Linux 3.12.28
[linux/fpc-iii.git] / fs / ext4 / dir.c
blob680bb3388919a444b25e7dc0ee660b92ad475ce2
1 /*
2 * linux/fs/ext4/dir.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/dir.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * ext4 directory handling functions
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
20 * Hash Tree Directory indexing (c) 2001 Daniel Phillips
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/buffer_head.h>
27 #include <linux/slab.h>
28 #include <linux/rbtree.h>
29 #include "ext4.h"
30 #include "xattr.h"
32 static int ext4_dx_readdir(struct file *, struct dir_context *);
34 /**
35 * Check if the given dir-inode refers to an htree-indexed directory
36 * (or a directory which could potentially get converted to use htree
37 * indexing).
39 * Return 1 if it is a dx dir, 0 if not
41 static int is_dx_dir(struct inode *inode)
43 struct super_block *sb = inode->i_sb;
45 if (EXT4_HAS_COMPAT_FEATURE(inode->i_sb,
46 EXT4_FEATURE_COMPAT_DIR_INDEX) &&
47 ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
48 ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
49 ext4_has_inline_data(inode)))
50 return 1;
52 return 0;
56 * Return 0 if the directory entry is OK, and 1 if there is a problem
58 * Note: this is the opposite of what ext2 and ext3 historically returned...
60 * bh passed here can be an inode block or a dir data block, depending
61 * on the inode inline data flag.
63 int __ext4_check_dir_entry(const char *function, unsigned int line,
64 struct inode *dir, struct file *filp,
65 struct ext4_dir_entry_2 *de,
66 struct buffer_head *bh, char *buf, int size,
67 unsigned int offset)
69 const char *error_msg = NULL;
70 const int rlen = ext4_rec_len_from_disk(de->rec_len,
71 dir->i_sb->s_blocksize);
73 if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
74 error_msg = "rec_len is smaller than minimal";
75 else if (unlikely(rlen % 4 != 0))
76 error_msg = "rec_len % 4 != 0";
77 else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
78 error_msg = "rec_len is too small for name_len";
79 else if (unlikely(((char *) de - buf) + rlen > size))
80 error_msg = "directory entry across range";
81 else if (unlikely(le32_to_cpu(de->inode) >
82 le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
83 error_msg = "inode out of bounds";
84 else
85 return 0;
87 if (filp)
88 ext4_error_file(filp, function, line, bh->b_blocknr,
89 "bad entry in directory: %s - offset=%u(%u), "
90 "inode=%u, rec_len=%d, name_len=%d",
91 error_msg, (unsigned) (offset % size),
92 offset, le32_to_cpu(de->inode),
93 rlen, de->name_len);
94 else
95 ext4_error_inode(dir, function, line, bh->b_blocknr,
96 "bad entry in directory: %s - offset=%u(%u), "
97 "inode=%u, rec_len=%d, name_len=%d",
98 error_msg, (unsigned) (offset % size),
99 offset, le32_to_cpu(de->inode),
100 rlen, de->name_len);
102 return 1;
105 static int ext4_readdir(struct file *file, struct dir_context *ctx)
107 unsigned int offset;
108 int i, stored;
109 struct ext4_dir_entry_2 *de;
110 int err;
111 struct inode *inode = file_inode(file);
112 struct super_block *sb = inode->i_sb;
113 int dir_has_error = 0;
115 if (is_dx_dir(inode)) {
116 err = ext4_dx_readdir(file, ctx);
117 if (err != ERR_BAD_DX_DIR) {
118 return err;
121 * We don't set the inode dirty flag since it's not
122 * critical that it get flushed back to the disk.
124 ext4_clear_inode_flag(file_inode(file),
125 EXT4_INODE_INDEX);
128 if (ext4_has_inline_data(inode)) {
129 int has_inline_data = 1;
130 int ret = ext4_read_inline_dir(file, ctx,
131 &has_inline_data);
132 if (has_inline_data)
133 return ret;
136 stored = 0;
137 offset = ctx->pos & (sb->s_blocksize - 1);
139 while (ctx->pos < inode->i_size) {
140 struct ext4_map_blocks map;
141 struct buffer_head *bh = NULL;
143 map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
144 map.m_len = 1;
145 err = ext4_map_blocks(NULL, inode, &map, 0);
146 if (err > 0) {
147 pgoff_t index = map.m_pblk >>
148 (PAGE_CACHE_SHIFT - inode->i_blkbits);
149 if (!ra_has_index(&file->f_ra, index))
150 page_cache_sync_readahead(
151 sb->s_bdev->bd_inode->i_mapping,
152 &file->f_ra, file,
153 index, 1);
154 file->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
155 bh = ext4_bread(NULL, inode, map.m_lblk, 0, &err);
159 * We ignore I/O errors on directories so users have a chance
160 * of recovering data when there's a bad sector
162 if (!bh) {
163 if (!dir_has_error) {
164 EXT4_ERROR_FILE(file, 0,
165 "directory contains a "
166 "hole at offset %llu",
167 (unsigned long long) ctx->pos);
168 dir_has_error = 1;
170 /* corrupt size? Maybe no more blocks to read */
171 if (ctx->pos > inode->i_blocks << 9)
172 break;
173 ctx->pos += sb->s_blocksize - offset;
174 continue;
177 /* Check the checksum */
178 if (!buffer_verified(bh) &&
179 !ext4_dirent_csum_verify(inode,
180 (struct ext4_dir_entry *)bh->b_data)) {
181 EXT4_ERROR_FILE(file, 0, "directory fails checksum "
182 "at offset %llu",
183 (unsigned long long)ctx->pos);
184 ctx->pos += sb->s_blocksize - offset;
185 brelse(bh);
186 continue;
188 set_buffer_verified(bh);
190 /* If the dir block has changed since the last call to
191 * readdir(2), then we might be pointing to an invalid
192 * dirent right now. Scan from the start of the block
193 * to make sure. */
194 if (file->f_version != inode->i_version) {
195 for (i = 0; i < sb->s_blocksize && i < offset; ) {
196 de = (struct ext4_dir_entry_2 *)
197 (bh->b_data + i);
198 /* It's too expensive to do a full
199 * dirent test each time round this
200 * loop, but we do have to test at
201 * least that it is non-zero. A
202 * failure will be detected in the
203 * dirent test below. */
204 if (ext4_rec_len_from_disk(de->rec_len,
205 sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
206 break;
207 i += ext4_rec_len_from_disk(de->rec_len,
208 sb->s_blocksize);
210 offset = i;
211 ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
212 | offset;
213 file->f_version = inode->i_version;
216 while (ctx->pos < inode->i_size
217 && offset < sb->s_blocksize) {
218 de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
219 if (ext4_check_dir_entry(inode, file, de, bh,
220 bh->b_data, bh->b_size,
221 offset)) {
223 * On error, skip to the next block
225 ctx->pos = (ctx->pos |
226 (sb->s_blocksize - 1)) + 1;
227 break;
229 offset += ext4_rec_len_from_disk(de->rec_len,
230 sb->s_blocksize);
231 if (le32_to_cpu(de->inode)) {
232 if (!dir_emit(ctx, de->name,
233 de->name_len,
234 le32_to_cpu(de->inode),
235 get_dtype(sb, de->file_type))) {
236 brelse(bh);
237 return 0;
240 ctx->pos += ext4_rec_len_from_disk(de->rec_len,
241 sb->s_blocksize);
243 offset = 0;
244 brelse(bh);
245 if (ctx->pos < inode->i_size) {
246 if (!dir_relax(inode))
247 return 0;
250 return 0;
253 static inline int is_32bit_api(void)
255 #ifdef CONFIG_COMPAT
256 return is_compat_task();
257 #else
258 return (BITS_PER_LONG == 32);
259 #endif
263 * These functions convert from the major/minor hash to an f_pos
264 * value for dx directories
266 * Upper layer (for example NFS) should specify FMODE_32BITHASH or
267 * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
268 * directly on both 32-bit and 64-bit nodes, under such case, neither
269 * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
271 static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
273 if ((filp->f_mode & FMODE_32BITHASH) ||
274 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
275 return major >> 1;
276 else
277 return ((__u64)(major >> 1) << 32) | (__u64)minor;
280 static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
282 if ((filp->f_mode & FMODE_32BITHASH) ||
283 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
284 return (pos << 1) & 0xffffffff;
285 else
286 return ((pos >> 32) << 1) & 0xffffffff;
289 static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
291 if ((filp->f_mode & FMODE_32BITHASH) ||
292 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
293 return 0;
294 else
295 return pos & 0xffffffff;
299 * Return 32- or 64-bit end-of-file for dx directories
301 static inline loff_t ext4_get_htree_eof(struct file *filp)
303 if ((filp->f_mode & FMODE_32BITHASH) ||
304 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
305 return EXT4_HTREE_EOF_32BIT;
306 else
307 return EXT4_HTREE_EOF_64BIT;
312 * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
313 * directories, where the "offset" is in terms of the filename hash
314 * value instead of the byte offset.
316 * Because we may return a 64-bit hash that is well beyond offset limits,
317 * we need to pass the max hash as the maximum allowable offset in
318 * the htree directory case.
320 * For non-htree, ext4_llseek already chooses the proper max offset.
322 static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
324 struct inode *inode = file->f_mapping->host;
325 int dx_dir = is_dx_dir(inode);
326 loff_t htree_max = ext4_get_htree_eof(file);
328 if (likely(dx_dir))
329 return generic_file_llseek_size(file, offset, whence,
330 htree_max, htree_max);
331 else
332 return ext4_llseek(file, offset, whence);
336 * This structure holds the nodes of the red-black tree used to store
337 * the directory entry in hash order.
339 struct fname {
340 __u32 hash;
341 __u32 minor_hash;
342 struct rb_node rb_hash;
343 struct fname *next;
344 __u32 inode;
345 __u8 name_len;
346 __u8 file_type;
347 char name[0];
351 * This functoin implements a non-recursive way of freeing all of the
352 * nodes in the red-black tree.
354 static void free_rb_tree_fname(struct rb_root *root)
356 struct rb_node *n = root->rb_node;
357 struct rb_node *parent;
358 struct fname *fname;
360 while (n) {
361 /* Do the node's children first */
362 if (n->rb_left) {
363 n = n->rb_left;
364 continue;
366 if (n->rb_right) {
367 n = n->rb_right;
368 continue;
371 * The node has no children; free it, and then zero
372 * out parent's link to it. Finally go to the
373 * beginning of the loop and try to free the parent
374 * node.
376 parent = rb_parent(n);
377 fname = rb_entry(n, struct fname, rb_hash);
378 while (fname) {
379 struct fname *old = fname;
380 fname = fname->next;
381 kfree(old);
383 if (!parent)
384 *root = RB_ROOT;
385 else if (parent->rb_left == n)
386 parent->rb_left = NULL;
387 else if (parent->rb_right == n)
388 parent->rb_right = NULL;
389 n = parent;
394 static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
395 loff_t pos)
397 struct dir_private_info *p;
399 p = kzalloc(sizeof(struct dir_private_info), GFP_KERNEL);
400 if (!p)
401 return NULL;
402 p->curr_hash = pos2maj_hash(filp, pos);
403 p->curr_minor_hash = pos2min_hash(filp, pos);
404 return p;
407 void ext4_htree_free_dir_info(struct dir_private_info *p)
409 free_rb_tree_fname(&p->root);
410 kfree(p);
414 * Given a directory entry, enter it into the fname rb tree.
416 int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
417 __u32 minor_hash,
418 struct ext4_dir_entry_2 *dirent)
420 struct rb_node **p, *parent = NULL;
421 struct fname *fname, *new_fn;
422 struct dir_private_info *info;
423 int len;
425 info = dir_file->private_data;
426 p = &info->root.rb_node;
428 /* Create and allocate the fname structure */
429 len = sizeof(struct fname) + dirent->name_len + 1;
430 new_fn = kzalloc(len, GFP_KERNEL);
431 if (!new_fn)
432 return -ENOMEM;
433 new_fn->hash = hash;
434 new_fn->minor_hash = minor_hash;
435 new_fn->inode = le32_to_cpu(dirent->inode);
436 new_fn->name_len = dirent->name_len;
437 new_fn->file_type = dirent->file_type;
438 memcpy(new_fn->name, dirent->name, dirent->name_len);
439 new_fn->name[dirent->name_len] = 0;
441 while (*p) {
442 parent = *p;
443 fname = rb_entry(parent, struct fname, rb_hash);
446 * If the hash and minor hash match up, then we put
447 * them on a linked list. This rarely happens...
449 if ((new_fn->hash == fname->hash) &&
450 (new_fn->minor_hash == fname->minor_hash)) {
451 new_fn->next = fname->next;
452 fname->next = new_fn;
453 return 0;
456 if (new_fn->hash < fname->hash)
457 p = &(*p)->rb_left;
458 else if (new_fn->hash > fname->hash)
459 p = &(*p)->rb_right;
460 else if (new_fn->minor_hash < fname->minor_hash)
461 p = &(*p)->rb_left;
462 else /* if (new_fn->minor_hash > fname->minor_hash) */
463 p = &(*p)->rb_right;
466 rb_link_node(&new_fn->rb_hash, parent, p);
467 rb_insert_color(&new_fn->rb_hash, &info->root);
468 return 0;
474 * This is a helper function for ext4_dx_readdir. It calls filldir
475 * for all entres on the fname linked list. (Normally there is only
476 * one entry on the linked list, unless there are 62 bit hash collisions.)
478 static int call_filldir(struct file *file, struct dir_context *ctx,
479 struct fname *fname)
481 struct dir_private_info *info = file->private_data;
482 struct inode *inode = file_inode(file);
483 struct super_block *sb = inode->i_sb;
485 if (!fname) {
486 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
487 "called with null fname?!?", __func__, __LINE__,
488 inode->i_ino, current->comm);
489 return 0;
491 ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
492 while (fname) {
493 if (!dir_emit(ctx, fname->name,
494 fname->name_len,
495 fname->inode,
496 get_dtype(sb, fname->file_type))) {
497 info->extra_fname = fname;
498 return 1;
500 fname = fname->next;
502 return 0;
505 static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
507 struct dir_private_info *info = file->private_data;
508 struct inode *inode = file_inode(file);
509 struct fname *fname;
510 int ret;
512 if (!info) {
513 info = ext4_htree_create_dir_info(file, ctx->pos);
514 if (!info)
515 return -ENOMEM;
516 file->private_data = info;
519 if (ctx->pos == ext4_get_htree_eof(file))
520 return 0; /* EOF */
522 /* Some one has messed with f_pos; reset the world */
523 if (info->last_pos != ctx->pos) {
524 free_rb_tree_fname(&info->root);
525 info->curr_node = NULL;
526 info->extra_fname = NULL;
527 info->curr_hash = pos2maj_hash(file, ctx->pos);
528 info->curr_minor_hash = pos2min_hash(file, ctx->pos);
532 * If there are any leftover names on the hash collision
533 * chain, return them first.
535 if (info->extra_fname) {
536 if (call_filldir(file, ctx, info->extra_fname))
537 goto finished;
538 info->extra_fname = NULL;
539 goto next_node;
540 } else if (!info->curr_node)
541 info->curr_node = rb_first(&info->root);
543 while (1) {
545 * Fill the rbtree if we have no more entries,
546 * or the inode has changed since we last read in the
547 * cached entries.
549 if ((!info->curr_node) ||
550 (file->f_version != inode->i_version)) {
551 info->curr_node = NULL;
552 free_rb_tree_fname(&info->root);
553 file->f_version = inode->i_version;
554 ret = ext4_htree_fill_tree(file, info->curr_hash,
555 info->curr_minor_hash,
556 &info->next_hash);
557 if (ret < 0)
558 return ret;
559 if (ret == 0) {
560 ctx->pos = ext4_get_htree_eof(file);
561 break;
563 info->curr_node = rb_first(&info->root);
566 fname = rb_entry(info->curr_node, struct fname, rb_hash);
567 info->curr_hash = fname->hash;
568 info->curr_minor_hash = fname->minor_hash;
569 if (call_filldir(file, ctx, fname))
570 break;
571 next_node:
572 info->curr_node = rb_next(info->curr_node);
573 if (info->curr_node) {
574 fname = rb_entry(info->curr_node, struct fname,
575 rb_hash);
576 info->curr_hash = fname->hash;
577 info->curr_minor_hash = fname->minor_hash;
578 } else {
579 if (info->next_hash == ~0) {
580 ctx->pos = ext4_get_htree_eof(file);
581 break;
583 info->curr_hash = info->next_hash;
584 info->curr_minor_hash = 0;
587 finished:
588 info->last_pos = ctx->pos;
589 return 0;
592 static int ext4_release_dir(struct inode *inode, struct file *filp)
594 if (filp->private_data)
595 ext4_htree_free_dir_info(filp->private_data);
597 return 0;
600 const struct file_operations ext4_dir_operations = {
601 .llseek = ext4_dir_llseek,
602 .read = generic_read_dir,
603 .iterate = ext4_readdir,
604 .unlocked_ioctl = ext4_ioctl,
605 #ifdef CONFIG_COMPAT
606 .compat_ioctl = ext4_compat_ioctl,
607 #endif
608 .fsync = ext4_sync_file,
609 .release = ext4_release_dir,