Linux 3.12.28
[linux/fpc-iii.git] / fs / f2fs / segment.c
blob09af9c7b0f52673fff92f00be5a37a6030b72668
1 /*
2 * fs/f2fs/segment.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
24 * This function balances dirty node and dentry pages.
25 * In addition, it controls garbage collection.
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
30 * We should do GC or end up with checkpoint, if there are so many dirty
31 * dir/node pages without enough free segments.
33 if (has_not_enough_free_secs(sbi, 0)) {
34 mutex_lock(&sbi->gc_mutex);
35 f2fs_gc(sbi);
39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40 enum dirty_type dirty_type)
42 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
44 /* need not be added */
45 if (IS_CURSEG(sbi, segno))
46 return;
48 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49 dirty_i->nr_dirty[dirty_type]++;
51 if (dirty_type == DIRTY) {
52 struct seg_entry *sentry = get_seg_entry(sbi, segno);
53 enum dirty_type t = DIRTY_HOT_DATA;
55 dirty_type = sentry->type;
57 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58 dirty_i->nr_dirty[dirty_type]++;
60 /* Only one bitmap should be set */
61 for (; t <= DIRTY_COLD_NODE; t++) {
62 if (t == dirty_type)
63 continue;
64 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65 dirty_i->nr_dirty[t]--;
70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71 enum dirty_type dirty_type)
73 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
75 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76 dirty_i->nr_dirty[dirty_type]--;
78 if (dirty_type == DIRTY) {
79 enum dirty_type t = DIRTY_HOT_DATA;
81 /* clear all the bitmaps */
82 for (; t <= DIRTY_COLD_NODE; t++)
83 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84 dirty_i->nr_dirty[t]--;
86 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87 clear_bit(GET_SECNO(sbi, segno),
88 dirty_i->victim_secmap);
93 * Should not occur error such as -ENOMEM.
94 * Adding dirty entry into seglist is not critical operation.
95 * If a given segment is one of current working segments, it won't be added.
97 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
99 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100 unsigned short valid_blocks;
102 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103 return;
105 mutex_lock(&dirty_i->seglist_lock);
107 valid_blocks = get_valid_blocks(sbi, segno, 0);
109 if (valid_blocks == 0) {
110 __locate_dirty_segment(sbi, segno, PRE);
111 __remove_dirty_segment(sbi, segno, DIRTY);
112 } else if (valid_blocks < sbi->blocks_per_seg) {
113 __locate_dirty_segment(sbi, segno, DIRTY);
114 } else {
115 /* Recovery routine with SSR needs this */
116 __remove_dirty_segment(sbi, segno, DIRTY);
119 mutex_unlock(&dirty_i->seglist_lock);
123 * Should call clear_prefree_segments after checkpoint is done.
125 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
127 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
128 unsigned int segno = -1;
129 unsigned int total_segs = TOTAL_SEGS(sbi);
131 mutex_lock(&dirty_i->seglist_lock);
132 while (1) {
133 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
134 segno + 1);
135 if (segno >= total_segs)
136 break;
137 __set_test_and_free(sbi, segno);
139 mutex_unlock(&dirty_i->seglist_lock);
142 void clear_prefree_segments(struct f2fs_sb_info *sbi)
144 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
145 unsigned int segno = -1;
146 unsigned int total_segs = TOTAL_SEGS(sbi);
148 mutex_lock(&dirty_i->seglist_lock);
149 while (1) {
150 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
151 segno + 1);
152 if (segno >= total_segs)
153 break;
155 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
156 dirty_i->nr_dirty[PRE]--;
158 /* Let's use trim */
159 if (test_opt(sbi, DISCARD))
160 blkdev_issue_discard(sbi->sb->s_bdev,
161 START_BLOCK(sbi, segno) <<
162 sbi->log_sectors_per_block,
163 1 << (sbi->log_sectors_per_block +
164 sbi->log_blocks_per_seg),
165 GFP_NOFS, 0);
167 mutex_unlock(&dirty_i->seglist_lock);
170 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
172 struct sit_info *sit_i = SIT_I(sbi);
173 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
174 sit_i->dirty_sentries++;
177 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
178 unsigned int segno, int modified)
180 struct seg_entry *se = get_seg_entry(sbi, segno);
181 se->type = type;
182 if (modified)
183 __mark_sit_entry_dirty(sbi, segno);
186 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
188 struct seg_entry *se;
189 unsigned int segno, offset;
190 long int new_vblocks;
192 segno = GET_SEGNO(sbi, blkaddr);
194 se = get_seg_entry(sbi, segno);
195 new_vblocks = se->valid_blocks + del;
196 offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
198 BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
199 (new_vblocks > sbi->blocks_per_seg)));
201 se->valid_blocks = new_vblocks;
202 se->mtime = get_mtime(sbi);
203 SIT_I(sbi)->max_mtime = se->mtime;
205 /* Update valid block bitmap */
206 if (del > 0) {
207 if (f2fs_set_bit(offset, se->cur_valid_map))
208 BUG();
209 } else {
210 if (!f2fs_clear_bit(offset, se->cur_valid_map))
211 BUG();
213 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
214 se->ckpt_valid_blocks += del;
216 __mark_sit_entry_dirty(sbi, segno);
218 /* update total number of valid blocks to be written in ckpt area */
219 SIT_I(sbi)->written_valid_blocks += del;
221 if (sbi->segs_per_sec > 1)
222 get_sec_entry(sbi, segno)->valid_blocks += del;
225 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
226 block_t old_blkaddr, block_t new_blkaddr)
228 update_sit_entry(sbi, new_blkaddr, 1);
229 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
230 update_sit_entry(sbi, old_blkaddr, -1);
233 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
235 unsigned int segno = GET_SEGNO(sbi, addr);
236 struct sit_info *sit_i = SIT_I(sbi);
238 BUG_ON(addr == NULL_ADDR);
239 if (addr == NEW_ADDR)
240 return;
242 /* add it into sit main buffer */
243 mutex_lock(&sit_i->sentry_lock);
245 update_sit_entry(sbi, addr, -1);
247 /* add it into dirty seglist */
248 locate_dirty_segment(sbi, segno);
250 mutex_unlock(&sit_i->sentry_lock);
254 * This function should be resided under the curseg_mutex lock
256 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
257 struct f2fs_summary *sum)
259 struct curseg_info *curseg = CURSEG_I(sbi, type);
260 void *addr = curseg->sum_blk;
261 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
262 memcpy(addr, sum, sizeof(struct f2fs_summary));
266 * Calculate the number of current summary pages for writing
268 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
270 int total_size_bytes = 0;
271 int valid_sum_count = 0;
272 int i, sum_space;
274 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
275 if (sbi->ckpt->alloc_type[i] == SSR)
276 valid_sum_count += sbi->blocks_per_seg;
277 else
278 valid_sum_count += curseg_blkoff(sbi, i);
281 total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
282 + sizeof(struct nat_journal) + 2
283 + sizeof(struct sit_journal) + 2;
284 sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
285 if (total_size_bytes < sum_space)
286 return 1;
287 else if (total_size_bytes < 2 * sum_space)
288 return 2;
289 return 3;
293 * Caller should put this summary page
295 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
297 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
300 static void write_sum_page(struct f2fs_sb_info *sbi,
301 struct f2fs_summary_block *sum_blk, block_t blk_addr)
303 struct page *page = grab_meta_page(sbi, blk_addr);
304 void *kaddr = page_address(page);
305 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
306 set_page_dirty(page);
307 f2fs_put_page(page, 1);
310 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
312 struct curseg_info *curseg = CURSEG_I(sbi, type);
313 unsigned int segno = curseg->segno + 1;
314 struct free_segmap_info *free_i = FREE_I(sbi);
316 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
317 return !test_bit(segno, free_i->free_segmap);
318 return 0;
322 * Find a new segment from the free segments bitmap to right order
323 * This function should be returned with success, otherwise BUG
325 static void get_new_segment(struct f2fs_sb_info *sbi,
326 unsigned int *newseg, bool new_sec, int dir)
328 struct free_segmap_info *free_i = FREE_I(sbi);
329 unsigned int segno, secno, zoneno;
330 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
331 unsigned int hint = *newseg / sbi->segs_per_sec;
332 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
333 unsigned int left_start = hint;
334 bool init = true;
335 int go_left = 0;
336 int i;
338 write_lock(&free_i->segmap_lock);
340 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
341 segno = find_next_zero_bit(free_i->free_segmap,
342 TOTAL_SEGS(sbi), *newseg + 1);
343 if (segno - *newseg < sbi->segs_per_sec -
344 (*newseg % sbi->segs_per_sec))
345 goto got_it;
347 find_other_zone:
348 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
349 if (secno >= TOTAL_SECS(sbi)) {
350 if (dir == ALLOC_RIGHT) {
351 secno = find_next_zero_bit(free_i->free_secmap,
352 TOTAL_SECS(sbi), 0);
353 BUG_ON(secno >= TOTAL_SECS(sbi));
354 } else {
355 go_left = 1;
356 left_start = hint - 1;
359 if (go_left == 0)
360 goto skip_left;
362 while (test_bit(left_start, free_i->free_secmap)) {
363 if (left_start > 0) {
364 left_start--;
365 continue;
367 left_start = find_next_zero_bit(free_i->free_secmap,
368 TOTAL_SECS(sbi), 0);
369 BUG_ON(left_start >= TOTAL_SECS(sbi));
370 break;
372 secno = left_start;
373 skip_left:
374 hint = secno;
375 segno = secno * sbi->segs_per_sec;
376 zoneno = secno / sbi->secs_per_zone;
378 /* give up on finding another zone */
379 if (!init)
380 goto got_it;
381 if (sbi->secs_per_zone == 1)
382 goto got_it;
383 if (zoneno == old_zoneno)
384 goto got_it;
385 if (dir == ALLOC_LEFT) {
386 if (!go_left && zoneno + 1 >= total_zones)
387 goto got_it;
388 if (go_left && zoneno == 0)
389 goto got_it;
391 for (i = 0; i < NR_CURSEG_TYPE; i++)
392 if (CURSEG_I(sbi, i)->zone == zoneno)
393 break;
395 if (i < NR_CURSEG_TYPE) {
396 /* zone is in user, try another */
397 if (go_left)
398 hint = zoneno * sbi->secs_per_zone - 1;
399 else if (zoneno + 1 >= total_zones)
400 hint = 0;
401 else
402 hint = (zoneno + 1) * sbi->secs_per_zone;
403 init = false;
404 goto find_other_zone;
406 got_it:
407 /* set it as dirty segment in free segmap */
408 BUG_ON(test_bit(segno, free_i->free_segmap));
409 __set_inuse(sbi, segno);
410 *newseg = segno;
411 write_unlock(&free_i->segmap_lock);
414 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
416 struct curseg_info *curseg = CURSEG_I(sbi, type);
417 struct summary_footer *sum_footer;
419 curseg->segno = curseg->next_segno;
420 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
421 curseg->next_blkoff = 0;
422 curseg->next_segno = NULL_SEGNO;
424 sum_footer = &(curseg->sum_blk->footer);
425 memset(sum_footer, 0, sizeof(struct summary_footer));
426 if (IS_DATASEG(type))
427 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
428 if (IS_NODESEG(type))
429 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
430 __set_sit_entry_type(sbi, type, curseg->segno, modified);
434 * Allocate a current working segment.
435 * This function always allocates a free segment in LFS manner.
437 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
439 struct curseg_info *curseg = CURSEG_I(sbi, type);
440 unsigned int segno = curseg->segno;
441 int dir = ALLOC_LEFT;
443 write_sum_page(sbi, curseg->sum_blk,
444 GET_SUM_BLOCK(sbi, segno));
445 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
446 dir = ALLOC_RIGHT;
448 if (test_opt(sbi, NOHEAP))
449 dir = ALLOC_RIGHT;
451 get_new_segment(sbi, &segno, new_sec, dir);
452 curseg->next_segno = segno;
453 reset_curseg(sbi, type, 1);
454 curseg->alloc_type = LFS;
457 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
458 struct curseg_info *seg, block_t start)
460 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
461 block_t ofs;
462 for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
463 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
464 && !f2fs_test_bit(ofs, se->cur_valid_map))
465 break;
467 seg->next_blkoff = ofs;
471 * If a segment is written by LFS manner, next block offset is just obtained
472 * by increasing the current block offset. However, if a segment is written by
473 * SSR manner, next block offset obtained by calling __next_free_blkoff
475 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
476 struct curseg_info *seg)
478 if (seg->alloc_type == SSR)
479 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
480 else
481 seg->next_blkoff++;
485 * This function always allocates a used segment (from dirty seglist) by SSR
486 * manner, so it should recover the existing segment information of valid blocks
488 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
490 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
491 struct curseg_info *curseg = CURSEG_I(sbi, type);
492 unsigned int new_segno = curseg->next_segno;
493 struct f2fs_summary_block *sum_node;
494 struct page *sum_page;
496 write_sum_page(sbi, curseg->sum_blk,
497 GET_SUM_BLOCK(sbi, curseg->segno));
498 __set_test_and_inuse(sbi, new_segno);
500 mutex_lock(&dirty_i->seglist_lock);
501 __remove_dirty_segment(sbi, new_segno, PRE);
502 __remove_dirty_segment(sbi, new_segno, DIRTY);
503 mutex_unlock(&dirty_i->seglist_lock);
505 reset_curseg(sbi, type, 1);
506 curseg->alloc_type = SSR;
507 __next_free_blkoff(sbi, curseg, 0);
509 if (reuse) {
510 sum_page = get_sum_page(sbi, new_segno);
511 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
512 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
513 f2fs_put_page(sum_page, 1);
517 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
519 struct curseg_info *curseg = CURSEG_I(sbi, type);
520 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
522 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
523 return v_ops->get_victim(sbi,
524 &(curseg)->next_segno, BG_GC, type, SSR);
526 /* For data segments, let's do SSR more intensively */
527 for (; type >= CURSEG_HOT_DATA; type--)
528 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
529 BG_GC, type, SSR))
530 return 1;
531 return 0;
535 * flush out current segment and replace it with new segment
536 * This function should be returned with success, otherwise BUG
538 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
539 int type, bool force)
541 struct curseg_info *curseg = CURSEG_I(sbi, type);
543 if (force)
544 new_curseg(sbi, type, true);
545 else if (type == CURSEG_WARM_NODE)
546 new_curseg(sbi, type, false);
547 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
548 new_curseg(sbi, type, false);
549 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
550 change_curseg(sbi, type, true);
551 else
552 new_curseg(sbi, type, false);
553 #ifdef CONFIG_F2FS_STAT_FS
554 sbi->segment_count[curseg->alloc_type]++;
555 #endif
558 void allocate_new_segments(struct f2fs_sb_info *sbi)
560 struct curseg_info *curseg;
561 unsigned int old_curseg;
562 int i;
564 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
565 curseg = CURSEG_I(sbi, i);
566 old_curseg = curseg->segno;
567 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
568 locate_dirty_segment(sbi, old_curseg);
572 static const struct segment_allocation default_salloc_ops = {
573 .allocate_segment = allocate_segment_by_default,
576 static void f2fs_end_io_write(struct bio *bio, int err)
578 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
579 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
580 struct bio_private *p = bio->bi_private;
582 do {
583 struct page *page = bvec->bv_page;
585 if (--bvec >= bio->bi_io_vec)
586 prefetchw(&bvec->bv_page->flags);
587 if (!uptodate) {
588 SetPageError(page);
589 if (page->mapping)
590 set_bit(AS_EIO, &page->mapping->flags);
591 set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
592 p->sbi->sb->s_flags |= MS_RDONLY;
594 end_page_writeback(page);
595 dec_page_count(p->sbi, F2FS_WRITEBACK);
596 } while (bvec >= bio->bi_io_vec);
598 if (p->is_sync)
599 complete(p->wait);
600 kfree(p);
601 bio_put(bio);
604 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
606 struct bio *bio;
608 /* No failure on bio allocation */
609 bio = bio_alloc(GFP_NOIO, npages);
610 bio->bi_bdev = bdev;
611 bio->bi_private = NULL;
613 return bio;
616 static void do_submit_bio(struct f2fs_sb_info *sbi,
617 enum page_type type, bool sync)
619 int rw = sync ? WRITE_SYNC : WRITE;
620 enum page_type btype = type > META ? META : type;
622 if (type >= META_FLUSH)
623 rw = WRITE_FLUSH_FUA;
625 if (btype == META)
626 rw |= REQ_META;
628 if (sbi->bio[btype]) {
629 struct bio_private *p = sbi->bio[btype]->bi_private;
630 p->sbi = sbi;
631 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
633 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
635 if (type == META_FLUSH) {
636 DECLARE_COMPLETION_ONSTACK(wait);
637 p->is_sync = true;
638 p->wait = &wait;
639 submit_bio(rw, sbi->bio[btype]);
640 wait_for_completion(&wait);
641 } else {
642 p->is_sync = false;
643 submit_bio(rw, sbi->bio[btype]);
645 sbi->bio[btype] = NULL;
649 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
651 down_write(&sbi->bio_sem);
652 do_submit_bio(sbi, type, sync);
653 up_write(&sbi->bio_sem);
656 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
657 block_t blk_addr, enum page_type type)
659 struct block_device *bdev = sbi->sb->s_bdev;
661 verify_block_addr(sbi, blk_addr);
663 down_write(&sbi->bio_sem);
665 inc_page_count(sbi, F2FS_WRITEBACK);
667 if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
668 do_submit_bio(sbi, type, false);
669 alloc_new:
670 if (sbi->bio[type] == NULL) {
671 struct bio_private *priv;
672 retry:
673 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
674 if (!priv) {
675 cond_resched();
676 goto retry;
679 sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
680 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
681 sbi->bio[type]->bi_private = priv;
683 * The end_io will be assigned at the sumbission phase.
684 * Until then, let bio_add_page() merge consecutive IOs as much
685 * as possible.
689 if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
690 PAGE_CACHE_SIZE) {
691 do_submit_bio(sbi, type, false);
692 goto alloc_new;
695 sbi->last_block_in_bio[type] = blk_addr;
697 up_write(&sbi->bio_sem);
698 trace_f2fs_submit_write_page(page, blk_addr, type);
701 void f2fs_wait_on_page_writeback(struct page *page,
702 enum page_type type, bool sync)
704 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
705 if (PageWriteback(page)) {
706 f2fs_submit_bio(sbi, type, sync);
707 wait_on_page_writeback(page);
711 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
713 struct curseg_info *curseg = CURSEG_I(sbi, type);
714 if (curseg->next_blkoff < sbi->blocks_per_seg)
715 return true;
716 return false;
719 static int __get_segment_type_2(struct page *page, enum page_type p_type)
721 if (p_type == DATA)
722 return CURSEG_HOT_DATA;
723 else
724 return CURSEG_HOT_NODE;
727 static int __get_segment_type_4(struct page *page, enum page_type p_type)
729 if (p_type == DATA) {
730 struct inode *inode = page->mapping->host;
732 if (S_ISDIR(inode->i_mode))
733 return CURSEG_HOT_DATA;
734 else
735 return CURSEG_COLD_DATA;
736 } else {
737 if (IS_DNODE(page) && !is_cold_node(page))
738 return CURSEG_HOT_NODE;
739 else
740 return CURSEG_COLD_NODE;
744 static int __get_segment_type_6(struct page *page, enum page_type p_type)
746 if (p_type == DATA) {
747 struct inode *inode = page->mapping->host;
749 if (S_ISDIR(inode->i_mode))
750 return CURSEG_HOT_DATA;
751 else if (is_cold_data(page) || file_is_cold(inode))
752 return CURSEG_COLD_DATA;
753 else
754 return CURSEG_WARM_DATA;
755 } else {
756 if (IS_DNODE(page))
757 return is_cold_node(page) ? CURSEG_WARM_NODE :
758 CURSEG_HOT_NODE;
759 else
760 return CURSEG_COLD_NODE;
764 static int __get_segment_type(struct page *page, enum page_type p_type)
766 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
767 switch (sbi->active_logs) {
768 case 2:
769 return __get_segment_type_2(page, p_type);
770 case 4:
771 return __get_segment_type_4(page, p_type);
773 /* NR_CURSEG_TYPE(6) logs by default */
774 BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
775 return __get_segment_type_6(page, p_type);
778 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
779 block_t old_blkaddr, block_t *new_blkaddr,
780 struct f2fs_summary *sum, enum page_type p_type)
782 struct sit_info *sit_i = SIT_I(sbi);
783 struct curseg_info *curseg;
784 unsigned int old_cursegno;
785 int type;
787 type = __get_segment_type(page, p_type);
788 curseg = CURSEG_I(sbi, type);
790 mutex_lock(&curseg->curseg_mutex);
792 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
793 old_cursegno = curseg->segno;
796 * __add_sum_entry should be resided under the curseg_mutex
797 * because, this function updates a summary entry in the
798 * current summary block.
800 __add_sum_entry(sbi, type, sum);
802 mutex_lock(&sit_i->sentry_lock);
803 __refresh_next_blkoff(sbi, curseg);
804 #ifdef CONFIG_F2FS_STAT_FS
805 sbi->block_count[curseg->alloc_type]++;
806 #endif
809 * SIT information should be updated before segment allocation,
810 * since SSR needs latest valid block information.
812 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
814 if (!__has_curseg_space(sbi, type))
815 sit_i->s_ops->allocate_segment(sbi, type, false);
817 locate_dirty_segment(sbi, old_cursegno);
818 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
819 mutex_unlock(&sit_i->sentry_lock);
821 if (p_type == NODE)
822 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
824 /* writeout dirty page into bdev */
825 submit_write_page(sbi, page, *new_blkaddr, p_type);
827 mutex_unlock(&curseg->curseg_mutex);
830 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
832 set_page_writeback(page);
833 submit_write_page(sbi, page, page->index, META);
836 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
837 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
839 struct f2fs_summary sum;
840 set_summary(&sum, nid, 0, 0);
841 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
844 void write_data_page(struct inode *inode, struct page *page,
845 struct dnode_of_data *dn, block_t old_blkaddr,
846 block_t *new_blkaddr)
848 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
849 struct f2fs_summary sum;
850 struct node_info ni;
852 BUG_ON(old_blkaddr == NULL_ADDR);
853 get_node_info(sbi, dn->nid, &ni);
854 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
856 do_write_page(sbi, page, old_blkaddr,
857 new_blkaddr, &sum, DATA);
860 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
861 block_t old_blk_addr)
863 submit_write_page(sbi, page, old_blk_addr, DATA);
866 void recover_data_page(struct f2fs_sb_info *sbi,
867 struct page *page, struct f2fs_summary *sum,
868 block_t old_blkaddr, block_t new_blkaddr)
870 struct sit_info *sit_i = SIT_I(sbi);
871 struct curseg_info *curseg;
872 unsigned int segno, old_cursegno;
873 struct seg_entry *se;
874 int type;
876 segno = GET_SEGNO(sbi, new_blkaddr);
877 se = get_seg_entry(sbi, segno);
878 type = se->type;
880 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
881 if (old_blkaddr == NULL_ADDR)
882 type = CURSEG_COLD_DATA;
883 else
884 type = CURSEG_WARM_DATA;
886 curseg = CURSEG_I(sbi, type);
888 mutex_lock(&curseg->curseg_mutex);
889 mutex_lock(&sit_i->sentry_lock);
891 old_cursegno = curseg->segno;
893 /* change the current segment */
894 if (segno != curseg->segno) {
895 curseg->next_segno = segno;
896 change_curseg(sbi, type, true);
899 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
900 (sbi->blocks_per_seg - 1);
901 __add_sum_entry(sbi, type, sum);
903 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
905 locate_dirty_segment(sbi, old_cursegno);
906 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
908 mutex_unlock(&sit_i->sentry_lock);
909 mutex_unlock(&curseg->curseg_mutex);
912 void rewrite_node_page(struct f2fs_sb_info *sbi,
913 struct page *page, struct f2fs_summary *sum,
914 block_t old_blkaddr, block_t new_blkaddr)
916 struct sit_info *sit_i = SIT_I(sbi);
917 int type = CURSEG_WARM_NODE;
918 struct curseg_info *curseg;
919 unsigned int segno, old_cursegno;
920 block_t next_blkaddr = next_blkaddr_of_node(page);
921 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
923 curseg = CURSEG_I(sbi, type);
925 mutex_lock(&curseg->curseg_mutex);
926 mutex_lock(&sit_i->sentry_lock);
928 segno = GET_SEGNO(sbi, new_blkaddr);
929 old_cursegno = curseg->segno;
931 /* change the current segment */
932 if (segno != curseg->segno) {
933 curseg->next_segno = segno;
934 change_curseg(sbi, type, true);
936 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
937 (sbi->blocks_per_seg - 1);
938 __add_sum_entry(sbi, type, sum);
940 /* change the current log to the next block addr in advance */
941 if (next_segno != segno) {
942 curseg->next_segno = next_segno;
943 change_curseg(sbi, type, true);
945 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
946 (sbi->blocks_per_seg - 1);
948 /* rewrite node page */
949 set_page_writeback(page);
950 submit_write_page(sbi, page, new_blkaddr, NODE);
951 f2fs_submit_bio(sbi, NODE, true);
952 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
954 locate_dirty_segment(sbi, old_cursegno);
955 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
957 mutex_unlock(&sit_i->sentry_lock);
958 mutex_unlock(&curseg->curseg_mutex);
961 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
963 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
964 struct curseg_info *seg_i;
965 unsigned char *kaddr;
966 struct page *page;
967 block_t start;
968 int i, j, offset;
970 start = start_sum_block(sbi);
972 page = get_meta_page(sbi, start++);
973 kaddr = (unsigned char *)page_address(page);
975 /* Step 1: restore nat cache */
976 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
977 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
979 /* Step 2: restore sit cache */
980 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
981 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
982 SUM_JOURNAL_SIZE);
983 offset = 2 * SUM_JOURNAL_SIZE;
985 /* Step 3: restore summary entries */
986 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
987 unsigned short blk_off;
988 unsigned int segno;
990 seg_i = CURSEG_I(sbi, i);
991 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
992 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
993 seg_i->next_segno = segno;
994 reset_curseg(sbi, i, 0);
995 seg_i->alloc_type = ckpt->alloc_type[i];
996 seg_i->next_blkoff = blk_off;
998 if (seg_i->alloc_type == SSR)
999 blk_off = sbi->blocks_per_seg;
1001 for (j = 0; j < blk_off; j++) {
1002 struct f2fs_summary *s;
1003 s = (struct f2fs_summary *)(kaddr + offset);
1004 seg_i->sum_blk->entries[j] = *s;
1005 offset += SUMMARY_SIZE;
1006 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1007 SUM_FOOTER_SIZE)
1008 continue;
1010 f2fs_put_page(page, 1);
1011 page = NULL;
1013 page = get_meta_page(sbi, start++);
1014 kaddr = (unsigned char *)page_address(page);
1015 offset = 0;
1018 f2fs_put_page(page, 1);
1019 return 0;
1022 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1024 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1025 struct f2fs_summary_block *sum;
1026 struct curseg_info *curseg;
1027 struct page *new;
1028 unsigned short blk_off;
1029 unsigned int segno = 0;
1030 block_t blk_addr = 0;
1032 /* get segment number and block addr */
1033 if (IS_DATASEG(type)) {
1034 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1035 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1036 CURSEG_HOT_DATA]);
1037 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1038 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1039 else
1040 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1041 } else {
1042 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1043 CURSEG_HOT_NODE]);
1044 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1045 CURSEG_HOT_NODE]);
1046 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1047 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1048 type - CURSEG_HOT_NODE);
1049 else
1050 blk_addr = GET_SUM_BLOCK(sbi, segno);
1053 new = get_meta_page(sbi, blk_addr);
1054 sum = (struct f2fs_summary_block *)page_address(new);
1056 if (IS_NODESEG(type)) {
1057 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1058 struct f2fs_summary *ns = &sum->entries[0];
1059 int i;
1060 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1061 ns->version = 0;
1062 ns->ofs_in_node = 0;
1064 } else {
1065 if (restore_node_summary(sbi, segno, sum)) {
1066 f2fs_put_page(new, 1);
1067 return -EINVAL;
1072 /* set uncompleted segment to curseg */
1073 curseg = CURSEG_I(sbi, type);
1074 mutex_lock(&curseg->curseg_mutex);
1075 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1076 curseg->next_segno = segno;
1077 reset_curseg(sbi, type, 0);
1078 curseg->alloc_type = ckpt->alloc_type[type];
1079 curseg->next_blkoff = blk_off;
1080 mutex_unlock(&curseg->curseg_mutex);
1081 f2fs_put_page(new, 1);
1082 return 0;
1085 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1087 int type = CURSEG_HOT_DATA;
1089 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1090 /* restore for compacted data summary */
1091 if (read_compacted_summaries(sbi))
1092 return -EINVAL;
1093 type = CURSEG_HOT_NODE;
1096 for (; type <= CURSEG_COLD_NODE; type++)
1097 if (read_normal_summaries(sbi, type))
1098 return -EINVAL;
1099 return 0;
1102 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1104 struct page *page;
1105 unsigned char *kaddr;
1106 struct f2fs_summary *summary;
1107 struct curseg_info *seg_i;
1108 int written_size = 0;
1109 int i, j;
1111 page = grab_meta_page(sbi, blkaddr++);
1112 kaddr = (unsigned char *)page_address(page);
1114 /* Step 1: write nat cache */
1115 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1116 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1117 written_size += SUM_JOURNAL_SIZE;
1119 /* Step 2: write sit cache */
1120 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1121 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1122 SUM_JOURNAL_SIZE);
1123 written_size += SUM_JOURNAL_SIZE;
1125 set_page_dirty(page);
1127 /* Step 3: write summary entries */
1128 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1129 unsigned short blkoff;
1130 seg_i = CURSEG_I(sbi, i);
1131 if (sbi->ckpt->alloc_type[i] == SSR)
1132 blkoff = sbi->blocks_per_seg;
1133 else
1134 blkoff = curseg_blkoff(sbi, i);
1136 for (j = 0; j < blkoff; j++) {
1137 if (!page) {
1138 page = grab_meta_page(sbi, blkaddr++);
1139 kaddr = (unsigned char *)page_address(page);
1140 written_size = 0;
1142 summary = (struct f2fs_summary *)(kaddr + written_size);
1143 *summary = seg_i->sum_blk->entries[j];
1144 written_size += SUMMARY_SIZE;
1145 set_page_dirty(page);
1147 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1148 SUM_FOOTER_SIZE)
1149 continue;
1151 f2fs_put_page(page, 1);
1152 page = NULL;
1155 if (page)
1156 f2fs_put_page(page, 1);
1159 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1160 block_t blkaddr, int type)
1162 int i, end;
1163 if (IS_DATASEG(type))
1164 end = type + NR_CURSEG_DATA_TYPE;
1165 else
1166 end = type + NR_CURSEG_NODE_TYPE;
1168 for (i = type; i < end; i++) {
1169 struct curseg_info *sum = CURSEG_I(sbi, i);
1170 mutex_lock(&sum->curseg_mutex);
1171 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1172 mutex_unlock(&sum->curseg_mutex);
1176 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1178 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1179 write_compacted_summaries(sbi, start_blk);
1180 else
1181 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1184 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1186 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1187 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1190 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1191 unsigned int val, int alloc)
1193 int i;
1195 if (type == NAT_JOURNAL) {
1196 for (i = 0; i < nats_in_cursum(sum); i++) {
1197 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1198 return i;
1200 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1201 return update_nats_in_cursum(sum, 1);
1202 } else if (type == SIT_JOURNAL) {
1203 for (i = 0; i < sits_in_cursum(sum); i++)
1204 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1205 return i;
1206 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1207 return update_sits_in_cursum(sum, 1);
1209 return -1;
1212 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1213 unsigned int segno)
1215 struct sit_info *sit_i = SIT_I(sbi);
1216 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1217 block_t blk_addr = sit_i->sit_base_addr + offset;
1219 check_seg_range(sbi, segno);
1221 /* calculate sit block address */
1222 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1223 blk_addr += sit_i->sit_blocks;
1225 return get_meta_page(sbi, blk_addr);
1228 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1229 unsigned int start)
1231 struct sit_info *sit_i = SIT_I(sbi);
1232 struct page *src_page, *dst_page;
1233 pgoff_t src_off, dst_off;
1234 void *src_addr, *dst_addr;
1236 src_off = current_sit_addr(sbi, start);
1237 dst_off = next_sit_addr(sbi, src_off);
1239 /* get current sit block page without lock */
1240 src_page = get_meta_page(sbi, src_off);
1241 dst_page = grab_meta_page(sbi, dst_off);
1242 BUG_ON(PageDirty(src_page));
1244 src_addr = page_address(src_page);
1245 dst_addr = page_address(dst_page);
1246 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1248 set_page_dirty(dst_page);
1249 f2fs_put_page(src_page, 1);
1251 set_to_next_sit(sit_i, start);
1253 return dst_page;
1256 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1258 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1259 struct f2fs_summary_block *sum = curseg->sum_blk;
1260 int i;
1263 * If the journal area in the current summary is full of sit entries,
1264 * all the sit entries will be flushed. Otherwise the sit entries
1265 * are not able to replace with newly hot sit entries.
1267 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1268 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1269 unsigned int segno;
1270 segno = le32_to_cpu(segno_in_journal(sum, i));
1271 __mark_sit_entry_dirty(sbi, segno);
1273 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1274 return 1;
1276 return 0;
1280 * CP calls this function, which flushes SIT entries including sit_journal,
1281 * and moves prefree segs to free segs.
1283 void flush_sit_entries(struct f2fs_sb_info *sbi)
1285 struct sit_info *sit_i = SIT_I(sbi);
1286 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1287 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1288 struct f2fs_summary_block *sum = curseg->sum_blk;
1289 unsigned long nsegs = TOTAL_SEGS(sbi);
1290 struct page *page = NULL;
1291 struct f2fs_sit_block *raw_sit = NULL;
1292 unsigned int start = 0, end = 0;
1293 unsigned int segno = -1;
1294 bool flushed;
1296 mutex_lock(&curseg->curseg_mutex);
1297 mutex_lock(&sit_i->sentry_lock);
1300 * "flushed" indicates whether sit entries in journal are flushed
1301 * to the SIT area or not.
1303 flushed = flush_sits_in_journal(sbi);
1305 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1306 struct seg_entry *se = get_seg_entry(sbi, segno);
1307 int sit_offset, offset;
1309 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1311 if (flushed)
1312 goto to_sit_page;
1314 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1315 if (offset >= 0) {
1316 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1317 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1318 goto flush_done;
1320 to_sit_page:
1321 if (!page || (start > segno) || (segno > end)) {
1322 if (page) {
1323 f2fs_put_page(page, 1);
1324 page = NULL;
1327 start = START_SEGNO(sit_i, segno);
1328 end = start + SIT_ENTRY_PER_BLOCK - 1;
1330 /* read sit block that will be updated */
1331 page = get_next_sit_page(sbi, start);
1332 raw_sit = page_address(page);
1335 /* udpate entry in SIT block */
1336 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1337 flush_done:
1338 __clear_bit(segno, bitmap);
1339 sit_i->dirty_sentries--;
1341 mutex_unlock(&sit_i->sentry_lock);
1342 mutex_unlock(&curseg->curseg_mutex);
1344 /* writeout last modified SIT block */
1345 f2fs_put_page(page, 1);
1347 set_prefree_as_free_segments(sbi);
1350 static int build_sit_info(struct f2fs_sb_info *sbi)
1352 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1353 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1354 struct sit_info *sit_i;
1355 unsigned int sit_segs, start;
1356 char *src_bitmap, *dst_bitmap;
1357 unsigned int bitmap_size;
1359 /* allocate memory for SIT information */
1360 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1361 if (!sit_i)
1362 return -ENOMEM;
1364 SM_I(sbi)->sit_info = sit_i;
1366 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1367 if (!sit_i->sentries)
1368 return -ENOMEM;
1370 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1371 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1372 if (!sit_i->dirty_sentries_bitmap)
1373 return -ENOMEM;
1375 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1376 sit_i->sentries[start].cur_valid_map
1377 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1378 sit_i->sentries[start].ckpt_valid_map
1379 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1380 if (!sit_i->sentries[start].cur_valid_map
1381 || !sit_i->sentries[start].ckpt_valid_map)
1382 return -ENOMEM;
1385 if (sbi->segs_per_sec > 1) {
1386 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1387 sizeof(struct sec_entry));
1388 if (!sit_i->sec_entries)
1389 return -ENOMEM;
1392 /* get information related with SIT */
1393 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1395 /* setup SIT bitmap from ckeckpoint pack */
1396 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1397 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1399 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1400 if (!dst_bitmap)
1401 return -ENOMEM;
1403 /* init SIT information */
1404 sit_i->s_ops = &default_salloc_ops;
1406 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1407 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1408 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1409 sit_i->sit_bitmap = dst_bitmap;
1410 sit_i->bitmap_size = bitmap_size;
1411 sit_i->dirty_sentries = 0;
1412 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1413 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1414 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1415 mutex_init(&sit_i->sentry_lock);
1416 return 0;
1419 static int build_free_segmap(struct f2fs_sb_info *sbi)
1421 struct f2fs_sm_info *sm_info = SM_I(sbi);
1422 struct free_segmap_info *free_i;
1423 unsigned int bitmap_size, sec_bitmap_size;
1425 /* allocate memory for free segmap information */
1426 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1427 if (!free_i)
1428 return -ENOMEM;
1430 SM_I(sbi)->free_info = free_i;
1432 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1433 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1434 if (!free_i->free_segmap)
1435 return -ENOMEM;
1437 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1438 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1439 if (!free_i->free_secmap)
1440 return -ENOMEM;
1442 /* set all segments as dirty temporarily */
1443 memset(free_i->free_segmap, 0xff, bitmap_size);
1444 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1446 /* init free segmap information */
1447 free_i->start_segno =
1448 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1449 free_i->free_segments = 0;
1450 free_i->free_sections = 0;
1451 rwlock_init(&free_i->segmap_lock);
1452 return 0;
1455 static int build_curseg(struct f2fs_sb_info *sbi)
1457 struct curseg_info *array;
1458 int i;
1460 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1461 if (!array)
1462 return -ENOMEM;
1464 SM_I(sbi)->curseg_array = array;
1466 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1467 mutex_init(&array[i].curseg_mutex);
1468 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1469 if (!array[i].sum_blk)
1470 return -ENOMEM;
1471 array[i].segno = NULL_SEGNO;
1472 array[i].next_blkoff = 0;
1474 return restore_curseg_summaries(sbi);
1477 static void build_sit_entries(struct f2fs_sb_info *sbi)
1479 struct sit_info *sit_i = SIT_I(sbi);
1480 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1481 struct f2fs_summary_block *sum = curseg->sum_blk;
1482 unsigned int start;
1484 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1485 struct seg_entry *se = &sit_i->sentries[start];
1486 struct f2fs_sit_block *sit_blk;
1487 struct f2fs_sit_entry sit;
1488 struct page *page;
1489 int i;
1491 mutex_lock(&curseg->curseg_mutex);
1492 for (i = 0; i < sits_in_cursum(sum); i++) {
1493 if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1494 sit = sit_in_journal(sum, i);
1495 mutex_unlock(&curseg->curseg_mutex);
1496 goto got_it;
1499 mutex_unlock(&curseg->curseg_mutex);
1500 page = get_current_sit_page(sbi, start);
1501 sit_blk = (struct f2fs_sit_block *)page_address(page);
1502 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1503 f2fs_put_page(page, 1);
1504 got_it:
1505 check_block_count(sbi, start, &sit);
1506 seg_info_from_raw_sit(se, &sit);
1507 if (sbi->segs_per_sec > 1) {
1508 struct sec_entry *e = get_sec_entry(sbi, start);
1509 e->valid_blocks += se->valid_blocks;
1514 static void init_free_segmap(struct f2fs_sb_info *sbi)
1516 unsigned int start;
1517 int type;
1519 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1520 struct seg_entry *sentry = get_seg_entry(sbi, start);
1521 if (!sentry->valid_blocks)
1522 __set_free(sbi, start);
1525 /* set use the current segments */
1526 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1527 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1528 __set_test_and_inuse(sbi, curseg_t->segno);
1532 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1534 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1535 struct free_segmap_info *free_i = FREE_I(sbi);
1536 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1537 unsigned short valid_blocks;
1539 while (1) {
1540 /* find dirty segment based on free segmap */
1541 segno = find_next_inuse(free_i, total_segs, offset);
1542 if (segno >= total_segs)
1543 break;
1544 offset = segno + 1;
1545 valid_blocks = get_valid_blocks(sbi, segno, 0);
1546 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1547 continue;
1548 mutex_lock(&dirty_i->seglist_lock);
1549 __locate_dirty_segment(sbi, segno, DIRTY);
1550 mutex_unlock(&dirty_i->seglist_lock);
1554 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1556 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1557 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1559 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1560 if (!dirty_i->victim_secmap)
1561 return -ENOMEM;
1562 return 0;
1565 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1567 struct dirty_seglist_info *dirty_i;
1568 unsigned int bitmap_size, i;
1570 /* allocate memory for dirty segments list information */
1571 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1572 if (!dirty_i)
1573 return -ENOMEM;
1575 SM_I(sbi)->dirty_info = dirty_i;
1576 mutex_init(&dirty_i->seglist_lock);
1578 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1580 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1581 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1582 if (!dirty_i->dirty_segmap[i])
1583 return -ENOMEM;
1586 init_dirty_segmap(sbi);
1587 return init_victim_secmap(sbi);
1591 * Update min, max modified time for cost-benefit GC algorithm
1593 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1595 struct sit_info *sit_i = SIT_I(sbi);
1596 unsigned int segno;
1598 mutex_lock(&sit_i->sentry_lock);
1600 sit_i->min_mtime = LLONG_MAX;
1602 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1603 unsigned int i;
1604 unsigned long long mtime = 0;
1606 for (i = 0; i < sbi->segs_per_sec; i++)
1607 mtime += get_seg_entry(sbi, segno + i)->mtime;
1609 mtime = div_u64(mtime, sbi->segs_per_sec);
1611 if (sit_i->min_mtime > mtime)
1612 sit_i->min_mtime = mtime;
1614 sit_i->max_mtime = get_mtime(sbi);
1615 mutex_unlock(&sit_i->sentry_lock);
1618 int build_segment_manager(struct f2fs_sb_info *sbi)
1620 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1621 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1622 struct f2fs_sm_info *sm_info;
1623 int err;
1625 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1626 if (!sm_info)
1627 return -ENOMEM;
1629 /* init sm info */
1630 sbi->sm_info = sm_info;
1631 INIT_LIST_HEAD(&sm_info->wblist_head);
1632 spin_lock_init(&sm_info->wblist_lock);
1633 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1634 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1635 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1636 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1637 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1638 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1639 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1641 err = build_sit_info(sbi);
1642 if (err)
1643 return err;
1644 err = build_free_segmap(sbi);
1645 if (err)
1646 return err;
1647 err = build_curseg(sbi);
1648 if (err)
1649 return err;
1651 /* reinit free segmap based on SIT */
1652 build_sit_entries(sbi);
1654 init_free_segmap(sbi);
1655 err = build_dirty_segmap(sbi);
1656 if (err)
1657 return err;
1659 init_min_max_mtime(sbi);
1660 return 0;
1663 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1664 enum dirty_type dirty_type)
1666 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1668 mutex_lock(&dirty_i->seglist_lock);
1669 kfree(dirty_i->dirty_segmap[dirty_type]);
1670 dirty_i->nr_dirty[dirty_type] = 0;
1671 mutex_unlock(&dirty_i->seglist_lock);
1674 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1676 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1677 kfree(dirty_i->victim_secmap);
1680 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1682 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1683 int i;
1685 if (!dirty_i)
1686 return;
1688 /* discard pre-free/dirty segments list */
1689 for (i = 0; i < NR_DIRTY_TYPE; i++)
1690 discard_dirty_segmap(sbi, i);
1692 destroy_victim_secmap(sbi);
1693 SM_I(sbi)->dirty_info = NULL;
1694 kfree(dirty_i);
1697 static void destroy_curseg(struct f2fs_sb_info *sbi)
1699 struct curseg_info *array = SM_I(sbi)->curseg_array;
1700 int i;
1702 if (!array)
1703 return;
1704 SM_I(sbi)->curseg_array = NULL;
1705 for (i = 0; i < NR_CURSEG_TYPE; i++)
1706 kfree(array[i].sum_blk);
1707 kfree(array);
1710 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1712 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1713 if (!free_i)
1714 return;
1715 SM_I(sbi)->free_info = NULL;
1716 kfree(free_i->free_segmap);
1717 kfree(free_i->free_secmap);
1718 kfree(free_i);
1721 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1723 struct sit_info *sit_i = SIT_I(sbi);
1724 unsigned int start;
1726 if (!sit_i)
1727 return;
1729 if (sit_i->sentries) {
1730 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1731 kfree(sit_i->sentries[start].cur_valid_map);
1732 kfree(sit_i->sentries[start].ckpt_valid_map);
1735 vfree(sit_i->sentries);
1736 vfree(sit_i->sec_entries);
1737 kfree(sit_i->dirty_sentries_bitmap);
1739 SM_I(sbi)->sit_info = NULL;
1740 kfree(sit_i->sit_bitmap);
1741 kfree(sit_i);
1744 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1746 struct f2fs_sm_info *sm_info = SM_I(sbi);
1747 destroy_dirty_segmap(sbi);
1748 destroy_curseg(sbi);
1749 destroy_free_segmap(sbi);
1750 destroy_sit_info(sbi);
1751 sbi->sm_info = NULL;
1752 kfree(sm_info);