4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache
*orphan_entry_slab
;
26 static struct kmem_cache
*inode_entry_slab
;
29 * We guarantee no failure on the returned page.
31 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
33 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
34 struct page
*page
= NULL
;
36 page
= grab_cache_page(mapping
, index
);
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page
);
44 SetPageUptodate(page
);
49 * We guarantee no failure on the returned page.
51 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
53 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
56 page
= grab_cache_page(mapping
, index
);
61 if (PageUptodate(page
))
64 if (f2fs_readpage(sbi
, page
, index
, READ_SYNC
))
68 if (page
->mapping
!= mapping
) {
69 f2fs_put_page(page
, 1);
73 mark_page_accessed(page
);
77 static int f2fs_write_meta_page(struct page
*page
,
78 struct writeback_control
*wbc
)
80 struct inode
*inode
= page
->mapping
->host
;
81 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
83 /* Should not write any meta pages, if any IO error was occurred */
84 if (wbc
->for_reclaim
||
85 is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ERROR_FLAG
)) {
86 dec_page_count(sbi
, F2FS_DIRTY_META
);
89 return AOP_WRITEPAGE_ACTIVATE
;
92 wait_on_page_writeback(page
);
94 write_meta_page(sbi
, page
);
95 dec_page_count(sbi
, F2FS_DIRTY_META
);
100 static int f2fs_write_meta_pages(struct address_space
*mapping
,
101 struct writeback_control
*wbc
)
103 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
104 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
107 if (wbc
->for_kupdate
)
110 if (get_pages(sbi
, F2FS_DIRTY_META
) == 0)
113 /* if mounting is failed, skip writing node pages */
114 mutex_lock(&sbi
->cp_mutex
);
115 written
= sync_meta_pages(sbi
, META
, bio_get_nr_vecs(bdev
));
116 mutex_unlock(&sbi
->cp_mutex
);
117 wbc
->nr_to_write
-= written
;
121 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
124 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
125 pgoff_t index
= 0, end
= LONG_MAX
;
128 struct writeback_control wbc
= {
132 pagevec_init(&pvec
, 0);
134 while (index
<= end
) {
136 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
138 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
142 for (i
= 0; i
< nr_pages
; i
++) {
143 struct page
*page
= pvec
.pages
[i
];
145 BUG_ON(page
->mapping
!= mapping
);
146 BUG_ON(!PageDirty(page
));
147 clear_page_dirty_for_io(page
);
148 if (f2fs_write_meta_page(page
, &wbc
)) {
152 if (nwritten
++ >= nr_to_write
)
155 pagevec_release(&pvec
);
160 f2fs_submit_bio(sbi
, type
, nr_to_write
== LONG_MAX
);
165 static int f2fs_set_meta_page_dirty(struct page
*page
)
167 struct address_space
*mapping
= page
->mapping
;
168 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
170 SetPageUptodate(page
);
171 if (!PageDirty(page
)) {
172 __set_page_dirty_nobuffers(page
);
173 inc_page_count(sbi
, F2FS_DIRTY_META
);
179 const struct address_space_operations f2fs_meta_aops
= {
180 .writepage
= f2fs_write_meta_page
,
181 .writepages
= f2fs_write_meta_pages
,
182 .set_page_dirty
= f2fs_set_meta_page_dirty
,
185 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
187 unsigned int max_orphans
;
191 * considering 512 blocks in a segment 5 blocks are needed for cp
192 * and log segment summaries. Remaining blocks are used to keep
193 * orphan entries with the limitation one reserved segment
194 * for cp pack we can have max 1020*507 orphan entries
196 max_orphans
= (sbi
->blocks_per_seg
- 5) * F2FS_ORPHANS_PER_BLOCK
;
197 mutex_lock(&sbi
->orphan_inode_mutex
);
198 if (sbi
->n_orphans
>= max_orphans
)
202 mutex_unlock(&sbi
->orphan_inode_mutex
);
206 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
208 mutex_lock(&sbi
->orphan_inode_mutex
);
210 mutex_unlock(&sbi
->orphan_inode_mutex
);
213 void add_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
215 struct list_head
*head
, *this;
216 struct orphan_inode_entry
*new = NULL
, *orphan
= NULL
;
218 mutex_lock(&sbi
->orphan_inode_mutex
);
219 head
= &sbi
->orphan_inode_list
;
220 list_for_each(this, head
) {
221 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
222 if (orphan
->ino
== ino
)
224 if (orphan
->ino
> ino
)
229 new = kmem_cache_alloc(orphan_entry_slab
, GFP_ATOMIC
);
236 /* add new_oentry into list which is sorted by inode number */
238 list_add(&new->list
, this->prev
);
240 list_add_tail(&new->list
, head
);
242 mutex_unlock(&sbi
->orphan_inode_mutex
);
245 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
247 struct list_head
*head
;
248 struct orphan_inode_entry
*orphan
;
250 mutex_lock(&sbi
->orphan_inode_mutex
);
251 head
= &sbi
->orphan_inode_list
;
252 list_for_each_entry(orphan
, head
, list
) {
253 if (orphan
->ino
== ino
) {
254 list_del(&orphan
->list
);
255 kmem_cache_free(orphan_entry_slab
, orphan
);
260 mutex_unlock(&sbi
->orphan_inode_mutex
);
263 static void recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
265 struct inode
*inode
= f2fs_iget(sbi
->sb
, ino
);
266 BUG_ON(IS_ERR(inode
));
269 /* truncate all the data during iput */
273 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
275 block_t start_blk
, orphan_blkaddr
, i
, j
;
277 if (!is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
))
281 start_blk
= __start_cp_addr(sbi
) + 1;
282 orphan_blkaddr
= __start_sum_addr(sbi
) - 1;
284 for (i
= 0; i
< orphan_blkaddr
; i
++) {
285 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
286 struct f2fs_orphan_block
*orphan_blk
;
288 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
289 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
290 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
291 recover_orphan_inode(sbi
, ino
);
293 f2fs_put_page(page
, 1);
295 /* clear Orphan Flag */
296 clear_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
);
301 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
303 struct list_head
*head
, *this, *next
;
304 struct f2fs_orphan_block
*orphan_blk
= NULL
;
305 struct page
*page
= NULL
;
306 unsigned int nentries
= 0;
307 unsigned short index
= 1;
308 unsigned short orphan_blocks
;
310 orphan_blocks
= (unsigned short)((sbi
->n_orphans
+
311 (F2FS_ORPHANS_PER_BLOCK
- 1)) / F2FS_ORPHANS_PER_BLOCK
);
313 mutex_lock(&sbi
->orphan_inode_mutex
);
314 head
= &sbi
->orphan_inode_list
;
316 /* loop for each orphan inode entry and write them in Jornal block */
317 list_for_each_safe(this, next
, head
) {
318 struct orphan_inode_entry
*orphan
;
320 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
322 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
324 * an orphan block is full of 1020 entries,
325 * then we need to flush current orphan blocks
326 * and bring another one in memory
328 orphan_blk
->blk_addr
= cpu_to_le16(index
);
329 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
330 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
331 set_page_dirty(page
);
332 f2fs_put_page(page
, 1);
341 page
= grab_meta_page(sbi
, start_blk
);
342 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
343 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
345 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
350 orphan_blk
->blk_addr
= cpu_to_le16(index
);
351 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
352 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
353 set_page_dirty(page
);
354 f2fs_put_page(page
, 1);
356 mutex_unlock(&sbi
->orphan_inode_mutex
);
359 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
360 block_t cp_addr
, unsigned long long *version
)
362 struct page
*cp_page_1
, *cp_page_2
= NULL
;
363 unsigned long blk_size
= sbi
->blocksize
;
364 struct f2fs_checkpoint
*cp_block
;
365 unsigned long long cur_version
= 0, pre_version
= 0;
369 /* Read the 1st cp block in this CP pack */
370 cp_page_1
= get_meta_page(sbi
, cp_addr
);
372 /* get the version number */
373 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_1
);
374 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
375 if (crc_offset
>= blk_size
)
378 crc
= le32_to_cpu(*((__u32
*)((unsigned char *)cp_block
+ crc_offset
)));
379 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
382 pre_version
= cur_cp_version(cp_block
);
384 /* Read the 2nd cp block in this CP pack */
385 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
386 cp_page_2
= get_meta_page(sbi
, cp_addr
);
388 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_2
);
389 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
390 if (crc_offset
>= blk_size
)
393 crc
= le32_to_cpu(*((__u32
*)((unsigned char *)cp_block
+ crc_offset
)));
394 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
397 cur_version
= cur_cp_version(cp_block
);
399 if (cur_version
== pre_version
) {
400 *version
= cur_version
;
401 f2fs_put_page(cp_page_2
, 1);
405 f2fs_put_page(cp_page_2
, 1);
407 f2fs_put_page(cp_page_1
, 1);
411 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
413 struct f2fs_checkpoint
*cp_block
;
414 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
415 struct page
*cp1
, *cp2
, *cur_page
;
416 unsigned long blk_size
= sbi
->blocksize
;
417 unsigned long long cp1_version
= 0, cp2_version
= 0;
418 unsigned long long cp_start_blk_no
;
420 sbi
->ckpt
= kzalloc(blk_size
, GFP_KERNEL
);
424 * Finding out valid cp block involves read both
425 * sets( cp pack1 and cp pack 2)
427 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
428 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
430 /* The second checkpoint pack should start at the next segment */
431 cp_start_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
432 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
435 if (ver_after(cp2_version
, cp1_version
))
447 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
448 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
450 f2fs_put_page(cp1
, 1);
451 f2fs_put_page(cp2
, 1);
459 static int __add_dirty_inode(struct inode
*inode
, struct dir_inode_entry
*new)
461 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
462 struct list_head
*head
= &sbi
->dir_inode_list
;
463 struct list_head
*this;
465 list_for_each(this, head
) {
466 struct dir_inode_entry
*entry
;
467 entry
= list_entry(this, struct dir_inode_entry
, list
);
468 if (entry
->inode
== inode
)
471 list_add_tail(&new->list
, head
);
472 #ifdef CONFIG_F2FS_STAT_FS
478 void set_dirty_dir_page(struct inode
*inode
, struct page
*page
)
480 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
481 struct dir_inode_entry
*new;
483 if (!S_ISDIR(inode
->i_mode
))
486 new = kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
492 INIT_LIST_HEAD(&new->list
);
494 spin_lock(&sbi
->dir_inode_lock
);
495 if (__add_dirty_inode(inode
, new))
496 kmem_cache_free(inode_entry_slab
, new);
498 inc_page_count(sbi
, F2FS_DIRTY_DENTS
);
499 inode_inc_dirty_dents(inode
);
500 SetPagePrivate(page
);
501 spin_unlock(&sbi
->dir_inode_lock
);
504 void add_dirty_dir_inode(struct inode
*inode
)
506 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
507 struct dir_inode_entry
*new;
509 new = kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
515 INIT_LIST_HEAD(&new->list
);
517 spin_lock(&sbi
->dir_inode_lock
);
518 if (__add_dirty_inode(inode
, new))
519 kmem_cache_free(inode_entry_slab
, new);
520 spin_unlock(&sbi
->dir_inode_lock
);
523 void remove_dirty_dir_inode(struct inode
*inode
)
525 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
526 struct list_head
*head
= &sbi
->dir_inode_list
;
527 struct list_head
*this;
529 if (!S_ISDIR(inode
->i_mode
))
532 spin_lock(&sbi
->dir_inode_lock
);
533 if (atomic_read(&F2FS_I(inode
)->dirty_dents
)) {
534 spin_unlock(&sbi
->dir_inode_lock
);
538 list_for_each(this, head
) {
539 struct dir_inode_entry
*entry
;
540 entry
= list_entry(this, struct dir_inode_entry
, list
);
541 if (entry
->inode
== inode
) {
542 list_del(&entry
->list
);
543 kmem_cache_free(inode_entry_slab
, entry
);
544 #ifdef CONFIG_F2FS_STAT_FS
550 spin_unlock(&sbi
->dir_inode_lock
);
552 /* Only from the recovery routine */
553 if (is_inode_flag_set(F2FS_I(inode
), FI_DELAY_IPUT
)) {
554 clear_inode_flag(F2FS_I(inode
), FI_DELAY_IPUT
);
559 struct inode
*check_dirty_dir_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
561 struct list_head
*head
= &sbi
->dir_inode_list
;
562 struct list_head
*this;
563 struct inode
*inode
= NULL
;
565 spin_lock(&sbi
->dir_inode_lock
);
566 list_for_each(this, head
) {
567 struct dir_inode_entry
*entry
;
568 entry
= list_entry(this, struct dir_inode_entry
, list
);
569 if (entry
->inode
->i_ino
== ino
) {
570 inode
= entry
->inode
;
574 spin_unlock(&sbi
->dir_inode_lock
);
578 void sync_dirty_dir_inodes(struct f2fs_sb_info
*sbi
)
580 struct list_head
*head
= &sbi
->dir_inode_list
;
581 struct dir_inode_entry
*entry
;
584 spin_lock(&sbi
->dir_inode_lock
);
585 if (list_empty(head
)) {
586 spin_unlock(&sbi
->dir_inode_lock
);
589 entry
= list_entry(head
->next
, struct dir_inode_entry
, list
);
590 inode
= igrab(entry
->inode
);
591 spin_unlock(&sbi
->dir_inode_lock
);
593 filemap_flush(inode
->i_mapping
);
597 * We should submit bio, since it exists several
598 * wribacking dentry pages in the freeing inode.
600 f2fs_submit_bio(sbi
, DATA
, true);
606 * Freeze all the FS-operations for checkpoint.
608 static void block_operations(struct f2fs_sb_info
*sbi
)
610 struct writeback_control wbc
= {
611 .sync_mode
= WB_SYNC_ALL
,
612 .nr_to_write
= LONG_MAX
,
615 struct blk_plug plug
;
617 blk_start_plug(&plug
);
622 /* write all the dirty dentry pages */
623 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
624 mutex_unlock_all(sbi
);
625 sync_dirty_dir_inodes(sbi
);
626 goto retry_flush_dents
;
630 * POR: we should ensure that there is no dirty node pages
631 * until finishing nat/sit flush.
634 mutex_lock(&sbi
->node_write
);
636 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
637 mutex_unlock(&sbi
->node_write
);
638 sync_node_pages(sbi
, 0, &wbc
);
639 goto retry_flush_nodes
;
641 blk_finish_plug(&plug
);
644 static void unblock_operations(struct f2fs_sb_info
*sbi
)
646 mutex_unlock(&sbi
->node_write
);
647 mutex_unlock_all(sbi
);
650 static void do_checkpoint(struct f2fs_sb_info
*sbi
, bool is_umount
)
652 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
655 struct page
*cp_page
;
656 unsigned int data_sum_blocks
, orphan_blocks
;
661 /* Flush all the NAT/SIT pages */
662 while (get_pages(sbi
, F2FS_DIRTY_META
))
663 sync_meta_pages(sbi
, META
, LONG_MAX
);
665 next_free_nid(sbi
, &last_nid
);
669 * version number is already updated
671 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
672 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
673 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
674 for (i
= 0; i
< 3; i
++) {
675 ckpt
->cur_node_segno
[i
] =
676 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
677 ckpt
->cur_node_blkoff
[i
] =
678 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
679 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
680 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
682 for (i
= 0; i
< 3; i
++) {
683 ckpt
->cur_data_segno
[i
] =
684 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
685 ckpt
->cur_data_blkoff
[i
] =
686 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
687 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
688 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
691 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
692 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
693 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
695 /* 2 cp + n data seg summary + orphan inode blocks */
696 data_sum_blocks
= npages_for_summary_flush(sbi
);
697 if (data_sum_blocks
< 3)
698 set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
700 clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
702 orphan_blocks
= (sbi
->n_orphans
+ F2FS_ORPHANS_PER_BLOCK
- 1)
703 / F2FS_ORPHANS_PER_BLOCK
;
704 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + orphan_blocks
);
707 set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
708 ckpt
->cp_pack_total_block_count
= cpu_to_le32(2 +
709 data_sum_blocks
+ orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
711 clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
712 ckpt
->cp_pack_total_block_count
= cpu_to_le32(2 +
713 data_sum_blocks
+ orphan_blocks
);
717 set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
719 clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
721 /* update SIT/NAT bitmap */
722 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
723 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
725 crc32
= f2fs_crc32(ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
726 *((__le32
*)((unsigned char *)ckpt
+
727 le32_to_cpu(ckpt
->checksum_offset
)))
728 = cpu_to_le32(crc32
);
730 start_blk
= __start_cp_addr(sbi
);
732 /* write out checkpoint buffer at block 0 */
733 cp_page
= grab_meta_page(sbi
, start_blk
++);
734 kaddr
= page_address(cp_page
);
735 memcpy(kaddr
, ckpt
, (1 << sbi
->log_blocksize
));
736 set_page_dirty(cp_page
);
737 f2fs_put_page(cp_page
, 1);
739 if (sbi
->n_orphans
) {
740 write_orphan_inodes(sbi
, start_blk
);
741 start_blk
+= orphan_blocks
;
744 write_data_summaries(sbi
, start_blk
);
745 start_blk
+= data_sum_blocks
;
747 write_node_summaries(sbi
, start_blk
);
748 start_blk
+= NR_CURSEG_NODE_TYPE
;
751 /* writeout checkpoint block */
752 cp_page
= grab_meta_page(sbi
, start_blk
);
753 kaddr
= page_address(cp_page
);
754 memcpy(kaddr
, ckpt
, (1 << sbi
->log_blocksize
));
755 set_page_dirty(cp_page
);
756 f2fs_put_page(cp_page
, 1);
758 /* wait for previous submitted node/meta pages writeback */
759 while (get_pages(sbi
, F2FS_WRITEBACK
))
760 congestion_wait(BLK_RW_ASYNC
, HZ
/ 50);
762 filemap_fdatawait_range(sbi
->node_inode
->i_mapping
, 0, LONG_MAX
);
763 filemap_fdatawait_range(sbi
->meta_inode
->i_mapping
, 0, LONG_MAX
);
765 /* update user_block_counts */
766 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
767 sbi
->alloc_valid_block_count
= 0;
769 /* Here, we only have one bio having CP pack */
770 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
772 if (!is_set_ckpt_flags(ckpt
, CP_ERROR_FLAG
)) {
773 clear_prefree_segments(sbi
);
774 F2FS_RESET_SB_DIRT(sbi
);
779 * We guarantee that this checkpoint procedure should not fail.
781 void write_checkpoint(struct f2fs_sb_info
*sbi
, bool is_umount
)
783 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
784 unsigned long long ckpt_ver
;
786 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "start block_ops");
788 mutex_lock(&sbi
->cp_mutex
);
789 block_operations(sbi
);
791 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "finish block_ops");
793 f2fs_submit_bio(sbi
, DATA
, true);
794 f2fs_submit_bio(sbi
, NODE
, true);
795 f2fs_submit_bio(sbi
, META
, true);
798 * update checkpoint pack index
799 * Increase the version number so that
800 * SIT entries and seg summaries are written at correct place
802 ckpt_ver
= cur_cp_version(ckpt
);
803 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
805 /* write cached NAT/SIT entries to NAT/SIT area */
806 flush_nat_entries(sbi
);
807 flush_sit_entries(sbi
);
809 /* unlock all the fs_lock[] in do_checkpoint() */
810 do_checkpoint(sbi
, is_umount
);
812 unblock_operations(sbi
);
813 mutex_unlock(&sbi
->cp_mutex
);
815 trace_f2fs_write_checkpoint(sbi
->sb
, is_umount
, "finish checkpoint");
818 void init_orphan_info(struct f2fs_sb_info
*sbi
)
820 mutex_init(&sbi
->orphan_inode_mutex
);
821 INIT_LIST_HEAD(&sbi
->orphan_inode_list
);
825 int __init
create_checkpoint_caches(void)
827 orphan_entry_slab
= f2fs_kmem_cache_create("f2fs_orphan_entry",
828 sizeof(struct orphan_inode_entry
), NULL
);
829 if (unlikely(!orphan_entry_slab
))
831 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
832 sizeof(struct dir_inode_entry
), NULL
);
833 if (unlikely(!inode_entry_slab
)) {
834 kmem_cache_destroy(orphan_entry_slab
);
840 void destroy_checkpoint_caches(void)
842 kmem_cache_destroy(orphan_entry_slab
);
843 kmem_cache_destroy(inode_entry_slab
);