Linux 3.12.28
[linux/fpc-iii.git] / fs / xfs / xfs_log.c
blob3c4ddc1c79a4963c2e71b3e5285bc5d2547aeb49
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 #include "xfs_cksum.h"
40 kmem_zone_t *xfs_log_ticket_zone;
42 /* Local miscellaneous function prototypes */
43 STATIC int
44 xlog_commit_record(
45 struct xlog *log,
46 struct xlog_ticket *ticket,
47 struct xlog_in_core **iclog,
48 xfs_lsn_t *commitlsnp);
50 STATIC struct xlog *
51 xlog_alloc_log(
52 struct xfs_mount *mp,
53 struct xfs_buftarg *log_target,
54 xfs_daddr_t blk_offset,
55 int num_bblks);
56 STATIC int
57 xlog_space_left(
58 struct xlog *log,
59 atomic64_t *head);
60 STATIC int
61 xlog_sync(
62 struct xlog *log,
63 struct xlog_in_core *iclog);
64 STATIC void
65 xlog_dealloc_log(
66 struct xlog *log);
68 /* local state machine functions */
69 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
70 STATIC void
71 xlog_state_do_callback(
72 struct xlog *log,
73 int aborted,
74 struct xlog_in_core *iclog);
75 STATIC int
76 xlog_state_get_iclog_space(
77 struct xlog *log,
78 int len,
79 struct xlog_in_core **iclog,
80 struct xlog_ticket *ticket,
81 int *continued_write,
82 int *logoffsetp);
83 STATIC int
84 xlog_state_release_iclog(
85 struct xlog *log,
86 struct xlog_in_core *iclog);
87 STATIC void
88 xlog_state_switch_iclogs(
89 struct xlog *log,
90 struct xlog_in_core *iclog,
91 int eventual_size);
92 STATIC void
93 xlog_state_want_sync(
94 struct xlog *log,
95 struct xlog_in_core *iclog);
97 STATIC void
98 xlog_grant_push_ail(
99 struct xlog *log,
100 int need_bytes);
101 STATIC void
102 xlog_regrant_reserve_log_space(
103 struct xlog *log,
104 struct xlog_ticket *ticket);
105 STATIC void
106 xlog_ungrant_log_space(
107 struct xlog *log,
108 struct xlog_ticket *ticket);
110 #if defined(DEBUG)
111 STATIC void
112 xlog_verify_dest_ptr(
113 struct xlog *log,
114 char *ptr);
115 STATIC void
116 xlog_verify_grant_tail(
117 struct xlog *log);
118 STATIC void
119 xlog_verify_iclog(
120 struct xlog *log,
121 struct xlog_in_core *iclog,
122 int count,
123 bool syncing);
124 STATIC void
125 xlog_verify_tail_lsn(
126 struct xlog *log,
127 struct xlog_in_core *iclog,
128 xfs_lsn_t tail_lsn);
129 #else
130 #define xlog_verify_dest_ptr(a,b)
131 #define xlog_verify_grant_tail(a)
132 #define xlog_verify_iclog(a,b,c,d)
133 #define xlog_verify_tail_lsn(a,b,c)
134 #endif
136 STATIC int
137 xlog_iclogs_empty(
138 struct xlog *log);
140 static void
141 xlog_grant_sub_space(
142 struct xlog *log,
143 atomic64_t *head,
144 int bytes)
146 int64_t head_val = atomic64_read(head);
147 int64_t new, old;
149 do {
150 int cycle, space;
152 xlog_crack_grant_head_val(head_val, &cycle, &space);
154 space -= bytes;
155 if (space < 0) {
156 space += log->l_logsize;
157 cycle--;
160 old = head_val;
161 new = xlog_assign_grant_head_val(cycle, space);
162 head_val = atomic64_cmpxchg(head, old, new);
163 } while (head_val != old);
166 static void
167 xlog_grant_add_space(
168 struct xlog *log,
169 atomic64_t *head,
170 int bytes)
172 int64_t head_val = atomic64_read(head);
173 int64_t new, old;
175 do {
176 int tmp;
177 int cycle, space;
179 xlog_crack_grant_head_val(head_val, &cycle, &space);
181 tmp = log->l_logsize - space;
182 if (tmp > bytes)
183 space += bytes;
184 else {
185 space = bytes - tmp;
186 cycle++;
189 old = head_val;
190 new = xlog_assign_grant_head_val(cycle, space);
191 head_val = atomic64_cmpxchg(head, old, new);
192 } while (head_val != old);
195 STATIC void
196 xlog_grant_head_init(
197 struct xlog_grant_head *head)
199 xlog_assign_grant_head(&head->grant, 1, 0);
200 INIT_LIST_HEAD(&head->waiters);
201 spin_lock_init(&head->lock);
204 STATIC void
205 xlog_grant_head_wake_all(
206 struct xlog_grant_head *head)
208 struct xlog_ticket *tic;
210 spin_lock(&head->lock);
211 list_for_each_entry(tic, &head->waiters, t_queue)
212 wake_up_process(tic->t_task);
213 spin_unlock(&head->lock);
216 static inline int
217 xlog_ticket_reservation(
218 struct xlog *log,
219 struct xlog_grant_head *head,
220 struct xlog_ticket *tic)
222 if (head == &log->l_write_head) {
223 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
224 return tic->t_unit_res;
225 } else {
226 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
227 return tic->t_unit_res * tic->t_cnt;
228 else
229 return tic->t_unit_res;
233 STATIC bool
234 xlog_grant_head_wake(
235 struct xlog *log,
236 struct xlog_grant_head *head,
237 int *free_bytes)
239 struct xlog_ticket *tic;
240 int need_bytes;
242 list_for_each_entry(tic, &head->waiters, t_queue) {
243 need_bytes = xlog_ticket_reservation(log, head, tic);
244 if (*free_bytes < need_bytes)
245 return false;
247 *free_bytes -= need_bytes;
248 trace_xfs_log_grant_wake_up(log, tic);
249 wake_up_process(tic->t_task);
252 return true;
255 STATIC int
256 xlog_grant_head_wait(
257 struct xlog *log,
258 struct xlog_grant_head *head,
259 struct xlog_ticket *tic,
260 int need_bytes) __releases(&head->lock)
261 __acquires(&head->lock)
263 list_add_tail(&tic->t_queue, &head->waiters);
265 do {
266 if (XLOG_FORCED_SHUTDOWN(log))
267 goto shutdown;
268 xlog_grant_push_ail(log, need_bytes);
270 __set_current_state(TASK_UNINTERRUPTIBLE);
271 spin_unlock(&head->lock);
273 XFS_STATS_INC(xs_sleep_logspace);
275 trace_xfs_log_grant_sleep(log, tic);
276 schedule();
277 trace_xfs_log_grant_wake(log, tic);
279 spin_lock(&head->lock);
280 if (XLOG_FORCED_SHUTDOWN(log))
281 goto shutdown;
282 } while (xlog_space_left(log, &head->grant) < need_bytes);
284 list_del_init(&tic->t_queue);
285 return 0;
286 shutdown:
287 list_del_init(&tic->t_queue);
288 return XFS_ERROR(EIO);
292 * Atomically get the log space required for a log ticket.
294 * Once a ticket gets put onto head->waiters, it will only return after the
295 * needed reservation is satisfied.
297 * This function is structured so that it has a lock free fast path. This is
298 * necessary because every new transaction reservation will come through this
299 * path. Hence any lock will be globally hot if we take it unconditionally on
300 * every pass.
302 * As tickets are only ever moved on and off head->waiters under head->lock, we
303 * only need to take that lock if we are going to add the ticket to the queue
304 * and sleep. We can avoid taking the lock if the ticket was never added to
305 * head->waiters because the t_queue list head will be empty and we hold the
306 * only reference to it so it can safely be checked unlocked.
308 STATIC int
309 xlog_grant_head_check(
310 struct xlog *log,
311 struct xlog_grant_head *head,
312 struct xlog_ticket *tic,
313 int *need_bytes)
315 int free_bytes;
316 int error = 0;
318 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
321 * If there are other waiters on the queue then give them a chance at
322 * logspace before us. Wake up the first waiters, if we do not wake
323 * up all the waiters then go to sleep waiting for more free space,
324 * otherwise try to get some space for this transaction.
326 *need_bytes = xlog_ticket_reservation(log, head, tic);
327 free_bytes = xlog_space_left(log, &head->grant);
328 if (!list_empty_careful(&head->waiters)) {
329 spin_lock(&head->lock);
330 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
331 free_bytes < *need_bytes) {
332 error = xlog_grant_head_wait(log, head, tic,
333 *need_bytes);
335 spin_unlock(&head->lock);
336 } else if (free_bytes < *need_bytes) {
337 spin_lock(&head->lock);
338 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
339 spin_unlock(&head->lock);
342 return error;
345 static void
346 xlog_tic_reset_res(xlog_ticket_t *tic)
348 tic->t_res_num = 0;
349 tic->t_res_arr_sum = 0;
350 tic->t_res_num_ophdrs = 0;
353 static void
354 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
356 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
357 /* add to overflow and start again */
358 tic->t_res_o_flow += tic->t_res_arr_sum;
359 tic->t_res_num = 0;
360 tic->t_res_arr_sum = 0;
363 tic->t_res_arr[tic->t_res_num].r_len = len;
364 tic->t_res_arr[tic->t_res_num].r_type = type;
365 tic->t_res_arr_sum += len;
366 tic->t_res_num++;
370 * Replenish the byte reservation required by moving the grant write head.
373 xfs_log_regrant(
374 struct xfs_mount *mp,
375 struct xlog_ticket *tic)
377 struct xlog *log = mp->m_log;
378 int need_bytes;
379 int error = 0;
381 if (XLOG_FORCED_SHUTDOWN(log))
382 return XFS_ERROR(EIO);
384 XFS_STATS_INC(xs_try_logspace);
387 * This is a new transaction on the ticket, so we need to change the
388 * transaction ID so that the next transaction has a different TID in
389 * the log. Just add one to the existing tid so that we can see chains
390 * of rolling transactions in the log easily.
392 tic->t_tid++;
394 xlog_grant_push_ail(log, tic->t_unit_res);
396 tic->t_curr_res = tic->t_unit_res;
397 xlog_tic_reset_res(tic);
399 if (tic->t_cnt > 0)
400 return 0;
402 trace_xfs_log_regrant(log, tic);
404 error = xlog_grant_head_check(log, &log->l_write_head, tic,
405 &need_bytes);
406 if (error)
407 goto out_error;
409 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
410 trace_xfs_log_regrant_exit(log, tic);
411 xlog_verify_grant_tail(log);
412 return 0;
414 out_error:
416 * If we are failing, make sure the ticket doesn't have any current
417 * reservations. We don't want to add this back when the ticket/
418 * transaction gets cancelled.
420 tic->t_curr_res = 0;
421 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
422 return error;
426 * Reserve log space and return a ticket corresponding the reservation.
428 * Each reservation is going to reserve extra space for a log record header.
429 * When writes happen to the on-disk log, we don't subtract the length of the
430 * log record header from any reservation. By wasting space in each
431 * reservation, we prevent over allocation problems.
434 xfs_log_reserve(
435 struct xfs_mount *mp,
436 int unit_bytes,
437 int cnt,
438 struct xlog_ticket **ticp,
439 __uint8_t client,
440 bool permanent,
441 uint t_type)
443 struct xlog *log = mp->m_log;
444 struct xlog_ticket *tic;
445 int need_bytes;
446 int error = 0;
448 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
450 if (XLOG_FORCED_SHUTDOWN(log))
451 return XFS_ERROR(EIO);
453 XFS_STATS_INC(xs_try_logspace);
455 ASSERT(*ticp == NULL);
456 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
457 KM_SLEEP | KM_MAYFAIL);
458 if (!tic)
459 return XFS_ERROR(ENOMEM);
461 tic->t_trans_type = t_type;
462 *ticp = tic;
464 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
465 : tic->t_unit_res);
467 trace_xfs_log_reserve(log, tic);
469 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
470 &need_bytes);
471 if (error)
472 goto out_error;
474 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
475 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
476 trace_xfs_log_reserve_exit(log, tic);
477 xlog_verify_grant_tail(log);
478 return 0;
480 out_error:
482 * If we are failing, make sure the ticket doesn't have any current
483 * reservations. We don't want to add this back when the ticket/
484 * transaction gets cancelled.
486 tic->t_curr_res = 0;
487 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
488 return error;
493 * NOTES:
495 * 1. currblock field gets updated at startup and after in-core logs
496 * marked as with WANT_SYNC.
500 * This routine is called when a user of a log manager ticket is done with
501 * the reservation. If the ticket was ever used, then a commit record for
502 * the associated transaction is written out as a log operation header with
503 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
504 * a given ticket. If the ticket was one with a permanent reservation, then
505 * a few operations are done differently. Permanent reservation tickets by
506 * default don't release the reservation. They just commit the current
507 * transaction with the belief that the reservation is still needed. A flag
508 * must be passed in before permanent reservations are actually released.
509 * When these type of tickets are not released, they need to be set into
510 * the inited state again. By doing this, a start record will be written
511 * out when the next write occurs.
513 xfs_lsn_t
514 xfs_log_done(
515 struct xfs_mount *mp,
516 struct xlog_ticket *ticket,
517 struct xlog_in_core **iclog,
518 uint flags)
520 struct xlog *log = mp->m_log;
521 xfs_lsn_t lsn = 0;
523 if (XLOG_FORCED_SHUTDOWN(log) ||
525 * If nothing was ever written, don't write out commit record.
526 * If we get an error, just continue and give back the log ticket.
528 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
529 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
530 lsn = (xfs_lsn_t) -1;
531 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
532 flags |= XFS_LOG_REL_PERM_RESERV;
537 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
538 (flags & XFS_LOG_REL_PERM_RESERV)) {
539 trace_xfs_log_done_nonperm(log, ticket);
542 * Release ticket if not permanent reservation or a specific
543 * request has been made to release a permanent reservation.
545 xlog_ungrant_log_space(log, ticket);
546 xfs_log_ticket_put(ticket);
547 } else {
548 trace_xfs_log_done_perm(log, ticket);
550 xlog_regrant_reserve_log_space(log, ticket);
551 /* If this ticket was a permanent reservation and we aren't
552 * trying to release it, reset the inited flags; so next time
553 * we write, a start record will be written out.
555 ticket->t_flags |= XLOG_TIC_INITED;
558 return lsn;
562 * Attaches a new iclog I/O completion callback routine during
563 * transaction commit. If the log is in error state, a non-zero
564 * return code is handed back and the caller is responsible for
565 * executing the callback at an appropriate time.
568 xfs_log_notify(
569 struct xfs_mount *mp,
570 struct xlog_in_core *iclog,
571 xfs_log_callback_t *cb)
573 int abortflg;
575 spin_lock(&iclog->ic_callback_lock);
576 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
577 if (!abortflg) {
578 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
579 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
580 cb->cb_next = NULL;
581 *(iclog->ic_callback_tail) = cb;
582 iclog->ic_callback_tail = &(cb->cb_next);
584 spin_unlock(&iclog->ic_callback_lock);
585 return abortflg;
589 xfs_log_release_iclog(
590 struct xfs_mount *mp,
591 struct xlog_in_core *iclog)
593 if (xlog_state_release_iclog(mp->m_log, iclog)) {
594 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
595 return EIO;
598 return 0;
602 * Mount a log filesystem
604 * mp - ubiquitous xfs mount point structure
605 * log_target - buftarg of on-disk log device
606 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
607 * num_bblocks - Number of BBSIZE blocks in on-disk log
609 * Return error or zero.
612 xfs_log_mount(
613 xfs_mount_t *mp,
614 xfs_buftarg_t *log_target,
615 xfs_daddr_t blk_offset,
616 int num_bblks)
618 int error = 0;
619 int min_logfsbs;
621 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
622 xfs_notice(mp, "Mounting Filesystem");
623 else {
624 xfs_notice(mp,
625 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
626 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
629 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
630 if (IS_ERR(mp->m_log)) {
631 error = -PTR_ERR(mp->m_log);
632 goto out;
636 * Validate the given log space and drop a critical message via syslog
637 * if the log size is too small that would lead to some unexpected
638 * situations in transaction log space reservation stage.
640 * Note: we can't just reject the mount if the validation fails. This
641 * would mean that people would have to downgrade their kernel just to
642 * remedy the situation as there is no way to grow the log (short of
643 * black magic surgery with xfs_db).
645 * We can, however, reject mounts for CRC format filesystems, as the
646 * mkfs binary being used to make the filesystem should never create a
647 * filesystem with a log that is too small.
649 min_logfsbs = xfs_log_calc_minimum_size(mp);
651 if (mp->m_sb.sb_logblocks < min_logfsbs) {
652 xfs_warn(mp,
653 "Log size %d blocks too small, minimum size is %d blocks",
654 mp->m_sb.sb_logblocks, min_logfsbs);
655 error = EINVAL;
656 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
657 xfs_warn(mp,
658 "Log size %d blocks too large, maximum size is %lld blocks",
659 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
660 error = EINVAL;
661 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
662 xfs_warn(mp,
663 "log size %lld bytes too large, maximum size is %lld bytes",
664 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
665 XFS_MAX_LOG_BYTES);
666 error = EINVAL;
668 if (error) {
669 if (xfs_sb_version_hascrc(&mp->m_sb)) {
670 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671 ASSERT(0);
672 goto out_free_log;
674 xfs_crit(mp,
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
680 * Initialize the AIL now we have a log.
682 error = xfs_trans_ail_init(mp);
683 if (error) {
684 xfs_warn(mp, "AIL initialisation failed: error %d", error);
685 goto out_free_log;
687 mp->m_log->l_ailp = mp->m_ail;
690 * skip log recovery on a norecovery mount. pretend it all
691 * just worked.
693 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
696 if (readonly)
697 mp->m_flags &= ~XFS_MOUNT_RDONLY;
699 error = xlog_recover(mp->m_log);
701 if (readonly)
702 mp->m_flags |= XFS_MOUNT_RDONLY;
703 if (error) {
704 xfs_warn(mp, "log mount/recovery failed: error %d",
705 error);
706 goto out_destroy_ail;
710 /* Normal transactions can now occur */
711 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
714 * Now the log has been fully initialised and we know were our
715 * space grant counters are, we can initialise the permanent ticket
716 * needed for delayed logging to work.
718 xlog_cil_init_post_recovery(mp->m_log);
720 return 0;
722 out_destroy_ail:
723 xfs_trans_ail_destroy(mp);
724 out_free_log:
725 xlog_dealloc_log(mp->m_log);
726 out:
727 return error;
731 * Finish the recovery of the file system. This is separate from the
732 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
733 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
734 * here.
736 * If we finish recovery successfully, start the background log work. If we are
737 * not doing recovery, then we have a RO filesystem and we don't need to start
738 * it.
741 xfs_log_mount_finish(xfs_mount_t *mp)
743 int error = 0;
745 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
746 error = xlog_recover_finish(mp->m_log);
747 if (!error)
748 xfs_log_work_queue(mp);
749 } else {
750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
754 return error;
758 * Final log writes as part of unmount.
760 * Mark the filesystem clean as unmount happens. Note that during relocation
761 * this routine needs to be executed as part of source-bag while the
762 * deallocation must not be done until source-end.
766 * Unmount record used to have a string "Unmount filesystem--" in the
767 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
768 * We just write the magic number now since that particular field isn't
769 * currently architecture converted and "Unmount" is a bit foo.
770 * As far as I know, there weren't any dependencies on the old behaviour.
774 xfs_log_unmount_write(xfs_mount_t *mp)
776 struct xlog *log = mp->m_log;
777 xlog_in_core_t *iclog;
778 #ifdef DEBUG
779 xlog_in_core_t *first_iclog;
780 #endif
781 xlog_ticket_t *tic = NULL;
782 xfs_lsn_t lsn;
783 int error;
786 * Don't write out unmount record on read-only mounts.
787 * Or, if we are doing a forced umount (typically because of IO errors).
789 if (mp->m_flags & XFS_MOUNT_RDONLY)
790 return 0;
792 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
793 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
795 #ifdef DEBUG
796 first_iclog = iclog = log->l_iclog;
797 do {
798 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
799 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
800 ASSERT(iclog->ic_offset == 0);
802 iclog = iclog->ic_next;
803 } while (iclog != first_iclog);
804 #endif
805 if (! (XLOG_FORCED_SHUTDOWN(log))) {
806 error = xfs_log_reserve(mp, 600, 1, &tic,
807 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
808 if (!error) {
809 /* the data section must be 32 bit size aligned */
810 struct {
811 __uint16_t magic;
812 __uint16_t pad1;
813 __uint32_t pad2; /* may as well make it 64 bits */
814 } magic = {
815 .magic = XLOG_UNMOUNT_TYPE,
817 struct xfs_log_iovec reg = {
818 .i_addr = &magic,
819 .i_len = sizeof(magic),
820 .i_type = XLOG_REG_TYPE_UNMOUNT,
822 struct xfs_log_vec vec = {
823 .lv_niovecs = 1,
824 .lv_iovecp = &reg,
827 /* remove inited flag, and account for space used */
828 tic->t_flags = 0;
829 tic->t_curr_res -= sizeof(magic);
830 error = xlog_write(log, &vec, tic, &lsn,
831 NULL, XLOG_UNMOUNT_TRANS);
833 * At this point, we're umounting anyway,
834 * so there's no point in transitioning log state
835 * to IOERROR. Just continue...
839 if (error)
840 xfs_alert(mp, "%s: unmount record failed", __func__);
843 spin_lock(&log->l_icloglock);
844 iclog = log->l_iclog;
845 atomic_inc(&iclog->ic_refcnt);
846 xlog_state_want_sync(log, iclog);
847 spin_unlock(&log->l_icloglock);
848 error = xlog_state_release_iclog(log, iclog);
850 spin_lock(&log->l_icloglock);
851 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
852 iclog->ic_state == XLOG_STATE_DIRTY)) {
853 if (!XLOG_FORCED_SHUTDOWN(log)) {
854 xlog_wait(&iclog->ic_force_wait,
855 &log->l_icloglock);
856 } else {
857 spin_unlock(&log->l_icloglock);
859 } else {
860 spin_unlock(&log->l_icloglock);
862 if (tic) {
863 trace_xfs_log_umount_write(log, tic);
864 xlog_ungrant_log_space(log, tic);
865 xfs_log_ticket_put(tic);
867 } else {
869 * We're already in forced_shutdown mode, couldn't
870 * even attempt to write out the unmount transaction.
872 * Go through the motions of sync'ing and releasing
873 * the iclog, even though no I/O will actually happen,
874 * we need to wait for other log I/Os that may already
875 * be in progress. Do this as a separate section of
876 * code so we'll know if we ever get stuck here that
877 * we're in this odd situation of trying to unmount
878 * a file system that went into forced_shutdown as
879 * the result of an unmount..
881 spin_lock(&log->l_icloglock);
882 iclog = log->l_iclog;
883 atomic_inc(&iclog->ic_refcnt);
885 xlog_state_want_sync(log, iclog);
886 spin_unlock(&log->l_icloglock);
887 error = xlog_state_release_iclog(log, iclog);
889 spin_lock(&log->l_icloglock);
891 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
892 || iclog->ic_state == XLOG_STATE_DIRTY
893 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
895 xlog_wait(&iclog->ic_force_wait,
896 &log->l_icloglock);
897 } else {
898 spin_unlock(&log->l_icloglock);
902 return error;
903 } /* xfs_log_unmount_write */
906 * Empty the log for unmount/freeze.
908 * To do this, we first need to shut down the background log work so it is not
909 * trying to cover the log as we clean up. We then need to unpin all objects in
910 * the log so we can then flush them out. Once they have completed their IO and
911 * run the callbacks removing themselves from the AIL, we can write the unmount
912 * record.
914 void
915 xfs_log_quiesce(
916 struct xfs_mount *mp)
918 cancel_delayed_work_sync(&mp->m_log->l_work);
919 xfs_log_force(mp, XFS_LOG_SYNC);
922 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
923 * will push it, xfs_wait_buftarg() will not wait for it. Further,
924 * xfs_buf_iowait() cannot be used because it was pushed with the
925 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
926 * the IO to complete.
928 xfs_ail_push_all_sync(mp->m_ail);
929 xfs_wait_buftarg(mp->m_ddev_targp);
930 xfs_buf_lock(mp->m_sb_bp);
931 xfs_buf_unlock(mp->m_sb_bp);
933 xfs_log_unmount_write(mp);
937 * Shut down and release the AIL and Log.
939 * During unmount, we need to ensure we flush all the dirty metadata objects
940 * from the AIL so that the log is empty before we write the unmount record to
941 * the log. Once this is done, we can tear down the AIL and the log.
943 void
944 xfs_log_unmount(
945 struct xfs_mount *mp)
947 xfs_log_quiesce(mp);
949 xfs_trans_ail_destroy(mp);
950 xlog_dealloc_log(mp->m_log);
953 void
954 xfs_log_item_init(
955 struct xfs_mount *mp,
956 struct xfs_log_item *item,
957 int type,
958 const struct xfs_item_ops *ops)
960 item->li_mountp = mp;
961 item->li_ailp = mp->m_ail;
962 item->li_type = type;
963 item->li_ops = ops;
964 item->li_lv = NULL;
966 INIT_LIST_HEAD(&item->li_ail);
967 INIT_LIST_HEAD(&item->li_cil);
971 * Wake up processes waiting for log space after we have moved the log tail.
973 void
974 xfs_log_space_wake(
975 struct xfs_mount *mp)
977 struct xlog *log = mp->m_log;
978 int free_bytes;
980 if (XLOG_FORCED_SHUTDOWN(log))
981 return;
983 if (!list_empty_careful(&log->l_write_head.waiters)) {
984 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
986 spin_lock(&log->l_write_head.lock);
987 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
988 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
989 spin_unlock(&log->l_write_head.lock);
992 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
993 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
995 spin_lock(&log->l_reserve_head.lock);
996 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
997 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
998 spin_unlock(&log->l_reserve_head.lock);
1003 * Determine if we have a transaction that has gone to disk that needs to be
1004 * covered. To begin the transition to the idle state firstly the log needs to
1005 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1006 * we start attempting to cover the log.
1008 * Only if we are then in a state where covering is needed, the caller is
1009 * informed that dummy transactions are required to move the log into the idle
1010 * state.
1012 * If there are any items in the AIl or CIL, then we do not want to attempt to
1013 * cover the log as we may be in a situation where there isn't log space
1014 * available to run a dummy transaction and this can lead to deadlocks when the
1015 * tail of the log is pinned by an item that is modified in the CIL. Hence
1016 * there's no point in running a dummy transaction at this point because we
1017 * can't start trying to idle the log until both the CIL and AIL are empty.
1020 xfs_log_need_covered(xfs_mount_t *mp)
1022 struct xlog *log = mp->m_log;
1023 int needed = 0;
1025 if (!xfs_fs_writable(mp))
1026 return 0;
1028 if (!xlog_cil_empty(log))
1029 return 0;
1031 spin_lock(&log->l_icloglock);
1032 switch (log->l_covered_state) {
1033 case XLOG_STATE_COVER_DONE:
1034 case XLOG_STATE_COVER_DONE2:
1035 case XLOG_STATE_COVER_IDLE:
1036 break;
1037 case XLOG_STATE_COVER_NEED:
1038 case XLOG_STATE_COVER_NEED2:
1039 if (xfs_ail_min_lsn(log->l_ailp))
1040 break;
1041 if (!xlog_iclogs_empty(log))
1042 break;
1044 needed = 1;
1045 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1046 log->l_covered_state = XLOG_STATE_COVER_DONE;
1047 else
1048 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1049 break;
1050 default:
1051 needed = 1;
1052 break;
1054 spin_unlock(&log->l_icloglock);
1055 return needed;
1059 * We may be holding the log iclog lock upon entering this routine.
1061 xfs_lsn_t
1062 xlog_assign_tail_lsn_locked(
1063 struct xfs_mount *mp)
1065 struct xlog *log = mp->m_log;
1066 struct xfs_log_item *lip;
1067 xfs_lsn_t tail_lsn;
1069 assert_spin_locked(&mp->m_ail->xa_lock);
1072 * To make sure we always have a valid LSN for the log tail we keep
1073 * track of the last LSN which was committed in log->l_last_sync_lsn,
1074 * and use that when the AIL was empty.
1076 lip = xfs_ail_min(mp->m_ail);
1077 if (lip)
1078 tail_lsn = lip->li_lsn;
1079 else
1080 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1081 atomic64_set(&log->l_tail_lsn, tail_lsn);
1082 return tail_lsn;
1085 xfs_lsn_t
1086 xlog_assign_tail_lsn(
1087 struct xfs_mount *mp)
1089 xfs_lsn_t tail_lsn;
1091 spin_lock(&mp->m_ail->xa_lock);
1092 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1093 spin_unlock(&mp->m_ail->xa_lock);
1095 return tail_lsn;
1099 * Return the space in the log between the tail and the head. The head
1100 * is passed in the cycle/bytes formal parms. In the special case where
1101 * the reserve head has wrapped passed the tail, this calculation is no
1102 * longer valid. In this case, just return 0 which means there is no space
1103 * in the log. This works for all places where this function is called
1104 * with the reserve head. Of course, if the write head were to ever
1105 * wrap the tail, we should blow up. Rather than catch this case here,
1106 * we depend on other ASSERTions in other parts of the code. XXXmiken
1108 * This code also handles the case where the reservation head is behind
1109 * the tail. The details of this case are described below, but the end
1110 * result is that we return the size of the log as the amount of space left.
1112 STATIC int
1113 xlog_space_left(
1114 struct xlog *log,
1115 atomic64_t *head)
1117 int free_bytes;
1118 int tail_bytes;
1119 int tail_cycle;
1120 int head_cycle;
1121 int head_bytes;
1123 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1124 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1125 tail_bytes = BBTOB(tail_bytes);
1126 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1127 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1128 else if (tail_cycle + 1 < head_cycle)
1129 return 0;
1130 else if (tail_cycle < head_cycle) {
1131 ASSERT(tail_cycle == (head_cycle - 1));
1132 free_bytes = tail_bytes - head_bytes;
1133 } else {
1135 * The reservation head is behind the tail.
1136 * In this case we just want to return the size of the
1137 * log as the amount of space left.
1139 xfs_alert(log->l_mp,
1140 "xlog_space_left: head behind tail\n"
1141 " tail_cycle = %d, tail_bytes = %d\n"
1142 " GH cycle = %d, GH bytes = %d",
1143 tail_cycle, tail_bytes, head_cycle, head_bytes);
1144 ASSERT(0);
1145 free_bytes = log->l_logsize;
1147 return free_bytes;
1152 * Log function which is called when an io completes.
1154 * The log manager needs its own routine, in order to control what
1155 * happens with the buffer after the write completes.
1157 void
1158 xlog_iodone(xfs_buf_t *bp)
1160 struct xlog_in_core *iclog = bp->b_fspriv;
1161 struct xlog *l = iclog->ic_log;
1162 int aborted = 0;
1165 * Race to shutdown the filesystem if we see an error.
1167 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1168 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1169 xfs_buf_ioerror_alert(bp, __func__);
1170 xfs_buf_stale(bp);
1171 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1173 * This flag will be propagated to the trans-committed
1174 * callback routines to let them know that the log-commit
1175 * didn't succeed.
1177 aborted = XFS_LI_ABORTED;
1178 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1179 aborted = XFS_LI_ABORTED;
1182 /* log I/O is always issued ASYNC */
1183 ASSERT(XFS_BUF_ISASYNC(bp));
1184 xlog_state_done_syncing(iclog, aborted);
1186 * do not reference the buffer (bp) here as we could race
1187 * with it being freed after writing the unmount record to the
1188 * log.
1193 * Return size of each in-core log record buffer.
1195 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1197 * If the filesystem blocksize is too large, we may need to choose a
1198 * larger size since the directory code currently logs entire blocks.
1201 STATIC void
1202 xlog_get_iclog_buffer_size(
1203 struct xfs_mount *mp,
1204 struct xlog *log)
1206 int size;
1207 int xhdrs;
1209 if (mp->m_logbufs <= 0)
1210 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1211 else
1212 log->l_iclog_bufs = mp->m_logbufs;
1215 * Buffer size passed in from mount system call.
1217 if (mp->m_logbsize > 0) {
1218 size = log->l_iclog_size = mp->m_logbsize;
1219 log->l_iclog_size_log = 0;
1220 while (size != 1) {
1221 log->l_iclog_size_log++;
1222 size >>= 1;
1225 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1226 /* # headers = size / 32k
1227 * one header holds cycles from 32k of data
1230 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1231 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1232 xhdrs++;
1233 log->l_iclog_hsize = xhdrs << BBSHIFT;
1234 log->l_iclog_heads = xhdrs;
1235 } else {
1236 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1237 log->l_iclog_hsize = BBSIZE;
1238 log->l_iclog_heads = 1;
1240 goto done;
1243 /* All machines use 32kB buffers by default. */
1244 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1245 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1247 /* the default log size is 16k or 32k which is one header sector */
1248 log->l_iclog_hsize = BBSIZE;
1249 log->l_iclog_heads = 1;
1251 done:
1252 /* are we being asked to make the sizes selected above visible? */
1253 if (mp->m_logbufs == 0)
1254 mp->m_logbufs = log->l_iclog_bufs;
1255 if (mp->m_logbsize == 0)
1256 mp->m_logbsize = log->l_iclog_size;
1257 } /* xlog_get_iclog_buffer_size */
1260 void
1261 xfs_log_work_queue(
1262 struct xfs_mount *mp)
1264 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1265 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1269 * Every sync period we need to unpin all items in the AIL and push them to
1270 * disk. If there is nothing dirty, then we might need to cover the log to
1271 * indicate that the filesystem is idle.
1273 void
1274 xfs_log_worker(
1275 struct work_struct *work)
1277 struct xlog *log = container_of(to_delayed_work(work),
1278 struct xlog, l_work);
1279 struct xfs_mount *mp = log->l_mp;
1281 /* dgc: errors ignored - not fatal and nowhere to report them */
1282 if (xfs_log_need_covered(mp))
1283 xfs_fs_log_dummy(mp);
1284 else
1285 xfs_log_force(mp, 0);
1287 /* start pushing all the metadata that is currently dirty */
1288 xfs_ail_push_all(mp->m_ail);
1290 /* queue us up again */
1291 xfs_log_work_queue(mp);
1295 * This routine initializes some of the log structure for a given mount point.
1296 * Its primary purpose is to fill in enough, so recovery can occur. However,
1297 * some other stuff may be filled in too.
1299 STATIC struct xlog *
1300 xlog_alloc_log(
1301 struct xfs_mount *mp,
1302 struct xfs_buftarg *log_target,
1303 xfs_daddr_t blk_offset,
1304 int num_bblks)
1306 struct xlog *log;
1307 xlog_rec_header_t *head;
1308 xlog_in_core_t **iclogp;
1309 xlog_in_core_t *iclog, *prev_iclog=NULL;
1310 xfs_buf_t *bp;
1311 int i;
1312 int error = ENOMEM;
1313 uint log2_size = 0;
1315 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1316 if (!log) {
1317 xfs_warn(mp, "Log allocation failed: No memory!");
1318 goto out;
1321 log->l_mp = mp;
1322 log->l_targ = log_target;
1323 log->l_logsize = BBTOB(num_bblks);
1324 log->l_logBBstart = blk_offset;
1325 log->l_logBBsize = num_bblks;
1326 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1327 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1328 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1330 log->l_prev_block = -1;
1331 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1332 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1333 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1334 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1336 xlog_grant_head_init(&log->l_reserve_head);
1337 xlog_grant_head_init(&log->l_write_head);
1339 error = EFSCORRUPTED;
1340 if (xfs_sb_version_hassector(&mp->m_sb)) {
1341 log2_size = mp->m_sb.sb_logsectlog;
1342 if (log2_size < BBSHIFT) {
1343 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1344 log2_size, BBSHIFT);
1345 goto out_free_log;
1348 log2_size -= BBSHIFT;
1349 if (log2_size > mp->m_sectbb_log) {
1350 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1351 log2_size, mp->m_sectbb_log);
1352 goto out_free_log;
1355 /* for larger sector sizes, must have v2 or external log */
1356 if (log2_size && log->l_logBBstart > 0 &&
1357 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1358 xfs_warn(mp,
1359 "log sector size (0x%x) invalid for configuration.",
1360 log2_size);
1361 goto out_free_log;
1364 log->l_sectBBsize = 1 << log2_size;
1366 xlog_get_iclog_buffer_size(mp, log);
1368 error = ENOMEM;
1369 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1370 if (!bp)
1371 goto out_free_log;
1372 bp->b_iodone = xlog_iodone;
1373 ASSERT(xfs_buf_islocked(bp));
1374 log->l_xbuf = bp;
1376 spin_lock_init(&log->l_icloglock);
1377 init_waitqueue_head(&log->l_flush_wait);
1379 iclogp = &log->l_iclog;
1381 * The amount of memory to allocate for the iclog structure is
1382 * rather funky due to the way the structure is defined. It is
1383 * done this way so that we can use different sizes for machines
1384 * with different amounts of memory. See the definition of
1385 * xlog_in_core_t in xfs_log_priv.h for details.
1387 ASSERT(log->l_iclog_size >= 4096);
1388 for (i=0; i < log->l_iclog_bufs; i++) {
1389 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1390 if (!*iclogp)
1391 goto out_free_iclog;
1393 iclog = *iclogp;
1394 iclog->ic_prev = prev_iclog;
1395 prev_iclog = iclog;
1397 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1398 BTOBB(log->l_iclog_size), 0);
1399 if (!bp)
1400 goto out_free_iclog;
1402 bp->b_iodone = xlog_iodone;
1403 iclog->ic_bp = bp;
1404 iclog->ic_data = bp->b_addr;
1405 #ifdef DEBUG
1406 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1407 #endif
1408 head = &iclog->ic_header;
1409 memset(head, 0, sizeof(xlog_rec_header_t));
1410 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1411 head->h_version = cpu_to_be32(
1412 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1413 head->h_size = cpu_to_be32(log->l_iclog_size);
1414 /* new fields */
1415 head->h_fmt = cpu_to_be32(XLOG_FMT);
1416 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1418 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1419 iclog->ic_state = XLOG_STATE_ACTIVE;
1420 iclog->ic_log = log;
1421 atomic_set(&iclog->ic_refcnt, 0);
1422 spin_lock_init(&iclog->ic_callback_lock);
1423 iclog->ic_callback_tail = &(iclog->ic_callback);
1424 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1426 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1427 init_waitqueue_head(&iclog->ic_force_wait);
1428 init_waitqueue_head(&iclog->ic_write_wait);
1430 iclogp = &iclog->ic_next;
1432 *iclogp = log->l_iclog; /* complete ring */
1433 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1435 error = xlog_cil_init(log);
1436 if (error)
1437 goto out_free_iclog;
1438 return log;
1440 out_free_iclog:
1441 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1442 prev_iclog = iclog->ic_next;
1443 if (iclog->ic_bp)
1444 xfs_buf_free(iclog->ic_bp);
1445 kmem_free(iclog);
1447 spinlock_destroy(&log->l_icloglock);
1448 xfs_buf_free(log->l_xbuf);
1449 out_free_log:
1450 kmem_free(log);
1451 out:
1452 return ERR_PTR(-error);
1453 } /* xlog_alloc_log */
1457 * Write out the commit record of a transaction associated with the given
1458 * ticket. Return the lsn of the commit record.
1460 STATIC int
1461 xlog_commit_record(
1462 struct xlog *log,
1463 struct xlog_ticket *ticket,
1464 struct xlog_in_core **iclog,
1465 xfs_lsn_t *commitlsnp)
1467 struct xfs_mount *mp = log->l_mp;
1468 int error;
1469 struct xfs_log_iovec reg = {
1470 .i_addr = NULL,
1471 .i_len = 0,
1472 .i_type = XLOG_REG_TYPE_COMMIT,
1474 struct xfs_log_vec vec = {
1475 .lv_niovecs = 1,
1476 .lv_iovecp = &reg,
1479 ASSERT_ALWAYS(iclog);
1480 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1481 XLOG_COMMIT_TRANS);
1482 if (error)
1483 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1484 return error;
1488 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1489 * log space. This code pushes on the lsn which would supposedly free up
1490 * the 25% which we want to leave free. We may need to adopt a policy which
1491 * pushes on an lsn which is further along in the log once we reach the high
1492 * water mark. In this manner, we would be creating a low water mark.
1494 STATIC void
1495 xlog_grant_push_ail(
1496 struct xlog *log,
1497 int need_bytes)
1499 xfs_lsn_t threshold_lsn = 0;
1500 xfs_lsn_t last_sync_lsn;
1501 int free_blocks;
1502 int free_bytes;
1503 int threshold_block;
1504 int threshold_cycle;
1505 int free_threshold;
1507 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1509 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1510 free_blocks = BTOBBT(free_bytes);
1513 * Set the threshold for the minimum number of free blocks in the
1514 * log to the maximum of what the caller needs, one quarter of the
1515 * log, and 256 blocks.
1517 free_threshold = BTOBB(need_bytes);
1518 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1519 free_threshold = MAX(free_threshold, 256);
1520 if (free_blocks >= free_threshold)
1521 return;
1523 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1524 &threshold_block);
1525 threshold_block += free_threshold;
1526 if (threshold_block >= log->l_logBBsize) {
1527 threshold_block -= log->l_logBBsize;
1528 threshold_cycle += 1;
1530 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1531 threshold_block);
1533 * Don't pass in an lsn greater than the lsn of the last
1534 * log record known to be on disk. Use a snapshot of the last sync lsn
1535 * so that it doesn't change between the compare and the set.
1537 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1538 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1539 threshold_lsn = last_sync_lsn;
1542 * Get the transaction layer to kick the dirty buffers out to
1543 * disk asynchronously. No point in trying to do this if
1544 * the filesystem is shutting down.
1546 if (!XLOG_FORCED_SHUTDOWN(log))
1547 xfs_ail_push(log->l_ailp, threshold_lsn);
1551 * Stamp cycle number in every block
1553 STATIC void
1554 xlog_pack_data(
1555 struct xlog *log,
1556 struct xlog_in_core *iclog,
1557 int roundoff)
1559 int i, j, k;
1560 int size = iclog->ic_offset + roundoff;
1561 __be32 cycle_lsn;
1562 xfs_caddr_t dp;
1564 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1566 dp = iclog->ic_datap;
1567 for (i = 0; i < BTOBB(size); i++) {
1568 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1569 break;
1570 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1571 *(__be32 *)dp = cycle_lsn;
1572 dp += BBSIZE;
1575 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1576 xlog_in_core_2_t *xhdr = iclog->ic_data;
1578 for ( ; i < BTOBB(size); i++) {
1579 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1580 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1581 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1582 *(__be32 *)dp = cycle_lsn;
1583 dp += BBSIZE;
1586 for (i = 1; i < log->l_iclog_heads; i++)
1587 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1592 * Calculate the checksum for a log buffer.
1594 * This is a little more complicated than it should be because the various
1595 * headers and the actual data are non-contiguous.
1597 __le32
1598 xlog_cksum(
1599 struct xlog *log,
1600 struct xlog_rec_header *rhead,
1601 char *dp,
1602 int size)
1604 __uint32_t crc;
1606 /* first generate the crc for the record header ... */
1607 crc = xfs_start_cksum((char *)rhead,
1608 sizeof(struct xlog_rec_header),
1609 offsetof(struct xlog_rec_header, h_crc));
1611 /* ... then for additional cycle data for v2 logs ... */
1612 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1613 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1614 int i;
1616 for (i = 1; i < log->l_iclog_heads; i++) {
1617 crc = crc32c(crc, &xhdr[i].hic_xheader,
1618 sizeof(struct xlog_rec_ext_header));
1622 /* ... and finally for the payload */
1623 crc = crc32c(crc, dp, size);
1625 return xfs_end_cksum(crc);
1629 * The bdstrat callback function for log bufs. This gives us a central
1630 * place to trap bufs in case we get hit by a log I/O error and need to
1631 * shutdown. Actually, in practice, even when we didn't get a log error,
1632 * we transition the iclogs to IOERROR state *after* flushing all existing
1633 * iclogs to disk. This is because we don't want anymore new transactions to be
1634 * started or completed afterwards.
1636 STATIC int
1637 xlog_bdstrat(
1638 struct xfs_buf *bp)
1640 struct xlog_in_core *iclog = bp->b_fspriv;
1642 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1643 xfs_buf_ioerror(bp, EIO);
1644 xfs_buf_stale(bp);
1645 xfs_buf_ioend(bp, 0);
1647 * It would seem logical to return EIO here, but we rely on
1648 * the log state machine to propagate I/O errors instead of
1649 * doing it here.
1651 return 0;
1654 xfs_buf_iorequest(bp);
1655 return 0;
1659 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1660 * fashion. Previously, we should have moved the current iclog
1661 * ptr in the log to point to the next available iclog. This allows further
1662 * write to continue while this code syncs out an iclog ready to go.
1663 * Before an in-core log can be written out, the data section must be scanned
1664 * to save away the 1st word of each BBSIZE block into the header. We replace
1665 * it with the current cycle count. Each BBSIZE block is tagged with the
1666 * cycle count because there in an implicit assumption that drives will
1667 * guarantee that entire 512 byte blocks get written at once. In other words,
1668 * we can't have part of a 512 byte block written and part not written. By
1669 * tagging each block, we will know which blocks are valid when recovering
1670 * after an unclean shutdown.
1672 * This routine is single threaded on the iclog. No other thread can be in
1673 * this routine with the same iclog. Changing contents of iclog can there-
1674 * fore be done without grabbing the state machine lock. Updating the global
1675 * log will require grabbing the lock though.
1677 * The entire log manager uses a logical block numbering scheme. Only
1678 * log_sync (and then only bwrite()) know about the fact that the log may
1679 * not start with block zero on a given device. The log block start offset
1680 * is added immediately before calling bwrite().
1683 STATIC int
1684 xlog_sync(
1685 struct xlog *log,
1686 struct xlog_in_core *iclog)
1688 xfs_buf_t *bp;
1689 int i;
1690 uint count; /* byte count of bwrite */
1691 uint count_init; /* initial count before roundup */
1692 int roundoff; /* roundoff to BB or stripe */
1693 int split = 0; /* split write into two regions */
1694 int error;
1695 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1696 int size;
1698 XFS_STATS_INC(xs_log_writes);
1699 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1701 /* Add for LR header */
1702 count_init = log->l_iclog_hsize + iclog->ic_offset;
1704 /* Round out the log write size */
1705 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1706 /* we have a v2 stripe unit to use */
1707 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1708 } else {
1709 count = BBTOB(BTOBB(count_init));
1711 roundoff = count - count_init;
1712 ASSERT(roundoff >= 0);
1713 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1714 roundoff < log->l_mp->m_sb.sb_logsunit)
1716 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1717 roundoff < BBTOB(1)));
1719 /* move grant heads by roundoff in sync */
1720 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1721 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1723 /* put cycle number in every block */
1724 xlog_pack_data(log, iclog, roundoff);
1726 /* real byte length */
1727 size = iclog->ic_offset;
1728 if (v2)
1729 size += roundoff;
1730 iclog->ic_header.h_len = cpu_to_be32(size);
1732 bp = iclog->ic_bp;
1733 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1735 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1737 /* Do we need to split this write into 2 parts? */
1738 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1739 char *dptr;
1741 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1742 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1743 iclog->ic_bwritecnt = 2;
1746 * Bump the cycle numbers at the start of each block in the
1747 * part of the iclog that ends up in the buffer that gets
1748 * written to the start of the log.
1750 * Watch out for the header magic number case, though.
1752 dptr = (char *)&iclog->ic_header + count;
1753 for (i = 0; i < split; i += BBSIZE) {
1754 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1755 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1756 cycle++;
1757 *(__be32 *)dptr = cpu_to_be32(cycle);
1759 dptr += BBSIZE;
1761 } else {
1762 iclog->ic_bwritecnt = 1;
1765 /* calculcate the checksum */
1766 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1767 iclog->ic_datap, size);
1769 bp->b_io_length = BTOBB(count);
1770 bp->b_fspriv = iclog;
1771 XFS_BUF_ZEROFLAGS(bp);
1772 XFS_BUF_ASYNC(bp);
1773 bp->b_flags |= XBF_SYNCIO;
1775 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1776 bp->b_flags |= XBF_FUA;
1779 * Flush the data device before flushing the log to make
1780 * sure all meta data written back from the AIL actually made
1781 * it to disk before stamping the new log tail LSN into the
1782 * log buffer. For an external log we need to issue the
1783 * flush explicitly, and unfortunately synchronously here;
1784 * for an internal log we can simply use the block layer
1785 * state machine for preflushes.
1787 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1788 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1789 else
1790 bp->b_flags |= XBF_FLUSH;
1793 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1794 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1796 xlog_verify_iclog(log, iclog, count, true);
1798 /* account for log which doesn't start at block #0 */
1799 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1801 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1802 * is shutting down.
1804 XFS_BUF_WRITE(bp);
1806 error = xlog_bdstrat(bp);
1807 if (error) {
1808 xfs_buf_ioerror_alert(bp, "xlog_sync");
1809 return error;
1811 if (split) {
1812 bp = iclog->ic_log->l_xbuf;
1813 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1814 xfs_buf_associate_memory(bp,
1815 (char *)&iclog->ic_header + count, split);
1816 bp->b_fspriv = iclog;
1817 XFS_BUF_ZEROFLAGS(bp);
1818 XFS_BUF_ASYNC(bp);
1819 bp->b_flags |= XBF_SYNCIO;
1820 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1821 bp->b_flags |= XBF_FUA;
1823 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1824 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1826 /* account for internal log which doesn't start at block #0 */
1827 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1828 XFS_BUF_WRITE(bp);
1829 error = xlog_bdstrat(bp);
1830 if (error) {
1831 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1832 return error;
1835 return 0;
1836 } /* xlog_sync */
1839 * Deallocate a log structure
1841 STATIC void
1842 xlog_dealloc_log(
1843 struct xlog *log)
1845 xlog_in_core_t *iclog, *next_iclog;
1846 int i;
1848 xlog_cil_destroy(log);
1851 * always need to ensure that the extra buffer does not point to memory
1852 * owned by another log buffer before we free it.
1854 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1855 xfs_buf_free(log->l_xbuf);
1857 iclog = log->l_iclog;
1858 for (i=0; i<log->l_iclog_bufs; i++) {
1859 xfs_buf_free(iclog->ic_bp);
1860 next_iclog = iclog->ic_next;
1861 kmem_free(iclog);
1862 iclog = next_iclog;
1864 spinlock_destroy(&log->l_icloglock);
1866 log->l_mp->m_log = NULL;
1867 kmem_free(log);
1868 } /* xlog_dealloc_log */
1871 * Update counters atomically now that memcpy is done.
1873 /* ARGSUSED */
1874 static inline void
1875 xlog_state_finish_copy(
1876 struct xlog *log,
1877 struct xlog_in_core *iclog,
1878 int record_cnt,
1879 int copy_bytes)
1881 spin_lock(&log->l_icloglock);
1883 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1884 iclog->ic_offset += copy_bytes;
1886 spin_unlock(&log->l_icloglock);
1887 } /* xlog_state_finish_copy */
1893 * print out info relating to regions written which consume
1894 * the reservation
1896 void
1897 xlog_print_tic_res(
1898 struct xfs_mount *mp,
1899 struct xlog_ticket *ticket)
1901 uint i;
1902 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1904 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1905 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1906 "bformat",
1907 "bchunk",
1908 "efi_format",
1909 "efd_format",
1910 "iformat",
1911 "icore",
1912 "iext",
1913 "ibroot",
1914 "ilocal",
1915 "iattr_ext",
1916 "iattr_broot",
1917 "iattr_local",
1918 "qformat",
1919 "dquot",
1920 "quotaoff",
1921 "LR header",
1922 "unmount",
1923 "commit",
1924 "trans header"
1926 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1927 "SETATTR_NOT_SIZE",
1928 "SETATTR_SIZE",
1929 "INACTIVE",
1930 "CREATE",
1931 "CREATE_TRUNC",
1932 "TRUNCATE_FILE",
1933 "REMOVE",
1934 "LINK",
1935 "RENAME",
1936 "MKDIR",
1937 "RMDIR",
1938 "SYMLINK",
1939 "SET_DMATTRS",
1940 "GROWFS",
1941 "STRAT_WRITE",
1942 "DIOSTRAT",
1943 "WRITE_SYNC",
1944 "WRITEID",
1945 "ADDAFORK",
1946 "ATTRINVAL",
1947 "ATRUNCATE",
1948 "ATTR_SET",
1949 "ATTR_RM",
1950 "ATTR_FLAG",
1951 "CLEAR_AGI_BUCKET",
1952 "QM_SBCHANGE",
1953 "DUMMY1",
1954 "DUMMY2",
1955 "QM_QUOTAOFF",
1956 "QM_DQALLOC",
1957 "QM_SETQLIM",
1958 "QM_DQCLUSTER",
1959 "QM_QINOCREATE",
1960 "QM_QUOTAOFF_END",
1961 "SB_UNIT",
1962 "FSYNC_TS",
1963 "GROWFSRT_ALLOC",
1964 "GROWFSRT_ZERO",
1965 "GROWFSRT_FREE",
1966 "SWAPEXT"
1969 xfs_warn(mp,
1970 "xlog_write: reservation summary:\n"
1971 " trans type = %s (%u)\n"
1972 " unit res = %d bytes\n"
1973 " current res = %d bytes\n"
1974 " total reg = %u bytes (o/flow = %u bytes)\n"
1975 " ophdrs = %u (ophdr space = %u bytes)\n"
1976 " ophdr + reg = %u bytes\n"
1977 " num regions = %u\n",
1978 ((ticket->t_trans_type <= 0 ||
1979 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1980 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1981 ticket->t_trans_type,
1982 ticket->t_unit_res,
1983 ticket->t_curr_res,
1984 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1985 ticket->t_res_num_ophdrs, ophdr_spc,
1986 ticket->t_res_arr_sum +
1987 ticket->t_res_o_flow + ophdr_spc,
1988 ticket->t_res_num);
1990 for (i = 0; i < ticket->t_res_num; i++) {
1991 uint r_type = ticket->t_res_arr[i].r_type;
1992 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1993 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1994 "bad-rtype" : res_type_str[r_type-1]),
1995 ticket->t_res_arr[i].r_len);
1998 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1999 "xlog_write: reservation ran out. Need to up reservation");
2000 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2004 * Calculate the potential space needed by the log vector. Each region gets
2005 * its own xlog_op_header_t and may need to be double word aligned.
2007 static int
2008 xlog_write_calc_vec_length(
2009 struct xlog_ticket *ticket,
2010 struct xfs_log_vec *log_vector)
2012 struct xfs_log_vec *lv;
2013 int headers = 0;
2014 int len = 0;
2015 int i;
2017 /* acct for start rec of xact */
2018 if (ticket->t_flags & XLOG_TIC_INITED)
2019 headers++;
2021 for (lv = log_vector; lv; lv = lv->lv_next) {
2022 /* we don't write ordered log vectors */
2023 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2024 continue;
2026 headers += lv->lv_niovecs;
2028 for (i = 0; i < lv->lv_niovecs; i++) {
2029 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2031 len += vecp->i_len;
2032 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2036 ticket->t_res_num_ophdrs += headers;
2037 len += headers * sizeof(struct xlog_op_header);
2039 return len;
2043 * If first write for transaction, insert start record We can't be trying to
2044 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2046 static int
2047 xlog_write_start_rec(
2048 struct xlog_op_header *ophdr,
2049 struct xlog_ticket *ticket)
2051 if (!(ticket->t_flags & XLOG_TIC_INITED))
2052 return 0;
2054 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2055 ophdr->oh_clientid = ticket->t_clientid;
2056 ophdr->oh_len = 0;
2057 ophdr->oh_flags = XLOG_START_TRANS;
2058 ophdr->oh_res2 = 0;
2060 ticket->t_flags &= ~XLOG_TIC_INITED;
2062 return sizeof(struct xlog_op_header);
2065 static xlog_op_header_t *
2066 xlog_write_setup_ophdr(
2067 struct xlog *log,
2068 struct xlog_op_header *ophdr,
2069 struct xlog_ticket *ticket,
2070 uint flags)
2072 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2073 ophdr->oh_clientid = ticket->t_clientid;
2074 ophdr->oh_res2 = 0;
2076 /* are we copying a commit or unmount record? */
2077 ophdr->oh_flags = flags;
2080 * We've seen logs corrupted with bad transaction client ids. This
2081 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2082 * and shut down the filesystem.
2084 switch (ophdr->oh_clientid) {
2085 case XFS_TRANSACTION:
2086 case XFS_VOLUME:
2087 case XFS_LOG:
2088 break;
2089 default:
2090 xfs_warn(log->l_mp,
2091 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2092 ophdr->oh_clientid, ticket);
2093 return NULL;
2096 return ophdr;
2100 * Set up the parameters of the region copy into the log. This has
2101 * to handle region write split across multiple log buffers - this
2102 * state is kept external to this function so that this code can
2103 * be written in an obvious, self documenting manner.
2105 static int
2106 xlog_write_setup_copy(
2107 struct xlog_ticket *ticket,
2108 struct xlog_op_header *ophdr,
2109 int space_available,
2110 int space_required,
2111 int *copy_off,
2112 int *copy_len,
2113 int *last_was_partial_copy,
2114 int *bytes_consumed)
2116 int still_to_copy;
2118 still_to_copy = space_required - *bytes_consumed;
2119 *copy_off = *bytes_consumed;
2121 if (still_to_copy <= space_available) {
2122 /* write of region completes here */
2123 *copy_len = still_to_copy;
2124 ophdr->oh_len = cpu_to_be32(*copy_len);
2125 if (*last_was_partial_copy)
2126 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2127 *last_was_partial_copy = 0;
2128 *bytes_consumed = 0;
2129 return 0;
2132 /* partial write of region, needs extra log op header reservation */
2133 *copy_len = space_available;
2134 ophdr->oh_len = cpu_to_be32(*copy_len);
2135 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2136 if (*last_was_partial_copy)
2137 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2138 *bytes_consumed += *copy_len;
2139 (*last_was_partial_copy)++;
2141 /* account for new log op header */
2142 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2143 ticket->t_res_num_ophdrs++;
2145 return sizeof(struct xlog_op_header);
2148 static int
2149 xlog_write_copy_finish(
2150 struct xlog *log,
2151 struct xlog_in_core *iclog,
2152 uint flags,
2153 int *record_cnt,
2154 int *data_cnt,
2155 int *partial_copy,
2156 int *partial_copy_len,
2157 int log_offset,
2158 struct xlog_in_core **commit_iclog)
2160 if (*partial_copy) {
2162 * This iclog has already been marked WANT_SYNC by
2163 * xlog_state_get_iclog_space.
2165 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2166 *record_cnt = 0;
2167 *data_cnt = 0;
2168 return xlog_state_release_iclog(log, iclog);
2171 *partial_copy = 0;
2172 *partial_copy_len = 0;
2174 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2175 /* no more space in this iclog - push it. */
2176 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2177 *record_cnt = 0;
2178 *data_cnt = 0;
2180 spin_lock(&log->l_icloglock);
2181 xlog_state_want_sync(log, iclog);
2182 spin_unlock(&log->l_icloglock);
2184 if (!commit_iclog)
2185 return xlog_state_release_iclog(log, iclog);
2186 ASSERT(flags & XLOG_COMMIT_TRANS);
2187 *commit_iclog = iclog;
2190 return 0;
2194 * Write some region out to in-core log
2196 * This will be called when writing externally provided regions or when
2197 * writing out a commit record for a given transaction.
2199 * General algorithm:
2200 * 1. Find total length of this write. This may include adding to the
2201 * lengths passed in.
2202 * 2. Check whether we violate the tickets reservation.
2203 * 3. While writing to this iclog
2204 * A. Reserve as much space in this iclog as can get
2205 * B. If this is first write, save away start lsn
2206 * C. While writing this region:
2207 * 1. If first write of transaction, write start record
2208 * 2. Write log operation header (header per region)
2209 * 3. Find out if we can fit entire region into this iclog
2210 * 4. Potentially, verify destination memcpy ptr
2211 * 5. Memcpy (partial) region
2212 * 6. If partial copy, release iclog; otherwise, continue
2213 * copying more regions into current iclog
2214 * 4. Mark want sync bit (in simulation mode)
2215 * 5. Release iclog for potential flush to on-disk log.
2217 * ERRORS:
2218 * 1. Panic if reservation is overrun. This should never happen since
2219 * reservation amounts are generated internal to the filesystem.
2220 * NOTES:
2221 * 1. Tickets are single threaded data structures.
2222 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2223 * syncing routine. When a single log_write region needs to span
2224 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2225 * on all log operation writes which don't contain the end of the
2226 * region. The XLOG_END_TRANS bit is used for the in-core log
2227 * operation which contains the end of the continued log_write region.
2228 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2229 * we don't really know exactly how much space will be used. As a result,
2230 * we don't update ic_offset until the end when we know exactly how many
2231 * bytes have been written out.
2234 xlog_write(
2235 struct xlog *log,
2236 struct xfs_log_vec *log_vector,
2237 struct xlog_ticket *ticket,
2238 xfs_lsn_t *start_lsn,
2239 struct xlog_in_core **commit_iclog,
2240 uint flags)
2242 struct xlog_in_core *iclog = NULL;
2243 struct xfs_log_iovec *vecp;
2244 struct xfs_log_vec *lv;
2245 int len;
2246 int index;
2247 int partial_copy = 0;
2248 int partial_copy_len = 0;
2249 int contwr = 0;
2250 int record_cnt = 0;
2251 int data_cnt = 0;
2252 int error;
2254 *start_lsn = 0;
2256 len = xlog_write_calc_vec_length(ticket, log_vector);
2259 * Region headers and bytes are already accounted for.
2260 * We only need to take into account start records and
2261 * split regions in this function.
2263 if (ticket->t_flags & XLOG_TIC_INITED)
2264 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2267 * Commit record headers need to be accounted for. These
2268 * come in as separate writes so are easy to detect.
2270 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2271 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2273 if (ticket->t_curr_res < 0)
2274 xlog_print_tic_res(log->l_mp, ticket);
2276 index = 0;
2277 lv = log_vector;
2278 vecp = lv->lv_iovecp;
2279 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2280 void *ptr;
2281 int log_offset;
2283 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2284 &contwr, &log_offset);
2285 if (error)
2286 return error;
2288 ASSERT(log_offset <= iclog->ic_size - 1);
2289 ptr = iclog->ic_datap + log_offset;
2291 /* start_lsn is the first lsn written to. That's all we need. */
2292 if (!*start_lsn)
2293 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2296 * This loop writes out as many regions as can fit in the amount
2297 * of space which was allocated by xlog_state_get_iclog_space().
2299 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2300 struct xfs_log_iovec *reg;
2301 struct xlog_op_header *ophdr;
2302 int start_rec_copy;
2303 int copy_len;
2304 int copy_off;
2305 bool ordered = false;
2307 /* ordered log vectors have no regions to write */
2308 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2309 ASSERT(lv->lv_niovecs == 0);
2310 ordered = true;
2311 goto next_lv;
2314 reg = &vecp[index];
2315 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2316 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2318 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2319 if (start_rec_copy) {
2320 record_cnt++;
2321 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2322 start_rec_copy);
2325 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2326 if (!ophdr)
2327 return XFS_ERROR(EIO);
2329 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2330 sizeof(struct xlog_op_header));
2332 len += xlog_write_setup_copy(ticket, ophdr,
2333 iclog->ic_size-log_offset,
2334 reg->i_len,
2335 &copy_off, &copy_len,
2336 &partial_copy,
2337 &partial_copy_len);
2338 xlog_verify_dest_ptr(log, ptr);
2340 /* copy region */
2341 ASSERT(copy_len >= 0);
2342 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2343 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2345 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2346 record_cnt++;
2347 data_cnt += contwr ? copy_len : 0;
2349 error = xlog_write_copy_finish(log, iclog, flags,
2350 &record_cnt, &data_cnt,
2351 &partial_copy,
2352 &partial_copy_len,
2353 log_offset,
2354 commit_iclog);
2355 if (error)
2356 return error;
2359 * if we had a partial copy, we need to get more iclog
2360 * space but we don't want to increment the region
2361 * index because there is still more is this region to
2362 * write.
2364 * If we completed writing this region, and we flushed
2365 * the iclog (indicated by resetting of the record
2366 * count), then we also need to get more log space. If
2367 * this was the last record, though, we are done and
2368 * can just return.
2370 if (partial_copy)
2371 break;
2373 if (++index == lv->lv_niovecs) {
2374 next_lv:
2375 lv = lv->lv_next;
2376 index = 0;
2377 if (lv)
2378 vecp = lv->lv_iovecp;
2380 if (record_cnt == 0 && ordered == false) {
2381 if (!lv)
2382 return 0;
2383 break;
2388 ASSERT(len == 0);
2390 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2391 if (!commit_iclog)
2392 return xlog_state_release_iclog(log, iclog);
2394 ASSERT(flags & XLOG_COMMIT_TRANS);
2395 *commit_iclog = iclog;
2396 return 0;
2400 /*****************************************************************************
2402 * State Machine functions
2404 *****************************************************************************
2407 /* Clean iclogs starting from the head. This ordering must be
2408 * maintained, so an iclog doesn't become ACTIVE beyond one that
2409 * is SYNCING. This is also required to maintain the notion that we use
2410 * a ordered wait queue to hold off would be writers to the log when every
2411 * iclog is trying to sync to disk.
2413 * State Change: DIRTY -> ACTIVE
2415 STATIC void
2416 xlog_state_clean_log(
2417 struct xlog *log)
2419 xlog_in_core_t *iclog;
2420 int changed = 0;
2422 iclog = log->l_iclog;
2423 do {
2424 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2425 iclog->ic_state = XLOG_STATE_ACTIVE;
2426 iclog->ic_offset = 0;
2427 ASSERT(iclog->ic_callback == NULL);
2429 * If the number of ops in this iclog indicate it just
2430 * contains the dummy transaction, we can
2431 * change state into IDLE (the second time around).
2432 * Otherwise we should change the state into
2433 * NEED a dummy.
2434 * We don't need to cover the dummy.
2436 if (!changed &&
2437 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2438 XLOG_COVER_OPS)) {
2439 changed = 1;
2440 } else {
2442 * We have two dirty iclogs so start over
2443 * This could also be num of ops indicates
2444 * this is not the dummy going out.
2446 changed = 2;
2448 iclog->ic_header.h_num_logops = 0;
2449 memset(iclog->ic_header.h_cycle_data, 0,
2450 sizeof(iclog->ic_header.h_cycle_data));
2451 iclog->ic_header.h_lsn = 0;
2452 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2453 /* do nothing */;
2454 else
2455 break; /* stop cleaning */
2456 iclog = iclog->ic_next;
2457 } while (iclog != log->l_iclog);
2459 /* log is locked when we are called */
2461 * Change state for the dummy log recording.
2462 * We usually go to NEED. But we go to NEED2 if the changed indicates
2463 * we are done writing the dummy record.
2464 * If we are done with the second dummy recored (DONE2), then
2465 * we go to IDLE.
2467 if (changed) {
2468 switch (log->l_covered_state) {
2469 case XLOG_STATE_COVER_IDLE:
2470 case XLOG_STATE_COVER_NEED:
2471 case XLOG_STATE_COVER_NEED2:
2472 log->l_covered_state = XLOG_STATE_COVER_NEED;
2473 break;
2475 case XLOG_STATE_COVER_DONE:
2476 if (changed == 1)
2477 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2478 else
2479 log->l_covered_state = XLOG_STATE_COVER_NEED;
2480 break;
2482 case XLOG_STATE_COVER_DONE2:
2483 if (changed == 1)
2484 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2485 else
2486 log->l_covered_state = XLOG_STATE_COVER_NEED;
2487 break;
2489 default:
2490 ASSERT(0);
2493 } /* xlog_state_clean_log */
2495 STATIC xfs_lsn_t
2496 xlog_get_lowest_lsn(
2497 struct xlog *log)
2499 xlog_in_core_t *lsn_log;
2500 xfs_lsn_t lowest_lsn, lsn;
2502 lsn_log = log->l_iclog;
2503 lowest_lsn = 0;
2504 do {
2505 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2506 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2507 if ((lsn && !lowest_lsn) ||
2508 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2509 lowest_lsn = lsn;
2512 lsn_log = lsn_log->ic_next;
2513 } while (lsn_log != log->l_iclog);
2514 return lowest_lsn;
2518 STATIC void
2519 xlog_state_do_callback(
2520 struct xlog *log,
2521 int aborted,
2522 struct xlog_in_core *ciclog)
2524 xlog_in_core_t *iclog;
2525 xlog_in_core_t *first_iclog; /* used to know when we've
2526 * processed all iclogs once */
2527 xfs_log_callback_t *cb, *cb_next;
2528 int flushcnt = 0;
2529 xfs_lsn_t lowest_lsn;
2530 int ioerrors; /* counter: iclogs with errors */
2531 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2532 int funcdidcallbacks; /* flag: function did callbacks */
2533 int repeats; /* for issuing console warnings if
2534 * looping too many times */
2535 int wake = 0;
2537 spin_lock(&log->l_icloglock);
2538 first_iclog = iclog = log->l_iclog;
2539 ioerrors = 0;
2540 funcdidcallbacks = 0;
2541 repeats = 0;
2543 do {
2545 * Scan all iclogs starting with the one pointed to by the
2546 * log. Reset this starting point each time the log is
2547 * unlocked (during callbacks).
2549 * Keep looping through iclogs until one full pass is made
2550 * without running any callbacks.
2552 first_iclog = log->l_iclog;
2553 iclog = log->l_iclog;
2554 loopdidcallbacks = 0;
2555 repeats++;
2557 do {
2559 /* skip all iclogs in the ACTIVE & DIRTY states */
2560 if (iclog->ic_state &
2561 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2562 iclog = iclog->ic_next;
2563 continue;
2567 * Between marking a filesystem SHUTDOWN and stopping
2568 * the log, we do flush all iclogs to disk (if there
2569 * wasn't a log I/O error). So, we do want things to
2570 * go smoothly in case of just a SHUTDOWN w/o a
2571 * LOG_IO_ERROR.
2573 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2575 * Can only perform callbacks in order. Since
2576 * this iclog is not in the DONE_SYNC/
2577 * DO_CALLBACK state, we skip the rest and
2578 * just try to clean up. If we set our iclog
2579 * to DO_CALLBACK, we will not process it when
2580 * we retry since a previous iclog is in the
2581 * CALLBACK and the state cannot change since
2582 * we are holding the l_icloglock.
2584 if (!(iclog->ic_state &
2585 (XLOG_STATE_DONE_SYNC |
2586 XLOG_STATE_DO_CALLBACK))) {
2587 if (ciclog && (ciclog->ic_state ==
2588 XLOG_STATE_DONE_SYNC)) {
2589 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2591 break;
2594 * We now have an iclog that is in either the
2595 * DO_CALLBACK or DONE_SYNC states. The other
2596 * states (WANT_SYNC, SYNCING, or CALLBACK were
2597 * caught by the above if and are going to
2598 * clean (i.e. we aren't doing their callbacks)
2599 * see the above if.
2603 * We will do one more check here to see if we
2604 * have chased our tail around.
2607 lowest_lsn = xlog_get_lowest_lsn(log);
2608 if (lowest_lsn &&
2609 XFS_LSN_CMP(lowest_lsn,
2610 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2611 iclog = iclog->ic_next;
2612 continue; /* Leave this iclog for
2613 * another thread */
2616 iclog->ic_state = XLOG_STATE_CALLBACK;
2620 * Completion of a iclog IO does not imply that
2621 * a transaction has completed, as transactions
2622 * can be large enough to span many iclogs. We
2623 * cannot change the tail of the log half way
2624 * through a transaction as this may be the only
2625 * transaction in the log and moving th etail to
2626 * point to the middle of it will prevent
2627 * recovery from finding the start of the
2628 * transaction. Hence we should only update the
2629 * last_sync_lsn if this iclog contains
2630 * transaction completion callbacks on it.
2632 * We have to do this before we drop the
2633 * icloglock to ensure we are the only one that
2634 * can update it.
2636 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2637 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2638 if (iclog->ic_callback)
2639 atomic64_set(&log->l_last_sync_lsn,
2640 be64_to_cpu(iclog->ic_header.h_lsn));
2642 } else
2643 ioerrors++;
2645 spin_unlock(&log->l_icloglock);
2648 * Keep processing entries in the callback list until
2649 * we come around and it is empty. We need to
2650 * atomically see that the list is empty and change the
2651 * state to DIRTY so that we don't miss any more
2652 * callbacks being added.
2654 spin_lock(&iclog->ic_callback_lock);
2655 cb = iclog->ic_callback;
2656 while (cb) {
2657 iclog->ic_callback_tail = &(iclog->ic_callback);
2658 iclog->ic_callback = NULL;
2659 spin_unlock(&iclog->ic_callback_lock);
2661 /* perform callbacks in the order given */
2662 for (; cb; cb = cb_next) {
2663 cb_next = cb->cb_next;
2664 cb->cb_func(cb->cb_arg, aborted);
2666 spin_lock(&iclog->ic_callback_lock);
2667 cb = iclog->ic_callback;
2670 loopdidcallbacks++;
2671 funcdidcallbacks++;
2673 spin_lock(&log->l_icloglock);
2674 ASSERT(iclog->ic_callback == NULL);
2675 spin_unlock(&iclog->ic_callback_lock);
2676 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2677 iclog->ic_state = XLOG_STATE_DIRTY;
2680 * Transition from DIRTY to ACTIVE if applicable.
2681 * NOP if STATE_IOERROR.
2683 xlog_state_clean_log(log);
2685 /* wake up threads waiting in xfs_log_force() */
2686 wake_up_all(&iclog->ic_force_wait);
2688 iclog = iclog->ic_next;
2689 } while (first_iclog != iclog);
2691 if (repeats > 5000) {
2692 flushcnt += repeats;
2693 repeats = 0;
2694 xfs_warn(log->l_mp,
2695 "%s: possible infinite loop (%d iterations)",
2696 __func__, flushcnt);
2698 } while (!ioerrors && loopdidcallbacks);
2701 * make one last gasp attempt to see if iclogs are being left in
2702 * limbo..
2704 #ifdef DEBUG
2705 if (funcdidcallbacks) {
2706 first_iclog = iclog = log->l_iclog;
2707 do {
2708 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2710 * Terminate the loop if iclogs are found in states
2711 * which will cause other threads to clean up iclogs.
2713 * SYNCING - i/o completion will go through logs
2714 * DONE_SYNC - interrupt thread should be waiting for
2715 * l_icloglock
2716 * IOERROR - give up hope all ye who enter here
2718 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2719 iclog->ic_state == XLOG_STATE_SYNCING ||
2720 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2721 iclog->ic_state == XLOG_STATE_IOERROR )
2722 break;
2723 iclog = iclog->ic_next;
2724 } while (first_iclog != iclog);
2726 #endif
2728 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2729 wake = 1;
2730 spin_unlock(&log->l_icloglock);
2732 if (wake)
2733 wake_up_all(&log->l_flush_wait);
2738 * Finish transitioning this iclog to the dirty state.
2740 * Make sure that we completely execute this routine only when this is
2741 * the last call to the iclog. There is a good chance that iclog flushes,
2742 * when we reach the end of the physical log, get turned into 2 separate
2743 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2744 * routine. By using the reference count bwritecnt, we guarantee that only
2745 * the second completion goes through.
2747 * Callbacks could take time, so they are done outside the scope of the
2748 * global state machine log lock.
2750 STATIC void
2751 xlog_state_done_syncing(
2752 xlog_in_core_t *iclog,
2753 int aborted)
2755 struct xlog *log = iclog->ic_log;
2757 spin_lock(&log->l_icloglock);
2759 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2760 iclog->ic_state == XLOG_STATE_IOERROR);
2761 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2762 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2766 * If we got an error, either on the first buffer, or in the case of
2767 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2768 * and none should ever be attempted to be written to disk
2769 * again.
2771 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2772 if (--iclog->ic_bwritecnt == 1) {
2773 spin_unlock(&log->l_icloglock);
2774 return;
2776 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2780 * Someone could be sleeping prior to writing out the next
2781 * iclog buffer, we wake them all, one will get to do the
2782 * I/O, the others get to wait for the result.
2784 wake_up_all(&iclog->ic_write_wait);
2785 spin_unlock(&log->l_icloglock);
2786 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2787 } /* xlog_state_done_syncing */
2791 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2792 * sleep. We wait on the flush queue on the head iclog as that should be
2793 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2794 * we will wait here and all new writes will sleep until a sync completes.
2796 * The in-core logs are used in a circular fashion. They are not used
2797 * out-of-order even when an iclog past the head is free.
2799 * return:
2800 * * log_offset where xlog_write() can start writing into the in-core
2801 * log's data space.
2802 * * in-core log pointer to which xlog_write() should write.
2803 * * boolean indicating this is a continued write to an in-core log.
2804 * If this is the last write, then the in-core log's offset field
2805 * needs to be incremented, depending on the amount of data which
2806 * is copied.
2808 STATIC int
2809 xlog_state_get_iclog_space(
2810 struct xlog *log,
2811 int len,
2812 struct xlog_in_core **iclogp,
2813 struct xlog_ticket *ticket,
2814 int *continued_write,
2815 int *logoffsetp)
2817 int log_offset;
2818 xlog_rec_header_t *head;
2819 xlog_in_core_t *iclog;
2820 int error;
2822 restart:
2823 spin_lock(&log->l_icloglock);
2824 if (XLOG_FORCED_SHUTDOWN(log)) {
2825 spin_unlock(&log->l_icloglock);
2826 return XFS_ERROR(EIO);
2829 iclog = log->l_iclog;
2830 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2831 XFS_STATS_INC(xs_log_noiclogs);
2833 /* Wait for log writes to have flushed */
2834 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2835 goto restart;
2838 head = &iclog->ic_header;
2840 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2841 log_offset = iclog->ic_offset;
2843 /* On the 1st write to an iclog, figure out lsn. This works
2844 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2845 * committing to. If the offset is set, that's how many blocks
2846 * must be written.
2848 if (log_offset == 0) {
2849 ticket->t_curr_res -= log->l_iclog_hsize;
2850 xlog_tic_add_region(ticket,
2851 log->l_iclog_hsize,
2852 XLOG_REG_TYPE_LRHEADER);
2853 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2854 head->h_lsn = cpu_to_be64(
2855 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2856 ASSERT(log->l_curr_block >= 0);
2859 /* If there is enough room to write everything, then do it. Otherwise,
2860 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2861 * bit is on, so this will get flushed out. Don't update ic_offset
2862 * until you know exactly how many bytes get copied. Therefore, wait
2863 * until later to update ic_offset.
2865 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2866 * can fit into remaining data section.
2868 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2869 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2872 * If I'm the only one writing to this iclog, sync it to disk.
2873 * We need to do an atomic compare and decrement here to avoid
2874 * racing with concurrent atomic_dec_and_lock() calls in
2875 * xlog_state_release_iclog() when there is more than one
2876 * reference to the iclog.
2878 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2879 /* we are the only one */
2880 spin_unlock(&log->l_icloglock);
2881 error = xlog_state_release_iclog(log, iclog);
2882 if (error)
2883 return error;
2884 } else {
2885 spin_unlock(&log->l_icloglock);
2887 goto restart;
2890 /* Do we have enough room to write the full amount in the remainder
2891 * of this iclog? Or must we continue a write on the next iclog and
2892 * mark this iclog as completely taken? In the case where we switch
2893 * iclogs (to mark it taken), this particular iclog will release/sync
2894 * to disk in xlog_write().
2896 if (len <= iclog->ic_size - iclog->ic_offset) {
2897 *continued_write = 0;
2898 iclog->ic_offset += len;
2899 } else {
2900 *continued_write = 1;
2901 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2903 *iclogp = iclog;
2905 ASSERT(iclog->ic_offset <= iclog->ic_size);
2906 spin_unlock(&log->l_icloglock);
2908 *logoffsetp = log_offset;
2909 return 0;
2910 } /* xlog_state_get_iclog_space */
2912 /* The first cnt-1 times through here we don't need to
2913 * move the grant write head because the permanent
2914 * reservation has reserved cnt times the unit amount.
2915 * Release part of current permanent unit reservation and
2916 * reset current reservation to be one units worth. Also
2917 * move grant reservation head forward.
2919 STATIC void
2920 xlog_regrant_reserve_log_space(
2921 struct xlog *log,
2922 struct xlog_ticket *ticket)
2924 trace_xfs_log_regrant_reserve_enter(log, ticket);
2926 if (ticket->t_cnt > 0)
2927 ticket->t_cnt--;
2929 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2930 ticket->t_curr_res);
2931 xlog_grant_sub_space(log, &log->l_write_head.grant,
2932 ticket->t_curr_res);
2933 ticket->t_curr_res = ticket->t_unit_res;
2934 xlog_tic_reset_res(ticket);
2936 trace_xfs_log_regrant_reserve_sub(log, ticket);
2938 /* just return if we still have some of the pre-reserved space */
2939 if (ticket->t_cnt > 0)
2940 return;
2942 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2943 ticket->t_unit_res);
2945 trace_xfs_log_regrant_reserve_exit(log, ticket);
2947 ticket->t_curr_res = ticket->t_unit_res;
2948 xlog_tic_reset_res(ticket);
2949 } /* xlog_regrant_reserve_log_space */
2953 * Give back the space left from a reservation.
2955 * All the information we need to make a correct determination of space left
2956 * is present. For non-permanent reservations, things are quite easy. The
2957 * count should have been decremented to zero. We only need to deal with the
2958 * space remaining in the current reservation part of the ticket. If the
2959 * ticket contains a permanent reservation, there may be left over space which
2960 * needs to be released. A count of N means that N-1 refills of the current
2961 * reservation can be done before we need to ask for more space. The first
2962 * one goes to fill up the first current reservation. Once we run out of
2963 * space, the count will stay at zero and the only space remaining will be
2964 * in the current reservation field.
2966 STATIC void
2967 xlog_ungrant_log_space(
2968 struct xlog *log,
2969 struct xlog_ticket *ticket)
2971 int bytes;
2973 if (ticket->t_cnt > 0)
2974 ticket->t_cnt--;
2976 trace_xfs_log_ungrant_enter(log, ticket);
2977 trace_xfs_log_ungrant_sub(log, ticket);
2980 * If this is a permanent reservation ticket, we may be able to free
2981 * up more space based on the remaining count.
2983 bytes = ticket->t_curr_res;
2984 if (ticket->t_cnt > 0) {
2985 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2986 bytes += ticket->t_unit_res*ticket->t_cnt;
2989 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2990 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2992 trace_xfs_log_ungrant_exit(log, ticket);
2994 xfs_log_space_wake(log->l_mp);
2998 * Flush iclog to disk if this is the last reference to the given iclog and
2999 * the WANT_SYNC bit is set.
3001 * When this function is entered, the iclog is not necessarily in the
3002 * WANT_SYNC state. It may be sitting around waiting to get filled.
3006 STATIC int
3007 xlog_state_release_iclog(
3008 struct xlog *log,
3009 struct xlog_in_core *iclog)
3011 int sync = 0; /* do we sync? */
3013 if (iclog->ic_state & XLOG_STATE_IOERROR)
3014 return XFS_ERROR(EIO);
3016 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3017 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3018 return 0;
3020 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3021 spin_unlock(&log->l_icloglock);
3022 return XFS_ERROR(EIO);
3024 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3025 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3027 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3028 /* update tail before writing to iclog */
3029 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3030 sync++;
3031 iclog->ic_state = XLOG_STATE_SYNCING;
3032 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3033 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3034 /* cycle incremented when incrementing curr_block */
3036 spin_unlock(&log->l_icloglock);
3039 * We let the log lock go, so it's possible that we hit a log I/O
3040 * error or some other SHUTDOWN condition that marks the iclog
3041 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3042 * this iclog has consistent data, so we ignore IOERROR
3043 * flags after this point.
3045 if (sync)
3046 return xlog_sync(log, iclog);
3047 return 0;
3048 } /* xlog_state_release_iclog */
3052 * This routine will mark the current iclog in the ring as WANT_SYNC
3053 * and move the current iclog pointer to the next iclog in the ring.
3054 * When this routine is called from xlog_state_get_iclog_space(), the
3055 * exact size of the iclog has not yet been determined. All we know is
3056 * that every data block. We have run out of space in this log record.
3058 STATIC void
3059 xlog_state_switch_iclogs(
3060 struct xlog *log,
3061 struct xlog_in_core *iclog,
3062 int eventual_size)
3064 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3065 if (!eventual_size)
3066 eventual_size = iclog->ic_offset;
3067 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3068 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3069 log->l_prev_block = log->l_curr_block;
3070 log->l_prev_cycle = log->l_curr_cycle;
3072 /* roll log?: ic_offset changed later */
3073 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3075 /* Round up to next log-sunit */
3076 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3077 log->l_mp->m_sb.sb_logsunit > 1) {
3078 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3079 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3082 if (log->l_curr_block >= log->l_logBBsize) {
3083 log->l_curr_cycle++;
3084 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3085 log->l_curr_cycle++;
3086 log->l_curr_block -= log->l_logBBsize;
3087 ASSERT(log->l_curr_block >= 0);
3089 ASSERT(iclog == log->l_iclog);
3090 log->l_iclog = iclog->ic_next;
3091 } /* xlog_state_switch_iclogs */
3094 * Write out all data in the in-core log as of this exact moment in time.
3096 * Data may be written to the in-core log during this call. However,
3097 * we don't guarantee this data will be written out. A change from past
3098 * implementation means this routine will *not* write out zero length LRs.
3100 * Basically, we try and perform an intelligent scan of the in-core logs.
3101 * If we determine there is no flushable data, we just return. There is no
3102 * flushable data if:
3104 * 1. the current iclog is active and has no data; the previous iclog
3105 * is in the active or dirty state.
3106 * 2. the current iclog is drity, and the previous iclog is in the
3107 * active or dirty state.
3109 * We may sleep if:
3111 * 1. the current iclog is not in the active nor dirty state.
3112 * 2. the current iclog dirty, and the previous iclog is not in the
3113 * active nor dirty state.
3114 * 3. the current iclog is active, and there is another thread writing
3115 * to this particular iclog.
3116 * 4. a) the current iclog is active and has no other writers
3117 * b) when we return from flushing out this iclog, it is still
3118 * not in the active nor dirty state.
3121 _xfs_log_force(
3122 struct xfs_mount *mp,
3123 uint flags,
3124 int *log_flushed)
3126 struct xlog *log = mp->m_log;
3127 struct xlog_in_core *iclog;
3128 xfs_lsn_t lsn;
3130 XFS_STATS_INC(xs_log_force);
3132 xlog_cil_force(log);
3134 spin_lock(&log->l_icloglock);
3136 iclog = log->l_iclog;
3137 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3138 spin_unlock(&log->l_icloglock);
3139 return XFS_ERROR(EIO);
3142 /* If the head iclog is not active nor dirty, we just attach
3143 * ourselves to the head and go to sleep.
3145 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3146 iclog->ic_state == XLOG_STATE_DIRTY) {
3148 * If the head is dirty or (active and empty), then
3149 * we need to look at the previous iclog. If the previous
3150 * iclog is active or dirty we are done. There is nothing
3151 * to sync out. Otherwise, we attach ourselves to the
3152 * previous iclog and go to sleep.
3154 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3155 (atomic_read(&iclog->ic_refcnt) == 0
3156 && iclog->ic_offset == 0)) {
3157 iclog = iclog->ic_prev;
3158 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3159 iclog->ic_state == XLOG_STATE_DIRTY)
3160 goto no_sleep;
3161 else
3162 goto maybe_sleep;
3163 } else {
3164 if (atomic_read(&iclog->ic_refcnt) == 0) {
3165 /* We are the only one with access to this
3166 * iclog. Flush it out now. There should
3167 * be a roundoff of zero to show that someone
3168 * has already taken care of the roundoff from
3169 * the previous sync.
3171 atomic_inc(&iclog->ic_refcnt);
3172 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3173 xlog_state_switch_iclogs(log, iclog, 0);
3174 spin_unlock(&log->l_icloglock);
3176 if (xlog_state_release_iclog(log, iclog))
3177 return XFS_ERROR(EIO);
3179 if (log_flushed)
3180 *log_flushed = 1;
3181 spin_lock(&log->l_icloglock);
3182 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3183 iclog->ic_state != XLOG_STATE_DIRTY)
3184 goto maybe_sleep;
3185 else
3186 goto no_sleep;
3187 } else {
3188 /* Someone else is writing to this iclog.
3189 * Use its call to flush out the data. However,
3190 * the other thread may not force out this LR,
3191 * so we mark it WANT_SYNC.
3193 xlog_state_switch_iclogs(log, iclog, 0);
3194 goto maybe_sleep;
3199 /* By the time we come around again, the iclog could've been filled
3200 * which would give it another lsn. If we have a new lsn, just
3201 * return because the relevant data has been flushed.
3203 maybe_sleep:
3204 if (flags & XFS_LOG_SYNC) {
3206 * We must check if we're shutting down here, before
3207 * we wait, while we're holding the l_icloglock.
3208 * Then we check again after waking up, in case our
3209 * sleep was disturbed by a bad news.
3211 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3212 spin_unlock(&log->l_icloglock);
3213 return XFS_ERROR(EIO);
3215 XFS_STATS_INC(xs_log_force_sleep);
3216 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3218 * No need to grab the log lock here since we're
3219 * only deciding whether or not to return EIO
3220 * and the memory read should be atomic.
3222 if (iclog->ic_state & XLOG_STATE_IOERROR)
3223 return XFS_ERROR(EIO);
3224 if (log_flushed)
3225 *log_flushed = 1;
3226 } else {
3228 no_sleep:
3229 spin_unlock(&log->l_icloglock);
3231 return 0;
3235 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3236 * about errors or whether the log was flushed or not. This is the normal
3237 * interface to use when trying to unpin items or move the log forward.
3239 void
3240 xfs_log_force(
3241 xfs_mount_t *mp,
3242 uint flags)
3244 int error;
3246 trace_xfs_log_force(mp, 0);
3247 error = _xfs_log_force(mp, flags, NULL);
3248 if (error)
3249 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3253 * Force the in-core log to disk for a specific LSN.
3255 * Find in-core log with lsn.
3256 * If it is in the DIRTY state, just return.
3257 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3258 * state and go to sleep or return.
3259 * If it is in any other state, go to sleep or return.
3261 * Synchronous forces are implemented with a signal variable. All callers
3262 * to force a given lsn to disk will wait on a the sv attached to the
3263 * specific in-core log. When given in-core log finally completes its
3264 * write to disk, that thread will wake up all threads waiting on the
3265 * sv.
3268 _xfs_log_force_lsn(
3269 struct xfs_mount *mp,
3270 xfs_lsn_t lsn,
3271 uint flags,
3272 int *log_flushed)
3274 struct xlog *log = mp->m_log;
3275 struct xlog_in_core *iclog;
3276 int already_slept = 0;
3278 ASSERT(lsn != 0);
3280 XFS_STATS_INC(xs_log_force);
3282 lsn = xlog_cil_force_lsn(log, lsn);
3283 if (lsn == NULLCOMMITLSN)
3284 return 0;
3286 try_again:
3287 spin_lock(&log->l_icloglock);
3288 iclog = log->l_iclog;
3289 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3290 spin_unlock(&log->l_icloglock);
3291 return XFS_ERROR(EIO);
3294 do {
3295 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3296 iclog = iclog->ic_next;
3297 continue;
3300 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3301 spin_unlock(&log->l_icloglock);
3302 return 0;
3305 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3307 * We sleep here if we haven't already slept (e.g.
3308 * this is the first time we've looked at the correct
3309 * iclog buf) and the buffer before us is going to
3310 * be sync'ed. The reason for this is that if we
3311 * are doing sync transactions here, by waiting for
3312 * the previous I/O to complete, we can allow a few
3313 * more transactions into this iclog before we close
3314 * it down.
3316 * Otherwise, we mark the buffer WANT_SYNC, and bump
3317 * up the refcnt so we can release the log (which
3318 * drops the ref count). The state switch keeps new
3319 * transaction commits from using this buffer. When
3320 * the current commits finish writing into the buffer,
3321 * the refcount will drop to zero and the buffer will
3322 * go out then.
3324 if (!already_slept &&
3325 (iclog->ic_prev->ic_state &
3326 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3327 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3329 XFS_STATS_INC(xs_log_force_sleep);
3331 xlog_wait(&iclog->ic_prev->ic_write_wait,
3332 &log->l_icloglock);
3333 if (log_flushed)
3334 *log_flushed = 1;
3335 already_slept = 1;
3336 goto try_again;
3338 atomic_inc(&iclog->ic_refcnt);
3339 xlog_state_switch_iclogs(log, iclog, 0);
3340 spin_unlock(&log->l_icloglock);
3341 if (xlog_state_release_iclog(log, iclog))
3342 return XFS_ERROR(EIO);
3343 if (log_flushed)
3344 *log_flushed = 1;
3345 spin_lock(&log->l_icloglock);
3348 if ((flags & XFS_LOG_SYNC) && /* sleep */
3349 !(iclog->ic_state &
3350 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3352 * Don't wait on completion if we know that we've
3353 * gotten a log write error.
3355 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3356 spin_unlock(&log->l_icloglock);
3357 return XFS_ERROR(EIO);
3359 XFS_STATS_INC(xs_log_force_sleep);
3360 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3362 * No need to grab the log lock here since we're
3363 * only deciding whether or not to return EIO
3364 * and the memory read should be atomic.
3366 if (iclog->ic_state & XLOG_STATE_IOERROR)
3367 return XFS_ERROR(EIO);
3369 if (log_flushed)
3370 *log_flushed = 1;
3371 } else { /* just return */
3372 spin_unlock(&log->l_icloglock);
3375 return 0;
3376 } while (iclog != log->l_iclog);
3378 spin_unlock(&log->l_icloglock);
3379 return 0;
3383 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3384 * about errors or whether the log was flushed or not. This is the normal
3385 * interface to use when trying to unpin items or move the log forward.
3387 void
3388 xfs_log_force_lsn(
3389 xfs_mount_t *mp,
3390 xfs_lsn_t lsn,
3391 uint flags)
3393 int error;
3395 trace_xfs_log_force(mp, lsn);
3396 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3397 if (error)
3398 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3402 * Called when we want to mark the current iclog as being ready to sync to
3403 * disk.
3405 STATIC void
3406 xlog_state_want_sync(
3407 struct xlog *log,
3408 struct xlog_in_core *iclog)
3410 assert_spin_locked(&log->l_icloglock);
3412 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3413 xlog_state_switch_iclogs(log, iclog, 0);
3414 } else {
3415 ASSERT(iclog->ic_state &
3416 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3421 /*****************************************************************************
3423 * TICKET functions
3425 *****************************************************************************
3429 * Free a used ticket when its refcount falls to zero.
3431 void
3432 xfs_log_ticket_put(
3433 xlog_ticket_t *ticket)
3435 ASSERT(atomic_read(&ticket->t_ref) > 0);
3436 if (atomic_dec_and_test(&ticket->t_ref))
3437 kmem_zone_free(xfs_log_ticket_zone, ticket);
3440 xlog_ticket_t *
3441 xfs_log_ticket_get(
3442 xlog_ticket_t *ticket)
3444 ASSERT(atomic_read(&ticket->t_ref) > 0);
3445 atomic_inc(&ticket->t_ref);
3446 return ticket;
3450 * Figure out the total log space unit (in bytes) that would be
3451 * required for a log ticket.
3454 xfs_log_calc_unit_res(
3455 struct xfs_mount *mp,
3456 int unit_bytes)
3458 struct xlog *log = mp->m_log;
3459 int iclog_space;
3460 uint num_headers;
3463 * Permanent reservations have up to 'cnt'-1 active log operations
3464 * in the log. A unit in this case is the amount of space for one
3465 * of these log operations. Normal reservations have a cnt of 1
3466 * and their unit amount is the total amount of space required.
3468 * The following lines of code account for non-transaction data
3469 * which occupy space in the on-disk log.
3471 * Normal form of a transaction is:
3472 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3473 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3475 * We need to account for all the leadup data and trailer data
3476 * around the transaction data.
3477 * And then we need to account for the worst case in terms of using
3478 * more space.
3479 * The worst case will happen if:
3480 * - the placement of the transaction happens to be such that the
3481 * roundoff is at its maximum
3482 * - the transaction data is synced before the commit record is synced
3483 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3484 * Therefore the commit record is in its own Log Record.
3485 * This can happen as the commit record is called with its
3486 * own region to xlog_write().
3487 * This then means that in the worst case, roundoff can happen for
3488 * the commit-rec as well.
3489 * The commit-rec is smaller than padding in this scenario and so it is
3490 * not added separately.
3493 /* for trans header */
3494 unit_bytes += sizeof(xlog_op_header_t);
3495 unit_bytes += sizeof(xfs_trans_header_t);
3497 /* for start-rec */
3498 unit_bytes += sizeof(xlog_op_header_t);
3501 * for LR headers - the space for data in an iclog is the size minus
3502 * the space used for the headers. If we use the iclog size, then we
3503 * undercalculate the number of headers required.
3505 * Furthermore - the addition of op headers for split-recs might
3506 * increase the space required enough to require more log and op
3507 * headers, so take that into account too.
3509 * IMPORTANT: This reservation makes the assumption that if this
3510 * transaction is the first in an iclog and hence has the LR headers
3511 * accounted to it, then the remaining space in the iclog is
3512 * exclusively for this transaction. i.e. if the transaction is larger
3513 * than the iclog, it will be the only thing in that iclog.
3514 * Fundamentally, this means we must pass the entire log vector to
3515 * xlog_write to guarantee this.
3517 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3518 num_headers = howmany(unit_bytes, iclog_space);
3520 /* for split-recs - ophdrs added when data split over LRs */
3521 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3523 /* add extra header reservations if we overrun */
3524 while (!num_headers ||
3525 howmany(unit_bytes, iclog_space) > num_headers) {
3526 unit_bytes += sizeof(xlog_op_header_t);
3527 num_headers++;
3529 unit_bytes += log->l_iclog_hsize * num_headers;
3531 /* for commit-rec LR header - note: padding will subsume the ophdr */
3532 unit_bytes += log->l_iclog_hsize;
3534 /* for roundoff padding for transaction data and one for commit record */
3535 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3536 /* log su roundoff */
3537 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3538 } else {
3539 /* BB roundoff */
3540 unit_bytes += 2 * BBSIZE;
3543 return unit_bytes;
3547 * Allocate and initialise a new log ticket.
3549 struct xlog_ticket *
3550 xlog_ticket_alloc(
3551 struct xlog *log,
3552 int unit_bytes,
3553 int cnt,
3554 char client,
3555 bool permanent,
3556 xfs_km_flags_t alloc_flags)
3558 struct xlog_ticket *tic;
3559 int unit_res;
3561 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3562 if (!tic)
3563 return NULL;
3565 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3567 atomic_set(&tic->t_ref, 1);
3568 tic->t_task = current;
3569 INIT_LIST_HEAD(&tic->t_queue);
3570 tic->t_unit_res = unit_res;
3571 tic->t_curr_res = unit_res;
3572 tic->t_cnt = cnt;
3573 tic->t_ocnt = cnt;
3574 tic->t_tid = prandom_u32();
3575 tic->t_clientid = client;
3576 tic->t_flags = XLOG_TIC_INITED;
3577 tic->t_trans_type = 0;
3578 if (permanent)
3579 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3581 xlog_tic_reset_res(tic);
3583 return tic;
3587 /******************************************************************************
3589 * Log debug routines
3591 ******************************************************************************
3593 #if defined(DEBUG)
3595 * Make sure that the destination ptr is within the valid data region of
3596 * one of the iclogs. This uses backup pointers stored in a different
3597 * part of the log in case we trash the log structure.
3599 void
3600 xlog_verify_dest_ptr(
3601 struct xlog *log,
3602 char *ptr)
3604 int i;
3605 int good_ptr = 0;
3607 for (i = 0; i < log->l_iclog_bufs; i++) {
3608 if (ptr >= log->l_iclog_bak[i] &&
3609 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3610 good_ptr++;
3613 if (!good_ptr)
3614 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3618 * Check to make sure the grant write head didn't just over lap the tail. If
3619 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3620 * the cycles differ by exactly one and check the byte count.
3622 * This check is run unlocked, so can give false positives. Rather than assert
3623 * on failures, use a warn-once flag and a panic tag to allow the admin to
3624 * determine if they want to panic the machine when such an error occurs. For
3625 * debug kernels this will have the same effect as using an assert but, unlinke
3626 * an assert, it can be turned off at runtime.
3628 STATIC void
3629 xlog_verify_grant_tail(
3630 struct xlog *log)
3632 int tail_cycle, tail_blocks;
3633 int cycle, space;
3635 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3636 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3637 if (tail_cycle != cycle) {
3638 if (cycle - 1 != tail_cycle &&
3639 !(log->l_flags & XLOG_TAIL_WARN)) {
3640 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3641 "%s: cycle - 1 != tail_cycle", __func__);
3642 log->l_flags |= XLOG_TAIL_WARN;
3645 if (space > BBTOB(tail_blocks) &&
3646 !(log->l_flags & XLOG_TAIL_WARN)) {
3647 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3648 "%s: space > BBTOB(tail_blocks)", __func__);
3649 log->l_flags |= XLOG_TAIL_WARN;
3654 /* check if it will fit */
3655 STATIC void
3656 xlog_verify_tail_lsn(
3657 struct xlog *log,
3658 struct xlog_in_core *iclog,
3659 xfs_lsn_t tail_lsn)
3661 int blocks;
3663 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3664 blocks =
3665 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3666 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3667 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3668 } else {
3669 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3671 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3672 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3674 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3675 if (blocks < BTOBB(iclog->ic_offset) + 1)
3676 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3678 } /* xlog_verify_tail_lsn */
3681 * Perform a number of checks on the iclog before writing to disk.
3683 * 1. Make sure the iclogs are still circular
3684 * 2. Make sure we have a good magic number
3685 * 3. Make sure we don't have magic numbers in the data
3686 * 4. Check fields of each log operation header for:
3687 * A. Valid client identifier
3688 * B. tid ptr value falls in valid ptr space (user space code)
3689 * C. Length in log record header is correct according to the
3690 * individual operation headers within record.
3691 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3692 * log, check the preceding blocks of the physical log to make sure all
3693 * the cycle numbers agree with the current cycle number.
3695 STATIC void
3696 xlog_verify_iclog(
3697 struct xlog *log,
3698 struct xlog_in_core *iclog,
3699 int count,
3700 bool syncing)
3702 xlog_op_header_t *ophead;
3703 xlog_in_core_t *icptr;
3704 xlog_in_core_2_t *xhdr;
3705 xfs_caddr_t ptr;
3706 xfs_caddr_t base_ptr;
3707 __psint_t field_offset;
3708 __uint8_t clientid;
3709 int len, i, j, k, op_len;
3710 int idx;
3712 /* check validity of iclog pointers */
3713 spin_lock(&log->l_icloglock);
3714 icptr = log->l_iclog;
3715 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3716 ASSERT(icptr);
3718 if (icptr != log->l_iclog)
3719 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3720 spin_unlock(&log->l_icloglock);
3722 /* check log magic numbers */
3723 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3724 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3726 ptr = (xfs_caddr_t) &iclog->ic_header;
3727 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3728 ptr += BBSIZE) {
3729 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3730 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3731 __func__);
3734 /* check fields */
3735 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3736 ptr = iclog->ic_datap;
3737 base_ptr = ptr;
3738 ophead = (xlog_op_header_t *)ptr;
3739 xhdr = iclog->ic_data;
3740 for (i = 0; i < len; i++) {
3741 ophead = (xlog_op_header_t *)ptr;
3743 /* clientid is only 1 byte */
3744 field_offset = (__psint_t)
3745 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3746 if (!syncing || (field_offset & 0x1ff)) {
3747 clientid = ophead->oh_clientid;
3748 } else {
3749 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3750 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3751 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3752 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3753 clientid = xlog_get_client_id(
3754 xhdr[j].hic_xheader.xh_cycle_data[k]);
3755 } else {
3756 clientid = xlog_get_client_id(
3757 iclog->ic_header.h_cycle_data[idx]);
3760 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3761 xfs_warn(log->l_mp,
3762 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3763 __func__, clientid, ophead,
3764 (unsigned long)field_offset);
3766 /* check length */
3767 field_offset = (__psint_t)
3768 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3769 if (!syncing || (field_offset & 0x1ff)) {
3770 op_len = be32_to_cpu(ophead->oh_len);
3771 } else {
3772 idx = BTOBBT((__psint_t)&ophead->oh_len -
3773 (__psint_t)iclog->ic_datap);
3774 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3775 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3776 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3777 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3778 } else {
3779 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3782 ptr += sizeof(xlog_op_header_t) + op_len;
3784 } /* xlog_verify_iclog */
3785 #endif
3788 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3790 STATIC int
3791 xlog_state_ioerror(
3792 struct xlog *log)
3794 xlog_in_core_t *iclog, *ic;
3796 iclog = log->l_iclog;
3797 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3799 * Mark all the incore logs IOERROR.
3800 * From now on, no log flushes will result.
3802 ic = iclog;
3803 do {
3804 ic->ic_state = XLOG_STATE_IOERROR;
3805 ic = ic->ic_next;
3806 } while (ic != iclog);
3807 return 0;
3810 * Return non-zero, if state transition has already happened.
3812 return 1;
3816 * This is called from xfs_force_shutdown, when we're forcibly
3817 * shutting down the filesystem, typically because of an IO error.
3818 * Our main objectives here are to make sure that:
3819 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3820 * parties to find out, 'atomically'.
3821 * b. those who're sleeping on log reservations, pinned objects and
3822 * other resources get woken up, and be told the bad news.
3823 * c. nothing new gets queued up after (a) and (b) are done.
3824 * d. if !logerror, flush the iclogs to disk, then seal them off
3825 * for business.
3827 * Note: for delayed logging the !logerror case needs to flush the regions
3828 * held in memory out to the iclogs before flushing them to disk. This needs
3829 * to be done before the log is marked as shutdown, otherwise the flush to the
3830 * iclogs will fail.
3833 xfs_log_force_umount(
3834 struct xfs_mount *mp,
3835 int logerror)
3837 struct xlog *log;
3838 int retval;
3840 log = mp->m_log;
3843 * If this happens during log recovery, don't worry about
3844 * locking; the log isn't open for business yet.
3846 if (!log ||
3847 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3848 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3849 if (mp->m_sb_bp)
3850 XFS_BUF_DONE(mp->m_sb_bp);
3851 return 0;
3855 * Somebody could've already done the hard work for us.
3856 * No need to get locks for this.
3858 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3859 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3860 return 1;
3862 retval = 0;
3865 * Flush the in memory commit item list before marking the log as
3866 * being shut down. We need to do it in this order to ensure all the
3867 * completed transactions are flushed to disk with the xfs_log_force()
3868 * call below.
3870 if (!logerror)
3871 xlog_cil_force(log);
3874 * mark the filesystem and the as in a shutdown state and wake
3875 * everybody up to tell them the bad news.
3877 spin_lock(&log->l_icloglock);
3878 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3879 if (mp->m_sb_bp)
3880 XFS_BUF_DONE(mp->m_sb_bp);
3883 * This flag is sort of redundant because of the mount flag, but
3884 * it's good to maintain the separation between the log and the rest
3885 * of XFS.
3887 log->l_flags |= XLOG_IO_ERROR;
3890 * If we hit a log error, we want to mark all the iclogs IOERROR
3891 * while we're still holding the loglock.
3893 if (logerror)
3894 retval = xlog_state_ioerror(log);
3895 spin_unlock(&log->l_icloglock);
3898 * We don't want anybody waiting for log reservations after this. That
3899 * means we have to wake up everybody queued up on reserveq as well as
3900 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3901 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3902 * action is protected by the grant locks.
3904 xlog_grant_head_wake_all(&log->l_reserve_head);
3905 xlog_grant_head_wake_all(&log->l_write_head);
3907 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3908 ASSERT(!logerror);
3910 * Force the incore logs to disk before shutting the
3911 * log down completely.
3913 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3915 spin_lock(&log->l_icloglock);
3916 retval = xlog_state_ioerror(log);
3917 spin_unlock(&log->l_icloglock);
3920 * Wake up everybody waiting on xfs_log_force.
3921 * Callback all log item committed functions as if the
3922 * log writes were completed.
3924 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3926 #ifdef XFSERRORDEBUG
3928 xlog_in_core_t *iclog;
3930 spin_lock(&log->l_icloglock);
3931 iclog = log->l_iclog;
3932 do {
3933 ASSERT(iclog->ic_callback == 0);
3934 iclog = iclog->ic_next;
3935 } while (iclog != log->l_iclog);
3936 spin_unlock(&log->l_icloglock);
3938 #endif
3939 /* return non-zero if log IOERROR transition had already happened */
3940 return retval;
3943 STATIC int
3944 xlog_iclogs_empty(
3945 struct xlog *log)
3947 xlog_in_core_t *iclog;
3949 iclog = log->l_iclog;
3950 do {
3951 /* endianness does not matter here, zero is zero in
3952 * any language.
3954 if (iclog->ic_header.h_num_logops)
3955 return 0;
3956 iclog = iclog->ic_next;
3957 } while (iclog != log->l_iclog);
3958 return 1;