2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
33 #include "extent_map.h"
35 #include "transaction.h"
36 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "check-integrity.h"
41 #include "rcu-string.h"
43 #include "dev-replace.h"
45 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
46 struct btrfs_root
*root
,
47 struct btrfs_device
*device
);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
49 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
53 static DEFINE_MUTEX(uuid_mutex
);
54 static LIST_HEAD(fs_uuids
);
56 static void lock_chunks(struct btrfs_root
*root
)
58 mutex_lock(&root
->fs_info
->chunk_mutex
);
61 static void unlock_chunks(struct btrfs_root
*root
)
63 mutex_unlock(&root
->fs_info
->chunk_mutex
);
66 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
68 struct btrfs_fs_devices
*fs_devs
;
70 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_NOFS
);
72 return ERR_PTR(-ENOMEM
);
74 mutex_init(&fs_devs
->device_list_mutex
);
76 INIT_LIST_HEAD(&fs_devs
->devices
);
77 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
78 INIT_LIST_HEAD(&fs_devs
->list
);
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
92 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
94 struct btrfs_fs_devices
*fs_devs
;
96 fs_devs
= __alloc_fs_devices();
101 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
103 generate_random_uuid(fs_devs
->fsid
);
108 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
110 struct btrfs_device
*device
;
111 WARN_ON(fs_devices
->opened
);
112 while (!list_empty(&fs_devices
->devices
)) {
113 device
= list_entry(fs_devices
->devices
.next
,
114 struct btrfs_device
, dev_list
);
115 list_del(&device
->dev_list
);
116 rcu_string_free(device
->name
);
122 static void btrfs_kobject_uevent(struct block_device
*bdev
,
123 enum kobject_action action
)
127 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
131 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
132 &disk_to_dev(bdev
->bd_disk
)->kobj
);
135 void btrfs_cleanup_fs_uuids(void)
137 struct btrfs_fs_devices
*fs_devices
;
139 while (!list_empty(&fs_uuids
)) {
140 fs_devices
= list_entry(fs_uuids
.next
,
141 struct btrfs_fs_devices
, list
);
142 list_del(&fs_devices
->list
);
143 free_fs_devices(fs_devices
);
147 static struct btrfs_device
*__alloc_device(void)
149 struct btrfs_device
*dev
;
151 dev
= kzalloc(sizeof(*dev
), GFP_NOFS
);
153 return ERR_PTR(-ENOMEM
);
155 INIT_LIST_HEAD(&dev
->dev_list
);
156 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
158 spin_lock_init(&dev
->io_lock
);
160 spin_lock_init(&dev
->reada_lock
);
161 atomic_set(&dev
->reada_in_flight
, 0);
162 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_WAIT
);
163 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_WAIT
);
168 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
171 struct btrfs_device
*dev
;
173 list_for_each_entry(dev
, head
, dev_list
) {
174 if (dev
->devid
== devid
&&
175 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
182 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
184 struct btrfs_fs_devices
*fs_devices
;
186 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
187 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
194 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
195 int flush
, struct block_device
**bdev
,
196 struct buffer_head
**bh
)
200 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
203 ret
= PTR_ERR(*bdev
);
204 printk(KERN_INFO
"btrfs: open %s failed\n", device_path
);
209 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
210 ret
= set_blocksize(*bdev
, 4096);
212 blkdev_put(*bdev
, flags
);
215 invalidate_bdev(*bdev
);
216 *bh
= btrfs_read_dev_super(*bdev
);
219 blkdev_put(*bdev
, flags
);
231 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
232 struct bio
*head
, struct bio
*tail
)
235 struct bio
*old_head
;
237 old_head
= pending_bios
->head
;
238 pending_bios
->head
= head
;
239 if (pending_bios
->tail
)
240 tail
->bi_next
= old_head
;
242 pending_bios
->tail
= tail
;
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
256 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
259 struct backing_dev_info
*bdi
;
260 struct btrfs_fs_info
*fs_info
;
261 struct btrfs_pending_bios
*pending_bios
;
265 unsigned long num_run
;
266 unsigned long batch_run
= 0;
268 unsigned long last_waited
= 0;
270 int sync_pending
= 0;
271 struct blk_plug plug
;
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
279 blk_start_plug(&plug
);
281 bdi
= blk_get_backing_dev_info(device
->bdev
);
282 fs_info
= device
->dev_root
->fs_info
;
283 limit
= btrfs_async_submit_limit(fs_info
);
284 limit
= limit
* 2 / 3;
287 spin_lock(&device
->io_lock
);
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
297 if (!force_reg
&& device
->pending_sync_bios
.head
) {
298 pending_bios
= &device
->pending_sync_bios
;
301 pending_bios
= &device
->pending_bios
;
305 pending
= pending_bios
->head
;
306 tail
= pending_bios
->tail
;
307 WARN_ON(pending
&& !tail
);
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
314 * device->running_pending is used to synchronize with the
317 if (device
->pending_sync_bios
.head
== NULL
&&
318 device
->pending_bios
.head
== NULL
) {
320 device
->running_pending
= 0;
323 device
->running_pending
= 1;
326 pending_bios
->head
= NULL
;
327 pending_bios
->tail
= NULL
;
329 spin_unlock(&device
->io_lock
);
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
338 pending_bios
!= &device
->pending_sync_bios
&&
339 device
->pending_sync_bios
.head
) ||
340 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
341 device
->pending_bios
.head
)) {
342 spin_lock(&device
->io_lock
);
343 requeue_list(pending_bios
, pending
, tail
);
348 pending
= pending
->bi_next
;
351 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
352 waitqueue_active(&fs_info
->async_submit_wait
))
353 wake_up(&fs_info
->async_submit_wait
);
355 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
365 if (pending_bios
== &device
->pending_sync_bios
) {
367 } else if (sync_pending
) {
368 blk_finish_plug(&plug
);
369 blk_start_plug(&plug
);
373 btrfsic_submit_bio(cur
->bi_rw
, cur
);
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
384 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
385 fs_info
->fs_devices
->open_devices
> 1) {
386 struct io_context
*ioc
;
388 ioc
= current
->io_context
;
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
399 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
400 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
402 ioc
->last_waited
== last_waited
)) {
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
409 last_waited
= ioc
->last_waited
;
414 spin_lock(&device
->io_lock
);
415 requeue_list(pending_bios
, pending
, tail
);
416 device
->running_pending
= 1;
418 spin_unlock(&device
->io_lock
);
419 btrfs_requeue_work(&device
->work
);
422 /* unplug every 64 requests just for good measure */
423 if (batch_run
% 64 == 0) {
424 blk_finish_plug(&plug
);
425 blk_start_plug(&plug
);
434 spin_lock(&device
->io_lock
);
435 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
437 spin_unlock(&device
->io_lock
);
440 blk_finish_plug(&plug
);
443 static void pending_bios_fn(struct btrfs_work
*work
)
445 struct btrfs_device
*device
;
447 device
= container_of(work
, struct btrfs_device
, work
);
448 run_scheduled_bios(device
);
451 static noinline
int device_list_add(const char *path
,
452 struct btrfs_super_block
*disk_super
,
453 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
455 struct btrfs_device
*device
;
456 struct btrfs_fs_devices
*fs_devices
;
457 struct rcu_string
*name
;
458 u64 found_transid
= btrfs_super_generation(disk_super
);
460 fs_devices
= find_fsid(disk_super
->fsid
);
462 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
463 if (IS_ERR(fs_devices
))
464 return PTR_ERR(fs_devices
);
466 list_add(&fs_devices
->list
, &fs_uuids
);
467 fs_devices
->latest_devid
= devid
;
468 fs_devices
->latest_trans
= found_transid
;
472 device
= __find_device(&fs_devices
->devices
, devid
,
473 disk_super
->dev_item
.uuid
);
476 if (fs_devices
->opened
)
479 device
= btrfs_alloc_device(NULL
, &devid
,
480 disk_super
->dev_item
.uuid
);
481 if (IS_ERR(device
)) {
482 /* we can safely leave the fs_devices entry around */
483 return PTR_ERR(device
);
486 name
= rcu_string_strdup(path
, GFP_NOFS
);
491 rcu_assign_pointer(device
->name
, name
);
493 mutex_lock(&fs_devices
->device_list_mutex
);
494 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
495 fs_devices
->num_devices
++;
496 mutex_unlock(&fs_devices
->device_list_mutex
);
498 device
->fs_devices
= fs_devices
;
499 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
500 name
= rcu_string_strdup(path
, GFP_NOFS
);
503 rcu_string_free(device
->name
);
504 rcu_assign_pointer(device
->name
, name
);
505 if (device
->missing
) {
506 fs_devices
->missing_devices
--;
511 if (found_transid
> fs_devices
->latest_trans
) {
512 fs_devices
->latest_devid
= devid
;
513 fs_devices
->latest_trans
= found_transid
;
515 *fs_devices_ret
= fs_devices
;
519 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
521 struct btrfs_fs_devices
*fs_devices
;
522 struct btrfs_device
*device
;
523 struct btrfs_device
*orig_dev
;
525 fs_devices
= alloc_fs_devices(orig
->fsid
);
526 if (IS_ERR(fs_devices
))
529 fs_devices
->latest_devid
= orig
->latest_devid
;
530 fs_devices
->latest_trans
= orig
->latest_trans
;
531 fs_devices
->total_devices
= orig
->total_devices
;
533 /* We have held the volume lock, it is safe to get the devices. */
534 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
535 struct rcu_string
*name
;
537 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
546 name
= rcu_string_strdup(orig_dev
->name
->str
, GFP_NOFS
);
551 rcu_assign_pointer(device
->name
, name
);
553 list_add(&device
->dev_list
, &fs_devices
->devices
);
554 device
->fs_devices
= fs_devices
;
555 fs_devices
->num_devices
++;
559 free_fs_devices(fs_devices
);
560 return ERR_PTR(-ENOMEM
);
563 void btrfs_close_extra_devices(struct btrfs_fs_info
*fs_info
,
564 struct btrfs_fs_devices
*fs_devices
, int step
)
566 struct btrfs_device
*device
, *next
;
568 struct block_device
*latest_bdev
= NULL
;
569 u64 latest_devid
= 0;
570 u64 latest_transid
= 0;
572 mutex_lock(&uuid_mutex
);
574 /* This is the initialized path, it is safe to release the devices. */
575 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
576 if (device
->in_fs_metadata
) {
577 if (!device
->is_tgtdev_for_dev_replace
&&
579 device
->generation
> latest_transid
)) {
580 latest_devid
= device
->devid
;
581 latest_transid
= device
->generation
;
582 latest_bdev
= device
->bdev
;
587 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
598 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
603 blkdev_put(device
->bdev
, device
->mode
);
605 fs_devices
->open_devices
--;
607 if (device
->writeable
) {
608 list_del_init(&device
->dev_alloc_list
);
609 device
->writeable
= 0;
610 if (!device
->is_tgtdev_for_dev_replace
)
611 fs_devices
->rw_devices
--;
613 list_del_init(&device
->dev_list
);
614 fs_devices
->num_devices
--;
615 rcu_string_free(device
->name
);
619 if (fs_devices
->seed
) {
620 fs_devices
= fs_devices
->seed
;
624 fs_devices
->latest_bdev
= latest_bdev
;
625 fs_devices
->latest_devid
= latest_devid
;
626 fs_devices
->latest_trans
= latest_transid
;
628 mutex_unlock(&uuid_mutex
);
631 static void __free_device(struct work_struct
*work
)
633 struct btrfs_device
*device
;
635 device
= container_of(work
, struct btrfs_device
, rcu_work
);
638 blkdev_put(device
->bdev
, device
->mode
);
640 rcu_string_free(device
->name
);
644 static void free_device(struct rcu_head
*head
)
646 struct btrfs_device
*device
;
648 device
= container_of(head
, struct btrfs_device
, rcu
);
650 INIT_WORK(&device
->rcu_work
, __free_device
);
651 schedule_work(&device
->rcu_work
);
654 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
656 struct btrfs_device
*device
;
658 if (--fs_devices
->opened
> 0)
661 mutex_lock(&fs_devices
->device_list_mutex
);
662 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
663 struct btrfs_device
*new_device
;
664 struct rcu_string
*name
;
667 fs_devices
->open_devices
--;
669 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
670 list_del_init(&device
->dev_alloc_list
);
671 fs_devices
->rw_devices
--;
674 if (device
->can_discard
)
675 fs_devices
->num_can_discard
--;
677 fs_devices
->missing_devices
--;
679 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
681 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
683 /* Safe because we are under uuid_mutex */
685 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
686 BUG_ON(!name
); /* -ENOMEM */
687 rcu_assign_pointer(new_device
->name
, name
);
690 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
691 new_device
->fs_devices
= device
->fs_devices
;
693 call_rcu(&device
->rcu
, free_device
);
695 mutex_unlock(&fs_devices
->device_list_mutex
);
697 WARN_ON(fs_devices
->open_devices
);
698 WARN_ON(fs_devices
->rw_devices
);
699 fs_devices
->opened
= 0;
700 fs_devices
->seeding
= 0;
705 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
707 struct btrfs_fs_devices
*seed_devices
= NULL
;
710 mutex_lock(&uuid_mutex
);
711 ret
= __btrfs_close_devices(fs_devices
);
712 if (!fs_devices
->opened
) {
713 seed_devices
= fs_devices
->seed
;
714 fs_devices
->seed
= NULL
;
716 mutex_unlock(&uuid_mutex
);
718 while (seed_devices
) {
719 fs_devices
= seed_devices
;
720 seed_devices
= fs_devices
->seed
;
721 __btrfs_close_devices(fs_devices
);
722 free_fs_devices(fs_devices
);
725 * Wait for rcu kworkers under __btrfs_close_devices
726 * to finish all blkdev_puts so device is really
727 * free when umount is done.
733 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
734 fmode_t flags
, void *holder
)
736 struct request_queue
*q
;
737 struct block_device
*bdev
;
738 struct list_head
*head
= &fs_devices
->devices
;
739 struct btrfs_device
*device
;
740 struct block_device
*latest_bdev
= NULL
;
741 struct buffer_head
*bh
;
742 struct btrfs_super_block
*disk_super
;
743 u64 latest_devid
= 0;
744 u64 latest_transid
= 0;
751 list_for_each_entry(device
, head
, dev_list
) {
757 /* Just open everything we can; ignore failures here */
758 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
762 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
763 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
764 if (devid
!= device
->devid
)
767 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
771 device
->generation
= btrfs_super_generation(disk_super
);
772 if (!latest_transid
|| device
->generation
> latest_transid
) {
773 latest_devid
= devid
;
774 latest_transid
= device
->generation
;
778 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
779 device
->writeable
= 0;
781 device
->writeable
= !bdev_read_only(bdev
);
785 q
= bdev_get_queue(bdev
);
786 if (blk_queue_discard(q
)) {
787 device
->can_discard
= 1;
788 fs_devices
->num_can_discard
++;
792 device
->in_fs_metadata
= 0;
793 device
->mode
= flags
;
795 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
796 fs_devices
->rotating
= 1;
798 fs_devices
->open_devices
++;
799 if (device
->writeable
&&
800 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
801 fs_devices
->rw_devices
++;
802 list_add(&device
->dev_alloc_list
,
803 &fs_devices
->alloc_list
);
810 blkdev_put(bdev
, flags
);
813 if (fs_devices
->open_devices
== 0) {
817 fs_devices
->seeding
= seeding
;
818 fs_devices
->opened
= 1;
819 fs_devices
->latest_bdev
= latest_bdev
;
820 fs_devices
->latest_devid
= latest_devid
;
821 fs_devices
->latest_trans
= latest_transid
;
822 fs_devices
->total_rw_bytes
= 0;
827 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
828 fmode_t flags
, void *holder
)
832 mutex_lock(&uuid_mutex
);
833 if (fs_devices
->opened
) {
834 fs_devices
->opened
++;
837 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
839 mutex_unlock(&uuid_mutex
);
844 * Look for a btrfs signature on a device. This may be called out of the mount path
845 * and we are not allowed to call set_blocksize during the scan. The superblock
846 * is read via pagecache
848 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
849 struct btrfs_fs_devices
**fs_devices_ret
)
851 struct btrfs_super_block
*disk_super
;
852 struct block_device
*bdev
;
863 * we would like to check all the supers, but that would make
864 * a btrfs mount succeed after a mkfs from a different FS.
865 * So, we need to add a special mount option to scan for
866 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
868 bytenr
= btrfs_sb_offset(0);
870 mutex_lock(&uuid_mutex
);
872 bdev
= blkdev_get_by_path(path
, flags
, holder
);
879 /* make sure our super fits in the device */
880 if (bytenr
+ PAGE_CACHE_SIZE
>= i_size_read(bdev
->bd_inode
))
883 /* make sure our super fits in the page */
884 if (sizeof(*disk_super
) > PAGE_CACHE_SIZE
)
887 /* make sure our super doesn't straddle pages on disk */
888 index
= bytenr
>> PAGE_CACHE_SHIFT
;
889 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_CACHE_SHIFT
!= index
)
892 /* pull in the page with our super */
893 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
896 if (IS_ERR_OR_NULL(page
))
901 /* align our pointer to the offset of the super block */
902 disk_super
= p
+ (bytenr
& ~PAGE_CACHE_MASK
);
904 if (btrfs_super_bytenr(disk_super
) != bytenr
||
905 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
)
908 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
909 transid
= btrfs_super_generation(disk_super
);
910 total_devices
= btrfs_super_num_devices(disk_super
);
912 if (disk_super
->label
[0]) {
913 if (disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
914 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
915 printk(KERN_INFO
"btrfs: device label %s ", disk_super
->label
);
917 printk(KERN_INFO
"btrfs: device fsid %pU ", disk_super
->fsid
);
920 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
922 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
923 if (!ret
&& fs_devices_ret
)
924 (*fs_devices_ret
)->total_devices
= total_devices
;
928 page_cache_release(page
);
931 blkdev_put(bdev
, flags
);
933 mutex_unlock(&uuid_mutex
);
937 /* helper to account the used device space in the range */
938 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
939 u64 end
, u64
*length
)
941 struct btrfs_key key
;
942 struct btrfs_root
*root
= device
->dev_root
;
943 struct btrfs_dev_extent
*dev_extent
;
944 struct btrfs_path
*path
;
948 struct extent_buffer
*l
;
952 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
955 path
= btrfs_alloc_path();
960 key
.objectid
= device
->devid
;
962 key
.type
= BTRFS_DEV_EXTENT_KEY
;
964 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
968 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
975 slot
= path
->slots
[0];
976 if (slot
>= btrfs_header_nritems(l
)) {
977 ret
= btrfs_next_leaf(root
, path
);
985 btrfs_item_key_to_cpu(l
, &key
, slot
);
987 if (key
.objectid
< device
->devid
)
990 if (key
.objectid
> device
->devid
)
993 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
996 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
997 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
999 if (key
.offset
<= start
&& extent_end
> end
) {
1000 *length
= end
- start
+ 1;
1002 } else if (key
.offset
<= start
&& extent_end
> start
)
1003 *length
+= extent_end
- start
;
1004 else if (key
.offset
> start
&& extent_end
<= end
)
1005 *length
+= extent_end
- key
.offset
;
1006 else if (key
.offset
> start
&& key
.offset
<= end
) {
1007 *length
+= end
- key
.offset
+ 1;
1009 } else if (key
.offset
> end
)
1017 btrfs_free_path(path
);
1021 static int contains_pending_extent(struct btrfs_trans_handle
*trans
,
1022 struct btrfs_device
*device
,
1023 u64
*start
, u64 len
)
1025 struct extent_map
*em
;
1028 list_for_each_entry(em
, &trans
->transaction
->pending_chunks
, list
) {
1029 struct map_lookup
*map
;
1032 map
= (struct map_lookup
*)em
->bdev
;
1033 for (i
= 0; i
< map
->num_stripes
; i
++) {
1034 if (map
->stripes
[i
].dev
!= device
)
1036 if (map
->stripes
[i
].physical
>= *start
+ len
||
1037 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1040 *start
= map
->stripes
[i
].physical
+
1051 * find_free_dev_extent - find free space in the specified device
1052 * @device: the device which we search the free space in
1053 * @num_bytes: the size of the free space that we need
1054 * @start: store the start of the free space.
1055 * @len: the size of the free space. that we find, or the size of the max
1056 * free space if we don't find suitable free space
1058 * this uses a pretty simple search, the expectation is that it is
1059 * called very infrequently and that a given device has a small number
1062 * @start is used to store the start of the free space if we find. But if we
1063 * don't find suitable free space, it will be used to store the start position
1064 * of the max free space.
1066 * @len is used to store the size of the free space that we find.
1067 * But if we don't find suitable free space, it is used to store the size of
1068 * the max free space.
1070 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1071 struct btrfs_device
*device
, u64 num_bytes
,
1072 u64
*start
, u64
*len
)
1074 struct btrfs_key key
;
1075 struct btrfs_root
*root
= device
->dev_root
;
1076 struct btrfs_dev_extent
*dev_extent
;
1077 struct btrfs_path
*path
;
1083 u64 search_end
= device
->total_bytes
;
1086 struct extent_buffer
*l
;
1088 /* FIXME use last free of some kind */
1090 /* we don't want to overwrite the superblock on the drive,
1091 * so we make sure to start at an offset of at least 1MB
1093 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1095 path
= btrfs_alloc_path();
1099 max_hole_start
= search_start
;
1103 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1109 path
->search_commit_root
= 1;
1110 path
->skip_locking
= 1;
1112 key
.objectid
= device
->devid
;
1113 key
.offset
= search_start
;
1114 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1116 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1120 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1127 slot
= path
->slots
[0];
1128 if (slot
>= btrfs_header_nritems(l
)) {
1129 ret
= btrfs_next_leaf(root
, path
);
1137 btrfs_item_key_to_cpu(l
, &key
, slot
);
1139 if (key
.objectid
< device
->devid
)
1142 if (key
.objectid
> device
->devid
)
1145 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
1148 if (key
.offset
> search_start
) {
1149 hole_size
= key
.offset
- search_start
;
1152 * Have to check before we set max_hole_start, otherwise
1153 * we could end up sending back this offset anyway.
1155 if (contains_pending_extent(trans
, device
,
1160 if (hole_size
> max_hole_size
) {
1161 max_hole_start
= search_start
;
1162 max_hole_size
= hole_size
;
1166 * If this free space is greater than which we need,
1167 * it must be the max free space that we have found
1168 * until now, so max_hole_start must point to the start
1169 * of this free space and the length of this free space
1170 * is stored in max_hole_size. Thus, we return
1171 * max_hole_start and max_hole_size and go back to the
1174 if (hole_size
>= num_bytes
) {
1180 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1181 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1183 if (extent_end
> search_start
)
1184 search_start
= extent_end
;
1191 * At this point, search_start should be the end of
1192 * allocated dev extents, and when shrinking the device,
1193 * search_end may be smaller than search_start.
1195 if (search_end
> search_start
)
1196 hole_size
= search_end
- search_start
;
1198 if (hole_size
> max_hole_size
) {
1199 max_hole_start
= search_start
;
1200 max_hole_size
= hole_size
;
1203 if (contains_pending_extent(trans
, device
, &search_start
, hole_size
)) {
1204 btrfs_release_path(path
);
1209 if (hole_size
< num_bytes
)
1215 btrfs_free_path(path
);
1216 *start
= max_hole_start
;
1218 *len
= max_hole_size
;
1222 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1223 struct btrfs_device
*device
,
1227 struct btrfs_path
*path
;
1228 struct btrfs_root
*root
= device
->dev_root
;
1229 struct btrfs_key key
;
1230 struct btrfs_key found_key
;
1231 struct extent_buffer
*leaf
= NULL
;
1232 struct btrfs_dev_extent
*extent
= NULL
;
1234 path
= btrfs_alloc_path();
1238 key
.objectid
= device
->devid
;
1240 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1242 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1244 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1245 BTRFS_DEV_EXTENT_KEY
);
1248 leaf
= path
->nodes
[0];
1249 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1250 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1251 struct btrfs_dev_extent
);
1252 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1253 btrfs_dev_extent_length(leaf
, extent
) < start
);
1255 btrfs_release_path(path
);
1257 } else if (ret
== 0) {
1258 leaf
= path
->nodes
[0];
1259 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1260 struct btrfs_dev_extent
);
1262 btrfs_error(root
->fs_info
, ret
, "Slot search failed");
1266 if (device
->bytes_used
> 0) {
1267 u64 len
= btrfs_dev_extent_length(leaf
, extent
);
1268 device
->bytes_used
-= len
;
1269 spin_lock(&root
->fs_info
->free_chunk_lock
);
1270 root
->fs_info
->free_chunk_space
+= len
;
1271 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1273 ret
= btrfs_del_item(trans
, root
, path
);
1275 btrfs_error(root
->fs_info
, ret
,
1276 "Failed to remove dev extent item");
1279 btrfs_free_path(path
);
1283 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1284 struct btrfs_device
*device
,
1285 u64 chunk_tree
, u64 chunk_objectid
,
1286 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1289 struct btrfs_path
*path
;
1290 struct btrfs_root
*root
= device
->dev_root
;
1291 struct btrfs_dev_extent
*extent
;
1292 struct extent_buffer
*leaf
;
1293 struct btrfs_key key
;
1295 WARN_ON(!device
->in_fs_metadata
);
1296 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1297 path
= btrfs_alloc_path();
1301 key
.objectid
= device
->devid
;
1303 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1304 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1309 leaf
= path
->nodes
[0];
1310 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1311 struct btrfs_dev_extent
);
1312 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1313 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1314 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1316 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1317 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1319 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1320 btrfs_mark_buffer_dirty(leaf
);
1322 btrfs_free_path(path
);
1326 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1328 struct extent_map_tree
*em_tree
;
1329 struct extent_map
*em
;
1333 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1334 read_lock(&em_tree
->lock
);
1335 n
= rb_last(&em_tree
->map
);
1337 em
= rb_entry(n
, struct extent_map
, rb_node
);
1338 ret
= em
->start
+ em
->len
;
1340 read_unlock(&em_tree
->lock
);
1345 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1349 struct btrfs_key key
;
1350 struct btrfs_key found_key
;
1351 struct btrfs_path
*path
;
1353 path
= btrfs_alloc_path();
1357 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1358 key
.type
= BTRFS_DEV_ITEM_KEY
;
1359 key
.offset
= (u64
)-1;
1361 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1365 BUG_ON(ret
== 0); /* Corruption */
1367 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1368 BTRFS_DEV_ITEMS_OBJECTID
,
1369 BTRFS_DEV_ITEM_KEY
);
1373 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1375 *devid_ret
= found_key
.offset
+ 1;
1379 btrfs_free_path(path
);
1384 * the device information is stored in the chunk root
1385 * the btrfs_device struct should be fully filled in
1387 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1388 struct btrfs_root
*root
,
1389 struct btrfs_device
*device
)
1392 struct btrfs_path
*path
;
1393 struct btrfs_dev_item
*dev_item
;
1394 struct extent_buffer
*leaf
;
1395 struct btrfs_key key
;
1398 root
= root
->fs_info
->chunk_root
;
1400 path
= btrfs_alloc_path();
1404 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1405 key
.type
= BTRFS_DEV_ITEM_KEY
;
1406 key
.offset
= device
->devid
;
1408 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1413 leaf
= path
->nodes
[0];
1414 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1416 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1417 btrfs_set_device_generation(leaf
, dev_item
, 0);
1418 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1419 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1420 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1421 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1422 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1423 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1424 btrfs_set_device_group(leaf
, dev_item
, 0);
1425 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1426 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1427 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1429 ptr
= btrfs_device_uuid(dev_item
);
1430 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1431 ptr
= btrfs_device_fsid(dev_item
);
1432 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1433 btrfs_mark_buffer_dirty(leaf
);
1437 btrfs_free_path(path
);
1442 * Function to update ctime/mtime for a given device path.
1443 * Mainly used for ctime/mtime based probe like libblkid.
1445 static void update_dev_time(char *path_name
)
1449 filp
= filp_open(path_name
, O_RDWR
, 0);
1452 file_update_time(filp
);
1453 filp_close(filp
, NULL
);
1457 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1458 struct btrfs_device
*device
)
1461 struct btrfs_path
*path
;
1462 struct btrfs_key key
;
1463 struct btrfs_trans_handle
*trans
;
1465 root
= root
->fs_info
->chunk_root
;
1467 path
= btrfs_alloc_path();
1471 trans
= btrfs_start_transaction(root
, 0);
1472 if (IS_ERR(trans
)) {
1473 btrfs_free_path(path
);
1474 return PTR_ERR(trans
);
1476 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1477 key
.type
= BTRFS_DEV_ITEM_KEY
;
1478 key
.offset
= device
->devid
;
1481 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1490 ret
= btrfs_del_item(trans
, root
, path
);
1494 btrfs_free_path(path
);
1495 unlock_chunks(root
);
1496 btrfs_commit_transaction(trans
, root
);
1500 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1502 struct btrfs_device
*device
;
1503 struct btrfs_device
*next_device
;
1504 struct block_device
*bdev
;
1505 struct buffer_head
*bh
= NULL
;
1506 struct btrfs_super_block
*disk_super
;
1507 struct btrfs_fs_devices
*cur_devices
;
1514 bool clear_super
= false;
1516 mutex_lock(&uuid_mutex
);
1519 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
1521 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1522 root
->fs_info
->avail_system_alloc_bits
|
1523 root
->fs_info
->avail_metadata_alloc_bits
;
1524 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
1526 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1527 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
);
1528 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1529 WARN_ON(num_devices
< 1);
1532 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
);
1534 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) && num_devices
<= 4) {
1535 ret
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
;
1539 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) && num_devices
<= 2) {
1540 ret
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
;
1544 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID5
) &&
1545 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1546 ret
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
;
1549 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID6
) &&
1550 root
->fs_info
->fs_devices
->rw_devices
<= 3) {
1551 ret
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
;
1555 if (strcmp(device_path
, "missing") == 0) {
1556 struct list_head
*devices
;
1557 struct btrfs_device
*tmp
;
1560 devices
= &root
->fs_info
->fs_devices
->devices
;
1562 * It is safe to read the devices since the volume_mutex
1565 list_for_each_entry(tmp
, devices
, dev_list
) {
1566 if (tmp
->in_fs_metadata
&&
1567 !tmp
->is_tgtdev_for_dev_replace
&&
1577 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
1581 ret
= btrfs_get_bdev_and_sb(device_path
,
1582 FMODE_WRITE
| FMODE_EXCL
,
1583 root
->fs_info
->bdev_holder
, 0,
1587 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1588 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1589 dev_uuid
= disk_super
->dev_item
.uuid
;
1590 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1598 if (device
->is_tgtdev_for_dev_replace
) {
1599 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1603 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1604 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1608 if (device
->writeable
) {
1610 list_del_init(&device
->dev_alloc_list
);
1611 unlock_chunks(root
);
1612 root
->fs_info
->fs_devices
->rw_devices
--;
1616 mutex_unlock(&uuid_mutex
);
1617 ret
= btrfs_shrink_device(device
, 0);
1618 mutex_lock(&uuid_mutex
);
1623 * TODO: the superblock still includes this device in its num_devices
1624 * counter although write_all_supers() is not locked out. This
1625 * could give a filesystem state which requires a degraded mount.
1627 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1631 spin_lock(&root
->fs_info
->free_chunk_lock
);
1632 root
->fs_info
->free_chunk_space
= device
->total_bytes
-
1634 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1636 device
->in_fs_metadata
= 0;
1637 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1640 * the device list mutex makes sure that we don't change
1641 * the device list while someone else is writing out all
1642 * the device supers. Whoever is writing all supers, should
1643 * lock the device list mutex before getting the number of
1644 * devices in the super block (super_copy). Conversely,
1645 * whoever updates the number of devices in the super block
1646 * (super_copy) should hold the device list mutex.
1649 cur_devices
= device
->fs_devices
;
1650 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1651 list_del_rcu(&device
->dev_list
);
1653 device
->fs_devices
->num_devices
--;
1654 device
->fs_devices
->total_devices
--;
1656 if (device
->missing
)
1657 root
->fs_info
->fs_devices
->missing_devices
--;
1659 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1660 struct btrfs_device
, dev_list
);
1661 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1662 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1663 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1664 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1667 device
->fs_devices
->open_devices
--;
1669 call_rcu(&device
->rcu
, free_device
);
1671 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1672 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1673 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1675 if (cur_devices
->open_devices
== 0) {
1676 struct btrfs_fs_devices
*fs_devices
;
1677 fs_devices
= root
->fs_info
->fs_devices
;
1678 while (fs_devices
) {
1679 if (fs_devices
->seed
== cur_devices
) {
1680 fs_devices
->seed
= cur_devices
->seed
;
1683 fs_devices
= fs_devices
->seed
;
1685 cur_devices
->seed
= NULL
;
1687 __btrfs_close_devices(cur_devices
);
1688 unlock_chunks(root
);
1689 free_fs_devices(cur_devices
);
1692 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1693 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1696 * at this point, the device is zero sized. We want to
1697 * remove it from the devices list and zero out the old super
1699 if (clear_super
&& disk_super
) {
1700 /* make sure this device isn't detected as part of
1703 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1704 set_buffer_dirty(bh
);
1705 sync_dirty_buffer(bh
);
1711 /* Notify udev that device has changed */
1712 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
1714 /* Update ctime/mtime for device path for libblkid */
1715 update_dev_time(device_path
);
1721 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1723 mutex_unlock(&uuid_mutex
);
1726 if (device
->writeable
) {
1728 list_add(&device
->dev_alloc_list
,
1729 &root
->fs_info
->fs_devices
->alloc_list
);
1730 unlock_chunks(root
);
1731 root
->fs_info
->fs_devices
->rw_devices
++;
1736 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info
*fs_info
,
1737 struct btrfs_device
*srcdev
)
1739 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1741 list_del_rcu(&srcdev
->dev_list
);
1742 list_del_rcu(&srcdev
->dev_alloc_list
);
1743 fs_info
->fs_devices
->num_devices
--;
1744 if (srcdev
->missing
) {
1745 fs_info
->fs_devices
->missing_devices
--;
1746 fs_info
->fs_devices
->rw_devices
++;
1748 if (srcdev
->can_discard
)
1749 fs_info
->fs_devices
->num_can_discard
--;
1751 fs_info
->fs_devices
->open_devices
--;
1753 /* zero out the old super */
1754 btrfs_scratch_superblock(srcdev
);
1757 call_rcu(&srcdev
->rcu
, free_device
);
1760 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
1761 struct btrfs_device
*tgtdev
)
1763 struct btrfs_device
*next_device
;
1766 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1768 btrfs_scratch_superblock(tgtdev
);
1769 fs_info
->fs_devices
->open_devices
--;
1771 fs_info
->fs_devices
->num_devices
--;
1772 if (tgtdev
->can_discard
)
1773 fs_info
->fs_devices
->num_can_discard
++;
1775 next_device
= list_entry(fs_info
->fs_devices
->devices
.next
,
1776 struct btrfs_device
, dev_list
);
1777 if (tgtdev
->bdev
== fs_info
->sb
->s_bdev
)
1778 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1779 if (tgtdev
->bdev
== fs_info
->fs_devices
->latest_bdev
)
1780 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1781 list_del_rcu(&tgtdev
->dev_list
);
1783 call_rcu(&tgtdev
->rcu
, free_device
);
1785 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1788 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
1789 struct btrfs_device
**device
)
1792 struct btrfs_super_block
*disk_super
;
1795 struct block_device
*bdev
;
1796 struct buffer_head
*bh
;
1799 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
1800 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
1803 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1804 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1805 dev_uuid
= disk_super
->dev_item
.uuid
;
1806 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1811 blkdev_put(bdev
, FMODE_READ
);
1815 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
1817 struct btrfs_device
**device
)
1820 if (strcmp(device_path
, "missing") == 0) {
1821 struct list_head
*devices
;
1822 struct btrfs_device
*tmp
;
1824 devices
= &root
->fs_info
->fs_devices
->devices
;
1826 * It is safe to read the devices since the volume_mutex
1827 * is held by the caller.
1829 list_for_each_entry(tmp
, devices
, dev_list
) {
1830 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1837 pr_err("btrfs: no missing device found\n");
1843 return btrfs_find_device_by_path(root
, device_path
, device
);
1848 * does all the dirty work required for changing file system's UUID.
1850 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
1852 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1853 struct btrfs_fs_devices
*old_devices
;
1854 struct btrfs_fs_devices
*seed_devices
;
1855 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
1856 struct btrfs_device
*device
;
1859 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1860 if (!fs_devices
->seeding
)
1863 seed_devices
= __alloc_fs_devices();
1864 if (IS_ERR(seed_devices
))
1865 return PTR_ERR(seed_devices
);
1867 old_devices
= clone_fs_devices(fs_devices
);
1868 if (IS_ERR(old_devices
)) {
1869 kfree(seed_devices
);
1870 return PTR_ERR(old_devices
);
1873 list_add(&old_devices
->list
, &fs_uuids
);
1875 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1876 seed_devices
->opened
= 1;
1877 INIT_LIST_HEAD(&seed_devices
->devices
);
1878 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1879 mutex_init(&seed_devices
->device_list_mutex
);
1881 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1882 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
1885 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1886 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1887 device
->fs_devices
= seed_devices
;
1890 fs_devices
->seeding
= 0;
1891 fs_devices
->num_devices
= 0;
1892 fs_devices
->open_devices
= 0;
1893 fs_devices
->seed
= seed_devices
;
1895 generate_random_uuid(fs_devices
->fsid
);
1896 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1897 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1898 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1900 super_flags
= btrfs_super_flags(disk_super
) &
1901 ~BTRFS_SUPER_FLAG_SEEDING
;
1902 btrfs_set_super_flags(disk_super
, super_flags
);
1908 * strore the expected generation for seed devices in device items.
1910 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1911 struct btrfs_root
*root
)
1913 struct btrfs_path
*path
;
1914 struct extent_buffer
*leaf
;
1915 struct btrfs_dev_item
*dev_item
;
1916 struct btrfs_device
*device
;
1917 struct btrfs_key key
;
1918 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1919 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1923 path
= btrfs_alloc_path();
1927 root
= root
->fs_info
->chunk_root
;
1928 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1930 key
.type
= BTRFS_DEV_ITEM_KEY
;
1933 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1937 leaf
= path
->nodes
[0];
1939 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1940 ret
= btrfs_next_leaf(root
, path
);
1945 leaf
= path
->nodes
[0];
1946 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1947 btrfs_release_path(path
);
1951 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1952 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1953 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1956 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1957 struct btrfs_dev_item
);
1958 devid
= btrfs_device_id(leaf
, dev_item
);
1959 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
1961 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
1963 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1965 BUG_ON(!device
); /* Logic error */
1967 if (device
->fs_devices
->seeding
) {
1968 btrfs_set_device_generation(leaf
, dev_item
,
1969 device
->generation
);
1970 btrfs_mark_buffer_dirty(leaf
);
1978 btrfs_free_path(path
);
1982 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1984 struct request_queue
*q
;
1985 struct btrfs_trans_handle
*trans
;
1986 struct btrfs_device
*device
;
1987 struct block_device
*bdev
;
1988 struct list_head
*devices
;
1989 struct super_block
*sb
= root
->fs_info
->sb
;
1990 struct rcu_string
*name
;
1992 int seeding_dev
= 0;
1995 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1998 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
1999 root
->fs_info
->bdev_holder
);
2001 return PTR_ERR(bdev
);
2003 if (root
->fs_info
->fs_devices
->seeding
) {
2005 down_write(&sb
->s_umount
);
2006 mutex_lock(&uuid_mutex
);
2009 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2011 devices
= &root
->fs_info
->fs_devices
->devices
;
2013 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2014 list_for_each_entry(device
, devices
, dev_list
) {
2015 if (device
->bdev
== bdev
) {
2018 &root
->fs_info
->fs_devices
->device_list_mutex
);
2022 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2024 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2025 if (IS_ERR(device
)) {
2026 /* we can safely leave the fs_devices entry around */
2027 ret
= PTR_ERR(device
);
2031 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2037 rcu_assign_pointer(device
->name
, name
);
2039 trans
= btrfs_start_transaction(root
, 0);
2040 if (IS_ERR(trans
)) {
2041 rcu_string_free(device
->name
);
2043 ret
= PTR_ERR(trans
);
2049 q
= bdev_get_queue(bdev
);
2050 if (blk_queue_discard(q
))
2051 device
->can_discard
= 1;
2052 device
->writeable
= 1;
2053 device
->generation
= trans
->transid
;
2054 device
->io_width
= root
->sectorsize
;
2055 device
->io_align
= root
->sectorsize
;
2056 device
->sector_size
= root
->sectorsize
;
2057 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2058 device
->disk_total_bytes
= device
->total_bytes
;
2059 device
->dev_root
= root
->fs_info
->dev_root
;
2060 device
->bdev
= bdev
;
2061 device
->in_fs_metadata
= 1;
2062 device
->is_tgtdev_for_dev_replace
= 0;
2063 device
->mode
= FMODE_EXCL
;
2064 set_blocksize(device
->bdev
, 4096);
2067 sb
->s_flags
&= ~MS_RDONLY
;
2068 ret
= btrfs_prepare_sprout(root
);
2069 BUG_ON(ret
); /* -ENOMEM */
2072 device
->fs_devices
= root
->fs_info
->fs_devices
;
2074 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2075 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2076 list_add(&device
->dev_alloc_list
,
2077 &root
->fs_info
->fs_devices
->alloc_list
);
2078 root
->fs_info
->fs_devices
->num_devices
++;
2079 root
->fs_info
->fs_devices
->open_devices
++;
2080 root
->fs_info
->fs_devices
->rw_devices
++;
2081 root
->fs_info
->fs_devices
->total_devices
++;
2082 if (device
->can_discard
)
2083 root
->fs_info
->fs_devices
->num_can_discard
++;
2084 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2086 spin_lock(&root
->fs_info
->free_chunk_lock
);
2087 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2088 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2090 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2091 root
->fs_info
->fs_devices
->rotating
= 1;
2093 total_bytes
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2094 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2095 total_bytes
+ device
->total_bytes
);
2097 total_bytes
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2098 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2100 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2103 ret
= init_first_rw_device(trans
, root
, device
);
2105 btrfs_abort_transaction(trans
, root
, ret
);
2108 ret
= btrfs_finish_sprout(trans
, root
);
2110 btrfs_abort_transaction(trans
, root
, ret
);
2114 ret
= btrfs_add_device(trans
, root
, device
);
2116 btrfs_abort_transaction(trans
, root
, ret
);
2122 * we've got more storage, clear any full flags on the space
2125 btrfs_clear_space_info_full(root
->fs_info
);
2127 unlock_chunks(root
);
2128 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2129 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2130 ret
= btrfs_commit_transaction(trans
, root
);
2133 mutex_unlock(&uuid_mutex
);
2134 up_write(&sb
->s_umount
);
2136 if (ret
) /* transaction commit */
2139 ret
= btrfs_relocate_sys_chunks(root
);
2141 btrfs_error(root
->fs_info
, ret
,
2142 "Failed to relocate sys chunks after "
2143 "device initialization. This can be fixed "
2144 "using the \"btrfs balance\" command.");
2145 trans
= btrfs_attach_transaction(root
);
2146 if (IS_ERR(trans
)) {
2147 if (PTR_ERR(trans
) == -ENOENT
)
2149 return PTR_ERR(trans
);
2151 ret
= btrfs_commit_transaction(trans
, root
);
2154 /* Update ctime/mtime for libblkid */
2155 update_dev_time(device_path
);
2159 unlock_chunks(root
);
2160 btrfs_end_transaction(trans
, root
);
2161 rcu_string_free(device
->name
);
2164 blkdev_put(bdev
, FMODE_EXCL
);
2166 mutex_unlock(&uuid_mutex
);
2167 up_write(&sb
->s_umount
);
2172 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2173 struct btrfs_device
**device_out
)
2175 struct request_queue
*q
;
2176 struct btrfs_device
*device
;
2177 struct block_device
*bdev
;
2178 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2179 struct list_head
*devices
;
2180 struct rcu_string
*name
;
2181 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2185 if (fs_info
->fs_devices
->seeding
)
2188 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2189 fs_info
->bdev_holder
);
2191 return PTR_ERR(bdev
);
2193 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2195 devices
= &fs_info
->fs_devices
->devices
;
2196 list_for_each_entry(device
, devices
, dev_list
) {
2197 if (device
->bdev
== bdev
) {
2203 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2204 if (IS_ERR(device
)) {
2205 ret
= PTR_ERR(device
);
2209 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2215 rcu_assign_pointer(device
->name
, name
);
2217 q
= bdev_get_queue(bdev
);
2218 if (blk_queue_discard(q
))
2219 device
->can_discard
= 1;
2220 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2221 device
->writeable
= 1;
2222 device
->generation
= 0;
2223 device
->io_width
= root
->sectorsize
;
2224 device
->io_align
= root
->sectorsize
;
2225 device
->sector_size
= root
->sectorsize
;
2226 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2227 device
->disk_total_bytes
= device
->total_bytes
;
2228 device
->dev_root
= fs_info
->dev_root
;
2229 device
->bdev
= bdev
;
2230 device
->in_fs_metadata
= 1;
2231 device
->is_tgtdev_for_dev_replace
= 1;
2232 device
->mode
= FMODE_EXCL
;
2233 set_blocksize(device
->bdev
, 4096);
2234 device
->fs_devices
= fs_info
->fs_devices
;
2235 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2236 fs_info
->fs_devices
->num_devices
++;
2237 fs_info
->fs_devices
->open_devices
++;
2238 if (device
->can_discard
)
2239 fs_info
->fs_devices
->num_can_discard
++;
2240 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2242 *device_out
= device
;
2246 blkdev_put(bdev
, FMODE_EXCL
);
2250 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2251 struct btrfs_device
*tgtdev
)
2253 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2254 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2255 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2256 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2257 tgtdev
->dev_root
= fs_info
->dev_root
;
2258 tgtdev
->in_fs_metadata
= 1;
2261 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2262 struct btrfs_device
*device
)
2265 struct btrfs_path
*path
;
2266 struct btrfs_root
*root
;
2267 struct btrfs_dev_item
*dev_item
;
2268 struct extent_buffer
*leaf
;
2269 struct btrfs_key key
;
2271 root
= device
->dev_root
->fs_info
->chunk_root
;
2273 path
= btrfs_alloc_path();
2277 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2278 key
.type
= BTRFS_DEV_ITEM_KEY
;
2279 key
.offset
= device
->devid
;
2281 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2290 leaf
= path
->nodes
[0];
2291 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2293 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2294 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2295 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2296 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2297 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2298 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
2299 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
2300 btrfs_mark_buffer_dirty(leaf
);
2303 btrfs_free_path(path
);
2307 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2308 struct btrfs_device
*device
, u64 new_size
)
2310 struct btrfs_super_block
*super_copy
=
2311 device
->dev_root
->fs_info
->super_copy
;
2312 u64 old_total
= btrfs_super_total_bytes(super_copy
);
2313 u64 diff
= new_size
- device
->total_bytes
;
2315 if (!device
->writeable
)
2317 if (new_size
<= device
->total_bytes
||
2318 device
->is_tgtdev_for_dev_replace
)
2321 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2322 device
->fs_devices
->total_rw_bytes
+= diff
;
2324 device
->total_bytes
= new_size
;
2325 device
->disk_total_bytes
= new_size
;
2326 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2328 return btrfs_update_device(trans
, device
);
2331 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2332 struct btrfs_device
*device
, u64 new_size
)
2335 lock_chunks(device
->dev_root
);
2336 ret
= __btrfs_grow_device(trans
, device
, new_size
);
2337 unlock_chunks(device
->dev_root
);
2341 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2342 struct btrfs_root
*root
,
2343 u64 chunk_tree
, u64 chunk_objectid
,
2347 struct btrfs_path
*path
;
2348 struct btrfs_key key
;
2350 root
= root
->fs_info
->chunk_root
;
2351 path
= btrfs_alloc_path();
2355 key
.objectid
= chunk_objectid
;
2356 key
.offset
= chunk_offset
;
2357 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2359 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2362 else if (ret
> 0) { /* Logic error or corruption */
2363 btrfs_error(root
->fs_info
, -ENOENT
,
2364 "Failed lookup while freeing chunk.");
2369 ret
= btrfs_del_item(trans
, root
, path
);
2371 btrfs_error(root
->fs_info
, ret
,
2372 "Failed to delete chunk item.");
2374 btrfs_free_path(path
);
2378 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2381 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2382 struct btrfs_disk_key
*disk_key
;
2383 struct btrfs_chunk
*chunk
;
2390 struct btrfs_key key
;
2392 array_size
= btrfs_super_sys_array_size(super_copy
);
2394 ptr
= super_copy
->sys_chunk_array
;
2397 while (cur
< array_size
) {
2398 disk_key
= (struct btrfs_disk_key
*)ptr
;
2399 btrfs_disk_key_to_cpu(&key
, disk_key
);
2401 len
= sizeof(*disk_key
);
2403 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2404 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2405 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2406 len
+= btrfs_chunk_item_size(num_stripes
);
2411 if (key
.objectid
== chunk_objectid
&&
2412 key
.offset
== chunk_offset
) {
2413 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2415 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2424 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
2425 u64 chunk_tree
, u64 chunk_objectid
,
2428 struct extent_map_tree
*em_tree
;
2429 struct btrfs_root
*extent_root
;
2430 struct btrfs_trans_handle
*trans
;
2431 struct extent_map
*em
;
2432 struct map_lookup
*map
;
2436 root
= root
->fs_info
->chunk_root
;
2437 extent_root
= root
->fs_info
->extent_root
;
2438 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2440 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2444 /* step one, relocate all the extents inside this chunk */
2445 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2449 trans
= btrfs_start_transaction(root
, 0);
2450 if (IS_ERR(trans
)) {
2451 ret
= PTR_ERR(trans
);
2452 btrfs_std_error(root
->fs_info
, ret
);
2459 * step two, delete the device extents and the
2460 * chunk tree entries
2462 read_lock(&em_tree
->lock
);
2463 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2464 read_unlock(&em_tree
->lock
);
2466 BUG_ON(!em
|| em
->start
> chunk_offset
||
2467 em
->start
+ em
->len
< chunk_offset
);
2468 map
= (struct map_lookup
*)em
->bdev
;
2470 for (i
= 0; i
< map
->num_stripes
; i
++) {
2471 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
2472 map
->stripes
[i
].physical
);
2475 if (map
->stripes
[i
].dev
) {
2476 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2480 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
2485 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2487 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2488 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2492 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
2495 write_lock(&em_tree
->lock
);
2496 remove_extent_mapping(em_tree
, em
);
2497 write_unlock(&em_tree
->lock
);
2502 /* once for the tree */
2503 free_extent_map(em
);
2505 free_extent_map(em
);
2507 unlock_chunks(root
);
2508 btrfs_end_transaction(trans
, root
);
2512 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2514 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2515 struct btrfs_path
*path
;
2516 struct extent_buffer
*leaf
;
2517 struct btrfs_chunk
*chunk
;
2518 struct btrfs_key key
;
2519 struct btrfs_key found_key
;
2520 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
2522 bool retried
= false;
2526 path
= btrfs_alloc_path();
2531 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2532 key
.offset
= (u64
)-1;
2533 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2536 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2539 BUG_ON(ret
== 0); /* Corruption */
2541 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2548 leaf
= path
->nodes
[0];
2549 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2551 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2552 struct btrfs_chunk
);
2553 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2554 btrfs_release_path(path
);
2556 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2557 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
2566 if (found_key
.offset
== 0)
2568 key
.offset
= found_key
.offset
- 1;
2571 if (failed
&& !retried
) {
2575 } else if (failed
&& retried
) {
2580 btrfs_free_path(path
);
2584 static int insert_balance_item(struct btrfs_root
*root
,
2585 struct btrfs_balance_control
*bctl
)
2587 struct btrfs_trans_handle
*trans
;
2588 struct btrfs_balance_item
*item
;
2589 struct btrfs_disk_balance_args disk_bargs
;
2590 struct btrfs_path
*path
;
2591 struct extent_buffer
*leaf
;
2592 struct btrfs_key key
;
2595 path
= btrfs_alloc_path();
2599 trans
= btrfs_start_transaction(root
, 0);
2600 if (IS_ERR(trans
)) {
2601 btrfs_free_path(path
);
2602 return PTR_ERR(trans
);
2605 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2606 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2609 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2614 leaf
= path
->nodes
[0];
2615 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
2617 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
2619 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
2620 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
2621 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
2622 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
2623 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
2624 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
2626 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
2628 btrfs_mark_buffer_dirty(leaf
);
2630 btrfs_free_path(path
);
2631 err
= btrfs_commit_transaction(trans
, root
);
2637 static int del_balance_item(struct btrfs_root
*root
)
2639 struct btrfs_trans_handle
*trans
;
2640 struct btrfs_path
*path
;
2641 struct btrfs_key key
;
2644 path
= btrfs_alloc_path();
2648 trans
= btrfs_start_transaction(root
, 0);
2649 if (IS_ERR(trans
)) {
2650 btrfs_free_path(path
);
2651 return PTR_ERR(trans
);
2654 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2655 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2658 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2666 ret
= btrfs_del_item(trans
, root
, path
);
2668 btrfs_free_path(path
);
2669 err
= btrfs_commit_transaction(trans
, root
);
2676 * This is a heuristic used to reduce the number of chunks balanced on
2677 * resume after balance was interrupted.
2679 static void update_balance_args(struct btrfs_balance_control
*bctl
)
2682 * Turn on soft mode for chunk types that were being converted.
2684 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2685 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2686 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2687 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2688 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2689 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2692 * Turn on usage filter if is not already used. The idea is
2693 * that chunks that we have already balanced should be
2694 * reasonably full. Don't do it for chunks that are being
2695 * converted - that will keep us from relocating unconverted
2696 * (albeit full) chunks.
2698 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2699 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2700 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2701 bctl
->data
.usage
= 90;
2703 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2704 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2705 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2706 bctl
->sys
.usage
= 90;
2708 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2709 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2710 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2711 bctl
->meta
.usage
= 90;
2716 * Should be called with both balance and volume mutexes held to
2717 * serialize other volume operations (add_dev/rm_dev/resize) with
2718 * restriper. Same goes for unset_balance_control.
2720 static void set_balance_control(struct btrfs_balance_control
*bctl
)
2722 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
2724 BUG_ON(fs_info
->balance_ctl
);
2726 spin_lock(&fs_info
->balance_lock
);
2727 fs_info
->balance_ctl
= bctl
;
2728 spin_unlock(&fs_info
->balance_lock
);
2731 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
2733 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2735 BUG_ON(!fs_info
->balance_ctl
);
2737 spin_lock(&fs_info
->balance_lock
);
2738 fs_info
->balance_ctl
= NULL
;
2739 spin_unlock(&fs_info
->balance_lock
);
2745 * Balance filters. Return 1 if chunk should be filtered out
2746 * (should not be balanced).
2748 static int chunk_profiles_filter(u64 chunk_type
,
2749 struct btrfs_balance_args
*bargs
)
2751 chunk_type
= chunk_to_extended(chunk_type
) &
2752 BTRFS_EXTENDED_PROFILE_MASK
;
2754 if (bargs
->profiles
& chunk_type
)
2760 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
2761 struct btrfs_balance_args
*bargs
)
2763 struct btrfs_block_group_cache
*cache
;
2764 u64 chunk_used
, user_thresh
;
2767 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2768 chunk_used
= btrfs_block_group_used(&cache
->item
);
2770 if (bargs
->usage
== 0)
2772 else if (bargs
->usage
> 100)
2773 user_thresh
= cache
->key
.offset
;
2775 user_thresh
= div_factor_fine(cache
->key
.offset
,
2778 if (chunk_used
< user_thresh
)
2781 btrfs_put_block_group(cache
);
2785 static int chunk_devid_filter(struct extent_buffer
*leaf
,
2786 struct btrfs_chunk
*chunk
,
2787 struct btrfs_balance_args
*bargs
)
2789 struct btrfs_stripe
*stripe
;
2790 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2793 for (i
= 0; i
< num_stripes
; i
++) {
2794 stripe
= btrfs_stripe_nr(chunk
, i
);
2795 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
2802 /* [pstart, pend) */
2803 static int chunk_drange_filter(struct extent_buffer
*leaf
,
2804 struct btrfs_chunk
*chunk
,
2806 struct btrfs_balance_args
*bargs
)
2808 struct btrfs_stripe
*stripe
;
2809 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2815 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
2818 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
2819 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
2820 factor
= num_stripes
/ 2;
2821 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
2822 factor
= num_stripes
- 1;
2823 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
2824 factor
= num_stripes
- 2;
2826 factor
= num_stripes
;
2829 for (i
= 0; i
< num_stripes
; i
++) {
2830 stripe
= btrfs_stripe_nr(chunk
, i
);
2831 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
2834 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
2835 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
2836 do_div(stripe_length
, factor
);
2838 if (stripe_offset
< bargs
->pend
&&
2839 stripe_offset
+ stripe_length
> bargs
->pstart
)
2846 /* [vstart, vend) */
2847 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
2848 struct btrfs_chunk
*chunk
,
2850 struct btrfs_balance_args
*bargs
)
2852 if (chunk_offset
< bargs
->vend
&&
2853 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
2854 /* at least part of the chunk is inside this vrange */
2860 static int chunk_soft_convert_filter(u64 chunk_type
,
2861 struct btrfs_balance_args
*bargs
)
2863 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
2866 chunk_type
= chunk_to_extended(chunk_type
) &
2867 BTRFS_EXTENDED_PROFILE_MASK
;
2869 if (bargs
->target
== chunk_type
)
2875 static int should_balance_chunk(struct btrfs_root
*root
,
2876 struct extent_buffer
*leaf
,
2877 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
2879 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
2880 struct btrfs_balance_args
*bargs
= NULL
;
2881 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2884 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
2885 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
2889 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
2890 bargs
= &bctl
->data
;
2891 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
2893 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
2894 bargs
= &bctl
->meta
;
2896 /* profiles filter */
2897 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
2898 chunk_profiles_filter(chunk_type
, bargs
)) {
2903 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2904 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
2909 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
2910 chunk_devid_filter(leaf
, chunk
, bargs
)) {
2914 /* drange filter, makes sense only with devid filter */
2915 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
2916 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
2921 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
2922 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
2926 /* soft profile changing mode */
2927 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
2928 chunk_soft_convert_filter(chunk_type
, bargs
)) {
2935 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
2937 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2938 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2939 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
2940 struct list_head
*devices
;
2941 struct btrfs_device
*device
;
2944 struct btrfs_chunk
*chunk
;
2945 struct btrfs_path
*path
;
2946 struct btrfs_key key
;
2947 struct btrfs_key found_key
;
2948 struct btrfs_trans_handle
*trans
;
2949 struct extent_buffer
*leaf
;
2952 int enospc_errors
= 0;
2953 bool counting
= true;
2955 /* step one make some room on all the devices */
2956 devices
= &fs_info
->fs_devices
->devices
;
2957 list_for_each_entry(device
, devices
, dev_list
) {
2958 old_size
= device
->total_bytes
;
2959 size_to_free
= div_factor(old_size
, 1);
2960 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
2961 if (!device
->writeable
||
2962 device
->total_bytes
- device
->bytes_used
> size_to_free
||
2963 device
->is_tgtdev_for_dev_replace
)
2966 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
2971 trans
= btrfs_start_transaction(dev_root
, 0);
2972 BUG_ON(IS_ERR(trans
));
2974 ret
= btrfs_grow_device(trans
, device
, old_size
);
2977 btrfs_end_transaction(trans
, dev_root
);
2980 /* step two, relocate all the chunks */
2981 path
= btrfs_alloc_path();
2987 /* zero out stat counters */
2988 spin_lock(&fs_info
->balance_lock
);
2989 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
2990 spin_unlock(&fs_info
->balance_lock
);
2992 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2993 key
.offset
= (u64
)-1;
2994 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2997 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
2998 atomic_read(&fs_info
->balance_cancel_req
)) {
3003 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3008 * this shouldn't happen, it means the last relocate
3012 BUG(); /* FIXME break ? */
3014 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3015 BTRFS_CHUNK_ITEM_KEY
);
3021 leaf
= path
->nodes
[0];
3022 slot
= path
->slots
[0];
3023 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3025 if (found_key
.objectid
!= key
.objectid
)
3028 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3031 spin_lock(&fs_info
->balance_lock
);
3032 bctl
->stat
.considered
++;
3033 spin_unlock(&fs_info
->balance_lock
);
3036 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3038 btrfs_release_path(path
);
3043 spin_lock(&fs_info
->balance_lock
);
3044 bctl
->stat
.expected
++;
3045 spin_unlock(&fs_info
->balance_lock
);
3049 ret
= btrfs_relocate_chunk(chunk_root
,
3050 chunk_root
->root_key
.objectid
,
3053 if (ret
&& ret
!= -ENOSPC
)
3055 if (ret
== -ENOSPC
) {
3058 spin_lock(&fs_info
->balance_lock
);
3059 bctl
->stat
.completed
++;
3060 spin_unlock(&fs_info
->balance_lock
);
3063 if (found_key
.offset
== 0)
3065 key
.offset
= found_key
.offset
- 1;
3069 btrfs_release_path(path
);
3074 btrfs_free_path(path
);
3075 if (enospc_errors
) {
3076 printk(KERN_INFO
"btrfs: %d enospc errors during balance\n",
3086 * alloc_profile_is_valid - see if a given profile is valid and reduced
3087 * @flags: profile to validate
3088 * @extended: if true @flags is treated as an extended profile
3090 static int alloc_profile_is_valid(u64 flags
, int extended
)
3092 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3093 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3095 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3097 /* 1) check that all other bits are zeroed */
3101 /* 2) see if profile is reduced */
3103 return !extended
; /* "0" is valid for usual profiles */
3105 /* true if exactly one bit set */
3106 return (flags
& (flags
- 1)) == 0;
3109 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3111 /* cancel requested || normal exit path */
3112 return atomic_read(&fs_info
->balance_cancel_req
) ||
3113 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3114 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3117 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3121 unset_balance_control(fs_info
);
3122 ret
= del_balance_item(fs_info
->tree_root
);
3124 btrfs_std_error(fs_info
, ret
);
3126 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3130 * Should be called with both balance and volume mutexes held
3132 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3133 struct btrfs_ioctl_balance_args
*bargs
)
3135 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3142 if (btrfs_fs_closing(fs_info
) ||
3143 atomic_read(&fs_info
->balance_pause_req
) ||
3144 atomic_read(&fs_info
->balance_cancel_req
)) {
3149 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3150 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3154 * In case of mixed groups both data and meta should be picked,
3155 * and identical options should be given for both of them.
3157 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3158 if (mixed
&& (bctl
->flags
& allowed
)) {
3159 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3160 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3161 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3162 printk(KERN_ERR
"btrfs: with mixed groups data and "
3163 "metadata balance options must be the same\n");
3169 num_devices
= fs_info
->fs_devices
->num_devices
;
3170 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
3171 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3172 BUG_ON(num_devices
< 1);
3175 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
3176 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3177 if (num_devices
== 1)
3178 allowed
|= BTRFS_BLOCK_GROUP_DUP
;
3179 else if (num_devices
> 1)
3180 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3181 if (num_devices
> 2)
3182 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3183 if (num_devices
> 3)
3184 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3185 BTRFS_BLOCK_GROUP_RAID6
);
3186 if ((bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3187 (!alloc_profile_is_valid(bctl
->data
.target
, 1) ||
3188 (bctl
->data
.target
& ~allowed
))) {
3189 printk(KERN_ERR
"btrfs: unable to start balance with target "
3190 "data profile %llu\n",
3195 if ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3196 (!alloc_profile_is_valid(bctl
->meta
.target
, 1) ||
3197 (bctl
->meta
.target
& ~allowed
))) {
3198 printk(KERN_ERR
"btrfs: unable to start balance with target "
3199 "metadata profile %llu\n",
3204 if ((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3205 (!alloc_profile_is_valid(bctl
->sys
.target
, 1) ||
3206 (bctl
->sys
.target
& ~allowed
))) {
3207 printk(KERN_ERR
"btrfs: unable to start balance with target "
3208 "system profile %llu\n",
3214 /* allow dup'ed data chunks only in mixed mode */
3215 if (!mixed
&& (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3216 (bctl
->data
.target
& BTRFS_BLOCK_GROUP_DUP
)) {
3217 printk(KERN_ERR
"btrfs: dup for data is not allowed\n");
3222 /* allow to reduce meta or sys integrity only if force set */
3223 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3224 BTRFS_BLOCK_GROUP_RAID10
|
3225 BTRFS_BLOCK_GROUP_RAID5
|
3226 BTRFS_BLOCK_GROUP_RAID6
;
3228 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3230 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3231 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3232 !(bctl
->sys
.target
& allowed
)) ||
3233 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3234 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3235 !(bctl
->meta
.target
& allowed
))) {
3236 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3237 printk(KERN_INFO
"btrfs: force reducing metadata "
3240 printk(KERN_ERR
"btrfs: balance will reduce metadata "
3241 "integrity, use force if you want this\n");
3246 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3248 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3249 int num_tolerated_disk_barrier_failures
;
3250 u64 target
= bctl
->sys
.target
;
3252 num_tolerated_disk_barrier_failures
=
3253 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3254 if (num_tolerated_disk_barrier_failures
> 0 &&
3256 (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3257 BTRFS_AVAIL_ALLOC_BIT_SINGLE
)))
3258 num_tolerated_disk_barrier_failures
= 0;
3259 else if (num_tolerated_disk_barrier_failures
> 1 &&
3261 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)))
3262 num_tolerated_disk_barrier_failures
= 1;
3264 fs_info
->num_tolerated_disk_barrier_failures
=
3265 num_tolerated_disk_barrier_failures
;
3268 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3269 if (ret
&& ret
!= -EEXIST
)
3272 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3273 BUG_ON(ret
== -EEXIST
);
3274 set_balance_control(bctl
);
3276 BUG_ON(ret
!= -EEXIST
);
3277 spin_lock(&fs_info
->balance_lock
);
3278 update_balance_args(bctl
);
3279 spin_unlock(&fs_info
->balance_lock
);
3282 atomic_inc(&fs_info
->balance_running
);
3283 mutex_unlock(&fs_info
->balance_mutex
);
3285 ret
= __btrfs_balance(fs_info
);
3287 mutex_lock(&fs_info
->balance_mutex
);
3288 atomic_dec(&fs_info
->balance_running
);
3290 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3291 fs_info
->num_tolerated_disk_barrier_failures
=
3292 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3296 memset(bargs
, 0, sizeof(*bargs
));
3297 update_ioctl_balance_args(fs_info
, 0, bargs
);
3300 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3301 balance_need_close(fs_info
)) {
3302 __cancel_balance(fs_info
);
3305 wake_up(&fs_info
->balance_wait_q
);
3309 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3310 __cancel_balance(fs_info
);
3313 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3318 static int balance_kthread(void *data
)
3320 struct btrfs_fs_info
*fs_info
= data
;
3323 mutex_lock(&fs_info
->volume_mutex
);
3324 mutex_lock(&fs_info
->balance_mutex
);
3326 if (fs_info
->balance_ctl
) {
3327 printk(KERN_INFO
"btrfs: continuing balance\n");
3328 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3331 mutex_unlock(&fs_info
->balance_mutex
);
3332 mutex_unlock(&fs_info
->volume_mutex
);
3337 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3339 struct task_struct
*tsk
;
3341 spin_lock(&fs_info
->balance_lock
);
3342 if (!fs_info
->balance_ctl
) {
3343 spin_unlock(&fs_info
->balance_lock
);
3346 spin_unlock(&fs_info
->balance_lock
);
3348 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3349 printk(KERN_INFO
"btrfs: force skipping balance\n");
3353 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3354 return PTR_ERR_OR_ZERO(tsk
);
3357 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3359 struct btrfs_balance_control
*bctl
;
3360 struct btrfs_balance_item
*item
;
3361 struct btrfs_disk_balance_args disk_bargs
;
3362 struct btrfs_path
*path
;
3363 struct extent_buffer
*leaf
;
3364 struct btrfs_key key
;
3367 path
= btrfs_alloc_path();
3371 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3372 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3375 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3378 if (ret
> 0) { /* ret = -ENOENT; */
3383 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3389 leaf
= path
->nodes
[0];
3390 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3392 bctl
->fs_info
= fs_info
;
3393 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3394 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3396 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3397 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3398 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3399 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3400 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3401 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3403 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3405 mutex_lock(&fs_info
->volume_mutex
);
3406 mutex_lock(&fs_info
->balance_mutex
);
3408 set_balance_control(bctl
);
3410 mutex_unlock(&fs_info
->balance_mutex
);
3411 mutex_unlock(&fs_info
->volume_mutex
);
3413 btrfs_free_path(path
);
3417 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3421 mutex_lock(&fs_info
->balance_mutex
);
3422 if (!fs_info
->balance_ctl
) {
3423 mutex_unlock(&fs_info
->balance_mutex
);
3427 if (atomic_read(&fs_info
->balance_running
)) {
3428 atomic_inc(&fs_info
->balance_pause_req
);
3429 mutex_unlock(&fs_info
->balance_mutex
);
3431 wait_event(fs_info
->balance_wait_q
,
3432 atomic_read(&fs_info
->balance_running
) == 0);
3434 mutex_lock(&fs_info
->balance_mutex
);
3435 /* we are good with balance_ctl ripped off from under us */
3436 BUG_ON(atomic_read(&fs_info
->balance_running
));
3437 atomic_dec(&fs_info
->balance_pause_req
);
3442 mutex_unlock(&fs_info
->balance_mutex
);
3446 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3448 mutex_lock(&fs_info
->balance_mutex
);
3449 if (!fs_info
->balance_ctl
) {
3450 mutex_unlock(&fs_info
->balance_mutex
);
3454 atomic_inc(&fs_info
->balance_cancel_req
);
3456 * if we are running just wait and return, balance item is
3457 * deleted in btrfs_balance in this case
3459 if (atomic_read(&fs_info
->balance_running
)) {
3460 mutex_unlock(&fs_info
->balance_mutex
);
3461 wait_event(fs_info
->balance_wait_q
,
3462 atomic_read(&fs_info
->balance_running
) == 0);
3463 mutex_lock(&fs_info
->balance_mutex
);
3465 /* __cancel_balance needs volume_mutex */
3466 mutex_unlock(&fs_info
->balance_mutex
);
3467 mutex_lock(&fs_info
->volume_mutex
);
3468 mutex_lock(&fs_info
->balance_mutex
);
3470 if (fs_info
->balance_ctl
)
3471 __cancel_balance(fs_info
);
3473 mutex_unlock(&fs_info
->volume_mutex
);
3476 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
3477 atomic_dec(&fs_info
->balance_cancel_req
);
3478 mutex_unlock(&fs_info
->balance_mutex
);
3482 static int btrfs_uuid_scan_kthread(void *data
)
3484 struct btrfs_fs_info
*fs_info
= data
;
3485 struct btrfs_root
*root
= fs_info
->tree_root
;
3486 struct btrfs_key key
;
3487 struct btrfs_key max_key
;
3488 struct btrfs_path
*path
= NULL
;
3490 struct extent_buffer
*eb
;
3492 struct btrfs_root_item root_item
;
3494 struct btrfs_trans_handle
*trans
= NULL
;
3496 path
= btrfs_alloc_path();
3503 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3506 max_key
.objectid
= (u64
)-1;
3507 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3508 max_key
.offset
= (u64
)-1;
3510 path
->keep_locks
= 1;
3513 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
, 0);
3520 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
3521 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3522 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
3523 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
3526 eb
= path
->nodes
[0];
3527 slot
= path
->slots
[0];
3528 item_size
= btrfs_item_size_nr(eb
, slot
);
3529 if (item_size
< sizeof(root_item
))
3532 read_extent_buffer(eb
, &root_item
,
3533 btrfs_item_ptr_offset(eb
, slot
),
3534 (int)sizeof(root_item
));
3535 if (btrfs_root_refs(&root_item
) == 0)
3538 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
3539 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3543 btrfs_release_path(path
);
3545 * 1 - subvol uuid item
3546 * 1 - received_subvol uuid item
3548 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
3549 if (IS_ERR(trans
)) {
3550 ret
= PTR_ERR(trans
);
3558 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
3559 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3561 BTRFS_UUID_KEY_SUBVOL
,
3564 pr_warn("btrfs: uuid_tree_add failed %d\n",
3570 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3571 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3572 root_item
.received_uuid
,
3573 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
3576 pr_warn("btrfs: uuid_tree_add failed %d\n",
3584 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3590 btrfs_release_path(path
);
3591 if (key
.offset
< (u64
)-1) {
3593 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
3595 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3596 } else if (key
.objectid
< (u64
)-1) {
3598 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3607 btrfs_free_path(path
);
3608 if (trans
&& !IS_ERR(trans
))
3609 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3611 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret
);
3613 fs_info
->update_uuid_tree_gen
= 1;
3614 up(&fs_info
->uuid_tree_rescan_sem
);
3619 * Callback for btrfs_uuid_tree_iterate().
3621 * 0 check succeeded, the entry is not outdated.
3622 * < 0 if an error occured.
3623 * > 0 if the check failed, which means the caller shall remove the entry.
3625 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
3626 u8
*uuid
, u8 type
, u64 subid
)
3628 struct btrfs_key key
;
3630 struct btrfs_root
*subvol_root
;
3632 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
3633 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
3636 key
.objectid
= subid
;
3637 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3638 key
.offset
= (u64
)-1;
3639 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3640 if (IS_ERR(subvol_root
)) {
3641 ret
= PTR_ERR(subvol_root
);
3648 case BTRFS_UUID_KEY_SUBVOL
:
3649 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
3652 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
3653 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
3663 static int btrfs_uuid_rescan_kthread(void *data
)
3665 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
3669 * 1st step is to iterate through the existing UUID tree and
3670 * to delete all entries that contain outdated data.
3671 * 2nd step is to add all missing entries to the UUID tree.
3673 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
3675 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret
);
3676 up(&fs_info
->uuid_tree_rescan_sem
);
3679 return btrfs_uuid_scan_kthread(data
);
3682 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
3684 struct btrfs_trans_handle
*trans
;
3685 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
3686 struct btrfs_root
*uuid_root
;
3687 struct task_struct
*task
;
3694 trans
= btrfs_start_transaction(tree_root
, 2);
3696 return PTR_ERR(trans
);
3698 uuid_root
= btrfs_create_tree(trans
, fs_info
,
3699 BTRFS_UUID_TREE_OBJECTID
);
3700 if (IS_ERR(uuid_root
)) {
3701 btrfs_abort_transaction(trans
, tree_root
,
3702 PTR_ERR(uuid_root
));
3703 return PTR_ERR(uuid_root
);
3706 fs_info
->uuid_root
= uuid_root
;
3708 ret
= btrfs_commit_transaction(trans
, tree_root
);
3712 down(&fs_info
->uuid_tree_rescan_sem
);
3713 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
3715 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3716 pr_warn("btrfs: failed to start uuid_scan task\n");
3717 up(&fs_info
->uuid_tree_rescan_sem
);
3718 return PTR_ERR(task
);
3724 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
3726 struct task_struct
*task
;
3728 down(&fs_info
->uuid_tree_rescan_sem
);
3729 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
3731 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3732 pr_warn("btrfs: failed to start uuid_rescan task\n");
3733 up(&fs_info
->uuid_tree_rescan_sem
);
3734 return PTR_ERR(task
);
3741 * shrinking a device means finding all of the device extents past
3742 * the new size, and then following the back refs to the chunks.
3743 * The chunk relocation code actually frees the device extent
3745 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
3747 struct btrfs_trans_handle
*trans
;
3748 struct btrfs_root
*root
= device
->dev_root
;
3749 struct btrfs_dev_extent
*dev_extent
= NULL
;
3750 struct btrfs_path
*path
;
3758 bool retried
= false;
3759 struct extent_buffer
*l
;
3760 struct btrfs_key key
;
3761 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3762 u64 old_total
= btrfs_super_total_bytes(super_copy
);
3763 u64 old_size
= device
->total_bytes
;
3764 u64 diff
= device
->total_bytes
- new_size
;
3766 if (device
->is_tgtdev_for_dev_replace
)
3769 path
= btrfs_alloc_path();
3777 device
->total_bytes
= new_size
;
3778 if (device
->writeable
) {
3779 device
->fs_devices
->total_rw_bytes
-= diff
;
3780 spin_lock(&root
->fs_info
->free_chunk_lock
);
3781 root
->fs_info
->free_chunk_space
-= diff
;
3782 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3784 unlock_chunks(root
);
3787 key
.objectid
= device
->devid
;
3788 key
.offset
= (u64
)-1;
3789 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3792 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3796 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
3801 btrfs_release_path(path
);
3806 slot
= path
->slots
[0];
3807 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
3809 if (key
.objectid
!= device
->devid
) {
3810 btrfs_release_path(path
);
3814 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3815 length
= btrfs_dev_extent_length(l
, dev_extent
);
3817 if (key
.offset
+ length
<= new_size
) {
3818 btrfs_release_path(path
);
3822 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
3823 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
3824 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3825 btrfs_release_path(path
);
3827 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
3829 if (ret
&& ret
!= -ENOSPC
)
3833 } while (key
.offset
-- > 0);
3835 if (failed
&& !retried
) {
3839 } else if (failed
&& retried
) {
3843 device
->total_bytes
= old_size
;
3844 if (device
->writeable
)
3845 device
->fs_devices
->total_rw_bytes
+= diff
;
3846 spin_lock(&root
->fs_info
->free_chunk_lock
);
3847 root
->fs_info
->free_chunk_space
+= diff
;
3848 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3849 unlock_chunks(root
);
3853 /* Shrinking succeeded, else we would be at "done". */
3854 trans
= btrfs_start_transaction(root
, 0);
3855 if (IS_ERR(trans
)) {
3856 ret
= PTR_ERR(trans
);
3862 device
->disk_total_bytes
= new_size
;
3863 /* Now btrfs_update_device() will change the on-disk size. */
3864 ret
= btrfs_update_device(trans
, device
);
3866 unlock_chunks(root
);
3867 btrfs_end_transaction(trans
, root
);
3870 WARN_ON(diff
> old_total
);
3871 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
3872 unlock_chunks(root
);
3873 btrfs_end_transaction(trans
, root
);
3875 btrfs_free_path(path
);
3879 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
3880 struct btrfs_key
*key
,
3881 struct btrfs_chunk
*chunk
, int item_size
)
3883 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3884 struct btrfs_disk_key disk_key
;
3888 array_size
= btrfs_super_sys_array_size(super_copy
);
3889 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
3892 ptr
= super_copy
->sys_chunk_array
+ array_size
;
3893 btrfs_cpu_key_to_disk(&disk_key
, key
);
3894 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
3895 ptr
+= sizeof(disk_key
);
3896 memcpy(ptr
, chunk
, item_size
);
3897 item_size
+= sizeof(disk_key
);
3898 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
3903 * sort the devices in descending order by max_avail, total_avail
3905 static int btrfs_cmp_device_info(const void *a
, const void *b
)
3907 const struct btrfs_device_info
*di_a
= a
;
3908 const struct btrfs_device_info
*di_b
= b
;
3910 if (di_a
->max_avail
> di_b
->max_avail
)
3912 if (di_a
->max_avail
< di_b
->max_avail
)
3914 if (di_a
->total_avail
> di_b
->total_avail
)
3916 if (di_a
->total_avail
< di_b
->total_avail
)
3921 static struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
3922 [BTRFS_RAID_RAID10
] = {
3925 .devs_max
= 0, /* 0 == as many as possible */
3927 .devs_increment
= 2,
3930 [BTRFS_RAID_RAID1
] = {
3935 .devs_increment
= 2,
3938 [BTRFS_RAID_DUP
] = {
3943 .devs_increment
= 1,
3946 [BTRFS_RAID_RAID0
] = {
3951 .devs_increment
= 1,
3954 [BTRFS_RAID_SINGLE
] = {
3959 .devs_increment
= 1,
3962 [BTRFS_RAID_RAID5
] = {
3967 .devs_increment
= 1,
3970 [BTRFS_RAID_RAID6
] = {
3975 .devs_increment
= 1,
3980 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
3982 /* TODO allow them to set a preferred stripe size */
3986 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
3988 if (!(type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)))
3991 btrfs_set_fs_incompat(info
, RAID56
);
3994 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
3995 struct btrfs_root
*extent_root
, u64 start
,
3998 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
3999 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4000 struct list_head
*cur
;
4001 struct map_lookup
*map
= NULL
;
4002 struct extent_map_tree
*em_tree
;
4003 struct extent_map
*em
;
4004 struct btrfs_device_info
*devices_info
= NULL
;
4006 int num_stripes
; /* total number of stripes to allocate */
4007 int data_stripes
; /* number of stripes that count for
4009 int sub_stripes
; /* sub_stripes info for map */
4010 int dev_stripes
; /* stripes per dev */
4011 int devs_max
; /* max devs to use */
4012 int devs_min
; /* min devs needed */
4013 int devs_increment
; /* ndevs has to be a multiple of this */
4014 int ncopies
; /* how many copies to data has */
4016 u64 max_stripe_size
;
4020 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4026 BUG_ON(!alloc_profile_is_valid(type
, 0));
4028 if (list_empty(&fs_devices
->alloc_list
))
4031 index
= __get_raid_index(type
);
4033 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4034 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4035 devs_max
= btrfs_raid_array
[index
].devs_max
;
4036 devs_min
= btrfs_raid_array
[index
].devs_min
;
4037 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4038 ncopies
= btrfs_raid_array
[index
].ncopies
;
4040 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4041 max_stripe_size
= 1024 * 1024 * 1024;
4042 max_chunk_size
= 10 * max_stripe_size
;
4043 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4044 /* for larger filesystems, use larger metadata chunks */
4045 if (fs_devices
->total_rw_bytes
> 50ULL * 1024 * 1024 * 1024)
4046 max_stripe_size
= 1024 * 1024 * 1024;
4048 max_stripe_size
= 256 * 1024 * 1024;
4049 max_chunk_size
= max_stripe_size
;
4050 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4051 max_stripe_size
= 32 * 1024 * 1024;
4052 max_chunk_size
= 2 * max_stripe_size
;
4054 printk(KERN_ERR
"btrfs: invalid chunk type 0x%llx requested\n",
4059 /* we don't want a chunk larger than 10% of writeable space */
4060 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4063 devices_info
= kzalloc(sizeof(*devices_info
) * fs_devices
->rw_devices
,
4068 cur
= fs_devices
->alloc_list
.next
;
4071 * in the first pass through the devices list, we gather information
4072 * about the available holes on each device.
4075 while (cur
!= &fs_devices
->alloc_list
) {
4076 struct btrfs_device
*device
;
4080 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4084 if (!device
->writeable
) {
4086 "btrfs: read-only device in alloc_list\n");
4090 if (!device
->in_fs_metadata
||
4091 device
->is_tgtdev_for_dev_replace
)
4094 if (device
->total_bytes
> device
->bytes_used
)
4095 total_avail
= device
->total_bytes
- device
->bytes_used
;
4099 /* If there is no space on this device, skip it. */
4100 if (total_avail
== 0)
4103 ret
= find_free_dev_extent(trans
, device
,
4104 max_stripe_size
* dev_stripes
,
4105 &dev_offset
, &max_avail
);
4106 if (ret
&& ret
!= -ENOSPC
)
4110 max_avail
= max_stripe_size
* dev_stripes
;
4112 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4115 if (ndevs
== fs_devices
->rw_devices
) {
4116 WARN(1, "%s: found more than %llu devices\n",
4117 __func__
, fs_devices
->rw_devices
);
4120 devices_info
[ndevs
].dev_offset
= dev_offset
;
4121 devices_info
[ndevs
].max_avail
= max_avail
;
4122 devices_info
[ndevs
].total_avail
= total_avail
;
4123 devices_info
[ndevs
].dev
= device
;
4128 * now sort the devices by hole size / available space
4130 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4131 btrfs_cmp_device_info
, NULL
);
4133 /* round down to number of usable stripes */
4134 ndevs
-= ndevs
% devs_increment
;
4136 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4141 if (devs_max
&& ndevs
> devs_max
)
4144 * the primary goal is to maximize the number of stripes, so use as many
4145 * devices as possible, even if the stripes are not maximum sized.
4147 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4148 num_stripes
= ndevs
* dev_stripes
;
4151 * this will have to be fixed for RAID1 and RAID10 over
4154 data_stripes
= num_stripes
/ ncopies
;
4156 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4157 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4158 btrfs_super_stripesize(info
->super_copy
));
4159 data_stripes
= num_stripes
- 1;
4161 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4162 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4163 btrfs_super_stripesize(info
->super_copy
));
4164 data_stripes
= num_stripes
- 2;
4168 * Use the number of data stripes to figure out how big this chunk
4169 * is really going to be in terms of logical address space,
4170 * and compare that answer with the max chunk size
4172 if (stripe_size
* data_stripes
> max_chunk_size
) {
4173 u64 mask
= (1ULL << 24) - 1;
4174 stripe_size
= max_chunk_size
;
4175 do_div(stripe_size
, data_stripes
);
4177 /* bump the answer up to a 16MB boundary */
4178 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4180 /* but don't go higher than the limits we found
4181 * while searching for free extents
4183 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4184 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4187 do_div(stripe_size
, dev_stripes
);
4189 /* align to BTRFS_STRIPE_LEN */
4190 do_div(stripe_size
, raid_stripe_len
);
4191 stripe_size
*= raid_stripe_len
;
4193 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4198 map
->num_stripes
= num_stripes
;
4200 for (i
= 0; i
< ndevs
; ++i
) {
4201 for (j
= 0; j
< dev_stripes
; ++j
) {
4202 int s
= i
* dev_stripes
+ j
;
4203 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4204 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4208 map
->sector_size
= extent_root
->sectorsize
;
4209 map
->stripe_len
= raid_stripe_len
;
4210 map
->io_align
= raid_stripe_len
;
4211 map
->io_width
= raid_stripe_len
;
4213 map
->sub_stripes
= sub_stripes
;
4215 num_bytes
= stripe_size
* data_stripes
;
4217 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4219 em
= alloc_extent_map();
4224 em
->bdev
= (struct block_device
*)map
;
4226 em
->len
= num_bytes
;
4227 em
->block_start
= 0;
4228 em
->block_len
= em
->len
;
4229 em
->orig_block_len
= stripe_size
;
4231 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4232 write_lock(&em_tree
->lock
);
4233 ret
= add_extent_mapping(em_tree
, em
, 0);
4235 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4236 atomic_inc(&em
->refs
);
4238 write_unlock(&em_tree
->lock
);
4240 free_extent_map(em
);
4244 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4245 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4248 goto error_del_extent
;
4250 free_extent_map(em
);
4251 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4253 kfree(devices_info
);
4257 write_lock(&em_tree
->lock
);
4258 remove_extent_mapping(em_tree
, em
);
4259 write_unlock(&em_tree
->lock
);
4261 /* One for our allocation */
4262 free_extent_map(em
);
4263 /* One for the tree reference */
4264 free_extent_map(em
);
4267 kfree(devices_info
);
4271 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4272 struct btrfs_root
*extent_root
,
4273 u64 chunk_offset
, u64 chunk_size
)
4275 struct btrfs_key key
;
4276 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4277 struct btrfs_device
*device
;
4278 struct btrfs_chunk
*chunk
;
4279 struct btrfs_stripe
*stripe
;
4280 struct extent_map_tree
*em_tree
;
4281 struct extent_map
*em
;
4282 struct map_lookup
*map
;
4289 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4290 read_lock(&em_tree
->lock
);
4291 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4292 read_unlock(&em_tree
->lock
);
4295 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4296 "%Lu len %Lu", chunk_offset
, chunk_size
);
4300 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4301 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4302 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset
,
4303 chunk_size
, em
->start
, em
->len
);
4304 free_extent_map(em
);
4308 map
= (struct map_lookup
*)em
->bdev
;
4309 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4310 stripe_size
= em
->orig_block_len
;
4312 chunk
= kzalloc(item_size
, GFP_NOFS
);
4318 for (i
= 0; i
< map
->num_stripes
; i
++) {
4319 device
= map
->stripes
[i
].dev
;
4320 dev_offset
= map
->stripes
[i
].physical
;
4322 device
->bytes_used
+= stripe_size
;
4323 ret
= btrfs_update_device(trans
, device
);
4326 ret
= btrfs_alloc_dev_extent(trans
, device
,
4327 chunk_root
->root_key
.objectid
,
4328 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4329 chunk_offset
, dev_offset
,
4335 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4336 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4338 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4340 stripe
= &chunk
->stripe
;
4341 for (i
= 0; i
< map
->num_stripes
; i
++) {
4342 device
= map
->stripes
[i
].dev
;
4343 dev_offset
= map
->stripes
[i
].physical
;
4345 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4346 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4347 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4351 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4352 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4353 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4354 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4355 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4356 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4357 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4358 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4359 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4361 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4362 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4363 key
.offset
= chunk_offset
;
4365 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4366 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4368 * TODO: Cleanup of inserted chunk root in case of
4371 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4377 free_extent_map(em
);
4382 * Chunk allocation falls into two parts. The first part does works
4383 * that make the new allocated chunk useable, but not do any operation
4384 * that modifies the chunk tree. The second part does the works that
4385 * require modifying the chunk tree. This division is important for the
4386 * bootstrap process of adding storage to a seed btrfs.
4388 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4389 struct btrfs_root
*extent_root
, u64 type
)
4393 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4394 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4397 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4398 struct btrfs_root
*root
,
4399 struct btrfs_device
*device
)
4402 u64 sys_chunk_offset
;
4404 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4405 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4408 chunk_offset
= find_next_chunk(fs_info
);
4409 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4410 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4415 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4416 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4417 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4420 btrfs_abort_transaction(trans
, root
, ret
);
4424 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
4426 btrfs_abort_transaction(trans
, root
, ret
);
4431 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
4433 struct extent_map
*em
;
4434 struct map_lookup
*map
;
4435 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4439 read_lock(&map_tree
->map_tree
.lock
);
4440 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
4441 read_unlock(&map_tree
->map_tree
.lock
);
4445 if (btrfs_test_opt(root
, DEGRADED
)) {
4446 free_extent_map(em
);
4450 map
= (struct map_lookup
*)em
->bdev
;
4451 for (i
= 0; i
< map
->num_stripes
; i
++) {
4452 if (!map
->stripes
[i
].dev
->writeable
) {
4457 free_extent_map(em
);
4461 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
4463 extent_map_tree_init(&tree
->map_tree
);
4466 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
4468 struct extent_map
*em
;
4471 write_lock(&tree
->map_tree
.lock
);
4472 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
4474 remove_extent_mapping(&tree
->map_tree
, em
);
4475 write_unlock(&tree
->map_tree
.lock
);
4480 free_extent_map(em
);
4481 /* once for the tree */
4482 free_extent_map(em
);
4486 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
4488 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4489 struct extent_map
*em
;
4490 struct map_lookup
*map
;
4491 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4494 read_lock(&em_tree
->lock
);
4495 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4496 read_unlock(&em_tree
->lock
);
4499 * We could return errors for these cases, but that could get ugly and
4500 * we'd probably do the same thing which is just not do anything else
4501 * and exit, so return 1 so the callers don't try to use other copies.
4504 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu\n", logical
,
4509 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4510 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
4511 "%Lu-%Lu\n", logical
, logical
+len
, em
->start
,
4512 em
->start
+ em
->len
);
4513 free_extent_map(em
);
4517 map
= (struct map_lookup
*)em
->bdev
;
4518 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
4519 ret
= map
->num_stripes
;
4520 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
4521 ret
= map
->sub_stripes
;
4522 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
4524 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
4528 free_extent_map(em
);
4530 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
4531 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
4533 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
4538 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
4539 struct btrfs_mapping_tree
*map_tree
,
4542 struct extent_map
*em
;
4543 struct map_lookup
*map
;
4544 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4545 unsigned long len
= root
->sectorsize
;
4547 read_lock(&em_tree
->lock
);
4548 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4549 read_unlock(&em_tree
->lock
);
4552 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4553 map
= (struct map_lookup
*)em
->bdev
;
4554 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4555 BTRFS_BLOCK_GROUP_RAID6
)) {
4556 len
= map
->stripe_len
* nr_data_stripes(map
);
4558 free_extent_map(em
);
4562 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
4563 u64 logical
, u64 len
, int mirror_num
)
4565 struct extent_map
*em
;
4566 struct map_lookup
*map
;
4567 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4570 read_lock(&em_tree
->lock
);
4571 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4572 read_unlock(&em_tree
->lock
);
4575 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4576 map
= (struct map_lookup
*)em
->bdev
;
4577 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4578 BTRFS_BLOCK_GROUP_RAID6
))
4580 free_extent_map(em
);
4584 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
4585 struct map_lookup
*map
, int first
, int num
,
4586 int optimal
, int dev_replace_is_ongoing
)
4590 struct btrfs_device
*srcdev
;
4592 if (dev_replace_is_ongoing
&&
4593 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
4594 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
4595 srcdev
= fs_info
->dev_replace
.srcdev
;
4600 * try to avoid the drive that is the source drive for a
4601 * dev-replace procedure, only choose it if no other non-missing
4602 * mirror is available
4604 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
4605 if (map
->stripes
[optimal
].dev
->bdev
&&
4606 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
4608 for (i
= first
; i
< first
+ num
; i
++) {
4609 if (map
->stripes
[i
].dev
->bdev
&&
4610 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
4615 /* we couldn't find one that doesn't fail. Just return something
4616 * and the io error handling code will clean up eventually
4621 static inline int parity_smaller(u64 a
, u64 b
)
4626 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4627 static void sort_parity_stripes(struct btrfs_bio
*bbio
, u64
*raid_map
)
4629 struct btrfs_bio_stripe s
;
4636 for (i
= 0; i
< bbio
->num_stripes
- 1; i
++) {
4637 if (parity_smaller(raid_map
[i
], raid_map
[i
+1])) {
4638 s
= bbio
->stripes
[i
];
4640 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
4641 raid_map
[i
] = raid_map
[i
+1];
4642 bbio
->stripes
[i
+1] = s
;
4650 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
4651 u64 logical
, u64
*length
,
4652 struct btrfs_bio
**bbio_ret
,
4653 int mirror_num
, u64
**raid_map_ret
)
4655 struct extent_map
*em
;
4656 struct map_lookup
*map
;
4657 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4658 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4661 u64 stripe_end_offset
;
4666 u64
*raid_map
= NULL
;
4672 struct btrfs_bio
*bbio
= NULL
;
4673 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
4674 int dev_replace_is_ongoing
= 0;
4675 int num_alloc_stripes
;
4676 int patch_the_first_stripe_for_dev_replace
= 0;
4677 u64 physical_to_patch_in_first_stripe
= 0;
4678 u64 raid56_full_stripe_start
= (u64
)-1;
4680 read_lock(&em_tree
->lock
);
4681 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
4682 read_unlock(&em_tree
->lock
);
4685 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
4690 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4691 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
4692 "found %Lu-%Lu\n", logical
, em
->start
,
4693 em
->start
+ em
->len
);
4694 free_extent_map(em
);
4698 map
= (struct map_lookup
*)em
->bdev
;
4699 offset
= logical
- em
->start
;
4701 stripe_len
= map
->stripe_len
;
4704 * stripe_nr counts the total number of stripes we have to stride
4705 * to get to this block
4707 do_div(stripe_nr
, stripe_len
);
4709 stripe_offset
= stripe_nr
* stripe_len
;
4710 BUG_ON(offset
< stripe_offset
);
4712 /* stripe_offset is the offset of this block in its stripe*/
4713 stripe_offset
= offset
- stripe_offset
;
4715 /* if we're here for raid56, we need to know the stripe aligned start */
4716 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)) {
4717 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
4718 raid56_full_stripe_start
= offset
;
4720 /* allow a write of a full stripe, but make sure we don't
4721 * allow straddling of stripes
4723 do_div(raid56_full_stripe_start
, full_stripe_len
);
4724 raid56_full_stripe_start
*= full_stripe_len
;
4727 if (rw
& REQ_DISCARD
) {
4728 /* we don't discard raid56 yet */
4730 (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)) {
4734 *length
= min_t(u64
, em
->len
- offset
, *length
);
4735 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
4737 /* For writes to RAID[56], allow a full stripeset across all disks.
4738 For other RAID types and for RAID[56] reads, just allow a single
4739 stripe (on a single disk). */
4740 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
) &&
4742 max_len
= stripe_len
* nr_data_stripes(map
) -
4743 (offset
- raid56_full_stripe_start
);
4745 /* we limit the length of each bio to what fits in a stripe */
4746 max_len
= stripe_len
- stripe_offset
;
4748 *length
= min_t(u64
, em
->len
- offset
, max_len
);
4750 *length
= em
->len
- offset
;
4753 /* This is for when we're called from btrfs_merge_bio_hook() and all
4754 it cares about is the length */
4758 btrfs_dev_replace_lock(dev_replace
);
4759 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
4760 if (!dev_replace_is_ongoing
)
4761 btrfs_dev_replace_unlock(dev_replace
);
4763 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
4764 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
4765 dev_replace
->tgtdev
!= NULL
) {
4767 * in dev-replace case, for repair case (that's the only
4768 * case where the mirror is selected explicitly when
4769 * calling btrfs_map_block), blocks left of the left cursor
4770 * can also be read from the target drive.
4771 * For REQ_GET_READ_MIRRORS, the target drive is added as
4772 * the last one to the array of stripes. For READ, it also
4773 * needs to be supported using the same mirror number.
4774 * If the requested block is not left of the left cursor,
4775 * EIO is returned. This can happen because btrfs_num_copies()
4776 * returns one more in the dev-replace case.
4778 u64 tmp_length
= *length
;
4779 struct btrfs_bio
*tmp_bbio
= NULL
;
4780 int tmp_num_stripes
;
4781 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
4782 int index_srcdev
= 0;
4784 u64 physical_of_found
= 0;
4786 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
4787 logical
, &tmp_length
, &tmp_bbio
, 0, NULL
);
4789 WARN_ON(tmp_bbio
!= NULL
);
4793 tmp_num_stripes
= tmp_bbio
->num_stripes
;
4794 if (mirror_num
> tmp_num_stripes
) {
4796 * REQ_GET_READ_MIRRORS does not contain this
4797 * mirror, that means that the requested area
4798 * is not left of the left cursor
4806 * process the rest of the function using the mirror_num
4807 * of the source drive. Therefore look it up first.
4808 * At the end, patch the device pointer to the one of the
4811 for (i
= 0; i
< tmp_num_stripes
; i
++) {
4812 if (tmp_bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
4814 * In case of DUP, in order to keep it
4815 * simple, only add the mirror with the
4816 * lowest physical address
4819 physical_of_found
<=
4820 tmp_bbio
->stripes
[i
].physical
)
4825 tmp_bbio
->stripes
[i
].physical
;
4830 mirror_num
= index_srcdev
+ 1;
4831 patch_the_first_stripe_for_dev_replace
= 1;
4832 physical_to_patch_in_first_stripe
= physical_of_found
;
4841 } else if (mirror_num
> map
->num_stripes
) {
4847 stripe_nr_orig
= stripe_nr
;
4848 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
4849 do_div(stripe_nr_end
, map
->stripe_len
);
4850 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
4853 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
4854 if (rw
& REQ_DISCARD
)
4855 num_stripes
= min_t(u64
, map
->num_stripes
,
4856 stripe_nr_end
- stripe_nr_orig
);
4857 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
4858 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
4859 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
4860 num_stripes
= map
->num_stripes
;
4861 else if (mirror_num
)
4862 stripe_index
= mirror_num
- 1;
4864 stripe_index
= find_live_mirror(fs_info
, map
, 0,
4866 current
->pid
% map
->num_stripes
,
4867 dev_replace_is_ongoing
);
4868 mirror_num
= stripe_index
+ 1;
4871 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
4872 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
4873 num_stripes
= map
->num_stripes
;
4874 } else if (mirror_num
) {
4875 stripe_index
= mirror_num
- 1;
4880 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
4881 int factor
= map
->num_stripes
/ map
->sub_stripes
;
4883 stripe_index
= do_div(stripe_nr
, factor
);
4884 stripe_index
*= map
->sub_stripes
;
4886 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
4887 num_stripes
= map
->sub_stripes
;
4888 else if (rw
& REQ_DISCARD
)
4889 num_stripes
= min_t(u64
, map
->sub_stripes
*
4890 (stripe_nr_end
- stripe_nr_orig
),
4892 else if (mirror_num
)
4893 stripe_index
+= mirror_num
- 1;
4895 int old_stripe_index
= stripe_index
;
4896 stripe_index
= find_live_mirror(fs_info
, map
,
4898 map
->sub_stripes
, stripe_index
+
4899 current
->pid
% map
->sub_stripes
,
4900 dev_replace_is_ongoing
);
4901 mirror_num
= stripe_index
- old_stripe_index
+ 1;
4904 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4905 BTRFS_BLOCK_GROUP_RAID6
)) {
4908 if (bbio_ret
&& ((rw
& REQ_WRITE
) || mirror_num
> 1)
4912 /* push stripe_nr back to the start of the full stripe */
4913 stripe_nr
= raid56_full_stripe_start
;
4914 do_div(stripe_nr
, stripe_len
);
4916 stripe_index
= do_div(stripe_nr
, nr_data_stripes(map
));
4918 /* RAID[56] write or recovery. Return all stripes */
4919 num_stripes
= map
->num_stripes
;
4920 max_errors
= nr_parity_stripes(map
);
4922 raid_map
= kmalloc(sizeof(u64
) * num_stripes
,
4929 /* Work out the disk rotation on this stripe-set */
4931 rot
= do_div(tmp
, num_stripes
);
4933 /* Fill in the logical address of each stripe */
4934 tmp
= stripe_nr
* nr_data_stripes(map
);
4935 for (i
= 0; i
< nr_data_stripes(map
); i
++)
4936 raid_map
[(i
+rot
) % num_stripes
] =
4937 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
4939 raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
4940 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
4941 raid_map
[(i
+rot
+1) % num_stripes
] =
4944 *length
= map
->stripe_len
;
4949 * Mirror #0 or #1 means the original data block.
4950 * Mirror #2 is RAID5 parity block.
4951 * Mirror #3 is RAID6 Q block.
4953 stripe_index
= do_div(stripe_nr
, nr_data_stripes(map
));
4955 stripe_index
= nr_data_stripes(map
) +
4958 /* We distribute the parity blocks across stripes */
4959 tmp
= stripe_nr
+ stripe_index
;
4960 stripe_index
= do_div(tmp
, map
->num_stripes
);
4964 * after this do_div call, stripe_nr is the number of stripes
4965 * on this device we have to walk to find the data, and
4966 * stripe_index is the number of our device in the stripe array
4968 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
4969 mirror_num
= stripe_index
+ 1;
4971 BUG_ON(stripe_index
>= map
->num_stripes
);
4973 num_alloc_stripes
= num_stripes
;
4974 if (dev_replace_is_ongoing
) {
4975 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
4976 num_alloc_stripes
<<= 1;
4977 if (rw
& REQ_GET_READ_MIRRORS
)
4978 num_alloc_stripes
++;
4980 bbio
= kzalloc(btrfs_bio_size(num_alloc_stripes
), GFP_NOFS
);
4986 atomic_set(&bbio
->error
, 0);
4988 if (rw
& REQ_DISCARD
) {
4990 int sub_stripes
= 0;
4991 u64 stripes_per_dev
= 0;
4992 u32 remaining_stripes
= 0;
4993 u32 last_stripe
= 0;
4996 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
4997 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5000 sub_stripes
= map
->sub_stripes
;
5002 factor
= map
->num_stripes
/ sub_stripes
;
5003 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5006 &remaining_stripes
);
5007 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5008 last_stripe
*= sub_stripes
;
5011 for (i
= 0; i
< num_stripes
; i
++) {
5012 bbio
->stripes
[i
].physical
=
5013 map
->stripes
[stripe_index
].physical
+
5014 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5015 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5017 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5018 BTRFS_BLOCK_GROUP_RAID10
)) {
5019 bbio
->stripes
[i
].length
= stripes_per_dev
*
5022 if (i
/ sub_stripes
< remaining_stripes
)
5023 bbio
->stripes
[i
].length
+=
5027 * Special for the first stripe and
5030 * |-------|...|-------|
5034 if (i
< sub_stripes
)
5035 bbio
->stripes
[i
].length
-=
5038 if (stripe_index
>= last_stripe
&&
5039 stripe_index
<= (last_stripe
+
5041 bbio
->stripes
[i
].length
-=
5044 if (i
== sub_stripes
- 1)
5047 bbio
->stripes
[i
].length
= *length
;
5050 if (stripe_index
== map
->num_stripes
) {
5051 /* This could only happen for RAID0/10 */
5057 for (i
= 0; i
< num_stripes
; i
++) {
5058 bbio
->stripes
[i
].physical
=
5059 map
->stripes
[stripe_index
].physical
+
5061 stripe_nr
* map
->stripe_len
;
5062 bbio
->stripes
[i
].dev
=
5063 map
->stripes
[stripe_index
].dev
;
5068 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) {
5069 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5070 BTRFS_BLOCK_GROUP_RAID10
|
5071 BTRFS_BLOCK_GROUP_RAID5
|
5072 BTRFS_BLOCK_GROUP_DUP
)) {
5074 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5079 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5080 dev_replace
->tgtdev
!= NULL
) {
5081 int index_where_to_add
;
5082 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5085 * duplicate the write operations while the dev replace
5086 * procedure is running. Since the copying of the old disk
5087 * to the new disk takes place at run time while the
5088 * filesystem is mounted writable, the regular write
5089 * operations to the old disk have to be duplicated to go
5090 * to the new disk as well.
5091 * Note that device->missing is handled by the caller, and
5092 * that the write to the old disk is already set up in the
5095 index_where_to_add
= num_stripes
;
5096 for (i
= 0; i
< num_stripes
; i
++) {
5097 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5098 /* write to new disk, too */
5099 struct btrfs_bio_stripe
*new =
5100 bbio
->stripes
+ index_where_to_add
;
5101 struct btrfs_bio_stripe
*old
=
5104 new->physical
= old
->physical
;
5105 new->length
= old
->length
;
5106 new->dev
= dev_replace
->tgtdev
;
5107 index_where_to_add
++;
5111 num_stripes
= index_where_to_add
;
5112 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5113 dev_replace
->tgtdev
!= NULL
) {
5114 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5115 int index_srcdev
= 0;
5117 u64 physical_of_found
= 0;
5120 * During the dev-replace procedure, the target drive can
5121 * also be used to read data in case it is needed to repair
5122 * a corrupt block elsewhere. This is possible if the
5123 * requested area is left of the left cursor. In this area,
5124 * the target drive is a full copy of the source drive.
5126 for (i
= 0; i
< num_stripes
; i
++) {
5127 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5129 * In case of DUP, in order to keep it
5130 * simple, only add the mirror with the
5131 * lowest physical address
5134 physical_of_found
<=
5135 bbio
->stripes
[i
].physical
)
5139 physical_of_found
= bbio
->stripes
[i
].physical
;
5143 u64 length
= map
->stripe_len
;
5145 if (physical_of_found
+ length
<=
5146 dev_replace
->cursor_left
) {
5147 struct btrfs_bio_stripe
*tgtdev_stripe
=
5148 bbio
->stripes
+ num_stripes
;
5150 tgtdev_stripe
->physical
= physical_of_found
;
5151 tgtdev_stripe
->length
=
5152 bbio
->stripes
[index_srcdev
].length
;
5153 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5161 bbio
->num_stripes
= num_stripes
;
5162 bbio
->max_errors
= max_errors
;
5163 bbio
->mirror_num
= mirror_num
;
5166 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5167 * mirror_num == num_stripes + 1 && dev_replace target drive is
5168 * available as a mirror
5170 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5171 WARN_ON(num_stripes
> 1);
5172 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5173 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5174 bbio
->mirror_num
= map
->num_stripes
+ 1;
5177 sort_parity_stripes(bbio
, raid_map
);
5178 *raid_map_ret
= raid_map
;
5181 if (dev_replace_is_ongoing
)
5182 btrfs_dev_replace_unlock(dev_replace
);
5183 free_extent_map(em
);
5187 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5188 u64 logical
, u64
*length
,
5189 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5191 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5195 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5196 u64 chunk_start
, u64 physical
, u64 devid
,
5197 u64
**logical
, int *naddrs
, int *stripe_len
)
5199 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5200 struct extent_map
*em
;
5201 struct map_lookup
*map
;
5209 read_lock(&em_tree
->lock
);
5210 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5211 read_unlock(&em_tree
->lock
);
5214 printk(KERN_ERR
"btrfs: couldn't find em for chunk %Lu\n",
5219 if (em
->start
!= chunk_start
) {
5220 printk(KERN_ERR
"btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5221 em
->start
, chunk_start
);
5222 free_extent_map(em
);
5225 map
= (struct map_lookup
*)em
->bdev
;
5228 rmap_len
= map
->stripe_len
;
5230 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5231 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
5232 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5233 do_div(length
, map
->num_stripes
);
5234 else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
5235 BTRFS_BLOCK_GROUP_RAID6
)) {
5236 do_div(length
, nr_data_stripes(map
));
5237 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5240 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
5241 BUG_ON(!buf
); /* -ENOMEM */
5243 for (i
= 0; i
< map
->num_stripes
; i
++) {
5244 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5246 if (map
->stripes
[i
].physical
> physical
||
5247 map
->stripes
[i
].physical
+ length
<= physical
)
5250 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5251 do_div(stripe_nr
, map
->stripe_len
);
5253 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5254 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5255 do_div(stripe_nr
, map
->sub_stripes
);
5256 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5257 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5258 } /* else if RAID[56], multiply by nr_data_stripes().
5259 * Alternatively, just use rmap_len below instead of
5260 * map->stripe_len */
5262 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5263 WARN_ON(nr
>= map
->num_stripes
);
5264 for (j
= 0; j
< nr
; j
++) {
5265 if (buf
[j
] == bytenr
)
5269 WARN_ON(nr
>= map
->num_stripes
);
5276 *stripe_len
= rmap_len
;
5278 free_extent_map(em
);
5282 static void btrfs_end_bio(struct bio
*bio
, int err
)
5284 struct btrfs_bio
*bbio
= bio
->bi_private
;
5285 int is_orig_bio
= 0;
5288 atomic_inc(&bbio
->error
);
5289 if (err
== -EIO
|| err
== -EREMOTEIO
) {
5290 unsigned int stripe_index
=
5291 btrfs_io_bio(bio
)->stripe_index
;
5292 struct btrfs_device
*dev
;
5294 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5295 dev
= bbio
->stripes
[stripe_index
].dev
;
5297 if (bio
->bi_rw
& WRITE
)
5298 btrfs_dev_stat_inc(dev
,
5299 BTRFS_DEV_STAT_WRITE_ERRS
);
5301 btrfs_dev_stat_inc(dev
,
5302 BTRFS_DEV_STAT_READ_ERRS
);
5303 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5304 btrfs_dev_stat_inc(dev
,
5305 BTRFS_DEV_STAT_FLUSH_ERRS
);
5306 btrfs_dev_stat_print_on_error(dev
);
5311 if (bio
== bbio
->orig_bio
)
5314 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5317 bio
= bbio
->orig_bio
;
5319 bio
->bi_private
= bbio
->private;
5320 bio
->bi_end_io
= bbio
->end_io
;
5321 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5322 /* only send an error to the higher layers if it is
5323 * beyond the tolerance of the btrfs bio
5325 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5329 * this bio is actually up to date, we didn't
5330 * go over the max number of errors
5332 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5337 bio_endio(bio
, err
);
5338 } else if (!is_orig_bio
) {
5343 struct async_sched
{
5346 struct btrfs_fs_info
*info
;
5347 struct btrfs_work work
;
5351 * see run_scheduled_bios for a description of why bios are collected for
5354 * This will add one bio to the pending list for a device and make sure
5355 * the work struct is scheduled.
5357 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5358 struct btrfs_device
*device
,
5359 int rw
, struct bio
*bio
)
5361 int should_queue
= 1;
5362 struct btrfs_pending_bios
*pending_bios
;
5364 if (device
->missing
|| !device
->bdev
) {
5365 bio_endio(bio
, -EIO
);
5369 /* don't bother with additional async steps for reads, right now */
5370 if (!(rw
& REQ_WRITE
)) {
5372 btrfsic_submit_bio(rw
, bio
);
5378 * nr_async_bios allows us to reliably return congestion to the
5379 * higher layers. Otherwise, the async bio makes it appear we have
5380 * made progress against dirty pages when we've really just put it
5381 * on a queue for later
5383 atomic_inc(&root
->fs_info
->nr_async_bios
);
5384 WARN_ON(bio
->bi_next
);
5385 bio
->bi_next
= NULL
;
5388 spin_lock(&device
->io_lock
);
5389 if (bio
->bi_rw
& REQ_SYNC
)
5390 pending_bios
= &device
->pending_sync_bios
;
5392 pending_bios
= &device
->pending_bios
;
5394 if (pending_bios
->tail
)
5395 pending_bios
->tail
->bi_next
= bio
;
5397 pending_bios
->tail
= bio
;
5398 if (!pending_bios
->head
)
5399 pending_bios
->head
= bio
;
5400 if (device
->running_pending
)
5403 spin_unlock(&device
->io_lock
);
5406 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
5410 static int bio_size_ok(struct block_device
*bdev
, struct bio
*bio
,
5413 struct bio_vec
*prev
;
5414 struct request_queue
*q
= bdev_get_queue(bdev
);
5415 unsigned short max_sectors
= queue_max_sectors(q
);
5416 struct bvec_merge_data bvm
= {
5418 .bi_sector
= sector
,
5419 .bi_rw
= bio
->bi_rw
,
5422 if (bio
->bi_vcnt
== 0) {
5427 prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
5428 if (bio_sectors(bio
) > max_sectors
)
5431 if (!q
->merge_bvec_fn
)
5434 bvm
.bi_size
= bio
->bi_size
- prev
->bv_len
;
5435 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < prev
->bv_len
)
5440 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5441 struct bio
*bio
, u64 physical
, int dev_nr
,
5444 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
5446 bio
->bi_private
= bbio
;
5447 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
5448 bio
->bi_end_io
= btrfs_end_bio
;
5449 bio
->bi_sector
= physical
>> 9;
5452 struct rcu_string
*name
;
5455 name
= rcu_dereference(dev
->name
);
5456 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5457 "(%s id %llu), size=%u\n", rw
,
5458 (u64
)bio
->bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
5459 name
->str
, dev
->devid
, bio
->bi_size
);
5463 bio
->bi_bdev
= dev
->bdev
;
5465 btrfs_schedule_bio(root
, dev
, rw
, bio
);
5467 btrfsic_submit_bio(rw
, bio
);
5470 static int breakup_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5471 struct bio
*first_bio
, struct btrfs_device
*dev
,
5472 int dev_nr
, int rw
, int async
)
5474 struct bio_vec
*bvec
= first_bio
->bi_io_vec
;
5476 int nr_vecs
= bio_get_nr_vecs(dev
->bdev
);
5477 u64 physical
= bbio
->stripes
[dev_nr
].physical
;
5480 bio
= btrfs_bio_alloc(dev
->bdev
, physical
>> 9, nr_vecs
, GFP_NOFS
);
5484 while (bvec
<= (first_bio
->bi_io_vec
+ first_bio
->bi_vcnt
- 1)) {
5485 if (bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5486 bvec
->bv_offset
) < bvec
->bv_len
) {
5487 u64 len
= bio
->bi_size
;
5489 atomic_inc(&bbio
->stripes_pending
);
5490 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
,
5498 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
, rw
, async
);
5502 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
5504 atomic_inc(&bbio
->error
);
5505 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5506 bio
->bi_private
= bbio
->private;
5507 bio
->bi_end_io
= bbio
->end_io
;
5508 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5509 bio
->bi_sector
= logical
>> 9;
5511 bio_endio(bio
, -EIO
);
5515 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
5516 int mirror_num
, int async_submit
)
5518 struct btrfs_device
*dev
;
5519 struct bio
*first_bio
= bio
;
5520 u64 logical
= (u64
)bio
->bi_sector
<< 9;
5523 u64
*raid_map
= NULL
;
5527 struct btrfs_bio
*bbio
= NULL
;
5529 length
= bio
->bi_size
;
5530 map_length
= length
;
5532 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
5533 mirror_num
, &raid_map
);
5534 if (ret
) /* -ENOMEM */
5537 total_devs
= bbio
->num_stripes
;
5538 bbio
->orig_bio
= first_bio
;
5539 bbio
->private = first_bio
->bi_private
;
5540 bbio
->end_io
= first_bio
->bi_end_io
;
5541 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
5544 /* In this case, map_length has been set to the length of
5545 a single stripe; not the whole write */
5547 return raid56_parity_write(root
, bio
, bbio
,
5548 raid_map
, map_length
);
5550 return raid56_parity_recover(root
, bio
, bbio
,
5551 raid_map
, map_length
,
5556 if (map_length
< length
) {
5557 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
5558 logical
, length
, map_length
);
5562 while (dev_nr
< total_devs
) {
5563 dev
= bbio
->stripes
[dev_nr
].dev
;
5564 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
5565 bbio_error(bbio
, first_bio
, logical
);
5571 * Check and see if we're ok with this bio based on it's size
5572 * and offset with the given device.
5574 if (!bio_size_ok(dev
->bdev
, first_bio
,
5575 bbio
->stripes
[dev_nr
].physical
>> 9)) {
5576 ret
= breakup_stripe_bio(root
, bbio
, first_bio
, dev
,
5577 dev_nr
, rw
, async_submit
);
5583 if (dev_nr
< total_devs
- 1) {
5584 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
5585 BUG_ON(!bio
); /* -ENOMEM */
5590 submit_stripe_bio(root
, bbio
, bio
,
5591 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
5598 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
5601 struct btrfs_device
*device
;
5602 struct btrfs_fs_devices
*cur_devices
;
5604 cur_devices
= fs_info
->fs_devices
;
5605 while (cur_devices
) {
5607 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5608 device
= __find_device(&cur_devices
->devices
,
5613 cur_devices
= cur_devices
->seed
;
5618 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
5619 u64 devid
, u8
*dev_uuid
)
5621 struct btrfs_device
*device
;
5622 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
5624 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
5628 list_add(&device
->dev_list
, &fs_devices
->devices
);
5629 device
->fs_devices
= fs_devices
;
5630 fs_devices
->num_devices
++;
5632 device
->missing
= 1;
5633 fs_devices
->missing_devices
++;
5639 * btrfs_alloc_device - allocate struct btrfs_device
5640 * @fs_info: used only for generating a new devid, can be NULL if
5641 * devid is provided (i.e. @devid != NULL).
5642 * @devid: a pointer to devid for this device. If NULL a new devid
5644 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5647 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5648 * on error. Returned struct is not linked onto any lists and can be
5649 * destroyed with kfree() right away.
5651 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
5655 struct btrfs_device
*dev
;
5658 if (!devid
&& !fs_info
) {
5660 return ERR_PTR(-EINVAL
);
5663 dev
= __alloc_device();
5672 ret
= find_next_devid(fs_info
, &tmp
);
5675 return ERR_PTR(ret
);
5681 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
5683 generate_random_uuid(dev
->uuid
);
5685 dev
->work
.func
= pending_bios_fn
;
5690 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
5691 struct extent_buffer
*leaf
,
5692 struct btrfs_chunk
*chunk
)
5694 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5695 struct map_lookup
*map
;
5696 struct extent_map
*em
;
5700 u8 uuid
[BTRFS_UUID_SIZE
];
5705 logical
= key
->offset
;
5706 length
= btrfs_chunk_length(leaf
, chunk
);
5708 read_lock(&map_tree
->map_tree
.lock
);
5709 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
5710 read_unlock(&map_tree
->map_tree
.lock
);
5712 /* already mapped? */
5713 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
5714 free_extent_map(em
);
5717 free_extent_map(em
);
5720 em
= alloc_extent_map();
5723 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
5724 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
5726 free_extent_map(em
);
5730 em
->bdev
= (struct block_device
*)map
;
5731 em
->start
= logical
;
5734 em
->block_start
= 0;
5735 em
->block_len
= em
->len
;
5737 map
->num_stripes
= num_stripes
;
5738 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
5739 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
5740 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
5741 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
5742 map
->type
= btrfs_chunk_type(leaf
, chunk
);
5743 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
5744 for (i
= 0; i
< num_stripes
; i
++) {
5745 map
->stripes
[i
].physical
=
5746 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
5747 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
5748 read_extent_buffer(leaf
, uuid
, (unsigned long)
5749 btrfs_stripe_dev_uuid_nr(chunk
, i
),
5751 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
5753 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
5755 free_extent_map(em
);
5758 if (!map
->stripes
[i
].dev
) {
5759 map
->stripes
[i
].dev
=
5760 add_missing_dev(root
, devid
, uuid
);
5761 if (!map
->stripes
[i
].dev
) {
5763 free_extent_map(em
);
5767 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
5770 write_lock(&map_tree
->map_tree
.lock
);
5771 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
5772 write_unlock(&map_tree
->map_tree
.lock
);
5773 BUG_ON(ret
); /* Tree corruption */
5774 free_extent_map(em
);
5779 static void fill_device_from_item(struct extent_buffer
*leaf
,
5780 struct btrfs_dev_item
*dev_item
,
5781 struct btrfs_device
*device
)
5785 device
->devid
= btrfs_device_id(leaf
, dev_item
);
5786 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
5787 device
->total_bytes
= device
->disk_total_bytes
;
5788 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
5789 device
->type
= btrfs_device_type(leaf
, dev_item
);
5790 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
5791 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
5792 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
5793 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
5794 device
->is_tgtdev_for_dev_replace
= 0;
5796 ptr
= btrfs_device_uuid(dev_item
);
5797 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
5800 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
5802 struct btrfs_fs_devices
*fs_devices
;
5805 BUG_ON(!mutex_is_locked(&uuid_mutex
));
5807 fs_devices
= root
->fs_info
->fs_devices
->seed
;
5808 while (fs_devices
) {
5809 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5813 fs_devices
= fs_devices
->seed
;
5816 fs_devices
= find_fsid(fsid
);
5822 fs_devices
= clone_fs_devices(fs_devices
);
5823 if (IS_ERR(fs_devices
)) {
5824 ret
= PTR_ERR(fs_devices
);
5828 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
5829 root
->fs_info
->bdev_holder
);
5831 free_fs_devices(fs_devices
);
5835 if (!fs_devices
->seeding
) {
5836 __btrfs_close_devices(fs_devices
);
5837 free_fs_devices(fs_devices
);
5842 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
5843 root
->fs_info
->fs_devices
->seed
= fs_devices
;
5848 static int read_one_dev(struct btrfs_root
*root
,
5849 struct extent_buffer
*leaf
,
5850 struct btrfs_dev_item
*dev_item
)
5852 struct btrfs_device
*device
;
5855 u8 fs_uuid
[BTRFS_UUID_SIZE
];
5856 u8 dev_uuid
[BTRFS_UUID_SIZE
];
5858 devid
= btrfs_device_id(leaf
, dev_item
);
5859 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
5861 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
5864 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
5865 ret
= open_seed_devices(root
, fs_uuid
);
5866 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
5870 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
5871 if (!device
|| !device
->bdev
) {
5872 if (!btrfs_test_opt(root
, DEGRADED
))
5876 btrfs_warn(root
->fs_info
, "devid %llu missing", devid
);
5877 device
= add_missing_dev(root
, devid
, dev_uuid
);
5880 } else if (!device
->missing
) {
5882 * this happens when a device that was properly setup
5883 * in the device info lists suddenly goes bad.
5884 * device->bdev is NULL, and so we have to set
5885 * device->missing to one here
5887 root
->fs_info
->fs_devices
->missing_devices
++;
5888 device
->missing
= 1;
5892 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
5893 BUG_ON(device
->writeable
);
5894 if (device
->generation
!=
5895 btrfs_device_generation(leaf
, dev_item
))
5899 fill_device_from_item(leaf
, dev_item
, device
);
5900 device
->in_fs_metadata
= 1;
5901 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
5902 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
5903 spin_lock(&root
->fs_info
->free_chunk_lock
);
5904 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
5906 spin_unlock(&root
->fs_info
->free_chunk_lock
);
5912 int btrfs_read_sys_array(struct btrfs_root
*root
)
5914 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
5915 struct extent_buffer
*sb
;
5916 struct btrfs_disk_key
*disk_key
;
5917 struct btrfs_chunk
*chunk
;
5919 unsigned long sb_ptr
;
5925 struct btrfs_key key
;
5927 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
5928 BTRFS_SUPER_INFO_SIZE
);
5931 btrfs_set_buffer_uptodate(sb
);
5932 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
5934 * The sb extent buffer is artifical and just used to read the system array.
5935 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5936 * pages up-to-date when the page is larger: extent does not cover the
5937 * whole page and consequently check_page_uptodate does not find all
5938 * the page's extents up-to-date (the hole beyond sb),
5939 * write_extent_buffer then triggers a WARN_ON.
5941 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5942 * but sb spans only this function. Add an explicit SetPageUptodate call
5943 * to silence the warning eg. on PowerPC 64.
5945 if (PAGE_CACHE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
5946 SetPageUptodate(sb
->pages
[0]);
5948 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
5949 array_size
= btrfs_super_sys_array_size(super_copy
);
5951 ptr
= super_copy
->sys_chunk_array
;
5952 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
5955 while (cur
< array_size
) {
5956 disk_key
= (struct btrfs_disk_key
*)ptr
;
5957 btrfs_disk_key_to_cpu(&key
, disk_key
);
5959 len
= sizeof(*disk_key
); ptr
+= len
;
5963 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
5964 chunk
= (struct btrfs_chunk
*)sb_ptr
;
5965 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
5968 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
5969 len
= btrfs_chunk_item_size(num_stripes
);
5978 free_extent_buffer(sb
);
5982 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
5984 struct btrfs_path
*path
;
5985 struct extent_buffer
*leaf
;
5986 struct btrfs_key key
;
5987 struct btrfs_key found_key
;
5991 root
= root
->fs_info
->chunk_root
;
5993 path
= btrfs_alloc_path();
5997 mutex_lock(&uuid_mutex
);
6001 * Read all device items, and then all the chunk items. All
6002 * device items are found before any chunk item (their object id
6003 * is smaller than the lowest possible object id for a chunk
6004 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6006 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6009 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6013 leaf
= path
->nodes
[0];
6014 slot
= path
->slots
[0];
6015 if (slot
>= btrfs_header_nritems(leaf
)) {
6016 ret
= btrfs_next_leaf(root
, path
);
6023 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6024 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6025 struct btrfs_dev_item
*dev_item
;
6026 dev_item
= btrfs_item_ptr(leaf
, slot
,
6027 struct btrfs_dev_item
);
6028 ret
= read_one_dev(root
, leaf
, dev_item
);
6031 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6032 struct btrfs_chunk
*chunk
;
6033 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6034 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6042 unlock_chunks(root
);
6043 mutex_unlock(&uuid_mutex
);
6045 btrfs_free_path(path
);
6049 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6051 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6052 struct btrfs_device
*device
;
6054 while (fs_devices
) {
6055 mutex_lock(&fs_devices
->device_list_mutex
);
6056 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6057 device
->dev_root
= fs_info
->dev_root
;
6058 mutex_unlock(&fs_devices
->device_list_mutex
);
6060 fs_devices
= fs_devices
->seed
;
6064 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6068 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6069 btrfs_dev_stat_reset(dev
, i
);
6072 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6074 struct btrfs_key key
;
6075 struct btrfs_key found_key
;
6076 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6077 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6078 struct extent_buffer
*eb
;
6081 struct btrfs_device
*device
;
6082 struct btrfs_path
*path
= NULL
;
6085 path
= btrfs_alloc_path();
6091 mutex_lock(&fs_devices
->device_list_mutex
);
6092 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6094 struct btrfs_dev_stats_item
*ptr
;
6097 key
.type
= BTRFS_DEV_STATS_KEY
;
6098 key
.offset
= device
->devid
;
6099 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6101 __btrfs_reset_dev_stats(device
);
6102 device
->dev_stats_valid
= 1;
6103 btrfs_release_path(path
);
6106 slot
= path
->slots
[0];
6107 eb
= path
->nodes
[0];
6108 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6109 item_size
= btrfs_item_size_nr(eb
, slot
);
6111 ptr
= btrfs_item_ptr(eb
, slot
,
6112 struct btrfs_dev_stats_item
);
6114 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6115 if (item_size
>= (1 + i
) * sizeof(__le64
))
6116 btrfs_dev_stat_set(device
, i
,
6117 btrfs_dev_stats_value(eb
, ptr
, i
));
6119 btrfs_dev_stat_reset(device
, i
);
6122 device
->dev_stats_valid
= 1;
6123 btrfs_dev_stat_print_on_load(device
);
6124 btrfs_release_path(path
);
6126 mutex_unlock(&fs_devices
->device_list_mutex
);
6129 btrfs_free_path(path
);
6130 return ret
< 0 ? ret
: 0;
6133 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6134 struct btrfs_root
*dev_root
,
6135 struct btrfs_device
*device
)
6137 struct btrfs_path
*path
;
6138 struct btrfs_key key
;
6139 struct extent_buffer
*eb
;
6140 struct btrfs_dev_stats_item
*ptr
;
6145 key
.type
= BTRFS_DEV_STATS_KEY
;
6146 key
.offset
= device
->devid
;
6148 path
= btrfs_alloc_path();
6150 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6152 printk_in_rcu(KERN_WARNING
"btrfs: error %d while searching for dev_stats item for device %s!\n",
6153 ret
, rcu_str_deref(device
->name
));
6158 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6159 /* need to delete old one and insert a new one */
6160 ret
= btrfs_del_item(trans
, dev_root
, path
);
6162 printk_in_rcu(KERN_WARNING
"btrfs: delete too small dev_stats item for device %s failed %d!\n",
6163 rcu_str_deref(device
->name
), ret
);
6170 /* need to insert a new item */
6171 btrfs_release_path(path
);
6172 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6173 &key
, sizeof(*ptr
));
6175 printk_in_rcu(KERN_WARNING
"btrfs: insert dev_stats item for device %s failed %d!\n",
6176 rcu_str_deref(device
->name
), ret
);
6181 eb
= path
->nodes
[0];
6182 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6183 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6184 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6185 btrfs_dev_stat_read(device
, i
));
6186 btrfs_mark_buffer_dirty(eb
);
6189 btrfs_free_path(path
);
6194 * called from commit_transaction. Writes all changed device stats to disk.
6196 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6197 struct btrfs_fs_info
*fs_info
)
6199 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6200 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6201 struct btrfs_device
*device
;
6204 mutex_lock(&fs_devices
->device_list_mutex
);
6205 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6206 if (!device
->dev_stats_valid
|| !device
->dev_stats_dirty
)
6209 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6211 device
->dev_stats_dirty
= 0;
6213 mutex_unlock(&fs_devices
->device_list_mutex
);
6218 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6220 btrfs_dev_stat_inc(dev
, index
);
6221 btrfs_dev_stat_print_on_error(dev
);
6224 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6226 if (!dev
->dev_stats_valid
)
6228 printk_ratelimited_in_rcu(KERN_ERR
6229 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6230 rcu_str_deref(dev
->name
),
6231 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6232 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6233 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6234 btrfs_dev_stat_read(dev
,
6235 BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6236 btrfs_dev_stat_read(dev
,
6237 BTRFS_DEV_STAT_GENERATION_ERRS
));
6240 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6244 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6245 if (btrfs_dev_stat_read(dev
, i
) != 0)
6247 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6248 return; /* all values == 0, suppress message */
6250 printk_in_rcu(KERN_INFO
"btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6251 rcu_str_deref(dev
->name
),
6252 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6253 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6254 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6255 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6256 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6259 int btrfs_get_dev_stats(struct btrfs_root
*root
,
6260 struct btrfs_ioctl_get_dev_stats
*stats
)
6262 struct btrfs_device
*dev
;
6263 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6266 mutex_lock(&fs_devices
->device_list_mutex
);
6267 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
6268 mutex_unlock(&fs_devices
->device_list_mutex
);
6272 "btrfs: get dev_stats failed, device not found\n");
6274 } else if (!dev
->dev_stats_valid
) {
6276 "btrfs: get dev_stats failed, not yet valid\n");
6278 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
6279 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6280 if (stats
->nr_items
> i
)
6282 btrfs_dev_stat_read_and_reset(dev
, i
);
6284 btrfs_dev_stat_reset(dev
, i
);
6287 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6288 if (stats
->nr_items
> i
)
6289 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
6291 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
6292 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
6296 int btrfs_scratch_superblock(struct btrfs_device
*device
)
6298 struct buffer_head
*bh
;
6299 struct btrfs_super_block
*disk_super
;
6301 bh
= btrfs_read_dev_super(device
->bdev
);
6304 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
6306 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
6307 set_buffer_dirty(bh
);
6308 sync_dirty_buffer(bh
);