Linux 3.12.28
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blobbb312201ca950114782f6a811725102da3baa718
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
29 * We guarantee no failure on the returned page.
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 struct address_space *mapping = sbi->meta_inode->i_mapping;
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
49 * We guarantee no failure on the returned page.
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
53 struct address_space *mapping = sbi->meta_inode->i_mapping;
54 struct page *page;
55 repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
61 if (PageUptodate(page))
62 goto out;
64 if (f2fs_readpage(sbi, page, index, READ_SYNC))
65 goto repeat;
67 lock_page(page);
68 if (page->mapping != mapping) {
69 f2fs_put_page(page, 1);
70 goto repeat;
72 out:
73 mark_page_accessed(page);
74 return page;
77 static int f2fs_write_meta_page(struct page *page,
78 struct writeback_control *wbc)
80 struct inode *inode = page->mapping->host;
81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
83 /* Should not write any meta pages, if any IO error was occurred */
84 if (wbc->for_reclaim ||
85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86 dec_page_count(sbi, F2FS_DIRTY_META);
87 wbc->pages_skipped++;
88 set_page_dirty(page);
89 return AOP_WRITEPAGE_ACTIVATE;
92 wait_on_page_writeback(page);
94 write_meta_page(sbi, page);
95 dec_page_count(sbi, F2FS_DIRTY_META);
96 unlock_page(page);
97 return 0;
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101 struct writeback_control *wbc)
103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104 struct block_device *bdev = sbi->sb->s_bdev;
105 long written;
107 if (wbc->for_kupdate)
108 return 0;
110 if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111 return 0;
113 /* if mounting is failed, skip writing node pages */
114 mutex_lock(&sbi->cp_mutex);
115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116 mutex_unlock(&sbi->cp_mutex);
117 wbc->nr_to_write -= written;
118 return 0;
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122 long nr_to_write)
124 struct address_space *mapping = sbi->meta_inode->i_mapping;
125 pgoff_t index = 0, end = LONG_MAX;
126 struct pagevec pvec;
127 long nwritten = 0;
128 struct writeback_control wbc = {
129 .for_reclaim = 0,
132 pagevec_init(&pvec, 0);
134 while (index <= end) {
135 int i, nr_pages;
136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137 PAGECACHE_TAG_DIRTY,
138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139 if (nr_pages == 0)
140 break;
142 for (i = 0; i < nr_pages; i++) {
143 struct page *page = pvec.pages[i];
144 lock_page(page);
145 BUG_ON(page->mapping != mapping);
146 BUG_ON(!PageDirty(page));
147 clear_page_dirty_for_io(page);
148 if (f2fs_write_meta_page(page, &wbc)) {
149 unlock_page(page);
150 break;
152 if (nwritten++ >= nr_to_write)
153 break;
155 pagevec_release(&pvec);
156 cond_resched();
159 if (nwritten)
160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
162 return nwritten;
165 static int f2fs_set_meta_page_dirty(struct page *page)
167 struct address_space *mapping = page->mapping;
168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
170 SetPageUptodate(page);
171 if (!PageDirty(page)) {
172 __set_page_dirty_nobuffers(page);
173 inc_page_count(sbi, F2FS_DIRTY_META);
174 return 1;
176 return 0;
179 const struct address_space_operations f2fs_meta_aops = {
180 .writepage = f2fs_write_meta_page,
181 .writepages = f2fs_write_meta_pages,
182 .set_page_dirty = f2fs_set_meta_page_dirty,
185 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
187 unsigned int max_orphans;
188 int err = 0;
191 * considering 512 blocks in a segment 5 blocks are needed for cp
192 * and log segment summaries. Remaining blocks are used to keep
193 * orphan entries with the limitation one reserved segment
194 * for cp pack we can have max 1020*507 orphan entries
196 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
197 mutex_lock(&sbi->orphan_inode_mutex);
198 if (sbi->n_orphans >= max_orphans)
199 err = -ENOSPC;
200 else
201 sbi->n_orphans++;
202 mutex_unlock(&sbi->orphan_inode_mutex);
203 return err;
206 void release_orphan_inode(struct f2fs_sb_info *sbi)
208 mutex_lock(&sbi->orphan_inode_mutex);
209 sbi->n_orphans--;
210 mutex_unlock(&sbi->orphan_inode_mutex);
213 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
215 struct list_head *head, *this;
216 struct orphan_inode_entry *new = NULL, *orphan = NULL;
218 mutex_lock(&sbi->orphan_inode_mutex);
219 head = &sbi->orphan_inode_list;
220 list_for_each(this, head) {
221 orphan = list_entry(this, struct orphan_inode_entry, list);
222 if (orphan->ino == ino)
223 goto out;
224 if (orphan->ino > ino)
225 break;
226 orphan = NULL;
228 retry:
229 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
230 if (!new) {
231 cond_resched();
232 goto retry;
234 new->ino = ino;
236 /* add new_oentry into list which is sorted by inode number */
237 if (orphan)
238 list_add(&new->list, this->prev);
239 else
240 list_add_tail(&new->list, head);
241 out:
242 mutex_unlock(&sbi->orphan_inode_mutex);
245 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
247 struct list_head *head;
248 struct orphan_inode_entry *orphan;
250 mutex_lock(&sbi->orphan_inode_mutex);
251 head = &sbi->orphan_inode_list;
252 list_for_each_entry(orphan, head, list) {
253 if (orphan->ino == ino) {
254 list_del(&orphan->list);
255 kmem_cache_free(orphan_entry_slab, orphan);
256 sbi->n_orphans--;
257 break;
260 mutex_unlock(&sbi->orphan_inode_mutex);
263 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
265 struct inode *inode = f2fs_iget(sbi->sb, ino);
266 BUG_ON(IS_ERR(inode));
267 clear_nlink(inode);
269 /* truncate all the data during iput */
270 iput(inode);
273 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
275 block_t start_blk, orphan_blkaddr, i, j;
277 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
278 return 0;
280 sbi->por_doing = 1;
281 start_blk = __start_cp_addr(sbi) + 1;
282 orphan_blkaddr = __start_sum_addr(sbi) - 1;
284 for (i = 0; i < orphan_blkaddr; i++) {
285 struct page *page = get_meta_page(sbi, start_blk + i);
286 struct f2fs_orphan_block *orphan_blk;
288 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
289 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
290 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
291 recover_orphan_inode(sbi, ino);
293 f2fs_put_page(page, 1);
295 /* clear Orphan Flag */
296 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
297 sbi->por_doing = 0;
298 return 0;
301 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
303 struct list_head *head, *this, *next;
304 struct f2fs_orphan_block *orphan_blk = NULL;
305 struct page *page = NULL;
306 unsigned int nentries = 0;
307 unsigned short index = 1;
308 unsigned short orphan_blocks;
310 orphan_blocks = (unsigned short)((sbi->n_orphans +
311 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
313 mutex_lock(&sbi->orphan_inode_mutex);
314 head = &sbi->orphan_inode_list;
316 /* loop for each orphan inode entry and write them in Jornal block */
317 list_for_each_safe(this, next, head) {
318 struct orphan_inode_entry *orphan;
320 orphan = list_entry(this, struct orphan_inode_entry, list);
322 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
324 * an orphan block is full of 1020 entries,
325 * then we need to flush current orphan blocks
326 * and bring another one in memory
328 orphan_blk->blk_addr = cpu_to_le16(index);
329 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
330 orphan_blk->entry_count = cpu_to_le32(nentries);
331 set_page_dirty(page);
332 f2fs_put_page(page, 1);
333 index++;
334 start_blk++;
335 nentries = 0;
336 page = NULL;
338 if (page)
339 goto page_exist;
341 page = grab_meta_page(sbi, start_blk);
342 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
343 memset(orphan_blk, 0, sizeof(*orphan_blk));
344 page_exist:
345 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
347 if (!page)
348 goto end;
350 orphan_blk->blk_addr = cpu_to_le16(index);
351 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
352 orphan_blk->entry_count = cpu_to_le32(nentries);
353 set_page_dirty(page);
354 f2fs_put_page(page, 1);
355 end:
356 mutex_unlock(&sbi->orphan_inode_mutex);
359 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
360 block_t cp_addr, unsigned long long *version)
362 struct page *cp_page_1, *cp_page_2 = NULL;
363 unsigned long blk_size = sbi->blocksize;
364 struct f2fs_checkpoint *cp_block;
365 unsigned long long cur_version = 0, pre_version = 0;
366 size_t crc_offset;
367 __u32 crc = 0;
369 /* Read the 1st cp block in this CP pack */
370 cp_page_1 = get_meta_page(sbi, cp_addr);
372 /* get the version number */
373 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
374 crc_offset = le32_to_cpu(cp_block->checksum_offset);
375 if (crc_offset >= blk_size)
376 goto invalid_cp1;
378 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
379 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
380 goto invalid_cp1;
382 pre_version = cur_cp_version(cp_block);
384 /* Read the 2nd cp block in this CP pack */
385 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
386 cp_page_2 = get_meta_page(sbi, cp_addr);
388 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
389 crc_offset = le32_to_cpu(cp_block->checksum_offset);
390 if (crc_offset >= blk_size)
391 goto invalid_cp2;
393 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
394 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
395 goto invalid_cp2;
397 cur_version = cur_cp_version(cp_block);
399 if (cur_version == pre_version) {
400 *version = cur_version;
401 f2fs_put_page(cp_page_2, 1);
402 return cp_page_1;
404 invalid_cp2:
405 f2fs_put_page(cp_page_2, 1);
406 invalid_cp1:
407 f2fs_put_page(cp_page_1, 1);
408 return NULL;
411 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
413 struct f2fs_checkpoint *cp_block;
414 struct f2fs_super_block *fsb = sbi->raw_super;
415 struct page *cp1, *cp2, *cur_page;
416 unsigned long blk_size = sbi->blocksize;
417 unsigned long long cp1_version = 0, cp2_version = 0;
418 unsigned long long cp_start_blk_no;
420 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
421 if (!sbi->ckpt)
422 return -ENOMEM;
424 * Finding out valid cp block involves read both
425 * sets( cp pack1 and cp pack 2)
427 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
428 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
430 /* The second checkpoint pack should start at the next segment */
431 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
432 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
434 if (cp1 && cp2) {
435 if (ver_after(cp2_version, cp1_version))
436 cur_page = cp2;
437 else
438 cur_page = cp1;
439 } else if (cp1) {
440 cur_page = cp1;
441 } else if (cp2) {
442 cur_page = cp2;
443 } else {
444 goto fail_no_cp;
447 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
448 memcpy(sbi->ckpt, cp_block, blk_size);
450 f2fs_put_page(cp1, 1);
451 f2fs_put_page(cp2, 1);
452 return 0;
454 fail_no_cp:
455 kfree(sbi->ckpt);
456 return -EINVAL;
459 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
461 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
462 struct list_head *head = &sbi->dir_inode_list;
463 struct list_head *this;
465 list_for_each(this, head) {
466 struct dir_inode_entry *entry;
467 entry = list_entry(this, struct dir_inode_entry, list);
468 if (entry->inode == inode)
469 return -EEXIST;
471 list_add_tail(&new->list, head);
472 #ifdef CONFIG_F2FS_STAT_FS
473 sbi->n_dirty_dirs++;
474 #endif
475 return 0;
478 void set_dirty_dir_page(struct inode *inode, struct page *page)
480 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
481 struct dir_inode_entry *new;
483 if (!S_ISDIR(inode->i_mode))
484 return;
485 retry:
486 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
487 if (!new) {
488 cond_resched();
489 goto retry;
491 new->inode = inode;
492 INIT_LIST_HEAD(&new->list);
494 spin_lock(&sbi->dir_inode_lock);
495 if (__add_dirty_inode(inode, new))
496 kmem_cache_free(inode_entry_slab, new);
498 inc_page_count(sbi, F2FS_DIRTY_DENTS);
499 inode_inc_dirty_dents(inode);
500 SetPagePrivate(page);
501 spin_unlock(&sbi->dir_inode_lock);
504 void add_dirty_dir_inode(struct inode *inode)
506 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
507 struct dir_inode_entry *new;
508 retry:
509 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
510 if (!new) {
511 cond_resched();
512 goto retry;
514 new->inode = inode;
515 INIT_LIST_HEAD(&new->list);
517 spin_lock(&sbi->dir_inode_lock);
518 if (__add_dirty_inode(inode, new))
519 kmem_cache_free(inode_entry_slab, new);
520 spin_unlock(&sbi->dir_inode_lock);
523 void remove_dirty_dir_inode(struct inode *inode)
525 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
526 struct list_head *head = &sbi->dir_inode_list;
527 struct list_head *this;
529 if (!S_ISDIR(inode->i_mode))
530 return;
532 spin_lock(&sbi->dir_inode_lock);
533 if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
534 spin_unlock(&sbi->dir_inode_lock);
535 return;
538 list_for_each(this, head) {
539 struct dir_inode_entry *entry;
540 entry = list_entry(this, struct dir_inode_entry, list);
541 if (entry->inode == inode) {
542 list_del(&entry->list);
543 kmem_cache_free(inode_entry_slab, entry);
544 #ifdef CONFIG_F2FS_STAT_FS
545 sbi->n_dirty_dirs--;
546 #endif
547 break;
550 spin_unlock(&sbi->dir_inode_lock);
552 /* Only from the recovery routine */
553 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
554 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
555 iput(inode);
559 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
561 struct list_head *head = &sbi->dir_inode_list;
562 struct list_head *this;
563 struct inode *inode = NULL;
565 spin_lock(&sbi->dir_inode_lock);
566 list_for_each(this, head) {
567 struct dir_inode_entry *entry;
568 entry = list_entry(this, struct dir_inode_entry, list);
569 if (entry->inode->i_ino == ino) {
570 inode = entry->inode;
571 break;
574 spin_unlock(&sbi->dir_inode_lock);
575 return inode;
578 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
580 struct list_head *head = &sbi->dir_inode_list;
581 struct dir_inode_entry *entry;
582 struct inode *inode;
583 retry:
584 spin_lock(&sbi->dir_inode_lock);
585 if (list_empty(head)) {
586 spin_unlock(&sbi->dir_inode_lock);
587 return;
589 entry = list_entry(head->next, struct dir_inode_entry, list);
590 inode = igrab(entry->inode);
591 spin_unlock(&sbi->dir_inode_lock);
592 if (inode) {
593 filemap_flush(inode->i_mapping);
594 iput(inode);
595 } else {
597 * We should submit bio, since it exists several
598 * wribacking dentry pages in the freeing inode.
600 f2fs_submit_bio(sbi, DATA, true);
602 goto retry;
606 * Freeze all the FS-operations for checkpoint.
608 static void block_operations(struct f2fs_sb_info *sbi)
610 struct writeback_control wbc = {
611 .sync_mode = WB_SYNC_ALL,
612 .nr_to_write = LONG_MAX,
613 .for_reclaim = 0,
615 struct blk_plug plug;
617 blk_start_plug(&plug);
619 retry_flush_dents:
620 mutex_lock_all(sbi);
622 /* write all the dirty dentry pages */
623 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
624 mutex_unlock_all(sbi);
625 sync_dirty_dir_inodes(sbi);
626 goto retry_flush_dents;
630 * POR: we should ensure that there is no dirty node pages
631 * until finishing nat/sit flush.
633 retry_flush_nodes:
634 mutex_lock(&sbi->node_write);
636 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
637 mutex_unlock(&sbi->node_write);
638 sync_node_pages(sbi, 0, &wbc);
639 goto retry_flush_nodes;
641 blk_finish_plug(&plug);
644 static void unblock_operations(struct f2fs_sb_info *sbi)
646 mutex_unlock(&sbi->node_write);
647 mutex_unlock_all(sbi);
650 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
652 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
653 nid_t last_nid = 0;
654 block_t start_blk;
655 struct page *cp_page;
656 unsigned int data_sum_blocks, orphan_blocks;
657 __u32 crc32 = 0;
658 void *kaddr;
659 int i;
661 /* Flush all the NAT/SIT pages */
662 while (get_pages(sbi, F2FS_DIRTY_META))
663 sync_meta_pages(sbi, META, LONG_MAX);
665 next_free_nid(sbi, &last_nid);
668 * modify checkpoint
669 * version number is already updated
671 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
672 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
673 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
674 for (i = 0; i < 3; i++) {
675 ckpt->cur_node_segno[i] =
676 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
677 ckpt->cur_node_blkoff[i] =
678 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
679 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
680 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
682 for (i = 0; i < 3; i++) {
683 ckpt->cur_data_segno[i] =
684 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
685 ckpt->cur_data_blkoff[i] =
686 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
687 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
688 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
691 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
692 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
693 ckpt->next_free_nid = cpu_to_le32(last_nid);
695 /* 2 cp + n data seg summary + orphan inode blocks */
696 data_sum_blocks = npages_for_summary_flush(sbi);
697 if (data_sum_blocks < 3)
698 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
699 else
700 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
702 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
703 / F2FS_ORPHANS_PER_BLOCK;
704 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
706 if (is_umount) {
707 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
708 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
709 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
710 } else {
711 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
712 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
713 data_sum_blocks + orphan_blocks);
716 if (sbi->n_orphans)
717 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
718 else
719 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
721 /* update SIT/NAT bitmap */
722 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
723 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
725 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
726 *((__le32 *)((unsigned char *)ckpt +
727 le32_to_cpu(ckpt->checksum_offset)))
728 = cpu_to_le32(crc32);
730 start_blk = __start_cp_addr(sbi);
732 /* write out checkpoint buffer at block 0 */
733 cp_page = grab_meta_page(sbi, start_blk++);
734 kaddr = page_address(cp_page);
735 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
736 set_page_dirty(cp_page);
737 f2fs_put_page(cp_page, 1);
739 if (sbi->n_orphans) {
740 write_orphan_inodes(sbi, start_blk);
741 start_blk += orphan_blocks;
744 write_data_summaries(sbi, start_blk);
745 start_blk += data_sum_blocks;
746 if (is_umount) {
747 write_node_summaries(sbi, start_blk);
748 start_blk += NR_CURSEG_NODE_TYPE;
751 /* writeout checkpoint block */
752 cp_page = grab_meta_page(sbi, start_blk);
753 kaddr = page_address(cp_page);
754 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
755 set_page_dirty(cp_page);
756 f2fs_put_page(cp_page, 1);
758 /* wait for previous submitted node/meta pages writeback */
759 while (get_pages(sbi, F2FS_WRITEBACK))
760 congestion_wait(BLK_RW_ASYNC, HZ / 50);
762 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
763 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
765 /* update user_block_counts */
766 sbi->last_valid_block_count = sbi->total_valid_block_count;
767 sbi->alloc_valid_block_count = 0;
769 /* Here, we only have one bio having CP pack */
770 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
772 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
773 clear_prefree_segments(sbi);
774 F2FS_RESET_SB_DIRT(sbi);
779 * We guarantee that this checkpoint procedure should not fail.
781 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
783 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
784 unsigned long long ckpt_ver;
786 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
788 mutex_lock(&sbi->cp_mutex);
789 block_operations(sbi);
791 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
793 f2fs_submit_bio(sbi, DATA, true);
794 f2fs_submit_bio(sbi, NODE, true);
795 f2fs_submit_bio(sbi, META, true);
798 * update checkpoint pack index
799 * Increase the version number so that
800 * SIT entries and seg summaries are written at correct place
802 ckpt_ver = cur_cp_version(ckpt);
803 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
805 /* write cached NAT/SIT entries to NAT/SIT area */
806 flush_nat_entries(sbi);
807 flush_sit_entries(sbi);
809 /* unlock all the fs_lock[] in do_checkpoint() */
810 do_checkpoint(sbi, is_umount);
812 unblock_operations(sbi);
813 mutex_unlock(&sbi->cp_mutex);
815 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
818 void init_orphan_info(struct f2fs_sb_info *sbi)
820 mutex_init(&sbi->orphan_inode_mutex);
821 INIT_LIST_HEAD(&sbi->orphan_inode_list);
822 sbi->n_orphans = 0;
825 int __init create_checkpoint_caches(void)
827 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
828 sizeof(struct orphan_inode_entry), NULL);
829 if (unlikely(!orphan_entry_slab))
830 return -ENOMEM;
831 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
832 sizeof(struct dir_inode_entry), NULL);
833 if (unlikely(!inode_entry_slab)) {
834 kmem_cache_destroy(orphan_entry_slab);
835 return -ENOMEM;
837 return 0;
840 void destroy_checkpoint_caches(void)
842 kmem_cache_destroy(orphan_entry_slab);
843 kmem_cache_destroy(inode_entry_slab);