Linux 3.12.28
[linux/fpc-iii.git] / fs / fs-writeback.c
blob5bbec31440a47d3bee547074dd52a2ab4f6b1918
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
32 * 4MB minimal write chunk size
34 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37 * Passed into wb_writeback(), essentially a subset of writeback_control
39 struct wb_writeback_work {
40 long nr_pages;
41 struct super_block *sb;
42 unsigned long *older_than_this;
43 enum writeback_sync_modes sync_mode;
44 unsigned int tagged_writepages:1;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
48 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
49 enum wb_reason reason; /* why was writeback initiated? */
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
55 /**
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
59 * Determine whether there is writeback waiting to be handled against a
60 * backing device.
62 int writeback_in_progress(struct backing_dev_info *bdi)
64 return test_bit(BDI_writeback_running, &bdi->state);
66 EXPORT_SYMBOL(writeback_in_progress);
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 struct super_block *sb = inode->i_sb;
72 if (sb_is_blkdev_sb(sb))
73 return inode->i_mapping->backing_dev_info;
75 return sb->s_bdi;
78 static inline struct inode *wb_inode(struct list_head *head)
80 return list_entry(head, struct inode, i_wb_list);
84 * Include the creation of the trace points after defining the
85 * wb_writeback_work structure and inline functions so that the definition
86 * remains local to this file.
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
91 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
93 spin_lock_bh(&bdi->wb_lock);
94 if (test_bit(BDI_registered, &bdi->state))
95 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
96 spin_unlock_bh(&bdi->wb_lock);
99 static void bdi_queue_work(struct backing_dev_info *bdi,
100 struct wb_writeback_work *work)
102 trace_writeback_queue(bdi, work);
104 spin_lock_bh(&bdi->wb_lock);
105 if (!test_bit(BDI_registered, &bdi->state)) {
106 if (work->done)
107 complete(work->done);
108 goto out_unlock;
110 list_add_tail(&work->list, &bdi->work_list);
111 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
112 out_unlock:
113 spin_unlock_bh(&bdi->wb_lock);
116 static void
117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
118 bool range_cyclic, enum wb_reason reason)
120 struct wb_writeback_work *work;
123 * This is WB_SYNC_NONE writeback, so if allocation fails just
124 * wakeup the thread for old dirty data writeback
126 work = kzalloc(sizeof(*work), GFP_ATOMIC);
127 if (!work) {
128 trace_writeback_nowork(bdi);
129 bdi_wakeup_thread(bdi);
130 return;
133 work->sync_mode = WB_SYNC_NONE;
134 work->nr_pages = nr_pages;
135 work->range_cyclic = range_cyclic;
136 work->reason = reason;
138 bdi_queue_work(bdi, work);
142 * bdi_start_writeback - start writeback
143 * @bdi: the backing device to write from
144 * @nr_pages: the number of pages to write
145 * @reason: reason why some writeback work was initiated
147 * Description:
148 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
149 * started when this function returns, we make no guarantees on
150 * completion. Caller need not hold sb s_umount semaphore.
153 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
154 enum wb_reason reason)
156 __bdi_start_writeback(bdi, nr_pages, true, reason);
160 * bdi_start_background_writeback - start background writeback
161 * @bdi: the backing device to write from
163 * Description:
164 * This makes sure WB_SYNC_NONE background writeback happens. When
165 * this function returns, it is only guaranteed that for given BDI
166 * some IO is happening if we are over background dirty threshold.
167 * Caller need not hold sb s_umount semaphore.
169 void bdi_start_background_writeback(struct backing_dev_info *bdi)
172 * We just wake up the flusher thread. It will perform background
173 * writeback as soon as there is no other work to do.
175 trace_writeback_wake_background(bdi);
176 bdi_wakeup_thread(bdi);
180 * Remove the inode from the writeback list it is on.
182 void inode_wb_list_del(struct inode *inode)
184 struct backing_dev_info *bdi = inode_to_bdi(inode);
186 spin_lock(&bdi->wb.list_lock);
187 list_del_init(&inode->i_wb_list);
188 spin_unlock(&bdi->wb.list_lock);
192 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
193 * furthest end of its superblock's dirty-inode list.
195 * Before stamping the inode's ->dirtied_when, we check to see whether it is
196 * already the most-recently-dirtied inode on the b_dirty list. If that is
197 * the case then the inode must have been redirtied while it was being written
198 * out and we don't reset its dirtied_when.
200 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
202 assert_spin_locked(&wb->list_lock);
203 if (!list_empty(&wb->b_dirty)) {
204 struct inode *tail;
206 tail = wb_inode(wb->b_dirty.next);
207 if (time_before(inode->dirtied_when, tail->dirtied_when))
208 inode->dirtied_when = jiffies;
210 list_move(&inode->i_wb_list, &wb->b_dirty);
214 * requeue inode for re-scanning after bdi->b_io list is exhausted.
216 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
218 assert_spin_locked(&wb->list_lock);
219 list_move(&inode->i_wb_list, &wb->b_more_io);
222 static void inode_sync_complete(struct inode *inode)
224 inode->i_state &= ~I_SYNC;
225 /* If inode is clean an unused, put it into LRU now... */
226 inode_add_lru(inode);
227 /* Waiters must see I_SYNC cleared before being woken up */
228 smp_mb();
229 wake_up_bit(&inode->i_state, __I_SYNC);
232 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
234 bool ret = time_after(inode->dirtied_when, t);
235 #ifndef CONFIG_64BIT
237 * For inodes being constantly redirtied, dirtied_when can get stuck.
238 * It _appears_ to be in the future, but is actually in distant past.
239 * This test is necessary to prevent such wrapped-around relative times
240 * from permanently stopping the whole bdi writeback.
242 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
243 #endif
244 return ret;
248 * Move expired (dirtied before work->older_than_this) dirty inodes from
249 * @delaying_queue to @dispatch_queue.
251 static int move_expired_inodes(struct list_head *delaying_queue,
252 struct list_head *dispatch_queue,
253 struct wb_writeback_work *work)
255 LIST_HEAD(tmp);
256 struct list_head *pos, *node;
257 struct super_block *sb = NULL;
258 struct inode *inode;
259 int do_sb_sort = 0;
260 int moved = 0;
262 while (!list_empty(delaying_queue)) {
263 inode = wb_inode(delaying_queue->prev);
264 if (work->older_than_this &&
265 inode_dirtied_after(inode, *work->older_than_this))
266 break;
267 list_move(&inode->i_wb_list, &tmp);
268 moved++;
269 if (sb_is_blkdev_sb(inode->i_sb))
270 continue;
271 if (sb && sb != inode->i_sb)
272 do_sb_sort = 1;
273 sb = inode->i_sb;
276 /* just one sb in list, splice to dispatch_queue and we're done */
277 if (!do_sb_sort) {
278 list_splice(&tmp, dispatch_queue);
279 goto out;
282 /* Move inodes from one superblock together */
283 while (!list_empty(&tmp)) {
284 sb = wb_inode(tmp.prev)->i_sb;
285 list_for_each_prev_safe(pos, node, &tmp) {
286 inode = wb_inode(pos);
287 if (inode->i_sb == sb)
288 list_move(&inode->i_wb_list, dispatch_queue);
291 out:
292 return moved;
296 * Queue all expired dirty inodes for io, eldest first.
297 * Before
298 * newly dirtied b_dirty b_io b_more_io
299 * =============> gf edc BA
300 * After
301 * newly dirtied b_dirty b_io b_more_io
302 * =============> g fBAedc
304 * +--> dequeue for IO
306 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
308 int moved;
309 assert_spin_locked(&wb->list_lock);
310 list_splice_init(&wb->b_more_io, &wb->b_io);
311 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
312 trace_writeback_queue_io(wb, work, moved);
315 static int write_inode(struct inode *inode, struct writeback_control *wbc)
317 int ret;
319 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
320 trace_writeback_write_inode_start(inode, wbc);
321 ret = inode->i_sb->s_op->write_inode(inode, wbc);
322 trace_writeback_write_inode(inode, wbc);
323 return ret;
325 return 0;
329 * Wait for writeback on an inode to complete. Called with i_lock held.
330 * Caller must make sure inode cannot go away when we drop i_lock.
332 static void __inode_wait_for_writeback(struct inode *inode)
333 __releases(inode->i_lock)
334 __acquires(inode->i_lock)
336 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337 wait_queue_head_t *wqh;
339 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340 while (inode->i_state & I_SYNC) {
341 spin_unlock(&inode->i_lock);
342 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
343 spin_lock(&inode->i_lock);
348 * Wait for writeback on an inode to complete. Caller must have inode pinned.
350 void inode_wait_for_writeback(struct inode *inode)
352 spin_lock(&inode->i_lock);
353 __inode_wait_for_writeback(inode);
354 spin_unlock(&inode->i_lock);
358 * Sleep until I_SYNC is cleared. This function must be called with i_lock
359 * held and drops it. It is aimed for callers not holding any inode reference
360 * so once i_lock is dropped, inode can go away.
362 static void inode_sleep_on_writeback(struct inode *inode)
363 __releases(inode->i_lock)
365 DEFINE_WAIT(wait);
366 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
367 int sleep;
369 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
370 sleep = inode->i_state & I_SYNC;
371 spin_unlock(&inode->i_lock);
372 if (sleep)
373 schedule();
374 finish_wait(wqh, &wait);
378 * Find proper writeback list for the inode depending on its current state and
379 * possibly also change of its state while we were doing writeback. Here we
380 * handle things such as livelock prevention or fairness of writeback among
381 * inodes. This function can be called only by flusher thread - noone else
382 * processes all inodes in writeback lists and requeueing inodes behind flusher
383 * thread's back can have unexpected consequences.
385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
386 struct writeback_control *wbc)
388 if (inode->i_state & I_FREEING)
389 return;
392 * Sync livelock prevention. Each inode is tagged and synced in one
393 * shot. If still dirty, it will be redirty_tail()'ed below. Update
394 * the dirty time to prevent enqueue and sync it again.
396 if ((inode->i_state & I_DIRTY) &&
397 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
398 inode->dirtied_when = jiffies;
400 if (wbc->pages_skipped) {
402 * writeback is not making progress due to locked
403 * buffers. Skip this inode for now.
405 redirty_tail(inode, wb);
406 return;
409 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
411 * We didn't write back all the pages. nfs_writepages()
412 * sometimes bales out without doing anything.
414 if (wbc->nr_to_write <= 0) {
415 /* Slice used up. Queue for next turn. */
416 requeue_io(inode, wb);
417 } else {
419 * Writeback blocked by something other than
420 * congestion. Delay the inode for some time to
421 * avoid spinning on the CPU (100% iowait)
422 * retrying writeback of the dirty page/inode
423 * that cannot be performed immediately.
425 redirty_tail(inode, wb);
427 } else if (inode->i_state & I_DIRTY) {
429 * Filesystems can dirty the inode during writeback operations,
430 * such as delayed allocation during submission or metadata
431 * updates after data IO completion.
433 redirty_tail(inode, wb);
434 } else {
435 /* The inode is clean. Remove from writeback lists. */
436 list_del_init(&inode->i_wb_list);
441 * Write out an inode and its dirty pages. Do not update the writeback list
442 * linkage. That is left to the caller. The caller is also responsible for
443 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
445 static int
446 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
448 struct address_space *mapping = inode->i_mapping;
449 long nr_to_write = wbc->nr_to_write;
450 unsigned dirty;
451 int ret;
453 WARN_ON(!(inode->i_state & I_SYNC));
455 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
457 ret = do_writepages(mapping, wbc);
460 * Make sure to wait on the data before writing out the metadata.
461 * This is important for filesystems that modify metadata on data
462 * I/O completion. We don't do it for sync(2) writeback because it has a
463 * separate, external IO completion path and ->sync_fs for guaranteeing
464 * inode metadata is written back correctly.
466 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
467 int err = filemap_fdatawait(mapping);
468 if (ret == 0)
469 ret = err;
473 * Some filesystems may redirty the inode during the writeback
474 * due to delalloc, clear dirty metadata flags right before
475 * write_inode()
477 spin_lock(&inode->i_lock);
478 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
479 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
480 inode->i_state &= ~I_DIRTY_PAGES;
481 dirty = inode->i_state & I_DIRTY;
482 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
483 spin_unlock(&inode->i_lock);
484 /* Don't write the inode if only I_DIRTY_PAGES was set */
485 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
486 int err = write_inode(inode, wbc);
487 if (ret == 0)
488 ret = err;
490 trace_writeback_single_inode(inode, wbc, nr_to_write);
491 return ret;
495 * Write out an inode's dirty pages. Either the caller has an active reference
496 * on the inode or the inode has I_WILL_FREE set.
498 * This function is designed to be called for writing back one inode which
499 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
500 * and does more profound writeback list handling in writeback_sb_inodes().
502 static int
503 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
504 struct writeback_control *wbc)
506 int ret = 0;
508 spin_lock(&inode->i_lock);
509 if (!atomic_read(&inode->i_count))
510 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
511 else
512 WARN_ON(inode->i_state & I_WILL_FREE);
514 if (inode->i_state & I_SYNC) {
515 if (wbc->sync_mode != WB_SYNC_ALL)
516 goto out;
518 * It's a data-integrity sync. We must wait. Since callers hold
519 * inode reference or inode has I_WILL_FREE set, it cannot go
520 * away under us.
522 __inode_wait_for_writeback(inode);
524 WARN_ON(inode->i_state & I_SYNC);
526 * Skip inode if it is clean and we have no outstanding writeback in
527 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
528 * function since flusher thread may be doing for example sync in
529 * parallel and if we move the inode, it could get skipped. So here we
530 * make sure inode is on some writeback list and leave it there unless
531 * we have completely cleaned the inode.
533 if (!(inode->i_state & I_DIRTY) &&
534 (wbc->sync_mode != WB_SYNC_ALL ||
535 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
536 goto out;
537 inode->i_state |= I_SYNC;
538 spin_unlock(&inode->i_lock);
540 ret = __writeback_single_inode(inode, wbc);
542 spin_lock(&wb->list_lock);
543 spin_lock(&inode->i_lock);
545 * If inode is clean, remove it from writeback lists. Otherwise don't
546 * touch it. See comment above for explanation.
548 if (!(inode->i_state & I_DIRTY))
549 list_del_init(&inode->i_wb_list);
550 spin_unlock(&wb->list_lock);
551 inode_sync_complete(inode);
552 out:
553 spin_unlock(&inode->i_lock);
554 return ret;
557 static long writeback_chunk_size(struct backing_dev_info *bdi,
558 struct wb_writeback_work *work)
560 long pages;
563 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
564 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
565 * here avoids calling into writeback_inodes_wb() more than once.
567 * The intended call sequence for WB_SYNC_ALL writeback is:
569 * wb_writeback()
570 * writeback_sb_inodes() <== called only once
571 * write_cache_pages() <== called once for each inode
572 * (quickly) tag currently dirty pages
573 * (maybe slowly) sync all tagged pages
575 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
576 pages = LONG_MAX;
577 else {
578 pages = min(bdi->avg_write_bandwidth / 2,
579 global_dirty_limit / DIRTY_SCOPE);
580 pages = min(pages, work->nr_pages);
581 pages = round_down(pages + MIN_WRITEBACK_PAGES,
582 MIN_WRITEBACK_PAGES);
585 return pages;
589 * Write a portion of b_io inodes which belong to @sb.
591 * Return the number of pages and/or inodes written.
593 static long writeback_sb_inodes(struct super_block *sb,
594 struct bdi_writeback *wb,
595 struct wb_writeback_work *work)
597 struct writeback_control wbc = {
598 .sync_mode = work->sync_mode,
599 .tagged_writepages = work->tagged_writepages,
600 .for_kupdate = work->for_kupdate,
601 .for_background = work->for_background,
602 .for_sync = work->for_sync,
603 .range_cyclic = work->range_cyclic,
604 .range_start = 0,
605 .range_end = LLONG_MAX,
607 unsigned long start_time = jiffies;
608 long write_chunk;
609 long wrote = 0; /* count both pages and inodes */
611 while (!list_empty(&wb->b_io)) {
612 struct inode *inode = wb_inode(wb->b_io.prev);
614 if (inode->i_sb != sb) {
615 if (work->sb) {
617 * We only want to write back data for this
618 * superblock, move all inodes not belonging
619 * to it back onto the dirty list.
621 redirty_tail(inode, wb);
622 continue;
626 * The inode belongs to a different superblock.
627 * Bounce back to the caller to unpin this and
628 * pin the next superblock.
630 break;
634 * Don't bother with new inodes or inodes being freed, first
635 * kind does not need periodic writeout yet, and for the latter
636 * kind writeout is handled by the freer.
638 spin_lock(&inode->i_lock);
639 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
640 spin_unlock(&inode->i_lock);
641 redirty_tail(inode, wb);
642 continue;
644 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
646 * If this inode is locked for writeback and we are not
647 * doing writeback-for-data-integrity, move it to
648 * b_more_io so that writeback can proceed with the
649 * other inodes on s_io.
651 * We'll have another go at writing back this inode
652 * when we completed a full scan of b_io.
654 spin_unlock(&inode->i_lock);
655 requeue_io(inode, wb);
656 trace_writeback_sb_inodes_requeue(inode);
657 continue;
659 spin_unlock(&wb->list_lock);
662 * We already requeued the inode if it had I_SYNC set and we
663 * are doing WB_SYNC_NONE writeback. So this catches only the
664 * WB_SYNC_ALL case.
666 if (inode->i_state & I_SYNC) {
667 /* Wait for I_SYNC. This function drops i_lock... */
668 inode_sleep_on_writeback(inode);
669 /* Inode may be gone, start again */
670 spin_lock(&wb->list_lock);
671 continue;
673 inode->i_state |= I_SYNC;
674 spin_unlock(&inode->i_lock);
676 write_chunk = writeback_chunk_size(wb->bdi, work);
677 wbc.nr_to_write = write_chunk;
678 wbc.pages_skipped = 0;
681 * We use I_SYNC to pin the inode in memory. While it is set
682 * evict_inode() will wait so the inode cannot be freed.
684 __writeback_single_inode(inode, &wbc);
686 work->nr_pages -= write_chunk - wbc.nr_to_write;
687 wrote += write_chunk - wbc.nr_to_write;
688 spin_lock(&wb->list_lock);
689 spin_lock(&inode->i_lock);
690 if (!(inode->i_state & I_DIRTY))
691 wrote++;
692 requeue_inode(inode, wb, &wbc);
693 inode_sync_complete(inode);
694 spin_unlock(&inode->i_lock);
695 cond_resched_lock(&wb->list_lock);
697 * bail out to wb_writeback() often enough to check
698 * background threshold and other termination conditions.
700 if (wrote) {
701 if (time_is_before_jiffies(start_time + HZ / 10UL))
702 break;
703 if (work->nr_pages <= 0)
704 break;
707 return wrote;
710 static long __writeback_inodes_wb(struct bdi_writeback *wb,
711 struct wb_writeback_work *work)
713 unsigned long start_time = jiffies;
714 long wrote = 0;
716 while (!list_empty(&wb->b_io)) {
717 struct inode *inode = wb_inode(wb->b_io.prev);
718 struct super_block *sb = inode->i_sb;
720 if (!grab_super_passive(sb)) {
722 * grab_super_passive() may fail consistently due to
723 * s_umount being grabbed by someone else. Don't use
724 * requeue_io() to avoid busy retrying the inode/sb.
726 redirty_tail(inode, wb);
727 continue;
729 wrote += writeback_sb_inodes(sb, wb, work);
730 drop_super(sb);
732 /* refer to the same tests at the end of writeback_sb_inodes */
733 if (wrote) {
734 if (time_is_before_jiffies(start_time + HZ / 10UL))
735 break;
736 if (work->nr_pages <= 0)
737 break;
740 /* Leave any unwritten inodes on b_io */
741 return wrote;
744 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
745 enum wb_reason reason)
747 struct wb_writeback_work work = {
748 .nr_pages = nr_pages,
749 .sync_mode = WB_SYNC_NONE,
750 .range_cyclic = 1,
751 .reason = reason,
754 spin_lock(&wb->list_lock);
755 if (list_empty(&wb->b_io))
756 queue_io(wb, &work);
757 __writeback_inodes_wb(wb, &work);
758 spin_unlock(&wb->list_lock);
760 return nr_pages - work.nr_pages;
763 static bool over_bground_thresh(struct backing_dev_info *bdi)
765 unsigned long background_thresh, dirty_thresh;
767 global_dirty_limits(&background_thresh, &dirty_thresh);
769 if (global_page_state(NR_FILE_DIRTY) +
770 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
771 return true;
773 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
774 bdi_dirty_limit(bdi, background_thresh))
775 return true;
777 return false;
781 * Called under wb->list_lock. If there are multiple wb per bdi,
782 * only the flusher working on the first wb should do it.
784 static void wb_update_bandwidth(struct bdi_writeback *wb,
785 unsigned long start_time)
787 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
791 * Explicit flushing or periodic writeback of "old" data.
793 * Define "old": the first time one of an inode's pages is dirtied, we mark the
794 * dirtying-time in the inode's address_space. So this periodic writeback code
795 * just walks the superblock inode list, writing back any inodes which are
796 * older than a specific point in time.
798 * Try to run once per dirty_writeback_interval. But if a writeback event
799 * takes longer than a dirty_writeback_interval interval, then leave a
800 * one-second gap.
802 * older_than_this takes precedence over nr_to_write. So we'll only write back
803 * all dirty pages if they are all attached to "old" mappings.
805 static long wb_writeback(struct bdi_writeback *wb,
806 struct wb_writeback_work *work)
808 unsigned long wb_start = jiffies;
809 long nr_pages = work->nr_pages;
810 unsigned long oldest_jif;
811 struct inode *inode;
812 long progress;
814 oldest_jif = jiffies;
815 work->older_than_this = &oldest_jif;
817 spin_lock(&wb->list_lock);
818 for (;;) {
820 * Stop writeback when nr_pages has been consumed
822 if (work->nr_pages <= 0)
823 break;
826 * Background writeout and kupdate-style writeback may
827 * run forever. Stop them if there is other work to do
828 * so that e.g. sync can proceed. They'll be restarted
829 * after the other works are all done.
831 if ((work->for_background || work->for_kupdate) &&
832 !list_empty(&wb->bdi->work_list))
833 break;
836 * For background writeout, stop when we are below the
837 * background dirty threshold
839 if (work->for_background && !over_bground_thresh(wb->bdi))
840 break;
843 * Kupdate and background works are special and we want to
844 * include all inodes that need writing. Livelock avoidance is
845 * handled by these works yielding to any other work so we are
846 * safe.
848 if (work->for_kupdate) {
849 oldest_jif = jiffies -
850 msecs_to_jiffies(dirty_expire_interval * 10);
851 } else if (work->for_background)
852 oldest_jif = jiffies;
854 trace_writeback_start(wb->bdi, work);
855 if (list_empty(&wb->b_io))
856 queue_io(wb, work);
857 if (work->sb)
858 progress = writeback_sb_inodes(work->sb, wb, work);
859 else
860 progress = __writeback_inodes_wb(wb, work);
861 trace_writeback_written(wb->bdi, work);
863 wb_update_bandwidth(wb, wb_start);
866 * Did we write something? Try for more
868 * Dirty inodes are moved to b_io for writeback in batches.
869 * The completion of the current batch does not necessarily
870 * mean the overall work is done. So we keep looping as long
871 * as made some progress on cleaning pages or inodes.
873 if (progress)
874 continue;
876 * No more inodes for IO, bail
878 if (list_empty(&wb->b_more_io))
879 break;
881 * Nothing written. Wait for some inode to
882 * become available for writeback. Otherwise
883 * we'll just busyloop.
885 if (!list_empty(&wb->b_more_io)) {
886 trace_writeback_wait(wb->bdi, work);
887 inode = wb_inode(wb->b_more_io.prev);
888 spin_lock(&inode->i_lock);
889 spin_unlock(&wb->list_lock);
890 /* This function drops i_lock... */
891 inode_sleep_on_writeback(inode);
892 spin_lock(&wb->list_lock);
895 spin_unlock(&wb->list_lock);
897 return nr_pages - work->nr_pages;
901 * Return the next wb_writeback_work struct that hasn't been processed yet.
903 static struct wb_writeback_work *
904 get_next_work_item(struct backing_dev_info *bdi)
906 struct wb_writeback_work *work = NULL;
908 spin_lock_bh(&bdi->wb_lock);
909 if (!list_empty(&bdi->work_list)) {
910 work = list_entry(bdi->work_list.next,
911 struct wb_writeback_work, list);
912 list_del_init(&work->list);
914 spin_unlock_bh(&bdi->wb_lock);
915 return work;
919 * Add in the number of potentially dirty inodes, because each inode
920 * write can dirty pagecache in the underlying blockdev.
922 static unsigned long get_nr_dirty_pages(void)
924 return global_page_state(NR_FILE_DIRTY) +
925 global_page_state(NR_UNSTABLE_NFS) +
926 get_nr_dirty_inodes();
929 static long wb_check_background_flush(struct bdi_writeback *wb)
931 if (over_bground_thresh(wb->bdi)) {
933 struct wb_writeback_work work = {
934 .nr_pages = LONG_MAX,
935 .sync_mode = WB_SYNC_NONE,
936 .for_background = 1,
937 .range_cyclic = 1,
938 .reason = WB_REASON_BACKGROUND,
941 return wb_writeback(wb, &work);
944 return 0;
947 static long wb_check_old_data_flush(struct bdi_writeback *wb)
949 unsigned long expired;
950 long nr_pages;
953 * When set to zero, disable periodic writeback
955 if (!dirty_writeback_interval)
956 return 0;
958 expired = wb->last_old_flush +
959 msecs_to_jiffies(dirty_writeback_interval * 10);
960 if (time_before(jiffies, expired))
961 return 0;
963 wb->last_old_flush = jiffies;
964 nr_pages = get_nr_dirty_pages();
966 if (nr_pages) {
967 struct wb_writeback_work work = {
968 .nr_pages = nr_pages,
969 .sync_mode = WB_SYNC_NONE,
970 .for_kupdate = 1,
971 .range_cyclic = 1,
972 .reason = WB_REASON_PERIODIC,
975 return wb_writeback(wb, &work);
978 return 0;
982 * Retrieve work items and do the writeback they describe
984 static long wb_do_writeback(struct bdi_writeback *wb)
986 struct backing_dev_info *bdi = wb->bdi;
987 struct wb_writeback_work *work;
988 long wrote = 0;
990 set_bit(BDI_writeback_running, &wb->bdi->state);
991 while ((work = get_next_work_item(bdi)) != NULL) {
993 trace_writeback_exec(bdi, work);
995 wrote += wb_writeback(wb, work);
998 * Notify the caller of completion if this is a synchronous
999 * work item, otherwise just free it.
1001 if (work->done)
1002 complete(work->done);
1003 else
1004 kfree(work);
1008 * Check for periodic writeback, kupdated() style
1010 wrote += wb_check_old_data_flush(wb);
1011 wrote += wb_check_background_flush(wb);
1012 clear_bit(BDI_writeback_running, &wb->bdi->state);
1014 return wrote;
1018 * Handle writeback of dirty data for the device backed by this bdi. Also
1019 * reschedules periodically and does kupdated style flushing.
1021 void bdi_writeback_workfn(struct work_struct *work)
1023 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1024 struct bdi_writeback, dwork);
1025 struct backing_dev_info *bdi = wb->bdi;
1026 long pages_written;
1028 set_worker_desc("flush-%s", dev_name(bdi->dev));
1029 current->flags |= PF_SWAPWRITE;
1031 if (likely(!current_is_workqueue_rescuer() ||
1032 !test_bit(BDI_registered, &bdi->state))) {
1034 * The normal path. Keep writing back @bdi until its
1035 * work_list is empty. Note that this path is also taken
1036 * if @bdi is shutting down even when we're running off the
1037 * rescuer as work_list needs to be drained.
1039 do {
1040 pages_written = wb_do_writeback(wb);
1041 trace_writeback_pages_written(pages_written);
1042 } while (!list_empty(&bdi->work_list));
1043 } else {
1045 * bdi_wq can't get enough workers and we're running off
1046 * the emergency worker. Don't hog it. Hopefully, 1024 is
1047 * enough for efficient IO.
1049 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1050 WB_REASON_FORKER_THREAD);
1051 trace_writeback_pages_written(pages_written);
1054 if (!list_empty(&bdi->work_list))
1055 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1056 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1057 bdi_wakeup_thread_delayed(bdi);
1059 current->flags &= ~PF_SWAPWRITE;
1063 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1064 * the whole world.
1066 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1068 struct backing_dev_info *bdi;
1070 if (!nr_pages)
1071 nr_pages = get_nr_dirty_pages();
1073 rcu_read_lock();
1074 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1075 if (!bdi_has_dirty_io(bdi))
1076 continue;
1077 __bdi_start_writeback(bdi, nr_pages, false, reason);
1079 rcu_read_unlock();
1082 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1084 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1085 struct dentry *dentry;
1086 const char *name = "?";
1088 dentry = d_find_alias(inode);
1089 if (dentry) {
1090 spin_lock(&dentry->d_lock);
1091 name = (const char *) dentry->d_name.name;
1093 printk(KERN_DEBUG
1094 "%s(%d): dirtied inode %lu (%s) on %s\n",
1095 current->comm, task_pid_nr(current), inode->i_ino,
1096 name, inode->i_sb->s_id);
1097 if (dentry) {
1098 spin_unlock(&dentry->d_lock);
1099 dput(dentry);
1105 * __mark_inode_dirty - internal function
1106 * @inode: inode to mark
1107 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1108 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1109 * mark_inode_dirty_sync.
1111 * Put the inode on the super block's dirty list.
1113 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1114 * dirty list only if it is hashed or if it refers to a blockdev.
1115 * If it was not hashed, it will never be added to the dirty list
1116 * even if it is later hashed, as it will have been marked dirty already.
1118 * In short, make sure you hash any inodes _before_ you start marking
1119 * them dirty.
1121 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1122 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1123 * the kernel-internal blockdev inode represents the dirtying time of the
1124 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1125 * page->mapping->host, so the page-dirtying time is recorded in the internal
1126 * blockdev inode.
1128 void __mark_inode_dirty(struct inode *inode, int flags)
1130 struct super_block *sb = inode->i_sb;
1131 struct backing_dev_info *bdi = NULL;
1134 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1135 * dirty the inode itself
1137 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1138 trace_writeback_dirty_inode_start(inode, flags);
1140 if (sb->s_op->dirty_inode)
1141 sb->s_op->dirty_inode(inode, flags);
1143 trace_writeback_dirty_inode(inode, flags);
1147 * make sure that changes are seen by all cpus before we test i_state
1148 * -- mikulas
1150 smp_mb();
1152 /* avoid the locking if we can */
1153 if ((inode->i_state & flags) == flags)
1154 return;
1156 if (unlikely(block_dump))
1157 block_dump___mark_inode_dirty(inode);
1159 spin_lock(&inode->i_lock);
1160 if ((inode->i_state & flags) != flags) {
1161 const int was_dirty = inode->i_state & I_DIRTY;
1163 inode->i_state |= flags;
1166 * If the inode is being synced, just update its dirty state.
1167 * The unlocker will place the inode on the appropriate
1168 * superblock list, based upon its state.
1170 if (inode->i_state & I_SYNC)
1171 goto out_unlock_inode;
1174 * Only add valid (hashed) inodes to the superblock's
1175 * dirty list. Add blockdev inodes as well.
1177 if (!S_ISBLK(inode->i_mode)) {
1178 if (inode_unhashed(inode))
1179 goto out_unlock_inode;
1181 if (inode->i_state & I_FREEING)
1182 goto out_unlock_inode;
1185 * If the inode was already on b_dirty/b_io/b_more_io, don't
1186 * reposition it (that would break b_dirty time-ordering).
1188 if (!was_dirty) {
1189 bool wakeup_bdi = false;
1190 bdi = inode_to_bdi(inode);
1192 spin_unlock(&inode->i_lock);
1193 spin_lock(&bdi->wb.list_lock);
1194 if (bdi_cap_writeback_dirty(bdi)) {
1195 WARN(!test_bit(BDI_registered, &bdi->state),
1196 "bdi-%s not registered\n", bdi->name);
1199 * If this is the first dirty inode for this
1200 * bdi, we have to wake-up the corresponding
1201 * bdi thread to make sure background
1202 * write-back happens later.
1204 if (!wb_has_dirty_io(&bdi->wb))
1205 wakeup_bdi = true;
1208 inode->dirtied_when = jiffies;
1209 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1210 spin_unlock(&bdi->wb.list_lock);
1212 if (wakeup_bdi)
1213 bdi_wakeup_thread_delayed(bdi);
1214 return;
1217 out_unlock_inode:
1218 spin_unlock(&inode->i_lock);
1221 EXPORT_SYMBOL(__mark_inode_dirty);
1223 static void wait_sb_inodes(struct super_block *sb)
1225 struct inode *inode, *old_inode = NULL;
1228 * We need to be protected against the filesystem going from
1229 * r/o to r/w or vice versa.
1231 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1233 spin_lock(&inode_sb_list_lock);
1236 * Data integrity sync. Must wait for all pages under writeback,
1237 * because there may have been pages dirtied before our sync
1238 * call, but which had writeout started before we write it out.
1239 * In which case, the inode may not be on the dirty list, but
1240 * we still have to wait for that writeout.
1242 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1243 struct address_space *mapping = inode->i_mapping;
1245 spin_lock(&inode->i_lock);
1246 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1247 (mapping->nrpages == 0)) {
1248 spin_unlock(&inode->i_lock);
1249 continue;
1251 __iget(inode);
1252 spin_unlock(&inode->i_lock);
1253 spin_unlock(&inode_sb_list_lock);
1256 * We hold a reference to 'inode' so it couldn't have been
1257 * removed from s_inodes list while we dropped the
1258 * inode_sb_list_lock. We cannot iput the inode now as we can
1259 * be holding the last reference and we cannot iput it under
1260 * inode_sb_list_lock. So we keep the reference and iput it
1261 * later.
1263 iput(old_inode);
1264 old_inode = inode;
1266 filemap_fdatawait(mapping);
1268 cond_resched();
1270 spin_lock(&inode_sb_list_lock);
1272 spin_unlock(&inode_sb_list_lock);
1273 iput(old_inode);
1277 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1278 * @sb: the superblock
1279 * @nr: the number of pages to write
1280 * @reason: reason why some writeback work initiated
1282 * Start writeback on some inodes on this super_block. No guarantees are made
1283 * on how many (if any) will be written, and this function does not wait
1284 * for IO completion of submitted IO.
1286 void writeback_inodes_sb_nr(struct super_block *sb,
1287 unsigned long nr,
1288 enum wb_reason reason)
1290 DECLARE_COMPLETION_ONSTACK(done);
1291 struct wb_writeback_work work = {
1292 .sb = sb,
1293 .sync_mode = WB_SYNC_NONE,
1294 .tagged_writepages = 1,
1295 .done = &done,
1296 .nr_pages = nr,
1297 .reason = reason,
1300 if (sb->s_bdi == &noop_backing_dev_info)
1301 return;
1302 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1303 bdi_queue_work(sb->s_bdi, &work);
1304 wait_for_completion(&done);
1306 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1309 * writeback_inodes_sb - writeback dirty inodes from given super_block
1310 * @sb: the superblock
1311 * @reason: reason why some writeback work was initiated
1313 * Start writeback on some inodes on this super_block. No guarantees are made
1314 * on how many (if any) will be written, and this function does not wait
1315 * for IO completion of submitted IO.
1317 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1319 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1321 EXPORT_SYMBOL(writeback_inodes_sb);
1324 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1325 * @sb: the superblock
1326 * @nr: the number of pages to write
1327 * @reason: the reason of writeback
1329 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1330 * Returns 1 if writeback was started, 0 if not.
1332 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1333 unsigned long nr,
1334 enum wb_reason reason)
1336 if (writeback_in_progress(sb->s_bdi))
1337 return 1;
1339 if (!down_read_trylock(&sb->s_umount))
1340 return 0;
1342 writeback_inodes_sb_nr(sb, nr, reason);
1343 up_read(&sb->s_umount);
1344 return 1;
1346 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1349 * try_to_writeback_inodes_sb - try to start writeback if none underway
1350 * @sb: the superblock
1351 * @reason: reason why some writeback work was initiated
1353 * Implement by try_to_writeback_inodes_sb_nr()
1354 * Returns 1 if writeback was started, 0 if not.
1356 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1358 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1360 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1363 * sync_inodes_sb - sync sb inode pages
1364 * @sb: the superblock
1366 * This function writes and waits on any dirty inode belonging to this
1367 * super_block.
1369 void sync_inodes_sb(struct super_block *sb)
1371 DECLARE_COMPLETION_ONSTACK(done);
1372 struct wb_writeback_work work = {
1373 .sb = sb,
1374 .sync_mode = WB_SYNC_ALL,
1375 .nr_pages = LONG_MAX,
1376 .range_cyclic = 0,
1377 .done = &done,
1378 .reason = WB_REASON_SYNC,
1379 .for_sync = 1,
1382 /* Nothing to do? */
1383 if (sb->s_bdi == &noop_backing_dev_info)
1384 return;
1385 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1387 bdi_queue_work(sb->s_bdi, &work);
1388 wait_for_completion(&done);
1390 wait_sb_inodes(sb);
1392 EXPORT_SYMBOL(sync_inodes_sb);
1395 * write_inode_now - write an inode to disk
1396 * @inode: inode to write to disk
1397 * @sync: whether the write should be synchronous or not
1399 * This function commits an inode to disk immediately if it is dirty. This is
1400 * primarily needed by knfsd.
1402 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1404 int write_inode_now(struct inode *inode, int sync)
1406 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1407 struct writeback_control wbc = {
1408 .nr_to_write = LONG_MAX,
1409 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1410 .range_start = 0,
1411 .range_end = LLONG_MAX,
1414 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1415 wbc.nr_to_write = 0;
1417 might_sleep();
1418 return writeback_single_inode(inode, wb, &wbc);
1420 EXPORT_SYMBOL(write_inode_now);
1423 * sync_inode - write an inode and its pages to disk.
1424 * @inode: the inode to sync
1425 * @wbc: controls the writeback mode
1427 * sync_inode() will write an inode and its pages to disk. It will also
1428 * correctly update the inode on its superblock's dirty inode lists and will
1429 * update inode->i_state.
1431 * The caller must have a ref on the inode.
1433 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1435 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1437 EXPORT_SYMBOL(sync_inode);
1440 * sync_inode_metadata - write an inode to disk
1441 * @inode: the inode to sync
1442 * @wait: wait for I/O to complete.
1444 * Write an inode to disk and adjust its dirty state after completion.
1446 * Note: only writes the actual inode, no associated data or other metadata.
1448 int sync_inode_metadata(struct inode *inode, int wait)
1450 struct writeback_control wbc = {
1451 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1452 .nr_to_write = 0, /* metadata-only */
1455 return sync_inode(inode, &wbc);
1457 EXPORT_SYMBOL(sync_inode_metadata);