
792 unsigned int is_metadata
;
793 unsigned int have_csum
;
795 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
796 struct scrub_block
*sblock_bad
;
801 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
802 DEFAULT_RATELIMIT_BURST
);
804 BUG_ON(sblock_to_check
->page_count
< 1);
805 fs_info
= sctx
->dev_root
->fs_info
;
806 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
808 * if we find an error in a super block, we just report it.
809 * They will get written with the next transaction commit
812 spin_lock(&sctx
->stat_lock
);
813 ++sctx
->stat
.super_errors
;
814 spin_unlock(&sctx
->stat_lock
);
817 length
= sblock_to_check
->page_count
* PAGE_SIZE
;
818 logical
= sblock_to_check
->pagev
[0]->logical
;
819 generation
= sblock_to_check
->pagev
[0]->generation
;
820 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
821 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
822 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
823 BTRFS_EXTENT_FLAG_DATA
);
824 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
825 csum
= sblock_to_check
->pagev
[0]->csum
;
826 dev
= sblock_to_check
->pagev
[0]->dev
;
828 if (sctx
->is_dev_replace
&& !is_metadata
&& !have_csum
) {
829 sblocks_for_recheck
= NULL
;
834 * read all mirrors one after the other. This includes to
835 * re-read the extent or metadata block that failed (that was
836 * the cause that this fixup code is called) another time,
837 * page by page this time in order to know which pages
838 * caused I/O errors and which ones are good (for all mirrors).
839 * It is the goal to handle the situation when more than one
840 * mirror contains I/O errors, but the errors do not
841 * overlap, i.e. the data can be repaired by selecting the
842 * pages from those mirrors without I/O error on the
843 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
844 * would be that mirror #1 has an I/O error on the first page,
845 * the second page is good, and mirror #2 has an I/O error on
846 * the second page, but the first page is good.
847 * Then the first page of the first mirror can be repaired by
848 * taking the first page of the second mirror, and the
849 * second page of the second mirror can be repaired by
850 * copying the contents of the 2nd page of the 1st mirror.
851 * One more note: if the pages of one mirror contain I/O
852 * errors, the checksum cannot be verified. In order to get
853 * the best data for repairing, the first attempt is to find
854 * a mirror without I/O errors and with a validated checksum.
855 * Only if this is not possible, the pages are picked from
856 * mirrors with I/O errors without considering the checksum.
857 * If the latter is the case, at the end, the checksum of the
858 * repaired area is verified in order to correctly maintain
862 sblocks_for_recheck
= kzalloc(BTRFS_MAX_MIRRORS
*
863 sizeof(*sblocks_for_recheck
),
865 if (!sblocks_for_recheck
) {
866 spin_lock(&sctx
->stat_lock
);
867 sctx
->stat
.malloc_errors
++;
868 sctx
->stat
.read_errors
++;
869 sctx
->stat
.uncorrectable_errors
++;
870 spin_unlock(&sctx
->stat_lock
);
871 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
875 /* setup the context, map the logical blocks and alloc the pages */
876 ret
= scrub_setup_recheck_block(sctx
, fs_info
, sblock_to_check
, length
,
877 logical
, sblocks_for_recheck
);
879 spin_lock(&sctx
->stat_lock
);
880 sctx
->stat
.read_errors
++;
881 sctx
->stat
.uncorrectable_errors
++;
882 spin_unlock(&sctx
->stat_lock
);
883 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
886 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
887 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
889 /* build and submit the bios for the failed mirror, check checksums */
890 scrub_recheck_block(fs_info
, sblock_bad
, is_metadata
, have_csum
,
891 csum
, generation
, sctx
->csum_size
);
893 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
894 sblock_bad
->no_io_error_seen
) {
896 * the error disappeared after reading page by page, or
897 * the area was part of a huge bio and other parts of the
898 * bio caused I/O errors, or the block layer merged several
899 * read requests into one and the error is caused by a
900 * different bio (usually one of the two latter cases is
903 spin_lock(&sctx
->stat_lock
);
904 sctx
->stat
.unverified_errors
++;
905 spin_unlock(&sctx
->stat_lock
);
907 if (sctx
->is_dev_replace
)
908 scrub_write_block_to_dev_replace(sblock_bad
);
912 if (!sblock_bad
->no_io_error_seen
) {
913 spin_lock(&sctx
->stat_lock
);
914 sctx
->stat
.read_errors
++;
915 spin_unlock(&sctx
->stat_lock
);
916 if (__ratelimit(&_rs
))
917 scrub_print_warning("i/o error", sblock_to_check
);
918 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
919 } else if (sblock_bad
->checksum_error
) {
920 spin_lock(&sctx
->stat_lock
);
921 sctx
->stat
.csum_errors
++;
922 spin_unlock(&sctx
->stat_lock
);
923 if (__ratelimit(&_rs
))
924 scrub_print_warning("checksum error", sblock_to_check
);
925 btrfs_dev_stat_inc_and_print(dev
,
926 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
927 } else if (sblock_bad
->header_error
) {
928 spin_lock(&sctx
->stat_lock
);
929 sctx
->stat
.verify_errors
++;
930 spin_unlock(&sctx
->stat_lock
);
931 if (__ratelimit(&_rs
))
932 scrub_print_warning("checksum/header error",
934 if (sblock_bad
->generation_error
)
935 btrfs_dev_stat_inc_and_print(dev
,
936 BTRFS_DEV_STAT_GENERATION_ERRS
);
938 btrfs_dev_stat_inc_and_print(dev
,
939 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
942 if (sctx
->readonly
&& !sctx
->is_dev_replace
)
943 goto did_not_correct_error
;
945 if (!is_metadata
&& !have_csum
) {
946 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
949 WARN_ON(sctx
->is_dev_replace
);
952 * !is_metadata and !have_csum, this means that the data
953 * might not be COW'ed, that it might be modified
954 * concurrently. The general strategy to work on the
955 * commit root does not help in the case when COW is not
958 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
959 if (!fixup_nodatasum
)
960 goto did_not_correct_error
;
961 fixup_nodatasum
->sctx
= sctx
;
962 fixup_nodatasum
->dev
= dev
;
963 fixup_nodatasum
->logical
= logical
;
964 fixup_nodatasum
->root
= fs_info
->extent_root
;
965 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
966 scrub_pending_trans_workers_inc(sctx
);
967 fixup_nodatasum
->work
.func
= scrub_fixup_nodatasum
;
968 btrfs_queue_worker(&fs_info
->scrub_workers
,
969 &fixup_nodatasum
->work
);
974 * now build and submit the bios for the other mirrors, check
976 * First try to pick the mirror which is completely without I/O
977 * errors and also does not have a checksum error.
978 * If one is found, and if a checksum is present, the full block
979 * that is known to contain an error is rewritten. Afterwards
980 * the block is known to be corrected.
981 * If a mirror is found which is completely correct, and no
982 * checksum is present, only those pages are rewritten that had
983 * an I/O error in the block to be repaired, since it cannot be
984 * determined, which copy of the other pages is better (and it
985 * could happen otherwise that a correct page would be
986 * overwritten by a bad one).
988 for (mirror_index
= 0;
989 mirror_index
< BTRFS_MAX_MIRRORS
&&
990 sblocks_for_recheck
[mirror_index
].page_count
> 0;
992 struct scrub_block
*sblock_other
;
994 if (mirror_index
== failed_mirror_index
)
996 sblock_other
= sblocks_for_recheck
+ mirror_index
;
998 /* build and submit the bios, check checksums */
999 scrub_recheck_block(fs_info
, sblock_other
, is_metadata
,
1000 have_csum
, csum
, generation
,
1003 if (!sblock_other
->header_error
&&
1004 !sblock_other
->checksum_error
&&
1005 sblock_other
->no_io_error_seen
) {
1006 if (sctx
->is_dev_replace
) {
1007 scrub_write_block_to_dev_replace(sblock_other
);
1009 int force_write
= is_metadata
|| have_csum
;
1011 ret
= scrub_repair_block_from_good_copy(
1012 sblock_bad
, sblock_other
,
1016 goto corrected_error
;
1021 * for dev_replace, pick good pages and write to the target device.
1023 if (sctx
->is_dev_replace
) {
1025 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1030 for (mirror_index
= 0;
1031 mirror_index
< BTRFS_MAX_MIRRORS
&&
1032 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1034 struct scrub_block
*sblock_other
=
1035 sblocks_for_recheck
+ mirror_index
;
1036 struct scrub_page
*page_other
=
1037 sblock_other
->pagev
[page_num
];
1039 if (!page_other
->io_error
) {
1040 ret
= scrub_write_page_to_dev_replace(
1041 sblock_other
, page_num
);
1043 /* succeeded for this page */
1047 btrfs_dev_replace_stats_inc(
1049 fs_info
->dev_replace
.
1057 * did not find a mirror to fetch the page
1058 * from. scrub_write_page_to_dev_replace()
1059 * handles this case (page->io_error), by
1060 * filling the block with zeros before
1061 * submitting the write request
1064 ret
= scrub_write_page_to_dev_replace(
1065 sblock_bad
, page_num
);
1067 btrfs_dev_replace_stats_inc(
1068 &sctx
->dev_root
->fs_info
->
1069 dev_replace
.num_write_errors
);
1077 * for regular scrub, repair those pages that are errored.
1078 * In case of I/O errors in the area that is supposed to be
1079 * repaired, continue by picking good copies of those pages.
1080 * Select the good pages from mirrors to rewrite bad pages from
1081 * the area to fix. Afterwards verify the checksum of the block
1082 * that is supposed to be repaired. This verification step is
1083 * only done for the purpose of statistic counting and for the
1084 * final scrub report, whether errors remain.
1085 * A perfect algorithm could make use of the checksum and try
1086 * all possible combinations of pages from the different mirrors
1087 * until the checksum verification succeeds. For example, when
1088 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1089 * of mirror #2 is readable but the final checksum test fails,
1090 * then the 2nd page of mirror #3 could be tried, whether now
1091 * the final checksum succeedes. But this would be a rare
1092 * exception and is therefore not implemented. At least it is
1093 * avoided that the good copy is overwritten.
1094 * A more useful improvement would be to pick the sectors
1095 * without I/O error based on sector sizes (512 bytes on legacy
1096 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1097 * mirror could be repaired by taking 512 byte of a different
1098 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1099 * area are unreadable.
1102 /* can only fix I/O errors from here on */
1103 if (sblock_bad
->no_io_error_seen
)
1104 goto did_not_correct_error
;
1107 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1108 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1110 if (!page_bad
->io_error
)
1113 for (mirror_index
= 0;
1114 mirror_index
< BTRFS_MAX_MIRRORS
&&
1115 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1117 struct scrub_block
*sblock_other
= sblocks_for_recheck
+
1119 struct scrub_page
*page_other
= sblock_other
->pagev
[
1122 if (!page_other
->io_error
) {
1123 ret
= scrub_repair_page_from_good_copy(
1124 sblock_bad
, sblock_other
, page_num
, 0);
1126 page_bad
->io_error
= 0;
1127 break; /* succeeded for this page */
1132 if (page_bad
->io_error
) {
1133 /* did not find a mirror to copy the page from */
1139 if (is_metadata
|| have_csum
) {
1141 * need to verify the checksum now that all
1142 * sectors on disk are repaired (the write
1143 * request for data to be repaired is on its way).
1144 * Just be lazy and use scrub_recheck_block()
1145 * which re-reads the data before the checksum
1146 * is verified, but most likely the data comes out
1147 * of the page cache.
1149 scrub_recheck_block(fs_info
, sblock_bad
,
1150 is_metadata
, have_csum
, csum
,
1151 generation
, sctx
->csum_size
);
1152 if (!sblock_bad
->header_error
&&
1153 !sblock_bad
->checksum_error
&&
1154 sblock_bad
->no_io_error_seen
)
1155 goto corrected_error
;
1157 goto did_not_correct_error
;
1160 spin_lock(&sctx
->stat_lock
);
1161 sctx
->stat
.corrected_errors
++;
1162 spin_unlock(&sctx
->stat_lock
);
1163 printk_ratelimited_in_rcu(KERN_ERR
1164 "btrfs: fixed up error at logical %llu on dev %s\n",
1165 logical
, rcu_str_deref(dev
->name
));
1168 did_not_correct_error
:
1169 spin_lock(&sctx
->stat_lock
);
1170 sctx
->stat
.uncorrectable_errors
++;
1171 spin_unlock(&sctx
->stat_lock
);
1172 printk_ratelimited_in_rcu(KERN_ERR
1173 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1174 logical
, rcu_str_deref(dev
->name
));
1178 if (sblocks_for_recheck
) {
1179 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1181 struct scrub_block
*sblock
= sblocks_for_recheck
+
1185 for (page_index
= 0; page_index
< sblock
->page_count
;
1187 sblock
->pagev
[page_index
]->sblock
= NULL
;
1188 scrub_page_put(sblock
->pagev
[page_index
]);
1191 kfree(sblocks_for_recheck
);
1197 static int scrub_setup_recheck_block(struct scrub_ctx
*sctx
,
1198 struct btrfs_fs_info
*fs_info
,
1199 struct scrub_block
*original_sblock
,
1200 u64 length
, u64 logical
,
1201 struct scrub_block
*sblocks_for_recheck
)
1208 * note: the two members ref_count and outstanding_pages
1209 * are not used (and not set) in the blocks that are used for
1210 * the recheck procedure
1214 while (length
> 0) {
1215 u64 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1216 u64 mapped_length
= sublen
;
1217 struct btrfs_bio
*bbio
= NULL
;
1220 * with a length of PAGE_SIZE, each returned stripe
1221 * represents one mirror
1223 ret
= btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
, logical
,
1224 &mapped_length
, &bbio
, 0);
1225 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1230 BUG_ON(page_index
>= SCRUB_PAGES_PER_RD_BIO
);
1231 for (mirror_index
= 0; mirror_index
< (int)bbio
->num_stripes
;
1233 struct scrub_block
*sblock
;
1234 struct scrub_page
*page
;
1236 if (mirror_index
>= BTRFS_MAX_MIRRORS
)
1239 sblock
= sblocks_for_recheck
+ mirror_index
;
1240 sblock
->sctx
= sctx
;
1241 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1244 spin_lock(&sctx
->stat_lock
);
1245 sctx
->stat
.malloc_errors
++;
1246 spin_unlock(&sctx
->stat_lock
);
1250 scrub_page_get(page
);
1251 sblock
->pagev
[page_index
] = page
;
1252 page
->logical
= logical
;
1253 page
->physical
= bbio
->stripes
[mirror_index
].physical
;
1254 BUG_ON(page_index
>= original_sblock
->page_count
);
1255 page
->physical_for_dev_replace
=
1256 original_sblock
->pagev
[page_index
]->
1257 physical_for_dev_replace
;
1258 /* for missing devices, dev->bdev is NULL */
1259 page
->dev
= bbio
->stripes
[mirror_index
].dev
;
1260 page
->mirror_num
= mirror_index
+ 1;
1261 sblock
->page_count
++;
1262 page
->page
= alloc_page(GFP_NOFS
);
1276 * this function will check the on disk data for checksum errors, header
1277 * errors and read I/O errors. If any I/O errors happen, the exact pages
1278 * which are errored are marked as being bad. The goal is to enable scrub
1279 * to take those pages that are not errored from all the mirrors so that
1280 * the pages that are errored in the just handled mirror can be repaired.
1282 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1283 struct scrub_block
*sblock
, int is_metadata
,
1284 int have_csum
, u8
*csum
, u64 generation
,
1289 sblock
->no_io_error_seen
= 1;
1290 sblock
->header_error
= 0;
1291 sblock
->checksum_error
= 0;
1293 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1295 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1296 DECLARE_COMPLETION_ONSTACK(complete
);
1298 if (page
->dev
->bdev
== NULL
) {
1300 sblock
->no_io_error_seen
= 0;
1304 WARN_ON(!page
->page
);
1305 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1308 sblock
->no_io_error_seen
= 0;
1311 bio
->bi_bdev
= page
->dev
->bdev
;
1312 bio
->bi_sector
= page
->physical
>> 9;
1313 bio
->bi_end_io
= scrub_complete_bio_end_io
;
1314 bio
->bi_private
= &complete
;
1316 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1317 btrfsic_submit_bio(READ
, bio
);
1319 /* this will also unplug the queue */
1320 wait_for_completion(&complete
);
1322 page
->io_error
= !test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1323 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1324 sblock
->no_io_error_seen
= 0;
1328 if (sblock
->no_io_error_seen
)
1329 scrub_recheck_block_checksum(fs_info
, sblock
, is_metadata
,
1330 have_csum
, csum
, generation
,
1336 static void scrub_recheck_block_checksum(struct btrfs_fs_info
*fs_info
,
1337 struct scrub_block
*sblock
,
1338 int is_metadata
, int have_csum
,
1339 const u8
*csum
, u64 generation
,
1343 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1345 void *mapped_buffer
;
1347 WARN_ON(!sblock
->pagev
[0]->page
);
1349 struct btrfs_header
*h
;
1351 mapped_buffer
= kmap_atomic(sblock
->pagev
[0]->page
);
1352 h
= (struct btrfs_header
*)mapped_buffer
;
1354 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
) ||
1355 memcmp(h
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
) ||
1356 memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1358 sblock
->header_error
= 1;
1359 } else if (generation
!= btrfs_stack_header_generation(h
)) {
1360 sblock
->header_error
= 1;
1361 sblock
->generation_error
= 1;
1368 mapped_buffer
= kmap_atomic(sblock
->pagev
[0]->page
);
1371 for (page_num
= 0;;) {
1372 if (page_num
== 0 && is_metadata
)
1373 crc
= btrfs_csum_data(
1374 ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
,
1375 crc
, PAGE_SIZE
- BTRFS_CSUM_SIZE
);
1377 crc
= btrfs_csum_data(mapped_buffer
, crc
, PAGE_SIZE
);
1379 kunmap_atomic(mapped_buffer
);
1381 if (page_num
>= sblock
->page_count
)
1383 WARN_ON(!sblock
->pagev
[page_num
]->page
);
1385 mapped_buffer
= kmap_atomic(sblock
->pagev
[page_num
]->page
);
1388 btrfs_csum_final(crc
, calculated_csum
);
1389 if (memcmp(calculated_csum
, csum
, csum_size
))
1390 sblock
->checksum_error
= 1;
1393 static void scrub_complete_bio_end_io(struct bio
*bio
, int err
)
1395 complete((struct completion
*)bio
->bi_private
);
1398 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1399 struct scrub_block
*sblock_good
,
1405 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1408 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1419 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1420 struct scrub_block
*sblock_good
,
1421 int page_num
, int force_write
)
1423 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1424 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1426 BUG_ON(page_bad
->page
== NULL
);
1427 BUG_ON(page_good
->page
== NULL
);
1428 if (force_write
|| sblock_bad
->header_error
||
1429 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1432 DECLARE_COMPLETION_ONSTACK(complete
);
1434 if (!page_bad
->dev
->bdev
) {
1435 printk_ratelimited(KERN_WARNING
1436 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1440 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1443 bio
->bi_bdev
= page_bad
->dev
->bdev
;
1444 bio
->bi_sector
= page_bad
->physical
>> 9;
1445 bio
->bi_end_io
= scrub_complete_bio_end_io
;
1446 bio
->bi_private
= &complete
;
1448 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1449 if (PAGE_SIZE
!= ret
) {
1453 btrfsic_submit_bio(WRITE
, bio
);
1455 /* this will also unplug the queue */
1456 wait_for_completion(&complete
);
1457 if (!bio_flagged(bio
, BIO_UPTODATE
)) {
1458 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1459 BTRFS_DEV_STAT_WRITE_ERRS
);
1460 btrfs_dev_replace_stats_inc(
1461 &sblock_bad
->sctx
->dev_root
->fs_info
->
1462 dev_replace
.num_write_errors
);
1472 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1476 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1479 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1481 btrfs_dev_replace_stats_inc(
1482 &sblock
->sctx
->dev_root
->fs_info
->dev_replace
.
1487 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1490 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1492 BUG_ON(spage
->page
== NULL
);
1493 if (spage
->io_error
) {
1494 void *mapped_buffer
= kmap_atomic(spage
->page
);
1496 memset(mapped_buffer
, 0, PAGE_CACHE_SIZE
);
1497 flush_dcache_page(spage
->page
);
1498 kunmap_atomic(mapped_buffer
);
1500 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1503 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1504 struct scrub_page
*spage
)
1506 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1507 struct scrub_bio
*sbio
;
1510 mutex_lock(&wr_ctx
->wr_lock
);
1512 if (!wr_ctx
->wr_curr_bio
) {
1513 wr_ctx
->wr_curr_bio
= kzalloc(sizeof(*wr_ctx
->wr_curr_bio
),
1515 if (!wr_ctx
->wr_curr_bio
) {
1516 mutex_unlock(&wr_ctx
->wr_lock
);
1519 wr_ctx
->wr_curr_bio
->sctx
= sctx
;
1520 wr_ctx
->wr_curr_bio
->page_count
= 0;
1522 sbio
= wr_ctx
->wr_curr_bio
;
1523 if (sbio
->page_count
== 0) {
1526 sbio
->physical
= spage
->physical_for_dev_replace
;
1527 sbio
->logical
= spage
->logical
;
1528 sbio
->dev
= wr_ctx
->tgtdev
;
1531 bio
= btrfs_io_bio_alloc(GFP_NOFS
, wr_ctx
->pages_per_wr_bio
);
1533 mutex_unlock(&wr_ctx
->wr_lock
);
1539 bio
->bi_private
= sbio
;
1540 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1541 bio
->bi_bdev
= sbio
->dev
->bdev
;
1542 bio
->bi_sector
= sbio
->physical
>> 9;
1544 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1545 spage
->physical_for_dev_replace
||
1546 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1548 scrub_wr_submit(sctx
);
1552 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1553 if (ret
!= PAGE_SIZE
) {
1554 if (sbio
->page_count
< 1) {
1557 mutex_unlock(&wr_ctx
->wr_lock
);
1560 scrub_wr_submit(sctx
);
1564 sbio
->pagev
[sbio
->page_count
] = spage
;
1565 scrub_page_get(spage
);
1567 if (sbio
->page_count
== wr_ctx
->pages_per_wr_bio
)
1568 scrub_wr_submit(sctx
);
1569 mutex_unlock(&wr_ctx
->wr_lock
);
1574 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1576 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1577 struct scrub_bio
*sbio
;
1579 if (!wr_ctx
->wr_curr_bio
)
1582 sbio
= wr_ctx
->wr_curr_bio
;
1583 wr_ctx
->wr_curr_bio
= NULL
;
1584 WARN_ON(!sbio
->bio
->bi_bdev
);
1585 scrub_pending_bio_inc(sctx
);
1586 /* process all writes in a single worker thread. Then the block layer
1587 * orders the requests before sending them to the driver which
1588 * doubled the write performance on spinning disks when measured
1590 btrfsic_submit_bio(WRITE
, sbio
->bio
);
1593 static void scrub_wr_bio_end_io(struct bio
*bio
, int err
)
1595 struct scrub_bio
*sbio
= bio
->bi_private
;
1596 struct btrfs_fs_info
*fs_info
= sbio
->dev
->dev_root
->fs_info
;
1601 sbio
->work
.func
= scrub_wr_bio_end_io_worker
;
1602 btrfs_queue_worker(&fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
1605 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
1607 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1608 struct scrub_ctx
*sctx
= sbio
->sctx
;
1611 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
1613 struct btrfs_dev_replace
*dev_replace
=
1614 &sbio
->sctx
->dev_root
->fs_info
->dev_replace
;
1616 for (i
= 0; i
< sbio
->page_count
; i
++) {
1617 struct scrub_page
*spage
= sbio
->pagev
[i
];
1619 spage
->io_error
= 1;
1620 btrfs_dev_replace_stats_inc(&dev_replace
->
1625 for (i
= 0; i
< sbio
->page_count
; i
++)
1626 scrub_page_put(sbio
->pagev
[i
]);
1630 scrub_pending_bio_dec(sctx
);
1633 static int scrub_checksum(struct scrub_block
*sblock
)
1638 WARN_ON(sblock
->page_count
< 1);
1639 flags
= sblock
->pagev
[0]->flags
;
1641 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1642 ret
= scrub_checksum_data(sblock
);
1643 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1644 ret
= scrub_checksum_tree_block(sblock
);
1645 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
1646 (void)scrub_checksum_super(sblock
);
1650 scrub_handle_errored_block(sblock
);
1655 static int scrub_checksum_data(struct scrub_block
*sblock
)
1657 struct scrub_ctx
*sctx
= sblock
->sctx
;
1658 u8 csum
[BTRFS_CSUM_SIZE
];
1667 BUG_ON(sblock
->page_count
< 1);
1668 if (!sblock
->pagev
[0]->have_csum
)
1671 on_disk_csum
= sblock
->pagev
[0]->csum
;
1672 page
= sblock
->pagev
[0]->page
;
1673 buffer
= kmap_atomic(page
);
1675 len
= sctx
->sectorsize
;
1678 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1680 crc
= btrfs_csum_data(buffer
, crc
, l
);
1681 kunmap_atomic(buffer
);
1686 BUG_ON(index
>= sblock
->page_count
);
1687 BUG_ON(!sblock
->pagev
[index
]->page
);
1688 page
= sblock
->pagev
[index
]->page
;
1689 buffer
= kmap_atomic(page
);
1692 btrfs_csum_final(crc
, csum
);
1693 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
1699 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
1701 struct scrub_ctx
*sctx
= sblock
->sctx
;
1702 struct btrfs_header
*h
;
1703 struct btrfs_root
*root
= sctx
->dev_root
;
1704 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1705 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1706 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1708 void *mapped_buffer
;
1717 BUG_ON(sblock
->page_count
< 1);
1718 page
= sblock
->pagev
[0]->page
;
1719 mapped_buffer
= kmap_atomic(page
);
1720 h
= (struct btrfs_header
*)mapped_buffer
;
1721 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
1724 * we don't use the getter functions here, as we
1725 * a) don't have an extent buffer and
1726 * b) the page is already kmapped
1729 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
1732 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
))
1735 if (memcmp(h
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
))
1738 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1742 WARN_ON(sctx
->nodesize
!= sctx
->leafsize
);
1743 len
= sctx
->nodesize
- BTRFS_CSUM_SIZE
;
1744 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1745 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1748 u64 l
= min_t(u64
, len
, mapped_size
);
1750 crc
= btrfs_csum_data(p
, crc
, l
);
1751 kunmap_atomic(mapped_buffer
);
1756 BUG_ON(index
>= sblock
->page_count
);
1757 BUG_ON(!sblock
->pagev
[index
]->page
);
1758 page
= sblock
->pagev
[index
]->page
;
1759 mapped_buffer
= kmap_atomic(page
);
1760 mapped_size
= PAGE_SIZE
;
1764 btrfs_csum_final(crc
, calculated_csum
);
1765 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1768 return fail
|| crc_fail
;
1771 static int scrub_checksum_super(struct scrub_block
*sblock
)
1773 struct btrfs_super_block
*s
;
1774 struct scrub_ctx
*sctx
= sblock
->sctx
;
1775 struct btrfs_root
*root
= sctx
->dev_root
;
1776 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1777 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1778 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1780 void *mapped_buffer
;
1789 BUG_ON(sblock
->page_count
< 1);
1790 page
= sblock
->pagev
[0]->page
;
1791 mapped_buffer
= kmap_atomic(page
);
1792 s
= (struct btrfs_super_block
*)mapped_buffer
;
1793 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
1795 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
1798 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
1801 if (memcmp(s
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
))
1804 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
1805 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1806 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1809 u64 l
= min_t(u64
, len
, mapped_size
);
1811 crc
= btrfs_csum_data(p
, crc
, l
);
1812 kunmap_atomic(mapped_buffer
);
1817 BUG_ON(index
>= sblock
->page_count
);
1818 BUG_ON(!sblock
->pagev
[index
]->page
);
1819 page
= sblock
->pagev
[index
]->page
;
1820 mapped_buffer
= kmap_atomic(page
);
1821 mapped_size
= PAGE_SIZE
;
1825 btrfs_csum_final(crc
, calculated_csum
);
1826 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1829 if (fail_cor
+ fail_gen
) {
1831 * if we find an error in a super block, we just report it.
1832 * They will get written with the next transaction commit
1835 spin_lock(&sctx
->stat_lock
);
1836 ++sctx
->stat
.super_errors
;
1837 spin_unlock(&sctx
->stat_lock
);
1839 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1840 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1842 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1843 BTRFS_DEV_STAT_GENERATION_ERRS
);
1846 return fail_cor
+ fail_gen
;
1849 static void scrub_block_get(struct scrub_block
*sblock
)
1851 atomic_inc(&sblock
->ref_count
);
1854 static void scrub_block_put(struct scrub_block
*sblock
)
1856 if (atomic_dec_and_test(&sblock
->ref_count
)) {
1859 for (i
= 0; i
< sblock
->page_count
; i
++)
1860 scrub_page_put(sblock
->pagev
[i
]);
1865 static void scrub_page_get(struct scrub_page
*spage
)
1867 atomic_inc(&spage
->ref_count
);
1870 static void scrub_page_put(struct scrub_page
*spage
)
1872 if (atomic_dec_and_test(&spage
->ref_count
)) {
1874 __free_page(spage
->page
);
1879 static void scrub_submit(struct scrub_ctx
*sctx
)
1881 struct scrub_bio
*sbio
;
1883 if (sctx
->curr
== -1)
1886 sbio
= sctx
->bios
[sctx
->curr
];
1888 scrub_pending_bio_inc(sctx
);
1890 if (!sbio
->bio
->bi_bdev
) {
1892 * this case should not happen. If btrfs_map_block() is
1893 * wrong, it could happen for dev-replace operations on
1894 * missing devices when no mirrors are available, but in
1895 * this case it should already fail the mount.
1896 * This case is handled correctly (but _very_ slowly).
1898 printk_ratelimited(KERN_WARNING
1899 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1900 bio_endio(sbio
->bio
, -EIO
);
1902 btrfsic_submit_bio(READ
, sbio
->bio
);
1906 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
1907 struct scrub_page
*spage
)
1909 struct scrub_block
*sblock
= spage
->sblock
;
1910 struct scrub_bio
*sbio
;
1915 * grab a fresh bio or wait for one to become available
1917 while (sctx
->curr
== -1) {
1918 spin_lock(&sctx
->list_lock
);
1919 sctx
->curr
= sctx
->first_free
;
1920 if (sctx
->curr
!= -1) {
1921 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
1922 sctx
->bios
[sctx
->curr
]->next_free
= -1;
1923 sctx
->bios
[sctx
->curr
]->page_count
= 0;
1924 spin_unlock(&sctx
->list_lock
);
1926 spin_unlock(&sctx
->list_lock
);
1927 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
1930 sbio
= sctx
->bios
[sctx
->curr
];
1931 if (sbio
->page_count
== 0) {
1934 sbio
->physical
= spage
->physical
;
1935 sbio
->logical
= spage
->logical
;
1936 sbio
->dev
= spage
->dev
;
1939 bio
= btrfs_io_bio_alloc(GFP_NOFS
, sctx
->pages_per_rd_bio
);
1945 bio
->bi_private
= sbio
;
1946 bio
->bi_end_io
= scrub_bio_end_io
;
1947 bio
->bi_bdev
= sbio
->dev
->bdev
;
1948 bio
->bi_sector
= sbio
->physical
>> 9;
1950 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1952 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1954 sbio
->dev
!= spage
->dev
) {
1959 sbio
->pagev
[sbio
->page_count
] = spage
;
1960 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1961 if (ret
!= PAGE_SIZE
) {
1962 if (sbio
->page_count
< 1) {
1971 scrub_block_get(sblock
); /* one for the page added to the bio */
1972 atomic_inc(&sblock
->outstanding_pages
);
1974 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
1980 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
1981 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
1982 u64 gen
, int mirror_num
, u8
*csum
, int force
,
1983 u64 physical_for_dev_replace
)
1985 struct scrub_block
*sblock
;
1988 sblock
= kzalloc(sizeof(*sblock
), GFP_NOFS
);
1990 spin_lock(&sctx
->stat_lock
);
1991 sctx
->stat
.malloc_errors
++;
1992 spin_unlock(&sctx
->stat_lock
);
1996 /* one ref inside this function, plus one for each page added to
1998 atomic_set(&sblock
->ref_count
, 1);
1999 sblock
->sctx
= sctx
;
2000 sblock
->no_io_error_seen
= 1;
2002 for (index
= 0; len
> 0; index
++) {
2003 struct scrub_page
*spage
;
2004 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2006 spage
= kzalloc(sizeof(*spage
), GFP_NOFS
);
2009 spin_lock(&sctx
->stat_lock
);
2010 sctx
->stat
.malloc_errors
++;
2011 spin_unlock(&sctx
->stat_lock
);
2012 scrub_block_put(sblock
);
2015 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2016 scrub_page_get(spage
);
2017 sblock
->pagev
[index
] = spage
;
2018 spage
->sblock
= sblock
;
2020 spage
->flags
= flags
;
2021 spage
->generation
= gen
;
2022 spage
->logical
= logical
;
2023 spage
->physical
= physical
;
2024 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2025 spage
->mirror_num
= mirror_num
;
2027 spage
->have_csum
= 1;
2028 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2030 spage
->have_csum
= 0;
2032 sblock
->page_count
++;
2033 spage
->page
= alloc_page(GFP_NOFS
);
2039 physical_for_dev_replace
+= l
;
2042 WARN_ON(sblock
->page_count
== 0);
2043 for (index
= 0; index
< sblock
->page_count
; index
++) {
2044 struct scrub_page
*spage
= sblock
->pagev
[index
];
2047 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2049 scrub_block_put(sblock
);
2057 /* last one frees, either here or in bio completion for last page */
2058 scrub_block_put(sblock
);
2062 static void scrub_bio_end_io(struct bio
*bio
, int err
)
2064 struct scrub_bio
*sbio
= bio
->bi_private
;
2065 struct btrfs_fs_info
*fs_info
= sbio
->dev
->dev_root
->fs_info
;
2070 btrfs_queue_worker(&fs_info
->scrub_workers
, &sbio
->work
);
2073 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2075 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2076 struct scrub_ctx
*sctx
= sbio
->sctx
;
2079 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2081 for (i
= 0; i
< sbio
->page_count
; i
++) {
2082 struct scrub_page
*spage
= sbio
->pagev
[i
];
2084 spage
->io_error
= 1;
2085 spage
->sblock
->no_io_error_seen
= 0;
2089 /* now complete the scrub_block items that have all pages completed */
2090 for (i
= 0; i
< sbio
->page_count
; i
++) {
2091 struct scrub_page
*spage
= sbio
->pagev
[i
];
2092 struct scrub_block
*sblock
= spage
->sblock
;
2094 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2095 scrub_block_complete(sblock
);
2096 scrub_block_put(sblock
);
2101 spin_lock(&sctx
->list_lock
);
2102 sbio
->next_free
= sctx
->first_free
;
2103 sctx
->first_free
= sbio
->index
;
2104 spin_unlock(&sctx
->list_lock
);
2106 if (sctx
->is_dev_replace
&&
2107 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2108 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2109 scrub_wr_submit(sctx
);
2110 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2113 scrub_pending_bio_dec(sctx
);
2116 static void scrub_block_complete(struct scrub_block
*sblock
)
2118 if (!sblock
->no_io_error_seen
) {
2119 scrub_handle_errored_block(sblock
);
2122 * if has checksum error, write via repair mechanism in
2123 * dev replace case, otherwise write here in dev replace
2126 if (!scrub_checksum(sblock
) && sblock
->sctx
->is_dev_replace
)
2127 scrub_write_block_to_dev_replace(sblock
);
2131 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2134 struct btrfs_ordered_sum
*sum
= NULL
;
2135 unsigned long index
;
2136 unsigned long num_sectors
;
2138 while (!list_empty(&sctx
->csum_list
)) {
2139 sum
= list_first_entry(&sctx
->csum_list
,
2140 struct btrfs_ordered_sum
, list
);
2141 if (sum
->bytenr
> logical
)
2143 if (sum
->bytenr
+ sum
->len
> logical
)
2146 ++sctx
->stat
.csum_discards
;
2147 list_del(&sum
->list
);
2154 index
= ((u32
)(logical
- sum
->bytenr
)) / sctx
->sectorsize
;
2155 num_sectors
= sum
->len
/ sctx
->sectorsize
;
2156 memcpy(csum
, sum
->sums
+ index
, sctx
->csum_size
);
2157 if (index
== num_sectors
- 1) {
2158 list_del(&sum
->list
);
2164 /* scrub extent tries to collect up to 64 kB for each bio */
2165 static int scrub_extent(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2166 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2167 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2170 u8 csum
[BTRFS_CSUM_SIZE
];
2173 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2174 blocksize
= sctx
->sectorsize
;
2175 spin_lock(&sctx
->stat_lock
);
2176 sctx
->stat
.data_extents_scrubbed
++;
2177 sctx
->stat
.data_bytes_scrubbed
+= len
;
2178 spin_unlock(&sctx
->stat_lock
);
2179 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2180 WARN_ON(sctx
->nodesize
!= sctx
->leafsize
);
2181 blocksize
= sctx
->nodesize
;
2182 spin_lock(&sctx
->stat_lock
);
2183 sctx
->stat
.tree_extents_scrubbed
++;
2184 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2185 spin_unlock(&sctx
->stat_lock
);
2187 blocksize
= sctx
->sectorsize
;
2192 u64 l
= min_t(u64
, len
, blocksize
);
2195 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2196 /* push csums to sbio */
2197 have_csum
= scrub_find_csum(sctx
, logical
, l
, csum
);
2199 ++sctx
->stat
.no_csum
;
2200 if (sctx
->is_dev_replace
&& !have_csum
) {
2201 ret
= copy_nocow_pages(sctx
, logical
, l
,
2203 physical_for_dev_replace
);
2204 goto behind_scrub_pages
;
2207 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2208 mirror_num
, have_csum
? csum
: NULL
, 0,
2209 physical_for_dev_replace
);
2216 physical_for_dev_replace
+= l
;
2221 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
2222 struct map_lookup
*map
,
2223 struct btrfs_device
*scrub_dev
,
2224 int num
, u64 base
, u64 length
,
2227 struct btrfs_path
*path
;
2228 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
2229 struct btrfs_root
*root
= fs_info
->extent_root
;
2230 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
2231 struct btrfs_extent_item
*extent
;
2232 struct blk_plug plug
;
2237 struct extent_buffer
*l
;
2238 struct btrfs_key key
;
2244 struct reada_control
*reada1
;
2245 struct reada_control
*reada2
;
2246 struct btrfs_key key_start
;
2247 struct btrfs_key key_end
;
2248 u64 increment
= map
->stripe_len
;
2251 u64 extent_physical
;
2253 struct btrfs_device
*extent_dev
;
2254 int extent_mirror_num
;
2257 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
2258 BTRFS_BLOCK_GROUP_RAID6
)) {
2259 if (num
>= nr_data_stripes(map
)) {
2266 do_div(nstripes
, map
->stripe_len
);
2267 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2268 offset
= map
->stripe_len
* num
;
2269 increment
= map
->stripe_len
* map
->num_stripes
;
2271 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2272 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2273 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
2274 increment
= map
->stripe_len
* factor
;
2275 mirror_num
= num
% map
->sub_stripes
+ 1;
2276 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2277 increment
= map
->stripe_len
;
2278 mirror_num
= num
% map
->num_stripes
+ 1;
2279 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2280 increment
= map
->stripe_len
;
2281 mirror_num
= num
% map
->num_stripes
+ 1;
2283 increment
= map
->stripe_len
;
2287 path
= btrfs_alloc_path();
2292 * work on commit root. The related disk blocks are static as
2293 * long as COW is applied. This means, it is save to rewrite
2294 * them to repair disk errors without any race conditions
2296 path
->search_commit_root
= 1;
2297 path
->skip_locking
= 1;
2300 * trigger the readahead for extent tree csum tree and wait for
2301 * completion. During readahead, the scrub is officially paused
2302 * to not hold off transaction commits
2304 logical
= base
+ offset
;
2306 wait_event(sctx
->list_wait
,
2307 atomic_read(&sctx
->bios_in_flight
) == 0);
2308 atomic_inc(&fs_info
->scrubs_paused
);
2309 wake_up(&fs_info
->scrub_pause_wait
);
2311 /* FIXME it might be better to start readahead at commit root */
2312 key_start
.objectid
= logical
;
2313 key_start
.type
= BTRFS_EXTENT_ITEM_KEY
;
2314 key_start
.offset
= (u64
)0;
2315 key_end
.objectid
= base
+ offset
+ nstripes
* increment
;
2316 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
2317 key_end
.offset
= (u64
)-1;
2318 reada1
= btrfs_reada_add(root
, &key_start
, &key_end
);
2320 key_start
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
2321 key_start
.type
= BTRFS_EXTENT_CSUM_KEY
;
2322 key_start
.offset
= logical
;
2323 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
2324 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
2325 key_end
.offset
= base
+ offset
+ nstripes
* increment
;
2326 reada2
= btrfs_reada_add(csum_root
, &key_start
, &key_end
);
2328 if (!IS_ERR(reada1
))
2329 btrfs_reada_wait(reada1
);
2330 if (!IS_ERR(reada2
))
2331 btrfs_reada_wait(reada2
);
2333 mutex_lock(&fs_info
->scrub_lock
);
2334 while (atomic_read(&fs_info
->scrub_pause_req
)) {
2335 mutex_unlock(&fs_info
->scrub_lock
);
2336 wait_event(fs_info
->scrub_pause_wait
,
2337 atomic_read(&fs_info
->scrub_pause_req
) == 0);
2338 mutex_lock(&fs_info
->scrub_lock
);
2340 atomic_dec(&fs_info
->scrubs_paused
);
2341 mutex_unlock(&fs_info
->scrub_lock
);
2342 wake_up(&fs_info
->scrub_pause_wait
);
2345 * collect all data csums for the stripe to avoid seeking during
2346 * the scrub. This might currently (crc32) end up to be about 1MB
2348 blk_start_plug(&plug
);
2351 * now find all extents for each stripe and scrub them
2353 logical
= base
+ offset
;
2354 physical
= map
->stripes
[num
].physical
;
2355 logic_end
= logical
+ increment
* nstripes
;
2357 while (logical
< logic_end
) {
2361 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
2362 atomic_read(&sctx
->cancel_req
)) {
2367 * check to see if we have to pause
2369 if (atomic_read(&fs_info
->scrub_pause_req
)) {
2370 /* push queued extents */
2371 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
2373 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2374 scrub_wr_submit(sctx
);
2375 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2376 wait_event(sctx
->list_wait
,
2377 atomic_read(&sctx
->bios_in_flight
) == 0);
2378 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
2379 atomic_inc(&fs_info
->scrubs_paused
);
2380 wake_up(&fs_info
->scrub_pause_wait
);
2381 mutex_lock(&fs_info
->scrub_lock
);
2382 while (atomic_read(&fs_info
->scrub_pause_req
)) {
2383 mutex_unlock(&fs_info
->scrub_lock
);
2384 wait_event(fs_info
->scrub_pause_wait
,
2385 atomic_read(&fs_info
->scrub_pause_req
) == 0);
2386 mutex_lock(&fs_info
->scrub_lock
);
2388 atomic_dec(&fs_info
->scrubs_paused
);
2389 mutex_unlock(&fs_info
->scrub_lock
);
2390 wake_up(&fs_info
->scrub_pause_wait
);
2393 key
.objectid
= logical
;
2394 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2395 key
.offset
= (u64
)-1;
2397 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2402 ret
= btrfs_previous_item(root
, path
, 0,
2403 BTRFS_EXTENT_ITEM_KEY
);
2407 /* there's no smaller item, so stick with the
2409 btrfs_release_path(path
);
2410 ret
= btrfs_search_slot(NULL
, root
, &key
,
2422 slot
= path
->slots
[0];
2423 if (slot
>= btrfs_header_nritems(l
)) {
2424 ret
= btrfs_next_leaf(root
, path
);
2433 btrfs_item_key_to_cpu(l
, &key
, slot
);
2435 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
2436 bytes
= root
->leafsize
;
2440 if (key
.objectid
+ bytes
<= logical
)
2443 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
2444 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
2447 if (key
.objectid
>= logical
+ map
->stripe_len
) {
2448 /* out of this device extent */
2449 if (key
.objectid
>= logic_end
)
2454 extent
= btrfs_item_ptr(l
, slot
,
2455 struct btrfs_extent_item
);
2456 flags
= btrfs_extent_flags(l
, extent
);
2457 generation
= btrfs_extent_generation(l
, extent
);
2459 if (key
.objectid
< logical
&&
2460 (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)) {
2462 "btrfs scrub: tree block %llu spanning "
2463 "stripes, ignored. logical=%llu\n",
2464 key
.objectid
, logical
);
2469 extent_logical
= key
.objectid
;
2473 * trim extent to this stripe
2475 if (extent_logical
< logical
) {
2476 extent_len
-= logical
- extent_logical
;
2477 extent_logical
= logical
;
2479 if (extent_logical
+ extent_len
>
2480 logical
+ map
->stripe_len
) {
2481 extent_len
= logical
+ map
->stripe_len
-
2485 extent_physical
= extent_logical
- logical
+ physical
;
2486 extent_dev
= scrub_dev
;
2487 extent_mirror_num
= mirror_num
;
2489 scrub_remap_extent(fs_info
, extent_logical
,
2490 extent_len
, &extent_physical
,
2492 &extent_mirror_num
);
2494 ret
= btrfs_lookup_csums_range(csum_root
, logical
,
2495 logical
+ map
->stripe_len
- 1,
2496 &sctx
->csum_list
, 1);
2500 ret
= scrub_extent(sctx
, extent_logical
, extent_len
,
2501 extent_physical
, extent_dev
, flags
,
2502 generation
, extent_mirror_num
,
2503 extent_logical
- logical
+ physical
);
2507 scrub_free_csums(sctx
);
2508 if (extent_logical
+ extent_len
<
2509 key
.objectid
+ bytes
) {
2510 logical
+= increment
;
2511 physical
+= map
->stripe_len
;
2513 if (logical
< key
.objectid
+ bytes
) {
2518 if (logical
>= logic_end
) {
2526 btrfs_release_path(path
);
2527 logical
+= increment
;
2528 physical
+= map
->stripe_len
;
2529 spin_lock(&sctx
->stat_lock
);
2531 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
2534 sctx
->stat
.last_physical
= physical
;
2535 spin_unlock(&sctx
->stat_lock
);
2540 /* push queued extents */
2542 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2543 scrub_wr_submit(sctx
);
2544 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2546 blk_finish_plug(&plug
);
2547 btrfs_free_path(path
);
2548 return ret
< 0 ? ret
: 0;
2551 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
2552 struct btrfs_device
*scrub_dev
,
2553 u64 chunk_tree
, u64 chunk_objectid
,
2554 u64 chunk_offset
, u64 length
,
2555 u64 dev_offset
, int is_dev_replace
)
2557 struct btrfs_mapping_tree
*map_tree
=
2558 &sctx
->dev_root
->fs_info
->mapping_tree
;
2559 struct map_lookup
*map
;
2560 struct extent_map
*em
;
2564 read_lock(&map_tree
->map_tree
.lock
);
2565 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2566 read_unlock(&map_tree
->map_tree
.lock
);
2571 map
= (struct map_lookup
*)em
->bdev
;
2572 if (em
->start
!= chunk_offset
)
2575 if (em
->len
< length
)
2578 for (i
= 0; i
< map
->num_stripes
; ++i
) {
2579 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
2580 map
->stripes
[i
].physical
== dev_offset
) {
2581 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
2582 chunk_offset
, length
,
2589 free_extent_map(em
);
2594 static noinline_for_stack
2595 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
2596 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
2599 struct btrfs_dev_extent
*dev_extent
= NULL
;
2600 struct btrfs_path
*path
;
2601 struct btrfs_root
*root
= sctx
->dev_root
;
2602 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2609 struct extent_buffer
*l
;
2610 struct btrfs_key key
;
2611 struct btrfs_key found_key
;
2612 struct btrfs_block_group_cache
*cache
;
2613 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
2615 path
= btrfs_alloc_path();
2620 path
->search_commit_root
= 1;
2621 path
->skip_locking
= 1;
2623 key
.objectid
= scrub_dev
->devid
;
2625 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2628 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2632 if (path
->slots
[0] >=
2633 btrfs_header_nritems(path
->nodes
[0])) {
2634 ret
= btrfs_next_leaf(root
, path
);
2641 slot
= path
->slots
[0];
2643 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
2645 if (found_key
.objectid
!= scrub_dev
->devid
)
2648 if (btrfs_key_type(&found_key
) != BTRFS_DEV_EXTENT_KEY
)
2651 if (found_key
.offset
>= end
)
2654 if (found_key
.offset
< key
.offset
)
2657 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2658 length
= btrfs_dev_extent_length(l
, dev_extent
);
2660 if (found_key
.offset
+ length
<= start
) {
2661 key
.offset
= found_key
.offset
+ length
;
2662 btrfs_release_path(path
);
2666 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2667 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2668 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2671 * get a reference on the corresponding block group to prevent
2672 * the chunk from going away while we scrub it
2674 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2679 dev_replace
->cursor_right
= found_key
.offset
+ length
;
2680 dev_replace
->cursor_left
= found_key
.offset
;
2681 dev_replace
->item_needs_writeback
= 1;
2682 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_tree
, chunk_objectid
,
2683 chunk_offset
, length
, found_key
.offset
,
2687 * flush, submit all pending read and write bios, afterwards
2689 * Note that in the dev replace case, a read request causes
2690 * write requests that are submitted in the read completion
2691 * worker. Therefore in the current situation, it is required
2692 * that all write requests are flushed, so that all read and
2693 * write requests are really completed when bios_in_flight
2696 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
2698 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2699 scrub_wr_submit(sctx
);
2700 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2702 wait_event(sctx
->list_wait
,
2703 atomic_read(&sctx
->bios_in_flight
) == 0);
2704 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
2705 atomic_inc(&fs_info
->scrubs_paused
);
2706 wake_up(&fs_info
->scrub_pause_wait
);
2707 wait_event(sctx
->list_wait
,
2708 atomic_read(&sctx
->workers_pending
) == 0);
2710 mutex_lock(&fs_info
->scrub_lock
);
2711 while (atomic_read(&fs_info
->scrub_pause_req
)) {
2712 mutex_unlock(&fs_info
->scrub_lock
);
2713 wait_event(fs_info
->scrub_pause_wait
,
2714 atomic_read(&fs_info
->scrub_pause_req
) == 0);
2715 mutex_lock(&fs_info
->scrub_lock
);
2717 atomic_dec(&fs_info
->scrubs_paused
);
2718 mutex_unlock(&fs_info
->scrub_lock
);
2719 wake_up(&fs_info
->scrub_pause_wait
);
2721 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
2722 dev_replace
->item_needs_writeback
= 1;
2723 btrfs_put_block_group(cache
);
2726 if (is_dev_replace
&&
2727 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
2731 if (sctx
->stat
.malloc_errors
> 0) {
2736 key
.offset
= found_key
.offset
+ length
;
2737 btrfs_release_path(path
);
2740 btrfs_free_path(path
);
2743 * ret can still be 1 from search_slot or next_leaf,
2744 * that's not an error
2746 return ret
< 0 ? ret
: 0;
2749 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
2750 struct btrfs_device
*scrub_dev
)
2756 struct btrfs_root
*root
= sctx
->dev_root
;
2758 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
2761 gen
= root
->fs_info
->last_trans_committed
;
2763 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
2764 bytenr
= btrfs_sb_offset(i
);
2765 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
> scrub_dev
->total_bytes
)
2768 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
2769 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
2774 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
2780 * get a reference count on fs_info->scrub_workers. start worker if necessary
2782 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
2787 mutex_lock(&fs_info
->scrub_lock
);
2788 if (fs_info
->scrub_workers_refcnt
== 0) {
2790 btrfs_init_workers(&fs_info
->scrub_workers
, "scrub", 1,
2791 &fs_info
->generic_worker
);
2793 btrfs_init_workers(&fs_info
->scrub_workers
, "scrub",
2794 fs_info
->thread_pool_size
,
2795 &fs_info
->generic_worker
);
2796 fs_info
->scrub_workers
.idle_thresh
= 4;
2797 ret
= btrfs_start_workers(&fs_info
->scrub_workers
);
2800 btrfs_init_workers(&fs_info
->scrub_wr_completion_workers
,
2802 fs_info
->thread_pool_size
,
2803 &fs_info
->generic_worker
);
2804 fs_info
->scrub_wr_completion_workers
.idle_thresh
= 2;
2805 ret
= btrfs_start_workers(
2806 &fs_info
->scrub_wr_completion_workers
);
2809 btrfs_init_workers(&fs_info
->scrub_nocow_workers
, "scrubnc", 1,
2810 &fs_info
->generic_worker
);
2811 ret
= btrfs_start_workers(&fs_info
->scrub_nocow_workers
);
2815 ++fs_info
->scrub_workers_refcnt
;
2817 mutex_unlock(&fs_info
->scrub_lock
);
2822 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
2824 mutex_lock(&fs_info
->scrub_lock
);
2825 if (--fs_info
->scrub_workers_refcnt
== 0) {
2826 btrfs_stop_workers(&fs_info
->scrub_workers
);
2827 btrfs_stop_workers(&fs_info
->scrub_wr_completion_workers
);
2828 btrfs_stop_workers(&fs_info
->scrub_nocow_workers
);
2830 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
2831 mutex_unlock(&fs_info
->scrub_lock
);
2834 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
2835 u64 end
, struct btrfs_scrub_progress
*progress
,
2836 int readonly
, int is_dev_replace
)
2838 struct scrub_ctx
*sctx
;
2840 struct btrfs_device
*dev
;
2842 if (btrfs_fs_closing(fs_info
))
2846 * check some assumptions
2848 if (fs_info
->chunk_root
->nodesize
!= fs_info
->chunk_root
->leafsize
) {
2850 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2851 fs_info
->chunk_root
->nodesize
,
2852 fs_info
->chunk_root
->leafsize
);
2856 if (fs_info
->chunk_root
->nodesize
> BTRFS_STRIPE_LEN
) {
2858 * in this case scrub is unable to calculate the checksum
2859 * the way scrub is implemented. Do not handle this
2860 * situation at all because it won't ever happen.
2863 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2864 fs_info
->chunk_root
->nodesize
, BTRFS_STRIPE_LEN
);
2868 if (fs_info
->chunk_root
->sectorsize
!= PAGE_SIZE
) {
2869 /* not supported for data w/o checksums */
2871 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2872 fs_info
->chunk_root
->sectorsize
, PAGE_SIZE
);
2876 if (fs_info
->chunk_root
->nodesize
>
2877 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
2878 fs_info
->chunk_root
->sectorsize
>
2879 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
2881 * would exhaust the array bounds of pagev member in
2882 * struct scrub_block
2884 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2885 fs_info
->chunk_root
->nodesize
,
2886 SCRUB_MAX_PAGES_PER_BLOCK
,
2887 fs_info
->chunk_root
->sectorsize
,
2888 SCRUB_MAX_PAGES_PER_BLOCK
);
2892 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
2896 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2897 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2898 if (!dev
|| (dev
->missing
&& !is_dev_replace
)) {
2899 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2900 scrub_workers_put(fs_info
);
2903 mutex_lock(&fs_info
->scrub_lock
);
2905 if (!dev
->in_fs_metadata
|| dev
->is_tgtdev_for_dev_replace
) {
2906 mutex_unlock(&fs_info
->scrub_lock
);
2907 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2908 scrub_workers_put(fs_info
);
2912 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
2913 if (dev
->scrub_device
||
2915 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
2916 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
2917 mutex_unlock(&fs_info
->scrub_lock
);
2918 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2919 scrub_workers_put(fs_info
);
2920 return -EINPROGRESS
;
2922 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
2923 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
2925 mutex_unlock(&fs_info
->scrub_lock
);
2926 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2927 scrub_workers_put(fs_info
);
2928 return PTR_ERR(sctx
);
2930 sctx
->readonly
= readonly
;
2931 dev
->scrub_device
= sctx
;
2933 atomic_inc(&fs_info
->scrubs_running
);
2934 mutex_unlock(&fs_info
->scrub_lock
);
2935 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2937 if (!is_dev_replace
) {
2938 down_read(&fs_info
->scrub_super_lock
);
2939 ret
= scrub_supers(sctx
, dev
);
2940 up_read(&fs_info
->scrub_super_lock
);
2944 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
2947 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
2948 atomic_dec(&fs_info
->scrubs_running
);
2949 wake_up(&fs_info
->scrub_pause_wait
);
2951 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
2954 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
2956 mutex_lock(&fs_info
->scrub_lock
);
2957 dev
->scrub_device
= NULL
;
2958 mutex_unlock(&fs_info
->scrub_lock
);
2960 scrub_free_ctx(sctx
);
2961 scrub_workers_put(fs_info
);
2966 void btrfs_scrub_pause(struct btrfs_root
*root
)
2968 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2970 mutex_lock(&fs_info
->scrub_lock
);
2971 atomic_inc(&fs_info
->scrub_pause_req
);
2972 while (atomic_read(&fs_info
->scrubs_paused
) !=
2973 atomic_read(&fs_info
->scrubs_running
)) {
2974 mutex_unlock(&fs_info
->scrub_lock
);
2975 wait_event(fs_info
->scrub_pause_wait
,
2976 atomic_read(&fs_info
->scrubs_paused
) ==
2977 atomic_read(&fs_info
->scrubs_running
));
2978 mutex_lock(&fs_info
->scrub_lock
);
2980 mutex_unlock(&fs_info
->scrub_lock
);
2983 void btrfs_scrub_continue(struct btrfs_root
*root
)
2985 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2987 atomic_dec(&fs_info
->scrub_pause_req
);
2988 wake_up(&fs_info
->scrub_pause_wait
);
2991 void btrfs_scrub_pause_super(struct btrfs_root
*root
)
2993 down_write(&root
->fs_info
->scrub_super_lock
);
2996 void btrfs_scrub_continue_super(struct btrfs_root
*root
)
2998 up_write(&root
->fs_info
->scrub_super_lock
);
3001 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
3003 mutex_lock(&fs_info
->scrub_lock
);
3004 if (!atomic_read(&fs_info
->scrubs_running
)) {
3005 mutex_unlock(&fs_info
->scrub_lock
);
3009 atomic_inc(&fs_info
->scrub_cancel_req
);
3010 while (atomic_read(&fs_info
->scrubs_running
)) {
3011 mutex_unlock(&fs_info
->scrub_lock
);
3012 wait_event(fs_info
->scrub_pause_wait
,
3013 atomic_read(&fs_info
->scrubs_running
) == 0);
3014 mutex_lock(&fs_info
->scrub_lock
);
3016 atomic_dec(&fs_info
->scrub_cancel_req
);
3017 mutex_unlock(&fs_info
->scrub_lock
);
3022 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
3023 struct btrfs_device
*dev
)
3025 struct scrub_ctx
*sctx
;
3027 mutex_lock(&fs_info
->scrub_lock
);
3028 sctx
= dev
->scrub_device
;
3030 mutex_unlock(&fs_info
->scrub_lock
);
3033 atomic_inc(&sctx
->cancel_req
);
3034 while (dev
->scrub_device
) {
3035 mutex_unlock(&fs_info
->scrub_lock
);
3036 wait_event(fs_info
->scrub_pause_wait
,
3037 dev
->scrub_device
== NULL
);
3038 mutex_lock(&fs_info
->scrub_lock
);
3040 mutex_unlock(&fs_info
->scrub_lock
);
3045 int btrfs_scrub_progress(struct btrfs_root
*root
, u64 devid
,
3046 struct btrfs_scrub_progress
*progress
)
3048 struct btrfs_device
*dev
;
3049 struct scrub_ctx
*sctx
= NULL
;
3051 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3052 dev
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
3054 sctx
= dev
->scrub_device
;
3056 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
3057 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3059 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
3062 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
3063 u64 extent_logical
, u64 extent_len
,
3064 u64
*extent_physical
,
3065 struct btrfs_device
**extent_dev
,
3066 int *extent_mirror_num
)
3069 struct btrfs_bio
*bbio
= NULL
;
3072 mapped_length
= extent_len
;
3073 ret
= btrfs_map_block(fs_info
, READ
, extent_logical
,
3074 &mapped_length
, &bbio
, 0);
3075 if (ret
|| !bbio
|| mapped_length
< extent_len
||
3076 !bbio
->stripes
[0].dev
->bdev
) {
3081 *extent_physical
= bbio
->stripes
[0].physical
;
3082 *extent_mirror_num
= bbio
->mirror_num
;
3083 *extent_dev
= bbio
->stripes
[0].dev
;
3087 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
3088 struct scrub_wr_ctx
*wr_ctx
,
3089 struct btrfs_fs_info
*fs_info
,
3090 struct btrfs_device
*dev
,
3093 WARN_ON(wr_ctx
->wr_curr_bio
!= NULL
);
3095 mutex_init(&wr_ctx
->wr_lock
);
3096 wr_ctx
->wr_curr_bio
= NULL
;
3097 if (!is_dev_replace
)
3100 WARN_ON(!dev
->bdev
);
3101 wr_ctx
->pages_per_wr_bio
= min_t(int, SCRUB_PAGES_PER_WR_BIO
,
3102 bio_get_nr_vecs(dev
->bdev
));
3103 wr_ctx
->tgtdev
= dev
;
3104 atomic_set(&wr_ctx
->flush_all_writes
, 0);
3108 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
)
3110 mutex_lock(&wr_ctx
->wr_lock
);
3111 kfree(wr_ctx
->wr_curr_bio
);
3112 wr_ctx
->wr_curr_bio
= NULL
;
3113 mutex_unlock(&wr_ctx
->wr_lock
);
3116 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
3117 int mirror_num
, u64 physical_for_dev_replace
)
3119 struct scrub_copy_nocow_ctx
*nocow_ctx
;
3120 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
3122 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
3124 spin_lock(&sctx
->stat_lock
);
3125 sctx
->stat
.malloc_errors
++;
3126 spin_unlock(&sctx
->stat_lock
);
3130 scrub_pending_trans_workers_inc(sctx
);
3132 nocow_ctx
->sctx
= sctx
;
3133 nocow_ctx
->logical
= logical
;
3134 nocow_ctx
->len
= len
;
3135 nocow_ctx
->mirror_num
= mirror_num
;
3136 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
3137 nocow_ctx
->work
.func
= copy_nocow_pages_worker
;
3138 INIT_LIST_HEAD(&nocow_ctx
->inodes
);
3139 btrfs_queue_worker(&fs_info
->scrub_nocow_workers
,
3145 static int record_inode_for_nocow(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3147 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
3148 struct scrub_nocow_inode
*nocow_inode
;
3150 nocow_inode
= kzalloc(sizeof(*nocow_inode
), GFP_NOFS
);
3153 nocow_inode
->inum
= inum
;
3154 nocow_inode
->offset
= offset
;
3155 nocow_inode
->root
= root
;
3156 list_add_tail(&nocow_inode
->list
, &nocow_ctx
->inodes
);
3160 #define COPY_COMPLETE 1
3162 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
3164 struct scrub_copy_nocow_ctx
*nocow_ctx
=
3165 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
3166 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
3167 u64 logical
= nocow_ctx
->logical
;
3168 u64 len
= nocow_ctx
->len
;
3169 int mirror_num
= nocow_ctx
->mirror_num
;
3170 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
3172 struct btrfs_trans_handle
*trans
= NULL
;
3173 struct btrfs_fs_info
*fs_info
;
3174 struct btrfs_path
*path
;
3175 struct btrfs_root
*root
;
3176 int not_written
= 0;
3178 fs_info
= sctx
->dev_root
->fs_info
;
3179 root
= fs_info
->extent_root
;
3181 path
= btrfs_alloc_path();
3183 spin_lock(&sctx
->stat_lock
);
3184 sctx
->stat
.malloc_errors
++;
3185 spin_unlock(&sctx
->stat_lock
);
3190 trans
= btrfs_join_transaction(root
);
3191 if (IS_ERR(trans
)) {
3196 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
3197 record_inode_for_nocow
, nocow_ctx
);
3198 if (ret
!= 0 && ret
!= -ENOENT
) {
3199 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
3200 logical
, physical_for_dev_replace
, len
, mirror_num
,
3206 btrfs_end_transaction(trans
, root
);
3208 while (!list_empty(&nocow_ctx
->inodes
)) {
3209 struct scrub_nocow_inode
*entry
;
3210 entry
= list_first_entry(&nocow_ctx
->inodes
,
3211 struct scrub_nocow_inode
,
3213 list_del_init(&entry
->list
);
3214 ret
= copy_nocow_pages_for_inode(entry
->inum
, entry
->offset
,
3215 entry
->root
, nocow_ctx
);
3217 if (ret
== COPY_COMPLETE
) {
3225 while (!list_empty(&nocow_ctx
->inodes
)) {
3226 struct scrub_nocow_inode
*entry
;
3227 entry
= list_first_entry(&nocow_ctx
->inodes
,
3228 struct scrub_nocow_inode
,
3230 list_del_init(&entry
->list
);
3233 if (trans
&& !IS_ERR(trans
))
3234 btrfs_end_transaction(trans
, root
);
3236 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
3237 num_uncorrectable_read_errors
);
3239 btrfs_free_path(path
);
3242 scrub_pending_trans_workers_dec(sctx
);
3245 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
3246 struct scrub_copy_nocow_ctx
*nocow_ctx
)
3248 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->dev_root
->fs_info
;
3249 struct btrfs_key key
;
3250 struct inode
*inode
;
3252 struct btrfs_root
*local_root
;
3253 struct btrfs_ordered_extent
*ordered
;
3254 struct extent_map
*em
;
3255 struct extent_state
*cached_state
= NULL
;
3256 struct extent_io_tree
*io_tree
;
3257 u64 physical_for_dev_replace
;
3258 u64 len
= nocow_ctx
->len
;
3259 u64 lockstart
= offset
, lockend
= offset
+ len
- 1;
3260 unsigned long index
;
3265 key
.objectid
= root
;
3266 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3267 key
.offset
= (u64
)-1;
3269 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3271 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3272 if (IS_ERR(local_root
)) {
3273 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
3274 return PTR_ERR(local_root
);
3277 key
.type
= BTRFS_INODE_ITEM_KEY
;
3278 key
.objectid
= inum
;
3280 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
3281 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
3283 return PTR_ERR(inode
);
3285 /* Avoid truncate/dio/punch hole.. */
3286 mutex_lock(&inode
->i_mutex
);
3287 inode_dio_wait(inode
);
3289 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
3290 io_tree
= &BTRFS_I(inode
)->io_tree
;
3292 lock_extent_bits(io_tree
, lockstart
, lockend
, 0, &cached_state
);
3293 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
, len
);
3295 btrfs_put_ordered_extent(ordered
);
3299 em
= btrfs_get_extent(inode
, NULL
, 0, lockstart
, len
, 0);
3306 * This extent does not actually cover the logical extent anymore,
3307 * move on to the next inode.
3309 if (em
->block_start
> nocow_ctx
->logical
||
3310 em
->block_start
+ em
->block_len
< nocow_ctx
->logical
+ len
) {
3311 free_extent_map(em
);
3314 free_extent_map(em
);
3316 while (len
>= PAGE_CACHE_SIZE
) {
3317 index
= offset
>> PAGE_CACHE_SHIFT
;
3319 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
3321 pr_err("find_or_create_page() failed\n");
3326 if (PageUptodate(page
)) {
3327 if (PageDirty(page
))
3330 ClearPageError(page
);
3331 err
= extent_read_full_page_nolock(io_tree
, page
,
3333 nocow_ctx
->mirror_num
);
3341 * If the page has been remove from the page cache,
3342 * the data on it is meaningless, because it may be
3343 * old one, the new data may be written into the new
3344 * page in the page cache.
3346 if (page
->mapping
!= inode
->i_mapping
) {
3348 page_cache_release(page
);
3351 if (!PageUptodate(page
)) {
3356 err
= write_page_nocow(nocow_ctx
->sctx
,
3357 physical_for_dev_replace
, page
);
3362 page_cache_release(page
);
3367 offset
+= PAGE_CACHE_SIZE
;
3368 physical_for_dev_replace
+= PAGE_CACHE_SIZE
;
3369 len
-= PAGE_CACHE_SIZE
;
3371 ret
= COPY_COMPLETE
;
3373 unlock_extent_cached(io_tree
, lockstart
, lockend
, &cached_state
,
3376 mutex_unlock(&inode
->i_mutex
);
3381 static int write_page_nocow(struct scrub_ctx
*sctx
,
3382 u64 physical_for_dev_replace
, struct page
*page
)
3385 struct btrfs_device
*dev
;
3387 DECLARE_COMPLETION_ONSTACK(compl);
3389 dev
= sctx
->wr_ctx
.tgtdev
;
3393 printk_ratelimited(KERN_WARNING
3394 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3397 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
3399 spin_lock(&sctx
->stat_lock
);
3400 sctx
->stat
.malloc_errors
++;
3401 spin_unlock(&sctx
->stat_lock
);
3404 bio
->bi_private
= &compl;
3405 bio
->bi_end_io
= scrub_complete_bio_end_io
;
3407 bio
->bi_sector
= physical_for_dev_replace
>> 9;
3408 bio
->bi_bdev
= dev
->bdev
;
3409 ret
= bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
3410 if (ret
!= PAGE_CACHE_SIZE
) {
3413 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
3416 btrfsic_submit_bio(WRITE_SYNC
, bio
);
3417 wait_for_completion(&compl);
3419 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
3420 goto leave_with_eio
;