Linux 3.12.28
[linux/fpc-iii.git] / fs / dcache.c
blob8ef74f3d8fe535210f3685edfd5f323db64a5e6c
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
91 /**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
93 * @lock: sequence lock
94 * @seq : sequence number to be checked
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
103 if (!(*seq & 1)) /* Even */
104 *seq = read_seqbegin(lock);
105 else /* Odd */
106 read_seqlock_excl(lock);
109 static inline int need_seqretry(seqlock_t *lock, int seq)
111 return !(seq & 1) && read_seqretry(lock, seq);
114 static inline void done_seqretry(seqlock_t *lock, int seq)
116 if (seq & 1)
117 read_sequnlock_excl(lock);
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
128 #define D_HASHBITS d_hash_shift
129 #define D_HASHMASK d_hash_mask
131 static unsigned int d_hash_mask __read_mostly;
132 static unsigned int d_hash_shift __read_mostly;
134 static struct hlist_bl_head *dentry_hashtable __read_mostly;
136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
137 unsigned int hash)
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
141 return dentry_hashtable + (hash & D_HASHMASK);
144 /* Statistics gathering. */
145 struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
149 static DEFINE_PER_CPU(long, nr_dentry);
150 static DEFINE_PER_CPU(long, nr_dentry_unused);
152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
155 * Here we resort to our own counters instead of using generic per-cpu counters
156 * for consistency with what the vfs inode code does. We are expected to harvest
157 * better code and performance by having our own specialized counters.
159 * Please note that the loop is done over all possible CPUs, not over all online
160 * CPUs. The reason for this is that we don't want to play games with CPUs going
161 * on and off. If one of them goes off, we will just keep their counters.
163 * glommer: See cffbc8a for details, and if you ever intend to change this,
164 * please update all vfs counters to match.
166 static long get_nr_dentry(void)
168 int i;
169 long sum = 0;
170 for_each_possible_cpu(i)
171 sum += per_cpu(nr_dentry, i);
172 return sum < 0 ? 0 : sum;
175 static long get_nr_dentry_unused(void)
177 int i;
178 long sum = 0;
179 for_each_possible_cpu(i)
180 sum += per_cpu(nr_dentry_unused, i);
181 return sum < 0 ? 0 : sum;
184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 size_t *lenp, loff_t *ppos)
187 dentry_stat.nr_dentry = get_nr_dentry();
188 dentry_stat.nr_unused = get_nr_dentry_unused();
189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
191 #endif
194 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195 * The strings are both count bytes long, and count is non-zero.
197 #ifdef CONFIG_DCACHE_WORD_ACCESS
199 #include <asm/word-at-a-time.h>
201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202 * aligned allocation for this particular component. We don't
203 * strictly need the load_unaligned_zeropad() safety, but it
204 * doesn't hurt either.
206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207 * need the careful unaligned handling.
209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
211 unsigned long a,b,mask;
213 for (;;) {
214 a = *(unsigned long *)cs;
215 b = load_unaligned_zeropad(ct);
216 if (tcount < sizeof(unsigned long))
217 break;
218 if (unlikely(a != b))
219 return 1;
220 cs += sizeof(unsigned long);
221 ct += sizeof(unsigned long);
222 tcount -= sizeof(unsigned long);
223 if (!tcount)
224 return 0;
226 mask = ~(~0ul << tcount*8);
227 return unlikely(!!((a ^ b) & mask));
230 #else
232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
234 do {
235 if (*cs != *ct)
236 return 1;
237 cs++;
238 ct++;
239 tcount--;
240 } while (tcount);
241 return 0;
244 #endif
246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
248 const unsigned char *cs;
250 * Be careful about RCU walk racing with rename:
251 * use ACCESS_ONCE to fetch the name pointer.
253 * NOTE! Even if a rename will mean that the length
254 * was not loaded atomically, we don't care. The
255 * RCU walk will check the sequence count eventually,
256 * and catch it. And we won't overrun the buffer,
257 * because we're reading the name pointer atomically,
258 * and a dentry name is guaranteed to be properly
259 * terminated with a NUL byte.
261 * End result: even if 'len' is wrong, we'll exit
262 * early because the data cannot match (there can
263 * be no NUL in the ct/tcount data)
265 cs = ACCESS_ONCE(dentry->d_name.name);
266 smp_read_barrier_depends();
267 return dentry_string_cmp(cs, ct, tcount);
270 static void __d_free(struct rcu_head *head)
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
274 WARN_ON(!hlist_unhashed(&dentry->d_alias));
275 if (dname_external(dentry))
276 kfree(dentry->d_name.name);
277 kmem_cache_free(dentry_cache, dentry);
281 * no locks, please.
283 static void d_free(struct dentry *dentry)
285 BUG_ON((int)dentry->d_lockref.count > 0);
286 this_cpu_dec(nr_dentry);
287 if (dentry->d_op && dentry->d_op->d_release)
288 dentry->d_op->d_release(dentry);
290 /* if dentry was never visible to RCU, immediate free is OK */
291 if (!(dentry->d_flags & DCACHE_RCUACCESS))
292 __d_free(&dentry->d_u.d_rcu);
293 else
294 call_rcu(&dentry->d_u.d_rcu, __d_free);
298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
299 * @dentry: the target dentry
300 * After this call, in-progress rcu-walk path lookup will fail. This
301 * should be called after unhashing, and after changing d_inode (if
302 * the dentry has not already been unhashed).
304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
306 assert_spin_locked(&dentry->d_lock);
307 /* Go through a barrier */
308 write_seqcount_barrier(&dentry->d_seq);
312 * Release the dentry's inode, using the filesystem
313 * d_iput() operation if defined. Dentry has no refcount
314 * and is unhashed.
316 static void dentry_iput(struct dentry * dentry)
317 __releases(dentry->d_lock)
318 __releases(dentry->d_inode->i_lock)
320 struct inode *inode = dentry->d_inode;
321 if (inode) {
322 dentry->d_inode = NULL;
323 hlist_del_init(&dentry->d_alias);
324 spin_unlock(&dentry->d_lock);
325 spin_unlock(&inode->i_lock);
326 if (!inode->i_nlink)
327 fsnotify_inoderemove(inode);
328 if (dentry->d_op && dentry->d_op->d_iput)
329 dentry->d_op->d_iput(dentry, inode);
330 else
331 iput(inode);
332 } else {
333 spin_unlock(&dentry->d_lock);
338 * Release the dentry's inode, using the filesystem
339 * d_iput() operation if defined. dentry remains in-use.
341 static void dentry_unlink_inode(struct dentry * dentry)
342 __releases(dentry->d_lock)
343 __releases(dentry->d_inode->i_lock)
345 struct inode *inode = dentry->d_inode;
346 dentry->d_inode = NULL;
347 hlist_del_init(&dentry->d_alias);
348 dentry_rcuwalk_barrier(dentry);
349 spin_unlock(&dentry->d_lock);
350 spin_unlock(&inode->i_lock);
351 if (!inode->i_nlink)
352 fsnotify_inoderemove(inode);
353 if (dentry->d_op && dentry->d_op->d_iput)
354 dentry->d_op->d_iput(dentry, inode);
355 else
356 iput(inode);
360 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
361 * is in use - which includes both the "real" per-superblock
362 * LRU list _and_ the DCACHE_SHRINK_LIST use.
364 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
365 * on the shrink list (ie not on the superblock LRU list).
367 * The per-cpu "nr_dentry_unused" counters are updated with
368 * the DCACHE_LRU_LIST bit.
370 * These helper functions make sure we always follow the
371 * rules. d_lock must be held by the caller.
373 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
374 static void d_lru_add(struct dentry *dentry)
376 D_FLAG_VERIFY(dentry, 0);
377 dentry->d_flags |= DCACHE_LRU_LIST;
378 this_cpu_inc(nr_dentry_unused);
379 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
382 static void d_lru_del(struct dentry *dentry)
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags &= ~DCACHE_LRU_LIST;
386 this_cpu_dec(nr_dentry_unused);
387 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
390 static void d_shrink_del(struct dentry *dentry)
392 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
393 list_del_init(&dentry->d_lru);
394 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
395 this_cpu_dec(nr_dentry_unused);
398 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
400 D_FLAG_VERIFY(dentry, 0);
401 list_add(&dentry->d_lru, list);
402 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
403 this_cpu_inc(nr_dentry_unused);
407 * These can only be called under the global LRU lock, ie during the
408 * callback for freeing the LRU list. "isolate" removes it from the
409 * LRU lists entirely, while shrink_move moves it to the indicated
410 * private list.
412 static void d_lru_isolate(struct dentry *dentry)
414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 dentry->d_flags &= ~DCACHE_LRU_LIST;
416 this_cpu_dec(nr_dentry_unused);
417 list_del_init(&dentry->d_lru);
420 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
422 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
423 dentry->d_flags |= DCACHE_SHRINK_LIST;
424 list_move_tail(&dentry->d_lru, list);
428 * dentry_lru_(add|del)_list) must be called with d_lock held.
430 static void dentry_lru_add(struct dentry *dentry)
432 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
433 d_lru_add(dentry);
437 * Remove a dentry with references from the LRU.
439 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
440 * lose our last reference through the parent walk. In this case, we need to
441 * remove ourselves from the shrink list, not the LRU.
443 static void dentry_lru_del(struct dentry *dentry)
445 if (dentry->d_flags & DCACHE_LRU_LIST) {
446 if (dentry->d_flags & DCACHE_SHRINK_LIST)
447 return d_shrink_del(dentry);
448 d_lru_del(dentry);
453 * d_kill - kill dentry and return parent
454 * @dentry: dentry to kill
455 * @parent: parent dentry
457 * The dentry must already be unhashed and removed from the LRU.
459 * If this is the root of the dentry tree, return NULL.
461 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
462 * d_kill.
464 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
465 __releases(dentry->d_lock)
466 __releases(parent->d_lock)
467 __releases(dentry->d_inode->i_lock)
469 list_del(&dentry->d_u.d_child);
471 * Inform try_to_ascend() that we are no longer attached to the
472 * dentry tree
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
482 d_free(dentry);
483 return parent;
487 * Unhash a dentry without inserting an RCU walk barrier or checking that
488 * dentry->d_lock is locked. The caller must take care of that, if
489 * appropriate.
491 static void __d_shrink(struct dentry *dentry)
493 if (!d_unhashed(dentry)) {
494 struct hlist_bl_head *b;
495 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
496 b = &dentry->d_sb->s_anon;
497 else
498 b = d_hash(dentry->d_parent, dentry->d_name.hash);
500 hlist_bl_lock(b);
501 __hlist_bl_del(&dentry->d_hash);
502 dentry->d_hash.pprev = NULL;
503 hlist_bl_unlock(b);
508 * d_drop - drop a dentry
509 * @dentry: dentry to drop
511 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
512 * be found through a VFS lookup any more. Note that this is different from
513 * deleting the dentry - d_delete will try to mark the dentry negative if
514 * possible, giving a successful _negative_ lookup, while d_drop will
515 * just make the cache lookup fail.
517 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
518 * reason (NFS timeouts or autofs deletes).
520 * __d_drop requires dentry->d_lock.
522 void __d_drop(struct dentry *dentry)
524 if (!d_unhashed(dentry)) {
525 __d_shrink(dentry);
526 dentry_rcuwalk_barrier(dentry);
529 EXPORT_SYMBOL(__d_drop);
531 void d_drop(struct dentry *dentry)
533 spin_lock(&dentry->d_lock);
534 __d_drop(dentry);
535 spin_unlock(&dentry->d_lock);
537 EXPORT_SYMBOL(d_drop);
540 * Finish off a dentry we've decided to kill.
541 * dentry->d_lock must be held, returns with it unlocked.
542 * If ref is non-zero, then decrement the refcount too.
543 * Returns dentry requiring refcount drop, or NULL if we're done.
545 static struct dentry *
546 dentry_kill(struct dentry *dentry, int unlock_on_failure)
547 __releases(dentry->d_lock)
549 struct inode *inode;
550 struct dentry *parent;
552 inode = dentry->d_inode;
553 if (inode && !spin_trylock(&inode->i_lock)) {
554 relock:
555 if (unlock_on_failure) {
556 spin_unlock(&dentry->d_lock);
557 cpu_relax();
559 return dentry; /* try again with same dentry */
561 if (IS_ROOT(dentry))
562 parent = NULL;
563 else
564 parent = dentry->d_parent;
565 if (parent && !spin_trylock(&parent->d_lock)) {
566 if (inode)
567 spin_unlock(&inode->i_lock);
568 goto relock;
572 * The dentry is now unrecoverably dead to the world.
574 lockref_mark_dead(&dentry->d_lockref);
577 * inform the fs via d_prune that this dentry is about to be
578 * unhashed and destroyed.
580 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
581 dentry->d_op->d_prune(dentry);
583 dentry_lru_del(dentry);
584 /* if it was on the hash then remove it */
585 __d_drop(dentry);
586 return d_kill(dentry, parent);
590 * This is dput
592 * This is complicated by the fact that we do not want to put
593 * dentries that are no longer on any hash chain on the unused
594 * list: we'd much rather just get rid of them immediately.
596 * However, that implies that we have to traverse the dentry
597 * tree upwards to the parents which might _also_ now be
598 * scheduled for deletion (it may have been only waiting for
599 * its last child to go away).
601 * This tail recursion is done by hand as we don't want to depend
602 * on the compiler to always get this right (gcc generally doesn't).
603 * Real recursion would eat up our stack space.
607 * dput - release a dentry
608 * @dentry: dentry to release
610 * Release a dentry. This will drop the usage count and if appropriate
611 * call the dentry unlink method as well as removing it from the queues and
612 * releasing its resources. If the parent dentries were scheduled for release
613 * they too may now get deleted.
615 void dput(struct dentry *dentry)
617 if (unlikely(!dentry))
618 return;
620 repeat:
621 if (lockref_put_or_lock(&dentry->d_lockref))
622 return;
624 /* Unreachable? Get rid of it */
625 if (unlikely(d_unhashed(dentry)))
626 goto kill_it;
628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
629 if (dentry->d_op->d_delete(dentry))
630 goto kill_it;
633 if (!(dentry->d_flags & DCACHE_REFERENCED))
634 dentry->d_flags |= DCACHE_REFERENCED;
635 dentry_lru_add(dentry);
637 dentry->d_lockref.count--;
638 spin_unlock(&dentry->d_lock);
639 return;
641 kill_it:
642 dentry = dentry_kill(dentry, 1);
643 if (dentry)
644 goto repeat;
646 EXPORT_SYMBOL(dput);
649 * d_invalidate - invalidate a dentry
650 * @dentry: dentry to invalidate
652 * Try to invalidate the dentry if it turns out to be
653 * possible. If there are other dentries that can be
654 * reached through this one we can't delete it and we
655 * return -EBUSY. On success we return 0.
657 * no dcache lock.
660 int d_invalidate(struct dentry * dentry)
663 * If it's already been dropped, return OK.
665 spin_lock(&dentry->d_lock);
666 if (d_unhashed(dentry)) {
667 spin_unlock(&dentry->d_lock);
668 return 0;
671 * Check whether to do a partial shrink_dcache
672 * to get rid of unused child entries.
674 if (!list_empty(&dentry->d_subdirs)) {
675 spin_unlock(&dentry->d_lock);
676 shrink_dcache_parent(dentry);
677 spin_lock(&dentry->d_lock);
681 * Somebody else still using it?
683 * If it's a directory, we can't drop it
684 * for fear of somebody re-populating it
685 * with children (even though dropping it
686 * would make it unreachable from the root,
687 * we might still populate it if it was a
688 * working directory or similar).
689 * We also need to leave mountpoints alone,
690 * directory or not.
692 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
693 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
694 spin_unlock(&dentry->d_lock);
695 return -EBUSY;
699 __d_drop(dentry);
700 spin_unlock(&dentry->d_lock);
701 return 0;
703 EXPORT_SYMBOL(d_invalidate);
705 /* This must be called with d_lock held */
706 static inline void __dget_dlock(struct dentry *dentry)
708 dentry->d_lockref.count++;
711 static inline void __dget(struct dentry *dentry)
713 lockref_get(&dentry->d_lockref);
716 struct dentry *dget_parent(struct dentry *dentry)
718 int gotref;
719 struct dentry *ret;
722 * Do optimistic parent lookup without any
723 * locking.
725 rcu_read_lock();
726 ret = ACCESS_ONCE(dentry->d_parent);
727 gotref = lockref_get_not_zero(&ret->d_lockref);
728 rcu_read_unlock();
729 if (likely(gotref)) {
730 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
731 return ret;
732 dput(ret);
735 repeat:
737 * Don't need rcu_dereference because we re-check it was correct under
738 * the lock.
740 rcu_read_lock();
741 ret = dentry->d_parent;
742 spin_lock(&ret->d_lock);
743 if (unlikely(ret != dentry->d_parent)) {
744 spin_unlock(&ret->d_lock);
745 rcu_read_unlock();
746 goto repeat;
748 rcu_read_unlock();
749 BUG_ON(!ret->d_lockref.count);
750 ret->d_lockref.count++;
751 spin_unlock(&ret->d_lock);
752 return ret;
754 EXPORT_SYMBOL(dget_parent);
757 * d_find_alias - grab a hashed alias of inode
758 * @inode: inode in question
759 * @want_discon: flag, used by d_splice_alias, to request
760 * that only a DISCONNECTED alias be returned.
762 * If inode has a hashed alias, or is a directory and has any alias,
763 * acquire the reference to alias and return it. Otherwise return NULL.
764 * Notice that if inode is a directory there can be only one alias and
765 * it can be unhashed only if it has no children, or if it is the root
766 * of a filesystem.
768 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
769 * any other hashed alias over that one unless @want_discon is set,
770 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
772 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
774 struct dentry *alias, *discon_alias;
776 again:
777 discon_alias = NULL;
778 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
779 spin_lock(&alias->d_lock);
780 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
781 if (IS_ROOT(alias) &&
782 (alias->d_flags & DCACHE_DISCONNECTED)) {
783 discon_alias = alias;
784 } else if (!want_discon) {
785 __dget_dlock(alias);
786 spin_unlock(&alias->d_lock);
787 return alias;
790 spin_unlock(&alias->d_lock);
792 if (discon_alias) {
793 alias = discon_alias;
794 spin_lock(&alias->d_lock);
795 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
796 if (IS_ROOT(alias) &&
797 (alias->d_flags & DCACHE_DISCONNECTED)) {
798 __dget_dlock(alias);
799 spin_unlock(&alias->d_lock);
800 return alias;
803 spin_unlock(&alias->d_lock);
804 goto again;
806 return NULL;
809 struct dentry *d_find_alias(struct inode *inode)
811 struct dentry *de = NULL;
813 if (!hlist_empty(&inode->i_dentry)) {
814 spin_lock(&inode->i_lock);
815 de = __d_find_alias(inode, 0);
816 spin_unlock(&inode->i_lock);
818 return de;
820 EXPORT_SYMBOL(d_find_alias);
823 * Try to kill dentries associated with this inode.
824 * WARNING: you must own a reference to inode.
826 void d_prune_aliases(struct inode *inode)
828 struct dentry *dentry;
829 restart:
830 spin_lock(&inode->i_lock);
831 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
832 spin_lock(&dentry->d_lock);
833 if (!dentry->d_lockref.count) {
835 * inform the fs via d_prune that this dentry
836 * is about to be unhashed and destroyed.
838 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
839 !d_unhashed(dentry))
840 dentry->d_op->d_prune(dentry);
842 __dget_dlock(dentry);
843 __d_drop(dentry);
844 spin_unlock(&dentry->d_lock);
845 spin_unlock(&inode->i_lock);
846 dput(dentry);
847 goto restart;
849 spin_unlock(&dentry->d_lock);
851 spin_unlock(&inode->i_lock);
853 EXPORT_SYMBOL(d_prune_aliases);
856 * Try to throw away a dentry - free the inode, dput the parent.
857 * Requires dentry->d_lock is held, and dentry->d_count == 0.
858 * Releases dentry->d_lock.
860 * This may fail if locks cannot be acquired no problem, just try again.
862 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
863 __releases(dentry->d_lock)
865 struct dentry *parent;
867 parent = dentry_kill(dentry, 0);
869 * If dentry_kill returns NULL, we have nothing more to do.
870 * if it returns the same dentry, trylocks failed. In either
871 * case, just loop again.
873 * Otherwise, we need to prune ancestors too. This is necessary
874 * to prevent quadratic behavior of shrink_dcache_parent(), but
875 * is also expected to be beneficial in reducing dentry cache
876 * fragmentation.
878 if (!parent)
879 return NULL;
880 if (parent == dentry)
881 return dentry;
883 /* Prune ancestors. */
884 dentry = parent;
885 while (dentry) {
886 if (lockref_put_or_lock(&dentry->d_lockref))
887 return NULL;
888 dentry = dentry_kill(dentry, 1);
890 return NULL;
893 static void shrink_dentry_list(struct list_head *list)
895 struct dentry *dentry;
897 rcu_read_lock();
898 for (;;) {
899 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
900 if (&dentry->d_lru == list)
901 break; /* empty */
904 * Get the dentry lock, and re-verify that the dentry is
905 * this on the shrinking list. If it is, we know that
906 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
908 spin_lock(&dentry->d_lock);
909 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
910 spin_unlock(&dentry->d_lock);
911 continue;
915 * The dispose list is isolated and dentries are not accounted
916 * to the LRU here, so we can simply remove it from the list
917 * here regardless of whether it is referenced or not.
919 d_shrink_del(dentry);
922 * We found an inuse dentry which was not removed from
923 * the LRU because of laziness during lookup. Do not free it.
925 if (dentry->d_lockref.count) {
926 spin_unlock(&dentry->d_lock);
927 continue;
929 rcu_read_unlock();
932 * If 'try_to_prune()' returns a dentry, it will
933 * be the same one we passed in, and d_lock will
934 * have been held the whole time, so it will not
935 * have been added to any other lists. We failed
936 * to get the inode lock.
938 * We just add it back to the shrink list.
940 dentry = try_prune_one_dentry(dentry);
942 rcu_read_lock();
943 if (dentry) {
944 d_shrink_add(dentry, list);
945 spin_unlock(&dentry->d_lock);
948 rcu_read_unlock();
951 static enum lru_status
952 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
954 struct list_head *freeable = arg;
955 struct dentry *dentry = container_of(item, struct dentry, d_lru);
959 * we are inverting the lru lock/dentry->d_lock here,
960 * so use a trylock. If we fail to get the lock, just skip
961 * it
963 if (!spin_trylock(&dentry->d_lock))
964 return LRU_SKIP;
967 * Referenced dentries are still in use. If they have active
968 * counts, just remove them from the LRU. Otherwise give them
969 * another pass through the LRU.
971 if (dentry->d_lockref.count) {
972 d_lru_isolate(dentry);
973 spin_unlock(&dentry->d_lock);
974 return LRU_REMOVED;
977 if (dentry->d_flags & DCACHE_REFERENCED) {
978 dentry->d_flags &= ~DCACHE_REFERENCED;
979 spin_unlock(&dentry->d_lock);
982 * The list move itself will be made by the common LRU code. At
983 * this point, we've dropped the dentry->d_lock but keep the
984 * lru lock. This is safe to do, since every list movement is
985 * protected by the lru lock even if both locks are held.
987 * This is guaranteed by the fact that all LRU management
988 * functions are intermediated by the LRU API calls like
989 * list_lru_add and list_lru_del. List movement in this file
990 * only ever occur through this functions or through callbacks
991 * like this one, that are called from the LRU API.
993 * The only exceptions to this are functions like
994 * shrink_dentry_list, and code that first checks for the
995 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
996 * operating only with stack provided lists after they are
997 * properly isolated from the main list. It is thus, always a
998 * local access.
1000 return LRU_ROTATE;
1003 d_lru_shrink_move(dentry, freeable);
1004 spin_unlock(&dentry->d_lock);
1006 return LRU_REMOVED;
1010 * prune_dcache_sb - shrink the dcache
1011 * @sb: superblock
1012 * @nr_to_scan : number of entries to try to free
1013 * @nid: which node to scan for freeable entities
1015 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1016 * done when we need more memory an called from the superblock shrinker
1017 * function.
1019 * This function may fail to free any resources if all the dentries are in
1020 * use.
1022 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1023 int nid)
1025 LIST_HEAD(dispose);
1026 long freed;
1028 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1029 &dispose, &nr_to_scan);
1030 shrink_dentry_list(&dispose);
1031 return freed;
1034 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1035 spinlock_t *lru_lock, void *arg)
1037 struct list_head *freeable = arg;
1038 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1041 * we are inverting the lru lock/dentry->d_lock here,
1042 * so use a trylock. If we fail to get the lock, just skip
1043 * it
1045 if (!spin_trylock(&dentry->d_lock))
1046 return LRU_SKIP;
1048 d_lru_shrink_move(dentry, freeable);
1049 spin_unlock(&dentry->d_lock);
1051 return LRU_REMOVED;
1056 * shrink_dcache_sb - shrink dcache for a superblock
1057 * @sb: superblock
1059 * Shrink the dcache for the specified super block. This is used to free
1060 * the dcache before unmounting a file system.
1062 void shrink_dcache_sb(struct super_block *sb)
1064 long freed;
1066 do {
1067 LIST_HEAD(dispose);
1069 freed = list_lru_walk(&sb->s_dentry_lru,
1070 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1072 this_cpu_sub(nr_dentry_unused, freed);
1073 shrink_dentry_list(&dispose);
1074 } while (freed > 0);
1076 EXPORT_SYMBOL(shrink_dcache_sb);
1079 * destroy a single subtree of dentries for unmount
1080 * - see the comments on shrink_dcache_for_umount() for a description of the
1081 * locking
1083 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
1085 struct dentry *parent;
1087 BUG_ON(!IS_ROOT(dentry));
1089 for (;;) {
1090 /* descend to the first leaf in the current subtree */
1091 while (!list_empty(&dentry->d_subdirs))
1092 dentry = list_entry(dentry->d_subdirs.next,
1093 struct dentry, d_u.d_child);
1095 /* consume the dentries from this leaf up through its parents
1096 * until we find one with children or run out altogether */
1097 do {
1098 struct inode *inode;
1101 * inform the fs that this dentry is about to be
1102 * unhashed and destroyed.
1104 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
1105 !d_unhashed(dentry))
1106 dentry->d_op->d_prune(dentry);
1108 dentry_lru_del(dentry);
1109 __d_shrink(dentry);
1111 if (dentry->d_lockref.count != 0) {
1112 printk(KERN_ERR
1113 "BUG: Dentry %p{i=%lx,n=%s}"
1114 " still in use (%d)"
1115 " [unmount of %s %s]\n",
1116 dentry,
1117 dentry->d_inode ?
1118 dentry->d_inode->i_ino : 0UL,
1119 dentry->d_name.name,
1120 dentry->d_lockref.count,
1121 dentry->d_sb->s_type->name,
1122 dentry->d_sb->s_id);
1123 BUG();
1126 if (IS_ROOT(dentry)) {
1127 parent = NULL;
1128 list_del(&dentry->d_u.d_child);
1129 } else {
1130 parent = dentry->d_parent;
1131 parent->d_lockref.count--;
1132 list_del(&dentry->d_u.d_child);
1135 inode = dentry->d_inode;
1136 if (inode) {
1137 dentry->d_inode = NULL;
1138 hlist_del_init(&dentry->d_alias);
1139 if (dentry->d_op && dentry->d_op->d_iput)
1140 dentry->d_op->d_iput(dentry, inode);
1141 else
1142 iput(inode);
1145 d_free(dentry);
1147 /* finished when we fall off the top of the tree,
1148 * otherwise we ascend to the parent and move to the
1149 * next sibling if there is one */
1150 if (!parent)
1151 return;
1152 dentry = parent;
1153 } while (list_empty(&dentry->d_subdirs));
1155 dentry = list_entry(dentry->d_subdirs.next,
1156 struct dentry, d_u.d_child);
1161 * destroy the dentries attached to a superblock on unmounting
1162 * - we don't need to use dentry->d_lock because:
1163 * - the superblock is detached from all mountings and open files, so the
1164 * dentry trees will not be rearranged by the VFS
1165 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1166 * any dentries belonging to this superblock that it comes across
1167 * - the filesystem itself is no longer permitted to rearrange the dentries
1168 * in this superblock
1170 void shrink_dcache_for_umount(struct super_block *sb)
1172 struct dentry *dentry;
1174 if (down_read_trylock(&sb->s_umount))
1175 BUG();
1177 dentry = sb->s_root;
1178 sb->s_root = NULL;
1179 dentry->d_lockref.count--;
1180 shrink_dcache_for_umount_subtree(dentry);
1182 while (!hlist_bl_empty(&sb->s_anon)) {
1183 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1184 shrink_dcache_for_umount_subtree(dentry);
1189 * This tries to ascend one level of parenthood, but
1190 * we can race with renaming, so we need to re-check
1191 * the parenthood after dropping the lock and check
1192 * that the sequence number still matches.
1194 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1196 struct dentry *new = old->d_parent;
1198 rcu_read_lock();
1199 spin_unlock(&old->d_lock);
1200 spin_lock(&new->d_lock);
1203 * might go back up the wrong parent if we have had a rename
1204 * or deletion
1206 if (new != old->d_parent ||
1207 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1208 need_seqretry(&rename_lock, seq)) {
1209 spin_unlock(&new->d_lock);
1210 new = NULL;
1212 rcu_read_unlock();
1213 return new;
1217 * enum d_walk_ret - action to talke during tree walk
1218 * @D_WALK_CONTINUE: contrinue walk
1219 * @D_WALK_QUIT: quit walk
1220 * @D_WALK_NORETRY: quit when retry is needed
1221 * @D_WALK_SKIP: skip this dentry and its children
1223 enum d_walk_ret {
1224 D_WALK_CONTINUE,
1225 D_WALK_QUIT,
1226 D_WALK_NORETRY,
1227 D_WALK_SKIP,
1231 * d_walk - walk the dentry tree
1232 * @parent: start of walk
1233 * @data: data passed to @enter() and @finish()
1234 * @enter: callback when first entering the dentry
1235 * @finish: callback when successfully finished the walk
1237 * The @enter() and @finish() callbacks are called with d_lock held.
1239 static void d_walk(struct dentry *parent, void *data,
1240 enum d_walk_ret (*enter)(void *, struct dentry *),
1241 void (*finish)(void *))
1243 struct dentry *this_parent;
1244 struct list_head *next;
1245 unsigned seq = 0;
1246 enum d_walk_ret ret;
1247 bool retry = true;
1249 again:
1250 read_seqbegin_or_lock(&rename_lock, &seq);
1251 this_parent = parent;
1252 spin_lock(&this_parent->d_lock);
1254 ret = enter(data, this_parent);
1255 switch (ret) {
1256 case D_WALK_CONTINUE:
1257 break;
1258 case D_WALK_QUIT:
1259 case D_WALK_SKIP:
1260 goto out_unlock;
1261 case D_WALK_NORETRY:
1262 retry = false;
1263 break;
1265 repeat:
1266 next = this_parent->d_subdirs.next;
1267 resume:
1268 while (next != &this_parent->d_subdirs) {
1269 struct list_head *tmp = next;
1270 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1271 next = tmp->next;
1273 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1275 ret = enter(data, dentry);
1276 switch (ret) {
1277 case D_WALK_CONTINUE:
1278 break;
1279 case D_WALK_QUIT:
1280 spin_unlock(&dentry->d_lock);
1281 goto out_unlock;
1282 case D_WALK_NORETRY:
1283 retry = false;
1284 break;
1285 case D_WALK_SKIP:
1286 spin_unlock(&dentry->d_lock);
1287 continue;
1290 if (!list_empty(&dentry->d_subdirs)) {
1291 spin_unlock(&this_parent->d_lock);
1292 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1293 this_parent = dentry;
1294 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1295 goto repeat;
1297 spin_unlock(&dentry->d_lock);
1300 * All done at this level ... ascend and resume the search.
1302 if (this_parent != parent) {
1303 struct dentry *child = this_parent;
1304 this_parent = try_to_ascend(this_parent, seq);
1305 if (!this_parent)
1306 goto rename_retry;
1307 next = child->d_u.d_child.next;
1308 goto resume;
1310 if (need_seqretry(&rename_lock, seq)) {
1311 spin_unlock(&this_parent->d_lock);
1312 goto rename_retry;
1314 if (finish)
1315 finish(data);
1317 out_unlock:
1318 spin_unlock(&this_parent->d_lock);
1319 done_seqretry(&rename_lock, seq);
1320 return;
1322 rename_retry:
1323 if (!retry)
1324 return;
1325 seq = 1;
1326 goto again;
1330 * Search for at least 1 mount point in the dentry's subdirs.
1331 * We descend to the next level whenever the d_subdirs
1332 * list is non-empty and continue searching.
1335 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1337 int *ret = data;
1338 if (d_mountpoint(dentry)) {
1339 *ret = 1;
1340 return D_WALK_QUIT;
1342 return D_WALK_CONTINUE;
1346 * have_submounts - check for mounts over a dentry
1347 * @parent: dentry to check.
1349 * Return true if the parent or its subdirectories contain
1350 * a mount point
1352 int have_submounts(struct dentry *parent)
1354 int ret = 0;
1356 d_walk(parent, &ret, check_mount, NULL);
1358 return ret;
1360 EXPORT_SYMBOL(have_submounts);
1363 * Called by mount code to set a mountpoint and check if the mountpoint is
1364 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1365 * subtree can become unreachable).
1367 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1368 * this reason take rename_lock and d_lock on dentry and ancestors.
1370 int d_set_mounted(struct dentry *dentry)
1372 struct dentry *p;
1373 int ret = -ENOENT;
1374 write_seqlock(&rename_lock);
1375 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1376 /* Need exclusion wrt. check_submounts_and_drop() */
1377 spin_lock(&p->d_lock);
1378 if (unlikely(d_unhashed(p))) {
1379 spin_unlock(&p->d_lock);
1380 goto out;
1382 spin_unlock(&p->d_lock);
1384 spin_lock(&dentry->d_lock);
1385 if (!d_unlinked(dentry)) {
1386 dentry->d_flags |= DCACHE_MOUNTED;
1387 ret = 0;
1389 spin_unlock(&dentry->d_lock);
1390 out:
1391 write_sequnlock(&rename_lock);
1392 return ret;
1396 * Search the dentry child list of the specified parent,
1397 * and move any unused dentries to the end of the unused
1398 * list for prune_dcache(). We descend to the next level
1399 * whenever the d_subdirs list is non-empty and continue
1400 * searching.
1402 * It returns zero iff there are no unused children,
1403 * otherwise it returns the number of children moved to
1404 * the end of the unused list. This may not be the total
1405 * number of unused children, because select_parent can
1406 * drop the lock and return early due to latency
1407 * constraints.
1410 struct select_data {
1411 struct dentry *start;
1412 struct list_head dispose;
1413 int found;
1416 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1418 struct select_data *data = _data;
1419 enum d_walk_ret ret = D_WALK_CONTINUE;
1421 if (data->start == dentry)
1422 goto out;
1425 * move only zero ref count dentries to the dispose list.
1427 * Those which are presently on the shrink list, being processed
1428 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1429 * loop in shrink_dcache_parent() might not make any progress
1430 * and loop forever.
1432 if (dentry->d_lockref.count) {
1433 dentry_lru_del(dentry);
1434 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1436 * We can't use d_lru_shrink_move() because we
1437 * need to get the global LRU lock and do the
1438 * LRU accounting.
1440 d_lru_del(dentry);
1441 d_shrink_add(dentry, &data->dispose);
1442 data->found++;
1443 ret = D_WALK_NORETRY;
1446 * We can return to the caller if we have found some (this
1447 * ensures forward progress). We'll be coming back to find
1448 * the rest.
1450 if (data->found && need_resched())
1451 ret = D_WALK_QUIT;
1452 out:
1453 return ret;
1457 * shrink_dcache_parent - prune dcache
1458 * @parent: parent of entries to prune
1460 * Prune the dcache to remove unused children of the parent dentry.
1462 void shrink_dcache_parent(struct dentry *parent)
1464 for (;;) {
1465 struct select_data data;
1467 INIT_LIST_HEAD(&data.dispose);
1468 data.start = parent;
1469 data.found = 0;
1471 d_walk(parent, &data, select_collect, NULL);
1472 if (!data.found)
1473 break;
1475 shrink_dentry_list(&data.dispose);
1476 cond_resched();
1479 EXPORT_SYMBOL(shrink_dcache_parent);
1481 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1483 struct select_data *data = _data;
1485 if (d_mountpoint(dentry)) {
1486 data->found = -EBUSY;
1487 return D_WALK_QUIT;
1490 return select_collect(_data, dentry);
1493 static void check_and_drop(void *_data)
1495 struct select_data *data = _data;
1497 if (d_mountpoint(data->start))
1498 data->found = -EBUSY;
1499 if (!data->found)
1500 __d_drop(data->start);
1504 * check_submounts_and_drop - prune dcache, check for submounts and drop
1506 * All done as a single atomic operation relative to has_unlinked_ancestor().
1507 * Returns 0 if successfully unhashed @parent. If there were submounts then
1508 * return -EBUSY.
1510 * @dentry: dentry to prune and drop
1512 int check_submounts_and_drop(struct dentry *dentry)
1514 int ret = 0;
1516 /* Negative dentries can be dropped without further checks */
1517 if (!dentry->d_inode) {
1518 d_drop(dentry);
1519 goto out;
1522 for (;;) {
1523 struct select_data data;
1525 INIT_LIST_HEAD(&data.dispose);
1526 data.start = dentry;
1527 data.found = 0;
1529 d_walk(dentry, &data, check_and_collect, check_and_drop);
1530 ret = data.found;
1532 if (!list_empty(&data.dispose))
1533 shrink_dentry_list(&data.dispose);
1535 if (ret <= 0)
1536 break;
1538 cond_resched();
1541 out:
1542 return ret;
1544 EXPORT_SYMBOL(check_submounts_and_drop);
1547 * __d_alloc - allocate a dcache entry
1548 * @sb: filesystem it will belong to
1549 * @name: qstr of the name
1551 * Allocates a dentry. It returns %NULL if there is insufficient memory
1552 * available. On a success the dentry is returned. The name passed in is
1553 * copied and the copy passed in may be reused after this call.
1556 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1558 struct dentry *dentry;
1559 char *dname;
1561 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1562 if (!dentry)
1563 return NULL;
1566 * We guarantee that the inline name is always NUL-terminated.
1567 * This way the memcpy() done by the name switching in rename
1568 * will still always have a NUL at the end, even if we might
1569 * be overwriting an internal NUL character
1571 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1572 if (name->len > DNAME_INLINE_LEN-1) {
1573 dname = kmalloc(name->len + 1, GFP_KERNEL);
1574 if (!dname) {
1575 kmem_cache_free(dentry_cache, dentry);
1576 return NULL;
1578 } else {
1579 dname = dentry->d_iname;
1582 dentry->d_name.len = name->len;
1583 dentry->d_name.hash = name->hash;
1584 memcpy(dname, name->name, name->len);
1585 dname[name->len] = 0;
1587 /* Make sure we always see the terminating NUL character */
1588 smp_wmb();
1589 dentry->d_name.name = dname;
1591 dentry->d_lockref.count = 1;
1592 dentry->d_flags = 0;
1593 spin_lock_init(&dentry->d_lock);
1594 seqcount_init(&dentry->d_seq);
1595 dentry->d_inode = NULL;
1596 dentry->d_parent = dentry;
1597 dentry->d_sb = sb;
1598 dentry->d_op = NULL;
1599 dentry->d_fsdata = NULL;
1600 INIT_HLIST_BL_NODE(&dentry->d_hash);
1601 INIT_LIST_HEAD(&dentry->d_lru);
1602 INIT_LIST_HEAD(&dentry->d_subdirs);
1603 INIT_HLIST_NODE(&dentry->d_alias);
1604 INIT_LIST_HEAD(&dentry->d_u.d_child);
1605 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1607 this_cpu_inc(nr_dentry);
1609 return dentry;
1613 * d_alloc - allocate a dcache entry
1614 * @parent: parent of entry to allocate
1615 * @name: qstr of the name
1617 * Allocates a dentry. It returns %NULL if there is insufficient memory
1618 * available. On a success the dentry is returned. The name passed in is
1619 * copied and the copy passed in may be reused after this call.
1621 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1623 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1624 if (!dentry)
1625 return NULL;
1627 spin_lock(&parent->d_lock);
1629 * don't need child lock because it is not subject
1630 * to concurrency here
1632 __dget_dlock(parent);
1633 dentry->d_parent = parent;
1634 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1635 spin_unlock(&parent->d_lock);
1637 return dentry;
1639 EXPORT_SYMBOL(d_alloc);
1641 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1643 struct dentry *dentry = __d_alloc(sb, name);
1644 if (dentry)
1645 dentry->d_flags |= DCACHE_DISCONNECTED;
1646 return dentry;
1648 EXPORT_SYMBOL(d_alloc_pseudo);
1650 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1652 struct qstr q;
1654 q.name = name;
1655 q.len = strlen(name);
1656 q.hash = full_name_hash(q.name, q.len);
1657 return d_alloc(parent, &q);
1659 EXPORT_SYMBOL(d_alloc_name);
1661 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1663 WARN_ON_ONCE(dentry->d_op);
1664 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1665 DCACHE_OP_COMPARE |
1666 DCACHE_OP_REVALIDATE |
1667 DCACHE_OP_WEAK_REVALIDATE |
1668 DCACHE_OP_DELETE ));
1669 dentry->d_op = op;
1670 if (!op)
1671 return;
1672 if (op->d_hash)
1673 dentry->d_flags |= DCACHE_OP_HASH;
1674 if (op->d_compare)
1675 dentry->d_flags |= DCACHE_OP_COMPARE;
1676 if (op->d_revalidate)
1677 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1678 if (op->d_weak_revalidate)
1679 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1680 if (op->d_delete)
1681 dentry->d_flags |= DCACHE_OP_DELETE;
1682 if (op->d_prune)
1683 dentry->d_flags |= DCACHE_OP_PRUNE;
1686 EXPORT_SYMBOL(d_set_d_op);
1688 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1690 spin_lock(&dentry->d_lock);
1691 if (inode) {
1692 if (unlikely(IS_AUTOMOUNT(inode)))
1693 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1694 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1696 dentry->d_inode = inode;
1697 dentry_rcuwalk_barrier(dentry);
1698 spin_unlock(&dentry->d_lock);
1699 fsnotify_d_instantiate(dentry, inode);
1703 * d_instantiate - fill in inode information for a dentry
1704 * @entry: dentry to complete
1705 * @inode: inode to attach to this dentry
1707 * Fill in inode information in the entry.
1709 * This turns negative dentries into productive full members
1710 * of society.
1712 * NOTE! This assumes that the inode count has been incremented
1713 * (or otherwise set) by the caller to indicate that it is now
1714 * in use by the dcache.
1717 void d_instantiate(struct dentry *entry, struct inode * inode)
1719 BUG_ON(!hlist_unhashed(&entry->d_alias));
1720 if (inode)
1721 spin_lock(&inode->i_lock);
1722 __d_instantiate(entry, inode);
1723 if (inode)
1724 spin_unlock(&inode->i_lock);
1725 security_d_instantiate(entry, inode);
1727 EXPORT_SYMBOL(d_instantiate);
1730 * d_instantiate_unique - instantiate a non-aliased dentry
1731 * @entry: dentry to instantiate
1732 * @inode: inode to attach to this dentry
1734 * Fill in inode information in the entry. On success, it returns NULL.
1735 * If an unhashed alias of "entry" already exists, then we return the
1736 * aliased dentry instead and drop one reference to inode.
1738 * Note that in order to avoid conflicts with rename() etc, the caller
1739 * had better be holding the parent directory semaphore.
1741 * This also assumes that the inode count has been incremented
1742 * (or otherwise set) by the caller to indicate that it is now
1743 * in use by the dcache.
1745 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1746 struct inode *inode)
1748 struct dentry *alias;
1749 int len = entry->d_name.len;
1750 const char *name = entry->d_name.name;
1751 unsigned int hash = entry->d_name.hash;
1753 if (!inode) {
1754 __d_instantiate(entry, NULL);
1755 return NULL;
1758 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1760 * Don't need alias->d_lock here, because aliases with
1761 * d_parent == entry->d_parent are not subject to name or
1762 * parent changes, because the parent inode i_mutex is held.
1764 if (alias->d_name.hash != hash)
1765 continue;
1766 if (alias->d_parent != entry->d_parent)
1767 continue;
1768 if (alias->d_name.len != len)
1769 continue;
1770 if (dentry_cmp(alias, name, len))
1771 continue;
1772 __dget(alias);
1773 return alias;
1776 __d_instantiate(entry, inode);
1777 return NULL;
1780 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1782 struct dentry *result;
1784 BUG_ON(!hlist_unhashed(&entry->d_alias));
1786 if (inode)
1787 spin_lock(&inode->i_lock);
1788 result = __d_instantiate_unique(entry, inode);
1789 if (inode)
1790 spin_unlock(&inode->i_lock);
1792 if (!result) {
1793 security_d_instantiate(entry, inode);
1794 return NULL;
1797 BUG_ON(!d_unhashed(result));
1798 iput(inode);
1799 return result;
1802 EXPORT_SYMBOL(d_instantiate_unique);
1804 struct dentry *d_make_root(struct inode *root_inode)
1806 struct dentry *res = NULL;
1808 if (root_inode) {
1809 static const struct qstr name = QSTR_INIT("/", 1);
1811 res = __d_alloc(root_inode->i_sb, &name);
1812 if (res)
1813 d_instantiate(res, root_inode);
1814 else
1815 iput(root_inode);
1817 return res;
1819 EXPORT_SYMBOL(d_make_root);
1821 static struct dentry * __d_find_any_alias(struct inode *inode)
1823 struct dentry *alias;
1825 if (hlist_empty(&inode->i_dentry))
1826 return NULL;
1827 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1828 __dget(alias);
1829 return alias;
1833 * d_find_any_alias - find any alias for a given inode
1834 * @inode: inode to find an alias for
1836 * If any aliases exist for the given inode, take and return a
1837 * reference for one of them. If no aliases exist, return %NULL.
1839 struct dentry *d_find_any_alias(struct inode *inode)
1841 struct dentry *de;
1843 spin_lock(&inode->i_lock);
1844 de = __d_find_any_alias(inode);
1845 spin_unlock(&inode->i_lock);
1846 return de;
1848 EXPORT_SYMBOL(d_find_any_alias);
1851 * d_obtain_alias - find or allocate a dentry for a given inode
1852 * @inode: inode to allocate the dentry for
1854 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1855 * similar open by handle operations. The returned dentry may be anonymous,
1856 * or may have a full name (if the inode was already in the cache).
1858 * When called on a directory inode, we must ensure that the inode only ever
1859 * has one dentry. If a dentry is found, that is returned instead of
1860 * allocating a new one.
1862 * On successful return, the reference to the inode has been transferred
1863 * to the dentry. In case of an error the reference on the inode is released.
1864 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1865 * be passed in and will be the error will be propagate to the return value,
1866 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1868 struct dentry *d_obtain_alias(struct inode *inode)
1870 static const struct qstr anonstring = QSTR_INIT("/", 1);
1871 struct dentry *tmp;
1872 struct dentry *res;
1874 if (!inode)
1875 return ERR_PTR(-ESTALE);
1876 if (IS_ERR(inode))
1877 return ERR_CAST(inode);
1879 res = d_find_any_alias(inode);
1880 if (res)
1881 goto out_iput;
1883 tmp = __d_alloc(inode->i_sb, &anonstring);
1884 if (!tmp) {
1885 res = ERR_PTR(-ENOMEM);
1886 goto out_iput;
1889 spin_lock(&inode->i_lock);
1890 res = __d_find_any_alias(inode);
1891 if (res) {
1892 spin_unlock(&inode->i_lock);
1893 dput(tmp);
1894 goto out_iput;
1897 /* attach a disconnected dentry */
1898 spin_lock(&tmp->d_lock);
1899 tmp->d_inode = inode;
1900 tmp->d_flags |= DCACHE_DISCONNECTED;
1901 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1902 hlist_bl_lock(&tmp->d_sb->s_anon);
1903 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1904 hlist_bl_unlock(&tmp->d_sb->s_anon);
1905 spin_unlock(&tmp->d_lock);
1906 spin_unlock(&inode->i_lock);
1907 security_d_instantiate(tmp, inode);
1909 return tmp;
1911 out_iput:
1912 if (res && !IS_ERR(res))
1913 security_d_instantiate(res, inode);
1914 iput(inode);
1915 return res;
1917 EXPORT_SYMBOL(d_obtain_alias);
1920 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1921 * @inode: the inode which may have a disconnected dentry
1922 * @dentry: a negative dentry which we want to point to the inode.
1924 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1925 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1926 * and return it, else simply d_add the inode to the dentry and return NULL.
1928 * This is needed in the lookup routine of any filesystem that is exportable
1929 * (via knfsd) so that we can build dcache paths to directories effectively.
1931 * If a dentry was found and moved, then it is returned. Otherwise NULL
1932 * is returned. This matches the expected return value of ->lookup.
1934 * Cluster filesystems may call this function with a negative, hashed dentry.
1935 * In that case, we know that the inode will be a regular file, and also this
1936 * will only occur during atomic_open. So we need to check for the dentry
1937 * being already hashed only in the final case.
1939 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1941 struct dentry *new = NULL;
1943 if (IS_ERR(inode))
1944 return ERR_CAST(inode);
1946 if (inode && S_ISDIR(inode->i_mode)) {
1947 spin_lock(&inode->i_lock);
1948 new = __d_find_alias(inode, 1);
1949 if (new) {
1950 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1951 spin_unlock(&inode->i_lock);
1952 security_d_instantiate(new, inode);
1953 d_move(new, dentry);
1954 iput(inode);
1955 } else {
1956 /* already taking inode->i_lock, so d_add() by hand */
1957 __d_instantiate(dentry, inode);
1958 spin_unlock(&inode->i_lock);
1959 security_d_instantiate(dentry, inode);
1960 d_rehash(dentry);
1962 } else {
1963 d_instantiate(dentry, inode);
1964 if (d_unhashed(dentry))
1965 d_rehash(dentry);
1967 return new;
1969 EXPORT_SYMBOL(d_splice_alias);
1972 * d_add_ci - lookup or allocate new dentry with case-exact name
1973 * @inode: the inode case-insensitive lookup has found
1974 * @dentry: the negative dentry that was passed to the parent's lookup func
1975 * @name: the case-exact name to be associated with the returned dentry
1977 * This is to avoid filling the dcache with case-insensitive names to the
1978 * same inode, only the actual correct case is stored in the dcache for
1979 * case-insensitive filesystems.
1981 * For a case-insensitive lookup match and if the the case-exact dentry
1982 * already exists in in the dcache, use it and return it.
1984 * If no entry exists with the exact case name, allocate new dentry with
1985 * the exact case, and return the spliced entry.
1987 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1988 struct qstr *name)
1990 struct dentry *found;
1991 struct dentry *new;
1994 * First check if a dentry matching the name already exists,
1995 * if not go ahead and create it now.
1997 found = d_hash_and_lookup(dentry->d_parent, name);
1998 if (unlikely(IS_ERR(found)))
1999 goto err_out;
2000 if (!found) {
2001 new = d_alloc(dentry->d_parent, name);
2002 if (!new) {
2003 found = ERR_PTR(-ENOMEM);
2004 goto err_out;
2007 found = d_splice_alias(inode, new);
2008 if (found) {
2009 dput(new);
2010 return found;
2012 return new;
2016 * If a matching dentry exists, and it's not negative use it.
2018 * Decrement the reference count to balance the iget() done
2019 * earlier on.
2021 if (found->d_inode) {
2022 if (unlikely(found->d_inode != inode)) {
2023 /* This can't happen because bad inodes are unhashed. */
2024 BUG_ON(!is_bad_inode(inode));
2025 BUG_ON(!is_bad_inode(found->d_inode));
2027 iput(inode);
2028 return found;
2032 * Negative dentry: instantiate it unless the inode is a directory and
2033 * already has a dentry.
2035 new = d_splice_alias(inode, found);
2036 if (new) {
2037 dput(found);
2038 found = new;
2040 return found;
2042 err_out:
2043 iput(inode);
2044 return found;
2046 EXPORT_SYMBOL(d_add_ci);
2049 * Do the slow-case of the dentry name compare.
2051 * Unlike the dentry_cmp() function, we need to atomically
2052 * load the name and length information, so that the
2053 * filesystem can rely on them, and can use the 'name' and
2054 * 'len' information without worrying about walking off the
2055 * end of memory etc.
2057 * Thus the read_seqcount_retry() and the "duplicate" info
2058 * in arguments (the low-level filesystem should not look
2059 * at the dentry inode or name contents directly, since
2060 * rename can change them while we're in RCU mode).
2062 enum slow_d_compare {
2063 D_COMP_OK,
2064 D_COMP_NOMATCH,
2065 D_COMP_SEQRETRY,
2068 static noinline enum slow_d_compare slow_dentry_cmp(
2069 const struct dentry *parent,
2070 struct dentry *dentry,
2071 unsigned int seq,
2072 const struct qstr *name)
2074 int tlen = dentry->d_name.len;
2075 const char *tname = dentry->d_name.name;
2077 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2078 cpu_relax();
2079 return D_COMP_SEQRETRY;
2081 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2082 return D_COMP_NOMATCH;
2083 return D_COMP_OK;
2087 * __d_lookup_rcu - search for a dentry (racy, store-free)
2088 * @parent: parent dentry
2089 * @name: qstr of name we wish to find
2090 * @seqp: returns d_seq value at the point where the dentry was found
2091 * Returns: dentry, or NULL
2093 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2094 * resolution (store-free path walking) design described in
2095 * Documentation/filesystems/path-lookup.txt.
2097 * This is not to be used outside core vfs.
2099 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2100 * held, and rcu_read_lock held. The returned dentry must not be stored into
2101 * without taking d_lock and checking d_seq sequence count against @seq
2102 * returned here.
2104 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2105 * function.
2107 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2108 * the returned dentry, so long as its parent's seqlock is checked after the
2109 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2110 * is formed, giving integrity down the path walk.
2112 * NOTE! The caller *has* to check the resulting dentry against the sequence
2113 * number we've returned before using any of the resulting dentry state!
2115 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2116 const struct qstr *name,
2117 unsigned *seqp)
2119 u64 hashlen = name->hash_len;
2120 const unsigned char *str = name->name;
2121 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2122 struct hlist_bl_node *node;
2123 struct dentry *dentry;
2126 * Note: There is significant duplication with __d_lookup_rcu which is
2127 * required to prevent single threaded performance regressions
2128 * especially on architectures where smp_rmb (in seqcounts) are costly.
2129 * Keep the two functions in sync.
2133 * The hash list is protected using RCU.
2135 * Carefully use d_seq when comparing a candidate dentry, to avoid
2136 * races with d_move().
2138 * It is possible that concurrent renames can mess up our list
2139 * walk here and result in missing our dentry, resulting in the
2140 * false-negative result. d_lookup() protects against concurrent
2141 * renames using rename_lock seqlock.
2143 * See Documentation/filesystems/path-lookup.txt for more details.
2145 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2146 unsigned seq;
2148 seqretry:
2150 * The dentry sequence count protects us from concurrent
2151 * renames, and thus protects parent and name fields.
2153 * The caller must perform a seqcount check in order
2154 * to do anything useful with the returned dentry.
2156 * NOTE! We do a "raw" seqcount_begin here. That means that
2157 * we don't wait for the sequence count to stabilize if it
2158 * is in the middle of a sequence change. If we do the slow
2159 * dentry compare, we will do seqretries until it is stable,
2160 * and if we end up with a successful lookup, we actually
2161 * want to exit RCU lookup anyway.
2163 seq = raw_seqcount_begin(&dentry->d_seq);
2164 if (dentry->d_parent != parent)
2165 continue;
2166 if (d_unhashed(dentry))
2167 continue;
2169 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2170 if (dentry->d_name.hash != hashlen_hash(hashlen))
2171 continue;
2172 *seqp = seq;
2173 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2174 case D_COMP_OK:
2175 return dentry;
2176 case D_COMP_NOMATCH:
2177 continue;
2178 default:
2179 goto seqretry;
2183 if (dentry->d_name.hash_len != hashlen)
2184 continue;
2185 *seqp = seq;
2186 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2187 return dentry;
2189 return NULL;
2193 * d_lookup - search for a dentry
2194 * @parent: parent dentry
2195 * @name: qstr of name we wish to find
2196 * Returns: dentry, or NULL
2198 * d_lookup searches the children of the parent dentry for the name in
2199 * question. If the dentry is found its reference count is incremented and the
2200 * dentry is returned. The caller must use dput to free the entry when it has
2201 * finished using it. %NULL is returned if the dentry does not exist.
2203 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2205 struct dentry *dentry;
2206 unsigned seq;
2208 do {
2209 seq = read_seqbegin(&rename_lock);
2210 dentry = __d_lookup(parent, name);
2211 if (dentry)
2212 break;
2213 } while (read_seqretry(&rename_lock, seq));
2214 return dentry;
2216 EXPORT_SYMBOL(d_lookup);
2219 * __d_lookup - search for a dentry (racy)
2220 * @parent: parent dentry
2221 * @name: qstr of name we wish to find
2222 * Returns: dentry, or NULL
2224 * __d_lookup is like d_lookup, however it may (rarely) return a
2225 * false-negative result due to unrelated rename activity.
2227 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2228 * however it must be used carefully, eg. with a following d_lookup in
2229 * the case of failure.
2231 * __d_lookup callers must be commented.
2233 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2235 unsigned int len = name->len;
2236 unsigned int hash = name->hash;
2237 const unsigned char *str = name->name;
2238 struct hlist_bl_head *b = d_hash(parent, hash);
2239 struct hlist_bl_node *node;
2240 struct dentry *found = NULL;
2241 struct dentry *dentry;
2244 * Note: There is significant duplication with __d_lookup_rcu which is
2245 * required to prevent single threaded performance regressions
2246 * especially on architectures where smp_rmb (in seqcounts) are costly.
2247 * Keep the two functions in sync.
2251 * The hash list is protected using RCU.
2253 * Take d_lock when comparing a candidate dentry, to avoid races
2254 * with d_move().
2256 * It is possible that concurrent renames can mess up our list
2257 * walk here and result in missing our dentry, resulting in the
2258 * false-negative result. d_lookup() protects against concurrent
2259 * renames using rename_lock seqlock.
2261 * See Documentation/filesystems/path-lookup.txt for more details.
2263 rcu_read_lock();
2265 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2267 if (dentry->d_name.hash != hash)
2268 continue;
2270 spin_lock(&dentry->d_lock);
2271 if (dentry->d_parent != parent)
2272 goto next;
2273 if (d_unhashed(dentry))
2274 goto next;
2277 * It is safe to compare names since d_move() cannot
2278 * change the qstr (protected by d_lock).
2280 if (parent->d_flags & DCACHE_OP_COMPARE) {
2281 int tlen = dentry->d_name.len;
2282 const char *tname = dentry->d_name.name;
2283 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2284 goto next;
2285 } else {
2286 if (dentry->d_name.len != len)
2287 goto next;
2288 if (dentry_cmp(dentry, str, len))
2289 goto next;
2292 dentry->d_lockref.count++;
2293 found = dentry;
2294 spin_unlock(&dentry->d_lock);
2295 break;
2296 next:
2297 spin_unlock(&dentry->d_lock);
2299 rcu_read_unlock();
2301 return found;
2305 * d_hash_and_lookup - hash the qstr then search for a dentry
2306 * @dir: Directory to search in
2307 * @name: qstr of name we wish to find
2309 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2311 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2314 * Check for a fs-specific hash function. Note that we must
2315 * calculate the standard hash first, as the d_op->d_hash()
2316 * routine may choose to leave the hash value unchanged.
2318 name->hash = full_name_hash(name->name, name->len);
2319 if (dir->d_flags & DCACHE_OP_HASH) {
2320 int err = dir->d_op->d_hash(dir, name);
2321 if (unlikely(err < 0))
2322 return ERR_PTR(err);
2324 return d_lookup(dir, name);
2326 EXPORT_SYMBOL(d_hash_and_lookup);
2329 * d_validate - verify dentry provided from insecure source (deprecated)
2330 * @dentry: The dentry alleged to be valid child of @dparent
2331 * @dparent: The parent dentry (known to be valid)
2333 * An insecure source has sent us a dentry, here we verify it and dget() it.
2334 * This is used by ncpfs in its readdir implementation.
2335 * Zero is returned in the dentry is invalid.
2337 * This function is slow for big directories, and deprecated, do not use it.
2339 int d_validate(struct dentry *dentry, struct dentry *dparent)
2341 struct dentry *child;
2343 spin_lock(&dparent->d_lock);
2344 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2345 if (dentry == child) {
2346 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2347 __dget_dlock(dentry);
2348 spin_unlock(&dentry->d_lock);
2349 spin_unlock(&dparent->d_lock);
2350 return 1;
2353 spin_unlock(&dparent->d_lock);
2355 return 0;
2357 EXPORT_SYMBOL(d_validate);
2360 * When a file is deleted, we have two options:
2361 * - turn this dentry into a negative dentry
2362 * - unhash this dentry and free it.
2364 * Usually, we want to just turn this into
2365 * a negative dentry, but if anybody else is
2366 * currently using the dentry or the inode
2367 * we can't do that and we fall back on removing
2368 * it from the hash queues and waiting for
2369 * it to be deleted later when it has no users
2373 * d_delete - delete a dentry
2374 * @dentry: The dentry to delete
2376 * Turn the dentry into a negative dentry if possible, otherwise
2377 * remove it from the hash queues so it can be deleted later
2380 void d_delete(struct dentry * dentry)
2382 struct inode *inode;
2383 int isdir = 0;
2385 * Are we the only user?
2387 again:
2388 spin_lock(&dentry->d_lock);
2389 inode = dentry->d_inode;
2390 isdir = S_ISDIR(inode->i_mode);
2391 if (dentry->d_lockref.count == 1) {
2392 if (!spin_trylock(&inode->i_lock)) {
2393 spin_unlock(&dentry->d_lock);
2394 cpu_relax();
2395 goto again;
2397 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2398 dentry_unlink_inode(dentry);
2399 fsnotify_nameremove(dentry, isdir);
2400 return;
2403 if (!d_unhashed(dentry))
2404 __d_drop(dentry);
2406 spin_unlock(&dentry->d_lock);
2408 fsnotify_nameremove(dentry, isdir);
2410 EXPORT_SYMBOL(d_delete);
2412 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2414 BUG_ON(!d_unhashed(entry));
2415 hlist_bl_lock(b);
2416 entry->d_flags |= DCACHE_RCUACCESS;
2417 hlist_bl_add_head_rcu(&entry->d_hash, b);
2418 hlist_bl_unlock(b);
2421 static void _d_rehash(struct dentry * entry)
2423 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2427 * d_rehash - add an entry back to the hash
2428 * @entry: dentry to add to the hash
2430 * Adds a dentry to the hash according to its name.
2433 void d_rehash(struct dentry * entry)
2435 spin_lock(&entry->d_lock);
2436 _d_rehash(entry);
2437 spin_unlock(&entry->d_lock);
2439 EXPORT_SYMBOL(d_rehash);
2442 * dentry_update_name_case - update case insensitive dentry with a new name
2443 * @dentry: dentry to be updated
2444 * @name: new name
2446 * Update a case insensitive dentry with new case of name.
2448 * dentry must have been returned by d_lookup with name @name. Old and new
2449 * name lengths must match (ie. no d_compare which allows mismatched name
2450 * lengths).
2452 * Parent inode i_mutex must be held over d_lookup and into this call (to
2453 * keep renames and concurrent inserts, and readdir(2) away).
2455 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2457 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2458 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2460 spin_lock(&dentry->d_lock);
2461 write_seqcount_begin(&dentry->d_seq);
2462 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2463 write_seqcount_end(&dentry->d_seq);
2464 spin_unlock(&dentry->d_lock);
2466 EXPORT_SYMBOL(dentry_update_name_case);
2468 static void switch_names(struct dentry *dentry, struct dentry *target)
2470 if (dname_external(target)) {
2471 if (dname_external(dentry)) {
2473 * Both external: swap the pointers
2475 swap(target->d_name.name, dentry->d_name.name);
2476 } else {
2478 * dentry:internal, target:external. Steal target's
2479 * storage and make target internal.
2481 memcpy(target->d_iname, dentry->d_name.name,
2482 dentry->d_name.len + 1);
2483 dentry->d_name.name = target->d_name.name;
2484 target->d_name.name = target->d_iname;
2486 } else {
2487 if (dname_external(dentry)) {
2489 * dentry:external, target:internal. Give dentry's
2490 * storage to target and make dentry internal
2492 memcpy(dentry->d_iname, target->d_name.name,
2493 target->d_name.len + 1);
2494 target->d_name.name = dentry->d_name.name;
2495 dentry->d_name.name = dentry->d_iname;
2496 } else {
2498 * Both are internal. Just copy target to dentry
2500 memcpy(dentry->d_iname, target->d_name.name,
2501 target->d_name.len + 1);
2502 dentry->d_name.len = target->d_name.len;
2503 return;
2506 swap(dentry->d_name.len, target->d_name.len);
2509 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2512 * XXXX: do we really need to take target->d_lock?
2514 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2515 spin_lock(&target->d_parent->d_lock);
2516 else {
2517 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2518 spin_lock(&dentry->d_parent->d_lock);
2519 spin_lock_nested(&target->d_parent->d_lock,
2520 DENTRY_D_LOCK_NESTED);
2521 } else {
2522 spin_lock(&target->d_parent->d_lock);
2523 spin_lock_nested(&dentry->d_parent->d_lock,
2524 DENTRY_D_LOCK_NESTED);
2527 if (target < dentry) {
2528 spin_lock_nested(&target->d_lock, 2);
2529 spin_lock_nested(&dentry->d_lock, 3);
2530 } else {
2531 spin_lock_nested(&dentry->d_lock, 2);
2532 spin_lock_nested(&target->d_lock, 3);
2536 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2537 struct dentry *target)
2539 if (target->d_parent != dentry->d_parent)
2540 spin_unlock(&dentry->d_parent->d_lock);
2541 if (target->d_parent != target)
2542 spin_unlock(&target->d_parent->d_lock);
2546 * When switching names, the actual string doesn't strictly have to
2547 * be preserved in the target - because we're dropping the target
2548 * anyway. As such, we can just do a simple memcpy() to copy over
2549 * the new name before we switch.
2551 * Note that we have to be a lot more careful about getting the hash
2552 * switched - we have to switch the hash value properly even if it
2553 * then no longer matches the actual (corrupted) string of the target.
2554 * The hash value has to match the hash queue that the dentry is on..
2557 * __d_move - move a dentry
2558 * @dentry: entry to move
2559 * @target: new dentry
2561 * Update the dcache to reflect the move of a file name. Negative
2562 * dcache entries should not be moved in this way. Caller must hold
2563 * rename_lock, the i_mutex of the source and target directories,
2564 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2566 static void __d_move(struct dentry * dentry, struct dentry * target)
2568 if (!dentry->d_inode)
2569 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2571 BUG_ON(d_ancestor(dentry, target));
2572 BUG_ON(d_ancestor(target, dentry));
2574 dentry_lock_for_move(dentry, target);
2576 write_seqcount_begin(&dentry->d_seq);
2577 write_seqcount_begin(&target->d_seq);
2579 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2582 * Move the dentry to the target hash queue. Don't bother checking
2583 * for the same hash queue because of how unlikely it is.
2585 __d_drop(dentry);
2586 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2588 /* Unhash the target: dput() will then get rid of it */
2589 __d_drop(target);
2591 list_del(&dentry->d_u.d_child);
2592 list_del(&target->d_u.d_child);
2594 /* Switch the names.. */
2595 switch_names(dentry, target);
2596 swap(dentry->d_name.hash, target->d_name.hash);
2598 /* ... and switch the parents */
2599 if (IS_ROOT(dentry)) {
2600 dentry->d_parent = target->d_parent;
2601 target->d_parent = target;
2602 INIT_LIST_HEAD(&target->d_u.d_child);
2603 } else {
2604 swap(dentry->d_parent, target->d_parent);
2606 /* And add them back to the (new) parent lists */
2607 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2610 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2612 write_seqcount_end(&target->d_seq);
2613 write_seqcount_end(&dentry->d_seq);
2615 dentry_unlock_parents_for_move(dentry, target);
2616 spin_unlock(&target->d_lock);
2617 fsnotify_d_move(dentry);
2618 spin_unlock(&dentry->d_lock);
2622 * d_move - move a dentry
2623 * @dentry: entry to move
2624 * @target: new dentry
2626 * Update the dcache to reflect the move of a file name. Negative
2627 * dcache entries should not be moved in this way. See the locking
2628 * requirements for __d_move.
2630 void d_move(struct dentry *dentry, struct dentry *target)
2632 write_seqlock(&rename_lock);
2633 __d_move(dentry, target);
2634 write_sequnlock(&rename_lock);
2636 EXPORT_SYMBOL(d_move);
2639 * d_ancestor - search for an ancestor
2640 * @p1: ancestor dentry
2641 * @p2: child dentry
2643 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2644 * an ancestor of p2, else NULL.
2646 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2648 struct dentry *p;
2650 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2651 if (p->d_parent == p1)
2652 return p;
2654 return NULL;
2658 * This helper attempts to cope with remotely renamed directories
2660 * It assumes that the caller is already holding
2661 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2663 * Note: If ever the locking in lock_rename() changes, then please
2664 * remember to update this too...
2666 static struct dentry *__d_unalias(struct inode *inode,
2667 struct dentry *dentry, struct dentry *alias)
2669 struct mutex *m1 = NULL, *m2 = NULL;
2670 struct dentry *ret = ERR_PTR(-EBUSY);
2672 /* If alias and dentry share a parent, then no extra locks required */
2673 if (alias->d_parent == dentry->d_parent)
2674 goto out_unalias;
2676 /* See lock_rename() */
2677 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2678 goto out_err;
2679 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2680 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2681 goto out_err;
2682 m2 = &alias->d_parent->d_inode->i_mutex;
2683 out_unalias:
2684 if (likely(!d_mountpoint(alias))) {
2685 __d_move(alias, dentry);
2686 ret = alias;
2688 out_err:
2689 spin_unlock(&inode->i_lock);
2690 if (m2)
2691 mutex_unlock(m2);
2692 if (m1)
2693 mutex_unlock(m1);
2694 return ret;
2698 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2699 * named dentry in place of the dentry to be replaced.
2700 * returns with anon->d_lock held!
2702 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2704 struct dentry *dparent;
2706 dentry_lock_for_move(anon, dentry);
2708 write_seqcount_begin(&dentry->d_seq);
2709 write_seqcount_begin(&anon->d_seq);
2711 dparent = dentry->d_parent;
2713 switch_names(dentry, anon);
2714 swap(dentry->d_name.hash, anon->d_name.hash);
2716 dentry->d_parent = dentry;
2717 list_del_init(&dentry->d_u.d_child);
2718 anon->d_parent = dparent;
2719 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2721 write_seqcount_end(&dentry->d_seq);
2722 write_seqcount_end(&anon->d_seq);
2724 dentry_unlock_parents_for_move(anon, dentry);
2725 spin_unlock(&dentry->d_lock);
2727 /* anon->d_lock still locked, returns locked */
2728 anon->d_flags &= ~DCACHE_DISCONNECTED;
2732 * d_materialise_unique - introduce an inode into the tree
2733 * @dentry: candidate dentry
2734 * @inode: inode to bind to the dentry, to which aliases may be attached
2736 * Introduces an dentry into the tree, substituting an extant disconnected
2737 * root directory alias in its place if there is one. Caller must hold the
2738 * i_mutex of the parent directory.
2740 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2742 struct dentry *actual;
2744 BUG_ON(!d_unhashed(dentry));
2746 if (!inode) {
2747 actual = dentry;
2748 __d_instantiate(dentry, NULL);
2749 d_rehash(actual);
2750 goto out_nolock;
2753 spin_lock(&inode->i_lock);
2755 if (S_ISDIR(inode->i_mode)) {
2756 struct dentry *alias;
2758 /* Does an aliased dentry already exist? */
2759 alias = __d_find_alias(inode, 0);
2760 if (alias) {
2761 actual = alias;
2762 write_seqlock(&rename_lock);
2764 if (d_ancestor(alias, dentry)) {
2765 /* Check for loops */
2766 actual = ERR_PTR(-ELOOP);
2767 spin_unlock(&inode->i_lock);
2768 } else if (IS_ROOT(alias)) {
2769 /* Is this an anonymous mountpoint that we
2770 * could splice into our tree? */
2771 __d_materialise_dentry(dentry, alias);
2772 write_sequnlock(&rename_lock);
2773 __d_drop(alias);
2774 goto found;
2775 } else {
2776 /* Nope, but we must(!) avoid directory
2777 * aliasing. This drops inode->i_lock */
2778 actual = __d_unalias(inode, dentry, alias);
2780 write_sequnlock(&rename_lock);
2781 if (IS_ERR(actual)) {
2782 if (PTR_ERR(actual) == -ELOOP)
2783 pr_warn_ratelimited(
2784 "VFS: Lookup of '%s' in %s %s"
2785 " would have caused loop\n",
2786 dentry->d_name.name,
2787 inode->i_sb->s_type->name,
2788 inode->i_sb->s_id);
2789 dput(alias);
2791 goto out_nolock;
2795 /* Add a unique reference */
2796 actual = __d_instantiate_unique(dentry, inode);
2797 if (!actual)
2798 actual = dentry;
2799 else
2800 BUG_ON(!d_unhashed(actual));
2802 spin_lock(&actual->d_lock);
2803 found:
2804 _d_rehash(actual);
2805 spin_unlock(&actual->d_lock);
2806 spin_unlock(&inode->i_lock);
2807 out_nolock:
2808 if (actual == dentry) {
2809 security_d_instantiate(dentry, inode);
2810 return NULL;
2813 iput(inode);
2814 return actual;
2816 EXPORT_SYMBOL_GPL(d_materialise_unique);
2818 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2820 *buflen -= namelen;
2821 if (*buflen < 0)
2822 return -ENAMETOOLONG;
2823 *buffer -= namelen;
2824 memcpy(*buffer, str, namelen);
2825 return 0;
2829 * prepend_name - prepend a pathname in front of current buffer pointer
2830 * @buffer: buffer pointer
2831 * @buflen: allocated length of the buffer
2832 * @name: name string and length qstr structure
2834 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2835 * make sure that either the old or the new name pointer and length are
2836 * fetched. However, there may be mismatch between length and pointer.
2837 * The length cannot be trusted, we need to copy it byte-by-byte until
2838 * the length is reached or a null byte is found. It also prepends "/" at
2839 * the beginning of the name. The sequence number check at the caller will
2840 * retry it again when a d_move() does happen. So any garbage in the buffer
2841 * due to mismatched pointer and length will be discarded.
2843 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2845 const char *dname = ACCESS_ONCE(name->name);
2846 u32 dlen = ACCESS_ONCE(name->len);
2847 char *p;
2849 *buflen -= dlen + 1;
2850 if (*buflen < 0)
2851 return -ENAMETOOLONG;
2852 p = *buffer -= dlen + 1;
2853 *p++ = '/';
2854 while (dlen--) {
2855 char c = *dname++;
2856 if (!c)
2857 break;
2858 *p++ = c;
2860 return 0;
2864 * prepend_path - Prepend path string to a buffer
2865 * @path: the dentry/vfsmount to report
2866 * @root: root vfsmnt/dentry
2867 * @buffer: pointer to the end of the buffer
2868 * @buflen: pointer to buffer length
2870 * The function will first try to write out the pathname without taking any
2871 * lock other than the RCU read lock to make sure that dentries won't go away.
2872 * It only checks the sequence number of the global rename_lock as any change
2873 * in the dentry's d_seq will be preceded by changes in the rename_lock
2874 * sequence number. If the sequence number had been changed, it will restart
2875 * the whole pathname back-tracing sequence again by taking the rename_lock.
2876 * In this case, there is no need to take the RCU read lock as the recursive
2877 * parent pointer references will keep the dentry chain alive as long as no
2878 * rename operation is performed.
2880 static int prepend_path(const struct path *path,
2881 const struct path *root,
2882 char **buffer, int *buflen)
2884 struct dentry *dentry;
2885 struct vfsmount *vfsmnt;
2886 struct mount *mnt;
2887 int error = 0;
2888 unsigned seq = 0;
2889 char *bptr;
2890 int blen;
2892 rcu_read_lock();
2893 restart:
2894 bptr = *buffer;
2895 blen = *buflen;
2896 error = 0;
2897 dentry = path->dentry;
2898 vfsmnt = path->mnt;
2899 mnt = real_mount(vfsmnt);
2900 read_seqbegin_or_lock(&rename_lock, &seq);
2901 while (dentry != root->dentry || vfsmnt != root->mnt) {
2902 struct dentry * parent;
2904 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2905 /* Global root? */
2906 if (mnt_has_parent(mnt)) {
2907 dentry = mnt->mnt_mountpoint;
2908 mnt = mnt->mnt_parent;
2909 vfsmnt = &mnt->mnt;
2910 continue;
2913 * Filesystems needing to implement special "root names"
2914 * should do so with ->d_dname()
2916 if (IS_ROOT(dentry) &&
2917 (dentry->d_name.len != 1 ||
2918 dentry->d_name.name[0] != '/')) {
2919 WARN(1, "Root dentry has weird name <%.*s>\n",
2920 (int) dentry->d_name.len,
2921 dentry->d_name.name);
2923 if (!error)
2924 error = is_mounted(vfsmnt) ? 1 : 2;
2925 break;
2927 parent = dentry->d_parent;
2928 prefetch(parent);
2929 error = prepend_name(&bptr, &blen, &dentry->d_name);
2930 if (error)
2931 break;
2933 dentry = parent;
2935 if (!(seq & 1))
2936 rcu_read_unlock();
2937 if (need_seqretry(&rename_lock, seq)) {
2938 seq = 1;
2939 goto restart;
2941 done_seqretry(&rename_lock, seq);
2943 if (error >= 0 && bptr == *buffer) {
2944 if (--blen < 0)
2945 error = -ENAMETOOLONG;
2946 else
2947 *--bptr = '/';
2949 *buffer = bptr;
2950 *buflen = blen;
2951 return error;
2955 * __d_path - return the path of a dentry
2956 * @path: the dentry/vfsmount to report
2957 * @root: root vfsmnt/dentry
2958 * @buf: buffer to return value in
2959 * @buflen: buffer length
2961 * Convert a dentry into an ASCII path name.
2963 * Returns a pointer into the buffer or an error code if the
2964 * path was too long.
2966 * "buflen" should be positive.
2968 * If the path is not reachable from the supplied root, return %NULL.
2970 char *__d_path(const struct path *path,
2971 const struct path *root,
2972 char *buf, int buflen)
2974 char *res = buf + buflen;
2975 int error;
2977 prepend(&res, &buflen, "\0", 1);
2978 br_read_lock(&vfsmount_lock);
2979 error = prepend_path(path, root, &res, &buflen);
2980 br_read_unlock(&vfsmount_lock);
2982 if (error < 0)
2983 return ERR_PTR(error);
2984 if (error > 0)
2985 return NULL;
2986 return res;
2989 char *d_absolute_path(const struct path *path,
2990 char *buf, int buflen)
2992 struct path root = {};
2993 char *res = buf + buflen;
2994 int error;
2996 prepend(&res, &buflen, "\0", 1);
2997 br_read_lock(&vfsmount_lock);
2998 error = prepend_path(path, &root, &res, &buflen);
2999 br_read_unlock(&vfsmount_lock);
3001 if (error > 1)
3002 error = -EINVAL;
3003 if (error < 0)
3004 return ERR_PTR(error);
3005 return res;
3009 * same as __d_path but appends "(deleted)" for unlinked files.
3011 static int path_with_deleted(const struct path *path,
3012 const struct path *root,
3013 char **buf, int *buflen)
3015 prepend(buf, buflen, "\0", 1);
3016 if (d_unlinked(path->dentry)) {
3017 int error = prepend(buf, buflen, " (deleted)", 10);
3018 if (error)
3019 return error;
3022 return prepend_path(path, root, buf, buflen);
3025 static int prepend_unreachable(char **buffer, int *buflen)
3027 return prepend(buffer, buflen, "(unreachable)", 13);
3030 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3032 unsigned seq;
3034 do {
3035 seq = read_seqcount_begin(&fs->seq);
3036 *root = fs->root;
3037 } while (read_seqcount_retry(&fs->seq, seq));
3041 * d_path - return the path of a dentry
3042 * @path: path to report
3043 * @buf: buffer to return value in
3044 * @buflen: buffer length
3046 * Convert a dentry into an ASCII path name. If the entry has been deleted
3047 * the string " (deleted)" is appended. Note that this is ambiguous.
3049 * Returns a pointer into the buffer or an error code if the path was
3050 * too long. Note: Callers should use the returned pointer, not the passed
3051 * in buffer, to use the name! The implementation often starts at an offset
3052 * into the buffer, and may leave 0 bytes at the start.
3054 * "buflen" should be positive.
3056 char *d_path(const struct path *path, char *buf, int buflen)
3058 char *res = buf + buflen;
3059 struct path root;
3060 int error;
3063 * We have various synthetic filesystems that never get mounted. On
3064 * these filesystems dentries are never used for lookup purposes, and
3065 * thus don't need to be hashed. They also don't need a name until a
3066 * user wants to identify the object in /proc/pid/fd/. The little hack
3067 * below allows us to generate a name for these objects on demand:
3069 * Some pseudo inodes are mountable. When they are mounted
3070 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3071 * and instead have d_path return the mounted path.
3073 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3074 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3075 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3077 rcu_read_lock();
3078 get_fs_root_rcu(current->fs, &root);
3079 br_read_lock(&vfsmount_lock);
3080 error = path_with_deleted(path, &root, &res, &buflen);
3081 br_read_unlock(&vfsmount_lock);
3082 rcu_read_unlock();
3084 if (error < 0)
3085 res = ERR_PTR(error);
3086 return res;
3088 EXPORT_SYMBOL(d_path);
3091 * Helper function for dentry_operations.d_dname() members
3093 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3094 const char *fmt, ...)
3096 va_list args;
3097 char temp[64];
3098 int sz;
3100 va_start(args, fmt);
3101 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3102 va_end(args);
3104 if (sz > sizeof(temp) || sz > buflen)
3105 return ERR_PTR(-ENAMETOOLONG);
3107 buffer += buflen - sz;
3108 return memcpy(buffer, temp, sz);
3111 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3113 char *end = buffer + buflen;
3114 /* these dentries are never renamed, so d_lock is not needed */
3115 if (prepend(&end, &buflen, " (deleted)", 11) ||
3116 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3117 prepend(&end, &buflen, "/", 1))
3118 end = ERR_PTR(-ENAMETOOLONG);
3119 return end;
3123 * Write full pathname from the root of the filesystem into the buffer.
3125 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3127 struct dentry *dentry;
3128 char *end, *retval;
3129 int len, seq = 0;
3130 int error = 0;
3132 if (buflen < 2)
3133 goto Elong;
3135 rcu_read_lock();
3136 restart:
3137 dentry = d;
3138 end = buf + buflen;
3139 len = buflen;
3140 prepend(&end, &len, "\0", 1);
3141 /* Get '/' right */
3142 retval = end-1;
3143 *retval = '/';
3144 read_seqbegin_or_lock(&rename_lock, &seq);
3145 while (!IS_ROOT(dentry)) {
3146 struct dentry *parent = dentry->d_parent;
3148 prefetch(parent);
3149 error = prepend_name(&end, &len, &dentry->d_name);
3150 if (error)
3151 break;
3153 retval = end;
3154 dentry = parent;
3156 if (!(seq & 1))
3157 rcu_read_unlock();
3158 if (need_seqretry(&rename_lock, seq)) {
3159 seq = 1;
3160 goto restart;
3162 done_seqretry(&rename_lock, seq);
3163 if (error)
3164 goto Elong;
3165 return retval;
3166 Elong:
3167 return ERR_PTR(-ENAMETOOLONG);
3170 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3172 return __dentry_path(dentry, buf, buflen);
3174 EXPORT_SYMBOL(dentry_path_raw);
3176 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3178 char *p = NULL;
3179 char *retval;
3181 if (d_unlinked(dentry)) {
3182 p = buf + buflen;
3183 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3184 goto Elong;
3185 buflen++;
3187 retval = __dentry_path(dentry, buf, buflen);
3188 if (!IS_ERR(retval) && p)
3189 *p = '/'; /* restore '/' overriden with '\0' */
3190 return retval;
3191 Elong:
3192 return ERR_PTR(-ENAMETOOLONG);
3195 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3196 struct path *pwd)
3198 unsigned seq;
3200 do {
3201 seq = read_seqcount_begin(&fs->seq);
3202 *root = fs->root;
3203 *pwd = fs->pwd;
3204 } while (read_seqcount_retry(&fs->seq, seq));
3208 * NOTE! The user-level library version returns a
3209 * character pointer. The kernel system call just
3210 * returns the length of the buffer filled (which
3211 * includes the ending '\0' character), or a negative
3212 * error value. So libc would do something like
3214 * char *getcwd(char * buf, size_t size)
3216 * int retval;
3218 * retval = sys_getcwd(buf, size);
3219 * if (retval >= 0)
3220 * return buf;
3221 * errno = -retval;
3222 * return NULL;
3225 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3227 int error;
3228 struct path pwd, root;
3229 char *page = __getname();
3231 if (!page)
3232 return -ENOMEM;
3234 rcu_read_lock();
3235 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3237 error = -ENOENT;
3238 br_read_lock(&vfsmount_lock);
3239 if (!d_unlinked(pwd.dentry)) {
3240 unsigned long len;
3241 char *cwd = page + PATH_MAX;
3242 int buflen = PATH_MAX;
3244 prepend(&cwd, &buflen, "\0", 1);
3245 error = prepend_path(&pwd, &root, &cwd, &buflen);
3246 br_read_unlock(&vfsmount_lock);
3247 rcu_read_unlock();
3249 if (error < 0)
3250 goto out;
3252 /* Unreachable from current root */
3253 if (error > 0) {
3254 error = prepend_unreachable(&cwd, &buflen);
3255 if (error)
3256 goto out;
3259 error = -ERANGE;
3260 len = PATH_MAX + page - cwd;
3261 if (len <= size) {
3262 error = len;
3263 if (copy_to_user(buf, cwd, len))
3264 error = -EFAULT;
3266 } else {
3267 br_read_unlock(&vfsmount_lock);
3268 rcu_read_unlock();
3271 out:
3272 __putname(page);
3273 return error;
3277 * Test whether new_dentry is a subdirectory of old_dentry.
3279 * Trivially implemented using the dcache structure
3283 * is_subdir - is new dentry a subdirectory of old_dentry
3284 * @new_dentry: new dentry
3285 * @old_dentry: old dentry
3287 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3288 * Returns 0 otherwise.
3289 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3292 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3294 int result;
3295 unsigned seq;
3297 if (new_dentry == old_dentry)
3298 return 1;
3300 do {
3301 /* for restarting inner loop in case of seq retry */
3302 seq = read_seqbegin(&rename_lock);
3304 * Need rcu_readlock to protect against the d_parent trashing
3305 * due to d_move
3307 rcu_read_lock();
3308 if (d_ancestor(old_dentry, new_dentry))
3309 result = 1;
3310 else
3311 result = 0;
3312 rcu_read_unlock();
3313 } while (read_seqretry(&rename_lock, seq));
3315 return result;
3318 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3320 struct dentry *root = data;
3321 if (dentry != root) {
3322 if (d_unhashed(dentry) || !dentry->d_inode)
3323 return D_WALK_SKIP;
3325 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3326 dentry->d_flags |= DCACHE_GENOCIDE;
3327 dentry->d_lockref.count--;
3330 return D_WALK_CONTINUE;
3333 void d_genocide(struct dentry *parent)
3335 d_walk(parent, parent, d_genocide_kill, NULL);
3338 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3340 inode_dec_link_count(inode);
3341 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3342 !hlist_unhashed(&dentry->d_alias) ||
3343 !d_unlinked(dentry));
3344 spin_lock(&dentry->d_parent->d_lock);
3345 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3346 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3347 (unsigned long long)inode->i_ino);
3348 spin_unlock(&dentry->d_lock);
3349 spin_unlock(&dentry->d_parent->d_lock);
3350 d_instantiate(dentry, inode);
3352 EXPORT_SYMBOL(d_tmpfile);
3354 static __initdata unsigned long dhash_entries;
3355 static int __init set_dhash_entries(char *str)
3357 if (!str)
3358 return 0;
3359 dhash_entries = simple_strtoul(str, &str, 0);
3360 return 1;
3362 __setup("dhash_entries=", set_dhash_entries);
3364 static void __init dcache_init_early(void)
3366 unsigned int loop;
3368 /* If hashes are distributed across NUMA nodes, defer
3369 * hash allocation until vmalloc space is available.
3371 if (hashdist)
3372 return;
3374 dentry_hashtable =
3375 alloc_large_system_hash("Dentry cache",
3376 sizeof(struct hlist_bl_head),
3377 dhash_entries,
3379 HASH_EARLY,
3380 &d_hash_shift,
3381 &d_hash_mask,
3385 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3386 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3389 static void __init dcache_init(void)
3391 unsigned int loop;
3394 * A constructor could be added for stable state like the lists,
3395 * but it is probably not worth it because of the cache nature
3396 * of the dcache.
3398 dentry_cache = KMEM_CACHE(dentry,
3399 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3401 /* Hash may have been set up in dcache_init_early */
3402 if (!hashdist)
3403 return;
3405 dentry_hashtable =
3406 alloc_large_system_hash("Dentry cache",
3407 sizeof(struct hlist_bl_head),
3408 dhash_entries,
3411 &d_hash_shift,
3412 &d_hash_mask,
3416 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3417 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3420 /* SLAB cache for __getname() consumers */
3421 struct kmem_cache *names_cachep __read_mostly;
3422 EXPORT_SYMBOL(names_cachep);
3424 EXPORT_SYMBOL(d_genocide);
3426 void __init vfs_caches_init_early(void)
3428 dcache_init_early();
3429 inode_init_early();
3432 void __init vfs_caches_init(unsigned long mempages)
3434 unsigned long reserve;
3436 /* Base hash sizes on available memory, with a reserve equal to
3437 150% of current kernel size */
3439 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3440 mempages -= reserve;
3442 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3443 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3445 dcache_init();
3446 inode_init();
3447 files_init(mempages);
3448 mnt_init();
3449 bdev_cache_init();
3450 chrdev_init();