4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
63 #include <trace/events/task.h>
67 #include <trace/events/sched.h>
69 int suid_dumpable
= 0;
71 static LIST_HEAD(formats
);
72 static DEFINE_RWLOCK(binfmt_lock
);
74 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
77 if (WARN_ON(!fmt
->load_binary
))
79 write_lock(&binfmt_lock
);
80 insert
? list_add(&fmt
->lh
, &formats
) :
81 list_add_tail(&fmt
->lh
, &formats
);
82 write_unlock(&binfmt_lock
);
85 EXPORT_SYMBOL(__register_binfmt
);
87 void unregister_binfmt(struct linux_binfmt
* fmt
)
89 write_lock(&binfmt_lock
);
91 write_unlock(&binfmt_lock
);
94 EXPORT_SYMBOL(unregister_binfmt
);
96 static inline void put_binfmt(struct linux_binfmt
* fmt
)
98 module_put(fmt
->module
);
102 * Note that a shared library must be both readable and executable due to
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
110 struct filename
*tmp
= getname(library
);
111 int error
= PTR_ERR(tmp
);
112 static const struct open_flags uselib_flags
= {
113 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
114 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
115 .intent
= LOOKUP_OPEN
,
116 .lookup_flags
= LOOKUP_FOLLOW
,
122 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
124 error
= PTR_ERR(file
);
129 if (!S_ISREG(file_inode(file
)->i_mode
))
133 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
140 struct linux_binfmt
* fmt
;
142 read_lock(&binfmt_lock
);
143 list_for_each_entry(fmt
, &formats
, lh
) {
144 if (!fmt
->load_shlib
)
146 if (!try_module_get(fmt
->module
))
148 read_unlock(&binfmt_lock
);
149 error
= fmt
->load_shlib(file
);
150 read_lock(&binfmt_lock
);
152 if (error
!= -ENOEXEC
)
155 read_unlock(&binfmt_lock
);
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
170 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
172 struct mm_struct
*mm
= current
->mm
;
173 long diff
= (long)(pages
- bprm
->vma_pages
);
178 bprm
->vma_pages
= pages
;
179 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
182 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
188 #ifdef CONFIG_STACK_GROWSUP
190 ret
= expand_downwards(bprm
->vma
, pos
);
195 ret
= get_user_pages(current
, bprm
->mm
, pos
,
196 1, write
, 1, &page
, NULL
);
201 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
204 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
207 * We've historically supported up to 32 pages (ARG_MAX)
208 * of argument strings even with small stacks
214 * Limit to 1/4-th the stack size for the argv+env strings.
216 * - the remaining binfmt code will not run out of stack space,
217 * - the program will have a reasonable amount of stack left
220 rlim
= current
->signal
->rlim
;
221 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
230 static void put_arg_page(struct page
*page
)
235 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
239 static void free_arg_pages(struct linux_binprm
*bprm
)
243 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
246 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
249 static int __bprm_mm_init(struct linux_binprm
*bprm
)
252 struct vm_area_struct
*vma
= NULL
;
253 struct mm_struct
*mm
= bprm
->mm
;
255 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
259 down_write(&mm
->mmap_sem
);
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
268 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
269 vma
->vm_end
= STACK_TOP_MAX
;
270 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
271 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
272 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
273 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
275 err
= insert_vm_struct(mm
, vma
);
279 mm
->stack_vm
= mm
->total_vm
= 1;
280 up_write(&mm
->mmap_sem
);
281 bprm
->p
= vma
->vm_end
- sizeof(void *);
284 up_write(&mm
->mmap_sem
);
286 kmem_cache_free(vm_area_cachep
, vma
);
290 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
292 return len
<= MAX_ARG_STRLEN
;
297 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
301 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
306 page
= bprm
->page
[pos
/ PAGE_SIZE
];
307 if (!page
&& write
) {
308 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
311 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
317 static void put_arg_page(struct page
*page
)
321 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
324 __free_page(bprm
->page
[i
]);
325 bprm
->page
[i
] = NULL
;
329 static void free_arg_pages(struct linux_binprm
*bprm
)
333 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
334 free_arg_page(bprm
, i
);
337 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
342 static int __bprm_mm_init(struct linux_binprm
*bprm
)
344 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
348 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
350 return len
<= bprm
->p
;
353 #endif /* CONFIG_MMU */
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
361 static int bprm_mm_init(struct linux_binprm
*bprm
)
364 struct mm_struct
*mm
= NULL
;
366 bprm
->mm
= mm
= mm_alloc();
371 err
= init_new_context(current
, mm
);
375 err
= __bprm_mm_init(bprm
);
390 struct user_arg_ptr
{
395 const char __user
*const __user
*native
;
397 const compat_uptr_t __user
*compat
;
402 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
404 const char __user
*native
;
407 if (unlikely(argv
.is_compat
)) {
408 compat_uptr_t compat
;
410 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
411 return ERR_PTR(-EFAULT
);
413 return compat_ptr(compat
);
417 if (get_user(native
, argv
.ptr
.native
+ nr
))
418 return ERR_PTR(-EFAULT
);
424 * count() counts the number of strings in array ARGV.
426 static int count(struct user_arg_ptr argv
, int max
)
430 if (argv
.ptr
.native
!= NULL
) {
432 const char __user
*p
= get_user_arg_ptr(argv
, i
);
444 if (fatal_signal_pending(current
))
445 return -ERESTARTNOHAND
;
453 * 'copy_strings()' copies argument/environment strings from the old
454 * processes's memory to the new process's stack. The call to get_user_pages()
455 * ensures the destination page is created and not swapped out.
457 static int copy_strings(int argc
, struct user_arg_ptr argv
,
458 struct linux_binprm
*bprm
)
460 struct page
*kmapped_page
= NULL
;
462 unsigned long kpos
= 0;
466 const char __user
*str
;
471 str
= get_user_arg_ptr(argv
, argc
);
475 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
480 if (!valid_arg_len(bprm
, len
))
483 /* We're going to work our way backwords. */
489 int offset
, bytes_to_copy
;
491 if (fatal_signal_pending(current
)) {
492 ret
= -ERESTARTNOHAND
;
497 offset
= pos
% PAGE_SIZE
;
501 bytes_to_copy
= offset
;
502 if (bytes_to_copy
> len
)
505 offset
-= bytes_to_copy
;
506 pos
-= bytes_to_copy
;
507 str
-= bytes_to_copy
;
508 len
-= bytes_to_copy
;
510 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
513 page
= get_arg_page(bprm
, pos
, 1);
520 flush_kernel_dcache_page(kmapped_page
);
521 kunmap(kmapped_page
);
522 put_arg_page(kmapped_page
);
525 kaddr
= kmap(kmapped_page
);
526 kpos
= pos
& PAGE_MASK
;
527 flush_arg_page(bprm
, kpos
, kmapped_page
);
529 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
538 flush_kernel_dcache_page(kmapped_page
);
539 kunmap(kmapped_page
);
540 put_arg_page(kmapped_page
);
546 * Like copy_strings, but get argv and its values from kernel memory.
548 int copy_strings_kernel(int argc
, const char *const *__argv
,
549 struct linux_binprm
*bprm
)
552 mm_segment_t oldfs
= get_fs();
553 struct user_arg_ptr argv
= {
554 .ptr
.native
= (const char __user
*const __user
*)__argv
,
558 r
= copy_strings(argc
, argv
, bprm
);
563 EXPORT_SYMBOL(copy_strings_kernel
);
568 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
569 * the binfmt code determines where the new stack should reside, we shift it to
570 * its final location. The process proceeds as follows:
572 * 1) Use shift to calculate the new vma endpoints.
573 * 2) Extend vma to cover both the old and new ranges. This ensures the
574 * arguments passed to subsequent functions are consistent.
575 * 3) Move vma's page tables to the new range.
576 * 4) Free up any cleared pgd range.
577 * 5) Shrink the vma to cover only the new range.
579 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
581 struct mm_struct
*mm
= vma
->vm_mm
;
582 unsigned long old_start
= vma
->vm_start
;
583 unsigned long old_end
= vma
->vm_end
;
584 unsigned long length
= old_end
- old_start
;
585 unsigned long new_start
= old_start
- shift
;
586 unsigned long new_end
= old_end
- shift
;
587 struct mmu_gather tlb
;
589 BUG_ON(new_start
> new_end
);
592 * ensure there are no vmas between where we want to go
595 if (vma
!= find_vma(mm
, new_start
))
599 * cover the whole range: [new_start, old_end)
601 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
605 * move the page tables downwards, on failure we rely on
606 * process cleanup to remove whatever mess we made.
608 if (length
!= move_page_tables(vma
, old_start
,
609 vma
, new_start
, length
, false))
613 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
614 if (new_end
> old_start
) {
616 * when the old and new regions overlap clear from new_end.
618 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
619 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
622 * otherwise, clean from old_start; this is done to not touch
623 * the address space in [new_end, old_start) some architectures
624 * have constraints on va-space that make this illegal (IA64) -
625 * for the others its just a little faster.
627 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
628 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
630 tlb_finish_mmu(&tlb
, old_start
, old_end
);
633 * Shrink the vma to just the new range. Always succeeds.
635 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
641 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
642 * the stack is optionally relocated, and some extra space is added.
644 int setup_arg_pages(struct linux_binprm
*bprm
,
645 unsigned long stack_top
,
646 int executable_stack
)
649 unsigned long stack_shift
;
650 struct mm_struct
*mm
= current
->mm
;
651 struct vm_area_struct
*vma
= bprm
->vma
;
652 struct vm_area_struct
*prev
= NULL
;
653 unsigned long vm_flags
;
654 unsigned long stack_base
;
655 unsigned long stack_size
;
656 unsigned long stack_expand
;
657 unsigned long rlim_stack
;
659 #ifdef CONFIG_STACK_GROWSUP
660 /* Limit stack size */
661 stack_base
= rlimit_max(RLIMIT_STACK
);
662 if (stack_base
> STACK_SIZE_MAX
)
663 stack_base
= STACK_SIZE_MAX
;
665 /* Make sure we didn't let the argument array grow too large. */
666 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
669 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
671 stack_shift
= vma
->vm_start
- stack_base
;
672 mm
->arg_start
= bprm
->p
- stack_shift
;
673 bprm
->p
= vma
->vm_end
- stack_shift
;
675 stack_top
= arch_align_stack(stack_top
);
676 stack_top
= PAGE_ALIGN(stack_top
);
678 if (unlikely(stack_top
< mmap_min_addr
) ||
679 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
682 stack_shift
= vma
->vm_end
- stack_top
;
684 bprm
->p
-= stack_shift
;
685 mm
->arg_start
= bprm
->p
;
689 bprm
->loader
-= stack_shift
;
690 bprm
->exec
-= stack_shift
;
692 down_write(&mm
->mmap_sem
);
693 vm_flags
= VM_STACK_FLAGS
;
696 * Adjust stack execute permissions; explicitly enable for
697 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698 * (arch default) otherwise.
700 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
702 else if (executable_stack
== EXSTACK_DISABLE_X
)
703 vm_flags
&= ~VM_EXEC
;
704 vm_flags
|= mm
->def_flags
;
705 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
707 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
713 /* Move stack pages down in memory. */
715 ret
= shift_arg_pages(vma
, stack_shift
);
720 /* mprotect_fixup is overkill to remove the temporary stack flags */
721 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
723 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
724 stack_size
= vma
->vm_end
- vma
->vm_start
;
726 * Align this down to a page boundary as expand_stack
729 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
730 #ifdef CONFIG_STACK_GROWSUP
731 if (stack_size
+ stack_expand
> rlim_stack
)
732 stack_base
= vma
->vm_start
+ rlim_stack
;
734 stack_base
= vma
->vm_end
+ stack_expand
;
736 if (stack_size
+ stack_expand
> rlim_stack
)
737 stack_base
= vma
->vm_end
- rlim_stack
;
739 stack_base
= vma
->vm_start
- stack_expand
;
741 current
->mm
->start_stack
= bprm
->p
;
742 ret
= expand_stack(vma
, stack_base
);
747 up_write(&mm
->mmap_sem
);
750 EXPORT_SYMBOL(setup_arg_pages
);
752 #endif /* CONFIG_MMU */
754 struct file
*open_exec(const char *name
)
758 struct filename tmp
= { .name
= name
};
759 static const struct open_flags open_exec_flags
= {
760 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
761 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
762 .intent
= LOOKUP_OPEN
,
763 .lookup_flags
= LOOKUP_FOLLOW
,
766 file
= do_filp_open(AT_FDCWD
, &tmp
, &open_exec_flags
);
771 if (!S_ISREG(file_inode(file
)->i_mode
))
774 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
779 err
= deny_write_access(file
);
790 EXPORT_SYMBOL(open_exec
);
792 int kernel_read(struct file
*file
, loff_t offset
,
793 char *addr
, unsigned long count
)
801 /* The cast to a user pointer is valid due to the set_fs() */
802 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
807 EXPORT_SYMBOL(kernel_read
);
809 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
811 ssize_t res
= file
->f_op
->read(file
, (void __user
*)addr
, len
, &pos
);
813 flush_icache_range(addr
, addr
+ len
);
816 EXPORT_SYMBOL(read_code
);
818 static int exec_mmap(struct mm_struct
*mm
)
820 struct task_struct
*tsk
;
821 struct mm_struct
* old_mm
, *active_mm
;
823 /* Notify parent that we're no longer interested in the old VM */
825 old_mm
= current
->mm
;
826 mm_release(tsk
, old_mm
);
831 * Make sure that if there is a core dump in progress
832 * for the old mm, we get out and die instead of going
833 * through with the exec. We must hold mmap_sem around
834 * checking core_state and changing tsk->mm.
836 down_read(&old_mm
->mmap_sem
);
837 if (unlikely(old_mm
->core_state
)) {
838 up_read(&old_mm
->mmap_sem
);
843 active_mm
= tsk
->active_mm
;
846 activate_mm(active_mm
, mm
);
848 arch_pick_mmap_layout(mm
);
850 up_read(&old_mm
->mmap_sem
);
851 BUG_ON(active_mm
!= old_mm
);
852 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
853 mm_update_next_owner(old_mm
);
862 * This function makes sure the current process has its own signal table,
863 * so that flush_signal_handlers can later reset the handlers without
864 * disturbing other processes. (Other processes might share the signal
865 * table via the CLONE_SIGHAND option to clone().)
867 static int de_thread(struct task_struct
*tsk
)
869 struct signal_struct
*sig
= tsk
->signal
;
870 struct sighand_struct
*oldsighand
= tsk
->sighand
;
871 spinlock_t
*lock
= &oldsighand
->siglock
;
873 if (thread_group_empty(tsk
))
874 goto no_thread_group
;
877 * Kill all other threads in the thread group.
880 if (signal_group_exit(sig
)) {
882 * Another group action in progress, just
883 * return so that the signal is processed.
885 spin_unlock_irq(lock
);
889 sig
->group_exit_task
= tsk
;
890 sig
->notify_count
= zap_other_threads(tsk
);
891 if (!thread_group_leader(tsk
))
894 while (sig
->notify_count
) {
895 __set_current_state(TASK_KILLABLE
);
896 spin_unlock_irq(lock
);
898 if (unlikely(__fatal_signal_pending(tsk
)))
902 spin_unlock_irq(lock
);
905 * At this point all other threads have exited, all we have to
906 * do is to wait for the thread group leader to become inactive,
907 * and to assume its PID:
909 if (!thread_group_leader(tsk
)) {
910 struct task_struct
*leader
= tsk
->group_leader
;
912 sig
->notify_count
= -1; /* for exit_notify() */
914 threadgroup_change_begin(tsk
);
915 write_lock_irq(&tasklist_lock
);
916 if (likely(leader
->exit_state
))
918 __set_current_state(TASK_KILLABLE
);
919 write_unlock_irq(&tasklist_lock
);
920 threadgroup_change_end(tsk
);
922 if (unlikely(__fatal_signal_pending(tsk
)))
927 * The only record we have of the real-time age of a
928 * process, regardless of execs it's done, is start_time.
929 * All the past CPU time is accumulated in signal_struct
930 * from sister threads now dead. But in this non-leader
931 * exec, nothing survives from the original leader thread,
932 * whose birth marks the true age of this process now.
933 * When we take on its identity by switching to its PID, we
934 * also take its birthdate (always earlier than our own).
936 tsk
->start_time
= leader
->start_time
;
937 tsk
->real_start_time
= leader
->real_start_time
;
939 BUG_ON(!same_thread_group(leader
, tsk
));
940 BUG_ON(has_group_leader_pid(tsk
));
942 * An exec() starts a new thread group with the
943 * TGID of the previous thread group. Rehash the
944 * two threads with a switched PID, and release
945 * the former thread group leader:
948 /* Become a process group leader with the old leader's pid.
949 * The old leader becomes a thread of the this thread group.
950 * Note: The old leader also uses this pid until release_task
951 * is called. Odd but simple and correct.
953 tsk
->pid
= leader
->pid
;
954 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
955 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
956 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
958 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
959 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
961 tsk
->group_leader
= tsk
;
962 leader
->group_leader
= tsk
;
964 tsk
->exit_signal
= SIGCHLD
;
965 leader
->exit_signal
= -1;
967 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
968 leader
->exit_state
= EXIT_DEAD
;
971 * We are going to release_task()->ptrace_unlink() silently,
972 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
973 * the tracer wont't block again waiting for this thread.
975 if (unlikely(leader
->ptrace
))
976 __wake_up_parent(leader
, leader
->parent
);
977 write_unlock_irq(&tasklist_lock
);
978 threadgroup_change_end(tsk
);
980 release_task(leader
);
983 sig
->group_exit_task
= NULL
;
984 sig
->notify_count
= 0;
987 /* we have changed execution domain */
988 tsk
->exit_signal
= SIGCHLD
;
991 flush_itimer_signals();
993 if (atomic_read(&oldsighand
->count
) != 1) {
994 struct sighand_struct
*newsighand
;
996 * This ->sighand is shared with the CLONE_SIGHAND
997 * but not CLONE_THREAD task, switch to the new one.
999 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1003 atomic_set(&newsighand
->count
, 1);
1004 memcpy(newsighand
->action
, oldsighand
->action
,
1005 sizeof(newsighand
->action
));
1007 write_lock_irq(&tasklist_lock
);
1008 spin_lock(&oldsighand
->siglock
);
1009 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1010 spin_unlock(&oldsighand
->siglock
);
1011 write_unlock_irq(&tasklist_lock
);
1013 __cleanup_sighand(oldsighand
);
1016 BUG_ON(!thread_group_leader(tsk
));
1020 /* protects against exit_notify() and __exit_signal() */
1021 read_lock(&tasklist_lock
);
1022 sig
->group_exit_task
= NULL
;
1023 sig
->notify_count
= 0;
1024 read_unlock(&tasklist_lock
);
1028 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1030 /* buf must be at least sizeof(tsk->comm) in size */
1032 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1036 EXPORT_SYMBOL_GPL(get_task_comm
);
1039 * These functions flushes out all traces of the currently running executable
1040 * so that a new one can be started
1043 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1046 trace_task_rename(tsk
, buf
);
1047 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1049 perf_event_comm(tsk
);
1052 static void filename_to_taskname(char *tcomm
, const char *fn
, unsigned int len
)
1056 /* Copies the binary name from after last slash */
1057 for (i
= 0; (ch
= *(fn
++)) != '\0';) {
1059 i
= 0; /* overwrite what we wrote */
1067 int flush_old_exec(struct linux_binprm
* bprm
)
1072 * Make sure we have a private signal table and that
1073 * we are unassociated from the previous thread group.
1075 retval
= de_thread(current
);
1079 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1081 filename_to_taskname(bprm
->tcomm
, bprm
->filename
, sizeof(bprm
->tcomm
));
1083 * Release all of the old mmap stuff
1085 acct_arg_size(bprm
, 0);
1086 retval
= exec_mmap(bprm
->mm
);
1090 bprm
->mm
= NULL
; /* We're using it now */
1094 ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
| PF_NOFREEZE
);
1096 current
->personality
&= ~bprm
->per_clear
;
1103 EXPORT_SYMBOL(flush_old_exec
);
1105 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1107 if (inode_permission(file_inode(file
), MAY_READ
) < 0)
1108 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1110 EXPORT_SYMBOL(would_dump
);
1112 void setup_new_exec(struct linux_binprm
* bprm
)
1114 arch_pick_mmap_layout(current
->mm
);
1116 /* This is the point of no return */
1117 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1119 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1120 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1122 set_dumpable(current
->mm
, suid_dumpable
);
1124 set_task_comm(current
, bprm
->tcomm
);
1126 /* Set the new mm task size. We have to do that late because it may
1127 * depend on TIF_32BIT which is only updated in flush_thread() on
1128 * some architectures like powerpc
1130 current
->mm
->task_size
= TASK_SIZE
;
1132 /* install the new credentials */
1133 if (!uid_eq(bprm
->cred
->uid
, current_euid()) ||
1134 !gid_eq(bprm
->cred
->gid
, current_egid())) {
1135 current
->pdeath_signal
= 0;
1137 would_dump(bprm
, bprm
->file
);
1138 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1139 set_dumpable(current
->mm
, suid_dumpable
);
1142 /* An exec changes our domain. We are no longer part of the thread
1145 current
->self_exec_id
++;
1147 flush_signal_handlers(current
, 0);
1148 do_close_on_exec(current
->files
);
1150 EXPORT_SYMBOL(setup_new_exec
);
1153 * Prepare credentials and lock ->cred_guard_mutex.
1154 * install_exec_creds() commits the new creds and drops the lock.
1155 * Or, if exec fails before, free_bprm() should release ->cred and
1158 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1160 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1161 return -ERESTARTNOINTR
;
1163 bprm
->cred
= prepare_exec_creds();
1164 if (likely(bprm
->cred
))
1167 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1171 void free_bprm(struct linux_binprm
*bprm
)
1173 free_arg_pages(bprm
);
1175 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1176 abort_creds(bprm
->cred
);
1178 /* If a binfmt changed the interp, free it. */
1179 if (bprm
->interp
!= bprm
->filename
)
1180 kfree(bprm
->interp
);
1184 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1186 /* If a binfmt changed the interp, free it first. */
1187 if (bprm
->interp
!= bprm
->filename
)
1188 kfree(bprm
->interp
);
1189 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1194 EXPORT_SYMBOL(bprm_change_interp
);
1197 * install the new credentials for this executable
1199 void install_exec_creds(struct linux_binprm
*bprm
)
1201 security_bprm_committing_creds(bprm
);
1203 commit_creds(bprm
->cred
);
1207 * Disable monitoring for regular users
1208 * when executing setuid binaries. Must
1209 * wait until new credentials are committed
1210 * by commit_creds() above
1212 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1213 perf_event_exit_task(current
);
1215 * cred_guard_mutex must be held at least to this point to prevent
1216 * ptrace_attach() from altering our determination of the task's
1217 * credentials; any time after this it may be unlocked.
1219 security_bprm_committed_creds(bprm
);
1220 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1222 EXPORT_SYMBOL(install_exec_creds
);
1225 * determine how safe it is to execute the proposed program
1226 * - the caller must hold ->cred_guard_mutex to protect against
1229 static int check_unsafe_exec(struct linux_binprm
*bprm
)
1231 struct task_struct
*p
= current
, *t
;
1236 if (p
->ptrace
& PT_PTRACE_CAP
)
1237 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1239 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1243 * This isn't strictly necessary, but it makes it harder for LSMs to
1246 if (current
->no_new_privs
)
1247 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1250 spin_lock(&p
->fs
->lock
);
1252 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1258 if (p
->fs
->users
> n_fs
) {
1259 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1262 if (!p
->fs
->in_exec
) {
1267 spin_unlock(&p
->fs
->lock
);
1273 * Fill the binprm structure from the inode.
1274 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1276 * This may be called multiple times for binary chains (scripts for example).
1278 int prepare_binprm(struct linux_binprm
*bprm
)
1281 struct inode
* inode
= file_inode(bprm
->file
);
1284 mode
= inode
->i_mode
;
1285 if (bprm
->file
->f_op
== NULL
)
1288 /* clear any previous set[ug]id data from a previous binary */
1289 bprm
->cred
->euid
= current_euid();
1290 bprm
->cred
->egid
= current_egid();
1292 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
) &&
1293 !current
->no_new_privs
&&
1294 kuid_has_mapping(bprm
->cred
->user_ns
, inode
->i_uid
) &&
1295 kgid_has_mapping(bprm
->cred
->user_ns
, inode
->i_gid
)) {
1297 if (mode
& S_ISUID
) {
1298 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1299 bprm
->cred
->euid
= inode
->i_uid
;
1304 * If setgid is set but no group execute bit then this
1305 * is a candidate for mandatory locking, not a setgid
1308 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1309 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1310 bprm
->cred
->egid
= inode
->i_gid
;
1314 /* fill in binprm security blob */
1315 retval
= security_bprm_set_creds(bprm
);
1318 bprm
->cred_prepared
= 1;
1320 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1321 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1324 EXPORT_SYMBOL(prepare_binprm
);
1327 * Arguments are '\0' separated strings found at the location bprm->p
1328 * points to; chop off the first by relocating brpm->p to right after
1329 * the first '\0' encountered.
1331 int remove_arg_zero(struct linux_binprm
*bprm
)
1334 unsigned long offset
;
1342 offset
= bprm
->p
& ~PAGE_MASK
;
1343 page
= get_arg_page(bprm
, bprm
->p
, 0);
1348 kaddr
= kmap_atomic(page
);
1350 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1351 offset
++, bprm
->p
++)
1354 kunmap_atomic(kaddr
);
1357 if (offset
== PAGE_SIZE
)
1358 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1359 } while (offset
== PAGE_SIZE
);
1368 EXPORT_SYMBOL(remove_arg_zero
);
1370 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1372 * cycle the list of binary formats handler, until one recognizes the image
1374 int search_binary_handler(struct linux_binprm
*bprm
)
1376 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1377 struct linux_binfmt
*fmt
;
1380 /* This allows 4 levels of binfmt rewrites before failing hard. */
1381 if (bprm
->recursion_depth
> 5)
1384 retval
= security_bprm_check(bprm
);
1388 retval
= audit_bprm(bprm
);
1394 read_lock(&binfmt_lock
);
1395 list_for_each_entry(fmt
, &formats
, lh
) {
1396 if (!try_module_get(fmt
->module
))
1398 read_unlock(&binfmt_lock
);
1399 bprm
->recursion_depth
++;
1400 retval
= fmt
->load_binary(bprm
);
1401 bprm
->recursion_depth
--;
1402 if (retval
>= 0 || retval
!= -ENOEXEC
||
1403 bprm
->mm
== NULL
|| bprm
->file
== NULL
) {
1407 read_lock(&binfmt_lock
);
1410 read_unlock(&binfmt_lock
);
1412 if (need_retry
&& retval
== -ENOEXEC
) {
1413 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1414 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1416 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1424 EXPORT_SYMBOL(search_binary_handler
);
1426 static int exec_binprm(struct linux_binprm
*bprm
)
1428 pid_t old_pid
, old_vpid
;
1431 /* Need to fetch pid before load_binary changes it */
1432 old_pid
= current
->pid
;
1434 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1437 ret
= search_binary_handler(bprm
);
1439 trace_sched_process_exec(current
, old_pid
, bprm
);
1440 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1441 current
->did_exec
= 1;
1442 proc_exec_connector(current
);
1445 allow_write_access(bprm
->file
);
1447 bprm
->file
= NULL
; /* to catch use-after-free */
1455 * sys_execve() executes a new program.
1457 static int do_execve_common(const char *filename
,
1458 struct user_arg_ptr argv
,
1459 struct user_arg_ptr envp
)
1461 struct linux_binprm
*bprm
;
1463 struct files_struct
*displaced
;
1468 * We move the actual failure in case of RLIMIT_NPROC excess from
1469 * set*uid() to execve() because too many poorly written programs
1470 * don't check setuid() return code. Here we additionally recheck
1471 * whether NPROC limit is still exceeded.
1473 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1474 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1479 /* We're below the limit (still or again), so we don't want to make
1480 * further execve() calls fail. */
1481 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1483 retval
= unshare_files(&displaced
);
1488 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1492 retval
= prepare_bprm_creds(bprm
);
1496 retval
= check_unsafe_exec(bprm
);
1499 clear_in_exec
= retval
;
1500 current
->in_execve
= 1;
1502 file
= open_exec(filename
);
1503 retval
= PTR_ERR(file
);
1510 bprm
->filename
= filename
;
1511 bprm
->interp
= filename
;
1513 retval
= bprm_mm_init(bprm
);
1517 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1518 if ((retval
= bprm
->argc
) < 0)
1521 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1522 if ((retval
= bprm
->envc
) < 0)
1525 retval
= prepare_binprm(bprm
);
1529 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1533 bprm
->exec
= bprm
->p
;
1534 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1538 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1542 retval
= exec_binprm(bprm
);
1546 /* execve succeeded */
1547 current
->fs
->in_exec
= 0;
1548 current
->in_execve
= 0;
1549 acct_update_integrals(current
);
1552 put_files_struct(displaced
);
1557 acct_arg_size(bprm
, 0);
1563 allow_write_access(bprm
->file
);
1569 current
->fs
->in_exec
= 0;
1570 current
->in_execve
= 0;
1577 reset_files_struct(displaced
);
1582 int do_execve(const char *filename
,
1583 const char __user
*const __user
*__argv
,
1584 const char __user
*const __user
*__envp
)
1586 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1587 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1588 return do_execve_common(filename
, argv
, envp
);
1591 #ifdef CONFIG_COMPAT
1592 static int compat_do_execve(const char *filename
,
1593 const compat_uptr_t __user
*__argv
,
1594 const compat_uptr_t __user
*__envp
)
1596 struct user_arg_ptr argv
= {
1598 .ptr
.compat
= __argv
,
1600 struct user_arg_ptr envp
= {
1602 .ptr
.compat
= __envp
,
1604 return do_execve_common(filename
, argv
, envp
);
1608 void set_binfmt(struct linux_binfmt
*new)
1610 struct mm_struct
*mm
= current
->mm
;
1613 module_put(mm
->binfmt
->module
);
1617 __module_get(new->module
);
1620 EXPORT_SYMBOL(set_binfmt
);
1623 * set_dumpable converts traditional three-value dumpable to two flags and
1624 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1625 * these bits are not changed atomically. So get_dumpable can observe the
1626 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1627 * return either old dumpable or new one by paying attention to the order of
1628 * modifying the bits.
1630 * dumpable | mm->flags (binary)
1631 * old new | initial interim final
1632 * ---------+-----------------------
1640 * (*) get_dumpable regards interim value of 10 as 11.
1642 void set_dumpable(struct mm_struct
*mm
, int value
)
1645 case SUID_DUMP_DISABLE
:
1646 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1648 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1650 case SUID_DUMP_USER
:
1651 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1653 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1655 case SUID_DUMP_ROOT
:
1656 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1658 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1663 int __get_dumpable(unsigned long mm_flags
)
1667 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
1668 return (ret
> SUID_DUMP_USER
) ? SUID_DUMP_ROOT
: ret
;
1672 * This returns the actual value of the suid_dumpable flag. For things
1673 * that are using this for checking for privilege transitions, it must
1674 * test against SUID_DUMP_USER rather than treating it as a boolean
1677 int get_dumpable(struct mm_struct
*mm
)
1679 return __get_dumpable(mm
->flags
);
1682 SYSCALL_DEFINE3(execve
,
1683 const char __user
*, filename
,
1684 const char __user
*const __user
*, argv
,
1685 const char __user
*const __user
*, envp
)
1687 struct filename
*path
= getname(filename
);
1688 int error
= PTR_ERR(path
);
1689 if (!IS_ERR(path
)) {
1690 error
= do_execve(path
->name
, argv
, envp
);
1695 #ifdef CONFIG_COMPAT
1696 asmlinkage
long compat_sys_execve(const char __user
* filename
,
1697 const compat_uptr_t __user
* argv
,
1698 const compat_uptr_t __user
* envp
)
1700 struct filename
*path
= getname(filename
);
1701 int error
= PTR_ERR(path
);
1702 if (!IS_ERR(path
)) {
1703 error
= compat_do_execve(path
->name
, argv
, envp
);