Linux 3.12.28
[linux/fpc-iii.git] / fs / f2fs / node.c
blob51ef2789443322ea0e3a2d683d305b753997aeae
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
27 static void clear_node_page_dirty(struct page *page)
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
36 page_index(page),
37 PAGECACHE_TAG_DIRTY);
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
43 ClearPageUptodate(page);
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
54 struct page *src_page;
55 struct page *dst_page;
56 pgoff_t src_off;
57 pgoff_t dst_off;
58 void *src_addr;
59 void *dst_addr;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
70 return src_page;
72 dst_page = grab_meta_page(sbi, dst_off);
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
80 set_to_next_nat(nm_i, nid);
82 return dst_page;
86 * Readahead NAT pages
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
92 struct blk_plug plug;
93 struct page *page;
94 pgoff_t index;
95 int i;
97 blk_start_plug(&plug);
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
101 nid = 0;
102 index = current_nat_addr(sbi, nid);
104 page = grab_cache_page(mapping, index);
105 if (!page)
106 continue;
107 if (PageUptodate(page)) {
108 f2fs_put_page(page, 1);
109 continue;
111 if (f2fs_readpage(sbi, page, index, READ))
112 continue;
114 f2fs_put_page(page, 0);
116 blk_finish_plug(&plug);
119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
121 return radix_tree_lookup(&nm_i->nat_root, n);
124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
132 list_del(&e->list);
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 nm_i->nat_cnt--;
135 kmem_cache_free(nat_entry_slab, e);
138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
141 struct nat_entry *e;
142 int is_cp = 1;
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
147 is_cp = 0;
148 read_unlock(&nm_i->nat_tree_lock);
149 return is_cp;
152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
154 struct nat_entry *new;
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 if (!new)
158 return NULL;
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
161 return NULL;
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
166 nm_i->nat_cnt++;
167 return new;
170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
173 struct nat_entry *e;
174 retry:
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
177 if (!e) {
178 e = grab_nat_entry(nm_i, nid);
179 if (!e) {
180 write_unlock(&nm_i->nat_tree_lock);
181 goto retry;
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
188 write_unlock(&nm_i->nat_tree_lock);
191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 block_t new_blkaddr)
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 struct nat_entry *e;
196 retry:
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
199 if (!e) {
200 e = grab_nat_entry(nm_i, ni->nid);
201 if (!e) {
202 write_unlock(&nm_i->nat_tree_lock);
203 goto retry;
205 e->ni = *ni;
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
214 e->ni = *ni;
215 BUG_ON(ni->blk_addr != NULL_ADDR);
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
221 /* sanity check */
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
237 /* change address */
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
248 return 0;
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
256 nr_shrink--;
258 write_unlock(&nm_i->nat_tree_lock);
259 return nr_shrink;
263 * This function returns always success
265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
274 struct nat_entry *e;
275 int i;
277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
278 ni->nid = nid;
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
283 if (e) {
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
288 read_unlock(&nm_i->nat_tree_lock);
289 if (e)
290 return;
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 if (i >= 0) {
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
299 mutex_unlock(&curseg->curseg_mutex);
300 if (i >= 0)
301 goto cache;
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
309 cache:
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
318 static int get_node_path(struct f2fs_inode_info *fi, long block,
319 int offset[4], unsigned int noffset[4])
321 const long direct_index = ADDRS_PER_INODE(fi);
322 const long direct_blks = ADDRS_PER_BLOCK;
323 const long dptrs_per_blk = NIDS_PER_BLOCK;
324 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
325 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
326 int n = 0;
327 int level = 0;
329 noffset[0] = 0;
331 if (block < direct_index) {
332 offset[n] = block;
333 goto got;
335 block -= direct_index;
336 if (block < direct_blks) {
337 offset[n++] = NODE_DIR1_BLOCK;
338 noffset[n] = 1;
339 offset[n] = block;
340 level = 1;
341 goto got;
343 block -= direct_blks;
344 if (block < direct_blks) {
345 offset[n++] = NODE_DIR2_BLOCK;
346 noffset[n] = 2;
347 offset[n] = block;
348 level = 1;
349 goto got;
351 block -= direct_blks;
352 if (block < indirect_blks) {
353 offset[n++] = NODE_IND1_BLOCK;
354 noffset[n] = 3;
355 offset[n++] = block / direct_blks;
356 noffset[n] = 4 + offset[n - 1];
357 offset[n] = block % direct_blks;
358 level = 2;
359 goto got;
361 block -= indirect_blks;
362 if (block < indirect_blks) {
363 offset[n++] = NODE_IND2_BLOCK;
364 noffset[n] = 4 + dptrs_per_blk;
365 offset[n++] = block / direct_blks;
366 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
367 offset[n] = block % direct_blks;
368 level = 2;
369 goto got;
371 block -= indirect_blks;
372 if (block < dindirect_blks) {
373 offset[n++] = NODE_DIND_BLOCK;
374 noffset[n] = 5 + (dptrs_per_blk * 2);
375 offset[n++] = block / indirect_blks;
376 noffset[n] = 6 + (dptrs_per_blk * 2) +
377 offset[n - 1] * (dptrs_per_blk + 1);
378 offset[n++] = (block / direct_blks) % dptrs_per_blk;
379 noffset[n] = 7 + (dptrs_per_blk * 2) +
380 offset[n - 2] * (dptrs_per_blk + 1) +
381 offset[n - 1];
382 offset[n] = block % direct_blks;
383 level = 3;
384 goto got;
385 } else {
386 BUG();
388 got:
389 return level;
393 * Caller should call f2fs_put_dnode(dn).
394 * Also, it should grab and release a mutex by calling mutex_lock_op() and
395 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
396 * In the case of RDONLY_NODE, we don't need to care about mutex.
398 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
400 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
401 struct page *npage[4];
402 struct page *parent;
403 int offset[4];
404 unsigned int noffset[4];
405 nid_t nids[4];
406 int level, i;
407 int err = 0;
409 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
411 nids[0] = dn->inode->i_ino;
412 npage[0] = dn->inode_page;
414 if (!npage[0]) {
415 npage[0] = get_node_page(sbi, nids[0]);
416 if (IS_ERR(npage[0]))
417 return PTR_ERR(npage[0]);
419 parent = npage[0];
420 if (level != 0)
421 nids[1] = get_nid(parent, offset[0], true);
422 dn->inode_page = npage[0];
423 dn->inode_page_locked = true;
425 /* get indirect or direct nodes */
426 for (i = 1; i <= level; i++) {
427 bool done = false;
429 if (!nids[i] && mode == ALLOC_NODE) {
430 /* alloc new node */
431 if (!alloc_nid(sbi, &(nids[i]))) {
432 err = -ENOSPC;
433 goto release_pages;
436 dn->nid = nids[i];
437 npage[i] = new_node_page(dn, noffset[i], NULL);
438 if (IS_ERR(npage[i])) {
439 alloc_nid_failed(sbi, nids[i]);
440 err = PTR_ERR(npage[i]);
441 goto release_pages;
444 set_nid(parent, offset[i - 1], nids[i], i == 1);
445 alloc_nid_done(sbi, nids[i]);
446 done = true;
447 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
448 npage[i] = get_node_page_ra(parent, offset[i - 1]);
449 if (IS_ERR(npage[i])) {
450 err = PTR_ERR(npage[i]);
451 goto release_pages;
453 done = true;
455 if (i == 1) {
456 dn->inode_page_locked = false;
457 unlock_page(parent);
458 } else {
459 f2fs_put_page(parent, 1);
462 if (!done) {
463 npage[i] = get_node_page(sbi, nids[i]);
464 if (IS_ERR(npage[i])) {
465 err = PTR_ERR(npage[i]);
466 f2fs_put_page(npage[0], 0);
467 goto release_out;
470 if (i < level) {
471 parent = npage[i];
472 nids[i + 1] = get_nid(parent, offset[i], false);
475 dn->nid = nids[level];
476 dn->ofs_in_node = offset[level];
477 dn->node_page = npage[level];
478 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
479 return 0;
481 release_pages:
482 f2fs_put_page(parent, 1);
483 if (i > 1)
484 f2fs_put_page(npage[0], 0);
485 release_out:
486 dn->inode_page = NULL;
487 dn->node_page = NULL;
488 return err;
491 static void truncate_node(struct dnode_of_data *dn)
493 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
494 struct node_info ni;
496 get_node_info(sbi, dn->nid, &ni);
497 if (dn->inode->i_blocks == 0) {
498 BUG_ON(ni.blk_addr != NULL_ADDR);
499 goto invalidate;
501 BUG_ON(ni.blk_addr == NULL_ADDR);
503 /* Deallocate node address */
504 invalidate_blocks(sbi, ni.blk_addr);
505 dec_valid_node_count(sbi, dn->inode, 1);
506 set_node_addr(sbi, &ni, NULL_ADDR);
508 if (dn->nid == dn->inode->i_ino) {
509 remove_orphan_inode(sbi, dn->nid);
510 dec_valid_inode_count(sbi);
511 } else {
512 sync_inode_page(dn);
514 invalidate:
515 clear_node_page_dirty(dn->node_page);
516 F2FS_SET_SB_DIRT(sbi);
518 f2fs_put_page(dn->node_page, 1);
519 dn->node_page = NULL;
520 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
523 static int truncate_dnode(struct dnode_of_data *dn)
525 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
526 struct page *page;
528 if (dn->nid == 0)
529 return 1;
531 /* get direct node */
532 page = get_node_page(sbi, dn->nid);
533 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
534 return 1;
535 else if (IS_ERR(page))
536 return PTR_ERR(page);
538 /* Make dnode_of_data for parameter */
539 dn->node_page = page;
540 dn->ofs_in_node = 0;
541 truncate_data_blocks(dn);
542 truncate_node(dn);
543 return 1;
546 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
547 int ofs, int depth)
549 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
550 struct dnode_of_data rdn = *dn;
551 struct page *page;
552 struct f2fs_node *rn;
553 nid_t child_nid;
554 unsigned int child_nofs;
555 int freed = 0;
556 int i, ret;
558 if (dn->nid == 0)
559 return NIDS_PER_BLOCK + 1;
561 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
563 page = get_node_page(sbi, dn->nid);
564 if (IS_ERR(page)) {
565 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
566 return PTR_ERR(page);
569 rn = F2FS_NODE(page);
570 if (depth < 3) {
571 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
572 child_nid = le32_to_cpu(rn->in.nid[i]);
573 if (child_nid == 0)
574 continue;
575 rdn.nid = child_nid;
576 ret = truncate_dnode(&rdn);
577 if (ret < 0)
578 goto out_err;
579 set_nid(page, i, 0, false);
581 } else {
582 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
583 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
584 child_nid = le32_to_cpu(rn->in.nid[i]);
585 if (child_nid == 0) {
586 child_nofs += NIDS_PER_BLOCK + 1;
587 continue;
589 rdn.nid = child_nid;
590 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
591 if (ret == (NIDS_PER_BLOCK + 1)) {
592 set_nid(page, i, 0, false);
593 child_nofs += ret;
594 } else if (ret < 0 && ret != -ENOENT) {
595 goto out_err;
598 freed = child_nofs;
601 if (!ofs) {
602 /* remove current indirect node */
603 dn->node_page = page;
604 truncate_node(dn);
605 freed++;
606 } else {
607 f2fs_put_page(page, 1);
609 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
610 return freed;
612 out_err:
613 f2fs_put_page(page, 1);
614 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
615 return ret;
618 static int truncate_partial_nodes(struct dnode_of_data *dn,
619 struct f2fs_inode *ri, int *offset, int depth)
621 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
622 struct page *pages[2];
623 nid_t nid[3];
624 nid_t child_nid;
625 int err = 0;
626 int i;
627 int idx = depth - 2;
629 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
630 if (!nid[0])
631 return 0;
633 /* get indirect nodes in the path */
634 for (i = 0; i < depth - 1; i++) {
635 /* refernece count'll be increased */
636 pages[i] = get_node_page(sbi, nid[i]);
637 if (IS_ERR(pages[i])) {
638 depth = i + 1;
639 err = PTR_ERR(pages[i]);
640 goto fail;
642 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
645 /* free direct nodes linked to a partial indirect node */
646 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
647 child_nid = get_nid(pages[idx], i, false);
648 if (!child_nid)
649 continue;
650 dn->nid = child_nid;
651 err = truncate_dnode(dn);
652 if (err < 0)
653 goto fail;
654 set_nid(pages[idx], i, 0, false);
657 if (offset[depth - 1] == 0) {
658 dn->node_page = pages[idx];
659 dn->nid = nid[idx];
660 truncate_node(dn);
661 } else {
662 f2fs_put_page(pages[idx], 1);
664 offset[idx]++;
665 offset[depth - 1] = 0;
666 fail:
667 for (i = depth - 3; i >= 0; i--)
668 f2fs_put_page(pages[i], 1);
670 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
672 return err;
676 * All the block addresses of data and nodes should be nullified.
678 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
680 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
681 struct address_space *node_mapping = sbi->node_inode->i_mapping;
682 int err = 0, cont = 1;
683 int level, offset[4], noffset[4];
684 unsigned int nofs = 0;
685 struct f2fs_node *rn;
686 struct dnode_of_data dn;
687 struct page *page;
689 trace_f2fs_truncate_inode_blocks_enter(inode, from);
691 level = get_node_path(F2FS_I(inode), from, offset, noffset);
692 restart:
693 page = get_node_page(sbi, inode->i_ino);
694 if (IS_ERR(page)) {
695 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
696 return PTR_ERR(page);
699 set_new_dnode(&dn, inode, page, NULL, 0);
700 unlock_page(page);
702 rn = F2FS_NODE(page);
703 switch (level) {
704 case 0:
705 case 1:
706 nofs = noffset[1];
707 break;
708 case 2:
709 nofs = noffset[1];
710 if (!offset[level - 1])
711 goto skip_partial;
712 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
713 if (err < 0 && err != -ENOENT)
714 goto fail;
715 nofs += 1 + NIDS_PER_BLOCK;
716 break;
717 case 3:
718 nofs = 5 + 2 * NIDS_PER_BLOCK;
719 if (!offset[level - 1])
720 goto skip_partial;
721 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
722 if (err < 0 && err != -ENOENT)
723 goto fail;
724 break;
725 default:
726 BUG();
729 skip_partial:
730 while (cont) {
731 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
732 switch (offset[0]) {
733 case NODE_DIR1_BLOCK:
734 case NODE_DIR2_BLOCK:
735 err = truncate_dnode(&dn);
736 break;
738 case NODE_IND1_BLOCK:
739 case NODE_IND2_BLOCK:
740 err = truncate_nodes(&dn, nofs, offset[1], 2);
741 break;
743 case NODE_DIND_BLOCK:
744 err = truncate_nodes(&dn, nofs, offset[1], 3);
745 cont = 0;
746 break;
748 default:
749 BUG();
751 if (err < 0 && err != -ENOENT)
752 goto fail;
753 if (offset[1] == 0 &&
754 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
755 lock_page(page);
756 if (page->mapping != node_mapping) {
757 f2fs_put_page(page, 1);
758 goto restart;
760 wait_on_page_writeback(page);
761 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
762 set_page_dirty(page);
763 unlock_page(page);
765 offset[1] = 0;
766 offset[0]++;
767 nofs += err;
769 fail:
770 f2fs_put_page(page, 0);
771 trace_f2fs_truncate_inode_blocks_exit(inode, err);
772 return err > 0 ? 0 : err;
775 int truncate_xattr_node(struct inode *inode, struct page *page)
777 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778 nid_t nid = F2FS_I(inode)->i_xattr_nid;
779 struct dnode_of_data dn;
780 struct page *npage;
782 if (!nid)
783 return 0;
785 npage = get_node_page(sbi, nid);
786 if (IS_ERR(npage))
787 return PTR_ERR(npage);
789 F2FS_I(inode)->i_xattr_nid = 0;
791 /* need to do checkpoint during fsync */
792 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
794 set_new_dnode(&dn, inode, page, npage, nid);
796 if (page)
797 dn.inode_page_locked = 1;
798 truncate_node(&dn);
799 return 0;
803 * Caller should grab and release a mutex by calling mutex_lock_op() and
804 * mutex_unlock_op().
806 int remove_inode_page(struct inode *inode)
808 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
809 struct page *page;
810 nid_t ino = inode->i_ino;
811 struct dnode_of_data dn;
812 int err;
814 page = get_node_page(sbi, ino);
815 if (IS_ERR(page))
816 return PTR_ERR(page);
818 err = truncate_xattr_node(inode, page);
819 if (err) {
820 f2fs_put_page(page, 1);
821 return err;
824 /* 0 is possible, after f2fs_new_inode() is failed */
825 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
826 set_new_dnode(&dn, inode, page, page, ino);
827 truncate_node(&dn);
828 return 0;
831 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
833 struct dnode_of_data dn;
835 /* allocate inode page for new inode */
836 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
838 /* caller should f2fs_put_page(page, 1); */
839 return new_node_page(&dn, 0, NULL);
842 struct page *new_node_page(struct dnode_of_data *dn,
843 unsigned int ofs, struct page *ipage)
845 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
846 struct address_space *mapping = sbi->node_inode->i_mapping;
847 struct node_info old_ni, new_ni;
848 struct page *page;
849 int err;
851 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
852 return ERR_PTR(-EPERM);
854 page = grab_cache_page(mapping, dn->nid);
855 if (!page)
856 return ERR_PTR(-ENOMEM);
858 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
859 err = -ENOSPC;
860 goto fail;
863 get_node_info(sbi, dn->nid, &old_ni);
865 /* Reinitialize old_ni with new node page */
866 BUG_ON(old_ni.blk_addr != NULL_ADDR);
867 new_ni = old_ni;
868 new_ni.ino = dn->inode->i_ino;
869 set_node_addr(sbi, &new_ni, NEW_ADDR);
871 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
872 set_cold_node(dn->inode, page);
873 SetPageUptodate(page);
874 set_page_dirty(page);
876 if (ofs == XATTR_NODE_OFFSET)
877 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
879 dn->node_page = page;
880 if (ipage)
881 update_inode(dn->inode, ipage);
882 else
883 sync_inode_page(dn);
884 if (ofs == 0)
885 inc_valid_inode_count(sbi);
887 return page;
889 fail:
890 clear_node_page_dirty(page);
891 f2fs_put_page(page, 1);
892 return ERR_PTR(err);
896 * Caller should do after getting the following values.
897 * 0: f2fs_put_page(page, 0)
898 * LOCKED_PAGE: f2fs_put_page(page, 1)
899 * error: nothing
901 static int read_node_page(struct page *page, int type)
903 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
904 struct node_info ni;
906 get_node_info(sbi, page->index, &ni);
908 if (ni.blk_addr == NULL_ADDR) {
909 f2fs_put_page(page, 1);
910 return -ENOENT;
913 if (PageUptodate(page))
914 return LOCKED_PAGE;
916 return f2fs_readpage(sbi, page, ni.blk_addr, type);
920 * Readahead a node page
922 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
924 struct address_space *mapping = sbi->node_inode->i_mapping;
925 struct page *apage;
926 int err;
928 apage = find_get_page(mapping, nid);
929 if (apage && PageUptodate(apage)) {
930 f2fs_put_page(apage, 0);
931 return;
933 f2fs_put_page(apage, 0);
935 apage = grab_cache_page(mapping, nid);
936 if (!apage)
937 return;
939 err = read_node_page(apage, READA);
940 if (err == 0)
941 f2fs_put_page(apage, 0);
942 else if (err == LOCKED_PAGE)
943 f2fs_put_page(apage, 1);
946 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
948 struct address_space *mapping = sbi->node_inode->i_mapping;
949 struct page *page;
950 int err;
951 repeat:
952 page = grab_cache_page(mapping, nid);
953 if (!page)
954 return ERR_PTR(-ENOMEM);
956 err = read_node_page(page, READ_SYNC);
957 if (err < 0)
958 return ERR_PTR(err);
959 else if (err == LOCKED_PAGE)
960 goto got_it;
962 lock_page(page);
963 if (!PageUptodate(page)) {
964 f2fs_put_page(page, 1);
965 return ERR_PTR(-EIO);
967 if (page->mapping != mapping) {
968 f2fs_put_page(page, 1);
969 goto repeat;
971 got_it:
972 BUG_ON(nid != nid_of_node(page));
973 mark_page_accessed(page);
974 return page;
978 * Return a locked page for the desired node page.
979 * And, readahead MAX_RA_NODE number of node pages.
981 struct page *get_node_page_ra(struct page *parent, int start)
983 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
984 struct address_space *mapping = sbi->node_inode->i_mapping;
985 struct blk_plug plug;
986 struct page *page;
987 int err, i, end;
988 nid_t nid;
990 /* First, try getting the desired direct node. */
991 nid = get_nid(parent, start, false);
992 if (!nid)
993 return ERR_PTR(-ENOENT);
994 repeat:
995 page = grab_cache_page(mapping, nid);
996 if (!page)
997 return ERR_PTR(-ENOMEM);
999 err = read_node_page(page, READ_SYNC);
1000 if (err < 0)
1001 return ERR_PTR(err);
1002 else if (err == LOCKED_PAGE)
1003 goto page_hit;
1005 blk_start_plug(&plug);
1007 /* Then, try readahead for siblings of the desired node */
1008 end = start + MAX_RA_NODE;
1009 end = min(end, NIDS_PER_BLOCK);
1010 for (i = start + 1; i < end; i++) {
1011 nid = get_nid(parent, i, false);
1012 if (!nid)
1013 continue;
1014 ra_node_page(sbi, nid);
1017 blk_finish_plug(&plug);
1019 lock_page(page);
1020 if (page->mapping != mapping) {
1021 f2fs_put_page(page, 1);
1022 goto repeat;
1024 page_hit:
1025 if (!PageUptodate(page)) {
1026 f2fs_put_page(page, 1);
1027 return ERR_PTR(-EIO);
1029 mark_page_accessed(page);
1030 return page;
1033 void sync_inode_page(struct dnode_of_data *dn)
1035 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1036 update_inode(dn->inode, dn->node_page);
1037 } else if (dn->inode_page) {
1038 if (!dn->inode_page_locked)
1039 lock_page(dn->inode_page);
1040 update_inode(dn->inode, dn->inode_page);
1041 if (!dn->inode_page_locked)
1042 unlock_page(dn->inode_page);
1043 } else {
1044 update_inode_page(dn->inode);
1048 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1049 struct writeback_control *wbc)
1051 struct address_space *mapping = sbi->node_inode->i_mapping;
1052 pgoff_t index, end;
1053 struct pagevec pvec;
1054 int step = ino ? 2 : 0;
1055 int nwritten = 0, wrote = 0;
1057 pagevec_init(&pvec, 0);
1059 next_step:
1060 index = 0;
1061 end = LONG_MAX;
1063 while (index <= end) {
1064 int i, nr_pages;
1065 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1066 PAGECACHE_TAG_DIRTY,
1067 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1068 if (nr_pages == 0)
1069 break;
1071 for (i = 0; i < nr_pages; i++) {
1072 struct page *page = pvec.pages[i];
1075 * flushing sequence with step:
1076 * 0. indirect nodes
1077 * 1. dentry dnodes
1078 * 2. file dnodes
1080 if (step == 0 && IS_DNODE(page))
1081 continue;
1082 if (step == 1 && (!IS_DNODE(page) ||
1083 is_cold_node(page)))
1084 continue;
1085 if (step == 2 && (!IS_DNODE(page) ||
1086 !is_cold_node(page)))
1087 continue;
1090 * If an fsync mode,
1091 * we should not skip writing node pages.
1093 if (ino && ino_of_node(page) == ino)
1094 lock_page(page);
1095 else if (!trylock_page(page))
1096 continue;
1098 if (unlikely(page->mapping != mapping)) {
1099 continue_unlock:
1100 unlock_page(page);
1101 continue;
1103 if (ino && ino_of_node(page) != ino)
1104 goto continue_unlock;
1106 if (!PageDirty(page)) {
1107 /* someone wrote it for us */
1108 goto continue_unlock;
1111 if (!clear_page_dirty_for_io(page))
1112 goto continue_unlock;
1114 /* called by fsync() */
1115 if (ino && IS_DNODE(page)) {
1116 int mark = !is_checkpointed_node(sbi, ino);
1117 set_fsync_mark(page, 1);
1118 if (IS_INODE(page))
1119 set_dentry_mark(page, mark);
1120 nwritten++;
1121 } else {
1122 set_fsync_mark(page, 0);
1123 set_dentry_mark(page, 0);
1125 mapping->a_ops->writepage(page, wbc);
1126 wrote++;
1128 if (--wbc->nr_to_write == 0)
1129 break;
1131 pagevec_release(&pvec);
1132 cond_resched();
1134 if (wbc->nr_to_write == 0) {
1135 step = 2;
1136 break;
1140 if (step < 2) {
1141 step++;
1142 goto next_step;
1145 if (wrote)
1146 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1148 return nwritten;
1151 static int f2fs_write_node_page(struct page *page,
1152 struct writeback_control *wbc)
1154 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1155 nid_t nid;
1156 block_t new_addr;
1157 struct node_info ni;
1159 wait_on_page_writeback(page);
1161 /* get old block addr of this node page */
1162 nid = nid_of_node(page);
1163 BUG_ON(page->index != nid);
1165 get_node_info(sbi, nid, &ni);
1167 /* This page is already truncated */
1168 if (ni.blk_addr == NULL_ADDR) {
1169 dec_page_count(sbi, F2FS_DIRTY_NODES);
1170 unlock_page(page);
1171 return 0;
1174 if (wbc->for_reclaim) {
1175 dec_page_count(sbi, F2FS_DIRTY_NODES);
1176 wbc->pages_skipped++;
1177 set_page_dirty(page);
1178 return AOP_WRITEPAGE_ACTIVATE;
1181 mutex_lock(&sbi->node_write);
1182 set_page_writeback(page);
1183 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1184 set_node_addr(sbi, &ni, new_addr);
1185 dec_page_count(sbi, F2FS_DIRTY_NODES);
1186 mutex_unlock(&sbi->node_write);
1187 unlock_page(page);
1188 return 0;
1192 * It is very important to gather dirty pages and write at once, so that we can
1193 * submit a big bio without interfering other data writes.
1194 * Be default, 512 pages (2MB) * 3 node types, is more reasonable.
1196 #define COLLECT_DIRTY_NODES 1536
1197 static int f2fs_write_node_pages(struct address_space *mapping,
1198 struct writeback_control *wbc)
1200 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1201 long nr_to_write = wbc->nr_to_write;
1203 /* First check balancing cached NAT entries */
1204 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1205 f2fs_sync_fs(sbi->sb, true);
1206 return 0;
1209 /* collect a number of dirty node pages and write together */
1210 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1211 return 0;
1213 /* if mounting is failed, skip writing node pages */
1214 wbc->nr_to_write = 3 * max_hw_blocks(sbi);
1215 sync_node_pages(sbi, 0, wbc);
1216 wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
1217 wbc->nr_to_write);
1218 return 0;
1221 static int f2fs_set_node_page_dirty(struct page *page)
1223 struct address_space *mapping = page->mapping;
1224 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1226 SetPageUptodate(page);
1227 if (!PageDirty(page)) {
1228 __set_page_dirty_nobuffers(page);
1229 inc_page_count(sbi, F2FS_DIRTY_NODES);
1230 SetPagePrivate(page);
1231 return 1;
1233 return 0;
1236 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1237 unsigned int length)
1239 struct inode *inode = page->mapping->host;
1240 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1241 if (PageDirty(page))
1242 dec_page_count(sbi, F2FS_DIRTY_NODES);
1243 ClearPagePrivate(page);
1246 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1248 ClearPagePrivate(page);
1249 return 1;
1253 * Structure of the f2fs node operations
1255 const struct address_space_operations f2fs_node_aops = {
1256 .writepage = f2fs_write_node_page,
1257 .writepages = f2fs_write_node_pages,
1258 .set_page_dirty = f2fs_set_node_page_dirty,
1259 .invalidatepage = f2fs_invalidate_node_page,
1260 .releasepage = f2fs_release_node_page,
1263 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1265 struct list_head *this;
1266 struct free_nid *i;
1267 list_for_each(this, head) {
1268 i = list_entry(this, struct free_nid, list);
1269 if (i->nid == n)
1270 return i;
1272 return NULL;
1275 static void __del_from_free_nid_list(struct free_nid *i)
1277 list_del(&i->list);
1278 kmem_cache_free(free_nid_slab, i);
1281 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1283 struct free_nid *i;
1284 struct nat_entry *ne;
1285 bool allocated = false;
1287 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1288 return -1;
1290 /* 0 nid should not be used */
1291 if (nid == 0)
1292 return 0;
1294 if (!build)
1295 goto retry;
1297 /* do not add allocated nids */
1298 read_lock(&nm_i->nat_tree_lock);
1299 ne = __lookup_nat_cache(nm_i, nid);
1300 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1301 allocated = true;
1302 read_unlock(&nm_i->nat_tree_lock);
1303 if (allocated)
1304 return 0;
1305 retry:
1306 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1307 if (!i) {
1308 cond_resched();
1309 goto retry;
1311 i->nid = nid;
1312 i->state = NID_NEW;
1314 spin_lock(&nm_i->free_nid_list_lock);
1315 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1316 spin_unlock(&nm_i->free_nid_list_lock);
1317 kmem_cache_free(free_nid_slab, i);
1318 return 0;
1320 list_add_tail(&i->list, &nm_i->free_nid_list);
1321 nm_i->fcnt++;
1322 spin_unlock(&nm_i->free_nid_list_lock);
1323 return 1;
1326 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1328 struct free_nid *i;
1329 spin_lock(&nm_i->free_nid_list_lock);
1330 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1331 if (i && i->state == NID_NEW) {
1332 __del_from_free_nid_list(i);
1333 nm_i->fcnt--;
1335 spin_unlock(&nm_i->free_nid_list_lock);
1338 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1339 struct page *nat_page, nid_t start_nid)
1341 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1342 block_t blk_addr;
1343 int i;
1345 i = start_nid % NAT_ENTRY_PER_BLOCK;
1347 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1349 if (start_nid >= nm_i->max_nid)
1350 break;
1352 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1353 BUG_ON(blk_addr == NEW_ADDR);
1354 if (blk_addr == NULL_ADDR) {
1355 if (add_free_nid(nm_i, start_nid, true) < 0)
1356 break;
1361 static void build_free_nids(struct f2fs_sb_info *sbi)
1363 struct f2fs_nm_info *nm_i = NM_I(sbi);
1364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1365 struct f2fs_summary_block *sum = curseg->sum_blk;
1366 int i = 0;
1367 nid_t nid = nm_i->next_scan_nid;
1369 /* Enough entries */
1370 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1371 return;
1373 /* readahead nat pages to be scanned */
1374 ra_nat_pages(sbi, nid);
1376 while (1) {
1377 struct page *page = get_current_nat_page(sbi, nid);
1379 scan_nat_page(nm_i, page, nid);
1380 f2fs_put_page(page, 1);
1382 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1383 if (nid >= nm_i->max_nid)
1384 nid = 0;
1386 if (i++ == FREE_NID_PAGES)
1387 break;
1390 /* go to the next free nat pages to find free nids abundantly */
1391 nm_i->next_scan_nid = nid;
1393 /* find free nids from current sum_pages */
1394 mutex_lock(&curseg->curseg_mutex);
1395 for (i = 0; i < nats_in_cursum(sum); i++) {
1396 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1397 nid = le32_to_cpu(nid_in_journal(sum, i));
1398 if (addr == NULL_ADDR)
1399 add_free_nid(nm_i, nid, true);
1400 else
1401 remove_free_nid(nm_i, nid);
1403 mutex_unlock(&curseg->curseg_mutex);
1407 * If this function returns success, caller can obtain a new nid
1408 * from second parameter of this function.
1409 * The returned nid could be used ino as well as nid when inode is created.
1411 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1413 struct f2fs_nm_info *nm_i = NM_I(sbi);
1414 struct free_nid *i = NULL;
1415 struct list_head *this;
1416 retry:
1417 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1418 return false;
1420 spin_lock(&nm_i->free_nid_list_lock);
1422 /* We should not use stale free nids created by build_free_nids */
1423 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1424 BUG_ON(list_empty(&nm_i->free_nid_list));
1425 list_for_each(this, &nm_i->free_nid_list) {
1426 i = list_entry(this, struct free_nid, list);
1427 if (i->state == NID_NEW)
1428 break;
1431 BUG_ON(i->state != NID_NEW);
1432 *nid = i->nid;
1433 i->state = NID_ALLOC;
1434 nm_i->fcnt--;
1435 spin_unlock(&nm_i->free_nid_list_lock);
1436 return true;
1438 spin_unlock(&nm_i->free_nid_list_lock);
1440 /* Let's scan nat pages and its caches to get free nids */
1441 mutex_lock(&nm_i->build_lock);
1442 sbi->on_build_free_nids = 1;
1443 build_free_nids(sbi);
1444 sbi->on_build_free_nids = 0;
1445 mutex_unlock(&nm_i->build_lock);
1446 goto retry;
1450 * alloc_nid() should be called prior to this function.
1452 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1454 struct f2fs_nm_info *nm_i = NM_I(sbi);
1455 struct free_nid *i;
1457 spin_lock(&nm_i->free_nid_list_lock);
1458 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1459 BUG_ON(!i || i->state != NID_ALLOC);
1460 __del_from_free_nid_list(i);
1461 spin_unlock(&nm_i->free_nid_list_lock);
1465 * alloc_nid() should be called prior to this function.
1467 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1469 struct f2fs_nm_info *nm_i = NM_I(sbi);
1470 struct free_nid *i;
1472 if (!nid)
1473 return;
1475 spin_lock(&nm_i->free_nid_list_lock);
1476 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1477 BUG_ON(!i || i->state != NID_ALLOC);
1478 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1479 __del_from_free_nid_list(i);
1480 } else {
1481 i->state = NID_NEW;
1482 nm_i->fcnt++;
1484 spin_unlock(&nm_i->free_nid_list_lock);
1487 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1488 struct f2fs_summary *sum, struct node_info *ni,
1489 block_t new_blkaddr)
1491 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1492 set_node_addr(sbi, ni, new_blkaddr);
1493 clear_node_page_dirty(page);
1496 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1498 struct address_space *mapping = sbi->node_inode->i_mapping;
1499 struct f2fs_node *src, *dst;
1500 nid_t ino = ino_of_node(page);
1501 struct node_info old_ni, new_ni;
1502 struct page *ipage;
1504 ipage = grab_cache_page(mapping, ino);
1505 if (!ipage)
1506 return -ENOMEM;
1508 /* Should not use this inode from free nid list */
1509 remove_free_nid(NM_I(sbi), ino);
1511 get_node_info(sbi, ino, &old_ni);
1512 SetPageUptodate(ipage);
1513 fill_node_footer(ipage, ino, ino, 0, true);
1515 src = F2FS_NODE(page);
1516 dst = F2FS_NODE(ipage);
1518 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1519 dst->i.i_size = 0;
1520 dst->i.i_blocks = cpu_to_le64(1);
1521 dst->i.i_links = cpu_to_le32(1);
1522 dst->i.i_xattr_nid = 0;
1524 new_ni = old_ni;
1525 new_ni.ino = ino;
1527 if (!inc_valid_node_count(sbi, NULL, 1))
1528 WARN_ON(1);
1529 set_node_addr(sbi, &new_ni, NEW_ADDR);
1530 inc_valid_inode_count(sbi);
1531 f2fs_put_page(ipage, 1);
1532 return 0;
1535 int restore_node_summary(struct f2fs_sb_info *sbi,
1536 unsigned int segno, struct f2fs_summary_block *sum)
1538 struct f2fs_node *rn;
1539 struct f2fs_summary *sum_entry;
1540 struct page *page;
1541 block_t addr;
1542 int i, last_offset;
1544 /* alloc temporal page for read node */
1545 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1546 if (!page)
1547 return -ENOMEM;
1548 lock_page(page);
1550 /* scan the node segment */
1551 last_offset = sbi->blocks_per_seg;
1552 addr = START_BLOCK(sbi, segno);
1553 sum_entry = &sum->entries[0];
1555 for (i = 0; i < last_offset; i++, sum_entry++) {
1557 * In order to read next node page,
1558 * we must clear PageUptodate flag.
1560 ClearPageUptodate(page);
1562 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1563 goto out;
1565 lock_page(page);
1566 rn = F2FS_NODE(page);
1567 sum_entry->nid = rn->footer.nid;
1568 sum_entry->version = 0;
1569 sum_entry->ofs_in_node = 0;
1570 addr++;
1572 unlock_page(page);
1573 out:
1574 __free_pages(page, 0);
1575 return 0;
1578 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1580 struct f2fs_nm_info *nm_i = NM_I(sbi);
1581 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1582 struct f2fs_summary_block *sum = curseg->sum_blk;
1583 int i;
1585 mutex_lock(&curseg->curseg_mutex);
1587 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1588 mutex_unlock(&curseg->curseg_mutex);
1589 return false;
1592 for (i = 0; i < nats_in_cursum(sum); i++) {
1593 struct nat_entry *ne;
1594 struct f2fs_nat_entry raw_ne;
1595 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1597 raw_ne = nat_in_journal(sum, i);
1598 retry:
1599 write_lock(&nm_i->nat_tree_lock);
1600 ne = __lookup_nat_cache(nm_i, nid);
1601 if (ne) {
1602 __set_nat_cache_dirty(nm_i, ne);
1603 write_unlock(&nm_i->nat_tree_lock);
1604 continue;
1606 ne = grab_nat_entry(nm_i, nid);
1607 if (!ne) {
1608 write_unlock(&nm_i->nat_tree_lock);
1609 goto retry;
1611 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1612 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1613 nat_set_version(ne, raw_ne.version);
1614 __set_nat_cache_dirty(nm_i, ne);
1615 write_unlock(&nm_i->nat_tree_lock);
1617 update_nats_in_cursum(sum, -i);
1618 mutex_unlock(&curseg->curseg_mutex);
1619 return true;
1623 * This function is called during the checkpointing process.
1625 void flush_nat_entries(struct f2fs_sb_info *sbi)
1627 struct f2fs_nm_info *nm_i = NM_I(sbi);
1628 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1629 struct f2fs_summary_block *sum = curseg->sum_blk;
1630 struct list_head *cur, *n;
1631 struct page *page = NULL;
1632 struct f2fs_nat_block *nat_blk = NULL;
1633 nid_t start_nid = 0, end_nid = 0;
1634 bool flushed;
1636 flushed = flush_nats_in_journal(sbi);
1638 if (!flushed)
1639 mutex_lock(&curseg->curseg_mutex);
1641 /* 1) flush dirty nat caches */
1642 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1643 struct nat_entry *ne;
1644 nid_t nid;
1645 struct f2fs_nat_entry raw_ne;
1646 int offset = -1;
1647 block_t new_blkaddr;
1649 ne = list_entry(cur, struct nat_entry, list);
1650 nid = nat_get_nid(ne);
1652 if (nat_get_blkaddr(ne) == NEW_ADDR)
1653 continue;
1654 if (flushed)
1655 goto to_nat_page;
1657 /* if there is room for nat enries in curseg->sumpage */
1658 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1659 if (offset >= 0) {
1660 raw_ne = nat_in_journal(sum, offset);
1661 goto flush_now;
1663 to_nat_page:
1664 if (!page || (start_nid > nid || nid > end_nid)) {
1665 if (page) {
1666 f2fs_put_page(page, 1);
1667 page = NULL;
1669 start_nid = START_NID(nid);
1670 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1673 * get nat block with dirty flag, increased reference
1674 * count, mapped and lock
1676 page = get_next_nat_page(sbi, start_nid);
1677 nat_blk = page_address(page);
1680 BUG_ON(!nat_blk);
1681 raw_ne = nat_blk->entries[nid - start_nid];
1682 flush_now:
1683 new_blkaddr = nat_get_blkaddr(ne);
1685 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1686 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1687 raw_ne.version = nat_get_version(ne);
1689 if (offset < 0) {
1690 nat_blk->entries[nid - start_nid] = raw_ne;
1691 } else {
1692 nat_in_journal(sum, offset) = raw_ne;
1693 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1696 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1697 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1698 write_lock(&nm_i->nat_tree_lock);
1699 __del_from_nat_cache(nm_i, ne);
1700 write_unlock(&nm_i->nat_tree_lock);
1701 } else {
1702 write_lock(&nm_i->nat_tree_lock);
1703 __clear_nat_cache_dirty(nm_i, ne);
1704 ne->checkpointed = true;
1705 write_unlock(&nm_i->nat_tree_lock);
1708 if (!flushed)
1709 mutex_unlock(&curseg->curseg_mutex);
1710 f2fs_put_page(page, 1);
1712 /* 2) shrink nat caches if necessary */
1713 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1716 static int init_node_manager(struct f2fs_sb_info *sbi)
1718 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1719 struct f2fs_nm_info *nm_i = NM_I(sbi);
1720 unsigned char *version_bitmap;
1721 unsigned int nat_segs, nat_blocks;
1723 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1725 /* segment_count_nat includes pair segment so divide to 2. */
1726 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1727 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1728 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1729 nm_i->fcnt = 0;
1730 nm_i->nat_cnt = 0;
1732 INIT_LIST_HEAD(&nm_i->free_nid_list);
1733 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1734 INIT_LIST_HEAD(&nm_i->nat_entries);
1735 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1737 mutex_init(&nm_i->build_lock);
1738 spin_lock_init(&nm_i->free_nid_list_lock);
1739 rwlock_init(&nm_i->nat_tree_lock);
1741 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1742 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1743 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1744 if (!version_bitmap)
1745 return -EFAULT;
1747 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1748 GFP_KERNEL);
1749 if (!nm_i->nat_bitmap)
1750 return -ENOMEM;
1751 return 0;
1754 int build_node_manager(struct f2fs_sb_info *sbi)
1756 int err;
1758 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1759 if (!sbi->nm_info)
1760 return -ENOMEM;
1762 err = init_node_manager(sbi);
1763 if (err)
1764 return err;
1766 build_free_nids(sbi);
1767 return 0;
1770 void destroy_node_manager(struct f2fs_sb_info *sbi)
1772 struct f2fs_nm_info *nm_i = NM_I(sbi);
1773 struct free_nid *i, *next_i;
1774 struct nat_entry *natvec[NATVEC_SIZE];
1775 nid_t nid = 0;
1776 unsigned int found;
1778 if (!nm_i)
1779 return;
1781 /* destroy free nid list */
1782 spin_lock(&nm_i->free_nid_list_lock);
1783 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1784 BUG_ON(i->state == NID_ALLOC);
1785 __del_from_free_nid_list(i);
1786 nm_i->fcnt--;
1788 BUG_ON(nm_i->fcnt);
1789 spin_unlock(&nm_i->free_nid_list_lock);
1791 /* destroy nat cache */
1792 write_lock(&nm_i->nat_tree_lock);
1793 while ((found = __gang_lookup_nat_cache(nm_i,
1794 nid, NATVEC_SIZE, natvec))) {
1795 unsigned idx;
1796 for (idx = 0; idx < found; idx++) {
1797 struct nat_entry *e = natvec[idx];
1798 nid = nat_get_nid(e) + 1;
1799 __del_from_nat_cache(nm_i, e);
1802 BUG_ON(nm_i->nat_cnt);
1803 write_unlock(&nm_i->nat_tree_lock);
1805 kfree(nm_i->nat_bitmap);
1806 sbi->nm_info = NULL;
1807 kfree(nm_i);
1810 int __init create_node_manager_caches(void)
1812 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1813 sizeof(struct nat_entry), NULL);
1814 if (!nat_entry_slab)
1815 return -ENOMEM;
1817 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1818 sizeof(struct free_nid), NULL);
1819 if (!free_nid_slab) {
1820 kmem_cache_destroy(nat_entry_slab);
1821 return -ENOMEM;
1823 return 0;
1826 void destroy_node_manager_caches(void)
1828 kmem_cache_destroy(free_nid_slab);
1829 kmem_cache_destroy(nat_entry_slab);