2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
22 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 #include "xfs_cksum.h"
40 kmem_zone_t
*xfs_log_ticket_zone
;
42 /* Local miscellaneous function prototypes */
46 struct xlog_ticket
*ticket
,
47 struct xlog_in_core
**iclog
,
48 xfs_lsn_t
*commitlsnp
);
53 struct xfs_buftarg
*log_target
,
54 xfs_daddr_t blk_offset
,
63 struct xlog_in_core
*iclog
);
68 /* local state machine functions */
69 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
71 xlog_state_do_callback(
74 struct xlog_in_core
*iclog
);
76 xlog_state_get_iclog_space(
79 struct xlog_in_core
**iclog
,
80 struct xlog_ticket
*ticket
,
84 xlog_state_release_iclog(
86 struct xlog_in_core
*iclog
);
88 xlog_state_switch_iclogs(
90 struct xlog_in_core
*iclog
,
95 struct xlog_in_core
*iclog
);
102 xlog_regrant_reserve_log_space(
104 struct xlog_ticket
*ticket
);
106 xlog_ungrant_log_space(
108 struct xlog_ticket
*ticket
);
112 xlog_verify_dest_ptr(
116 xlog_verify_grant_tail(
121 struct xlog_in_core
*iclog
,
125 xlog_verify_tail_lsn(
127 struct xlog_in_core
*iclog
,
130 #define xlog_verify_dest_ptr(a,b)
131 #define xlog_verify_grant_tail(a)
132 #define xlog_verify_iclog(a,b,c,d)
133 #define xlog_verify_tail_lsn(a,b,c)
141 xlog_grant_sub_space(
146 int64_t head_val
= atomic64_read(head
);
152 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
156 space
+= log
->l_logsize
;
161 new = xlog_assign_grant_head_val(cycle
, space
);
162 head_val
= atomic64_cmpxchg(head
, old
, new);
163 } while (head_val
!= old
);
167 xlog_grant_add_space(
172 int64_t head_val
= atomic64_read(head
);
179 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
181 tmp
= log
->l_logsize
- space
;
190 new = xlog_assign_grant_head_val(cycle
, space
);
191 head_val
= atomic64_cmpxchg(head
, old
, new);
192 } while (head_val
!= old
);
196 xlog_grant_head_init(
197 struct xlog_grant_head
*head
)
199 xlog_assign_grant_head(&head
->grant
, 1, 0);
200 INIT_LIST_HEAD(&head
->waiters
);
201 spin_lock_init(&head
->lock
);
205 xlog_grant_head_wake_all(
206 struct xlog_grant_head
*head
)
208 struct xlog_ticket
*tic
;
210 spin_lock(&head
->lock
);
211 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
212 wake_up_process(tic
->t_task
);
213 spin_unlock(&head
->lock
);
217 xlog_ticket_reservation(
219 struct xlog_grant_head
*head
,
220 struct xlog_ticket
*tic
)
222 if (head
== &log
->l_write_head
) {
223 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
224 return tic
->t_unit_res
;
226 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
227 return tic
->t_unit_res
* tic
->t_cnt
;
229 return tic
->t_unit_res
;
234 xlog_grant_head_wake(
236 struct xlog_grant_head
*head
,
239 struct xlog_ticket
*tic
;
242 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
243 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
244 if (*free_bytes
< need_bytes
)
247 *free_bytes
-= need_bytes
;
248 trace_xfs_log_grant_wake_up(log
, tic
);
249 wake_up_process(tic
->t_task
);
256 xlog_grant_head_wait(
258 struct xlog_grant_head
*head
,
259 struct xlog_ticket
*tic
,
260 int need_bytes
) __releases(&head
->lock
)
261 __acquires(&head
->lock
)
263 list_add_tail(&tic
->t_queue
, &head
->waiters
);
266 if (XLOG_FORCED_SHUTDOWN(log
))
268 xlog_grant_push_ail(log
, need_bytes
);
270 __set_current_state(TASK_UNINTERRUPTIBLE
);
271 spin_unlock(&head
->lock
);
273 XFS_STATS_INC(xs_sleep_logspace
);
275 trace_xfs_log_grant_sleep(log
, tic
);
277 trace_xfs_log_grant_wake(log
, tic
);
279 spin_lock(&head
->lock
);
280 if (XLOG_FORCED_SHUTDOWN(log
))
282 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
284 list_del_init(&tic
->t_queue
);
287 list_del_init(&tic
->t_queue
);
288 return XFS_ERROR(EIO
);
292 * Atomically get the log space required for a log ticket.
294 * Once a ticket gets put onto head->waiters, it will only return after the
295 * needed reservation is satisfied.
297 * This function is structured so that it has a lock free fast path. This is
298 * necessary because every new transaction reservation will come through this
299 * path. Hence any lock will be globally hot if we take it unconditionally on
302 * As tickets are only ever moved on and off head->waiters under head->lock, we
303 * only need to take that lock if we are going to add the ticket to the queue
304 * and sleep. We can avoid taking the lock if the ticket was never added to
305 * head->waiters because the t_queue list head will be empty and we hold the
306 * only reference to it so it can safely be checked unlocked.
309 xlog_grant_head_check(
311 struct xlog_grant_head
*head
,
312 struct xlog_ticket
*tic
,
318 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
321 * If there are other waiters on the queue then give them a chance at
322 * logspace before us. Wake up the first waiters, if we do not wake
323 * up all the waiters then go to sleep waiting for more free space,
324 * otherwise try to get some space for this transaction.
326 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
327 free_bytes
= xlog_space_left(log
, &head
->grant
);
328 if (!list_empty_careful(&head
->waiters
)) {
329 spin_lock(&head
->lock
);
330 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
331 free_bytes
< *need_bytes
) {
332 error
= xlog_grant_head_wait(log
, head
, tic
,
335 spin_unlock(&head
->lock
);
336 } else if (free_bytes
< *need_bytes
) {
337 spin_lock(&head
->lock
);
338 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
339 spin_unlock(&head
->lock
);
346 xlog_tic_reset_res(xlog_ticket_t
*tic
)
349 tic
->t_res_arr_sum
= 0;
350 tic
->t_res_num_ophdrs
= 0;
354 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
356 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
357 /* add to overflow and start again */
358 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
360 tic
->t_res_arr_sum
= 0;
363 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
364 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
365 tic
->t_res_arr_sum
+= len
;
370 * Replenish the byte reservation required by moving the grant write head.
374 struct xfs_mount
*mp
,
375 struct xlog_ticket
*tic
)
377 struct xlog
*log
= mp
->m_log
;
381 if (XLOG_FORCED_SHUTDOWN(log
))
382 return XFS_ERROR(EIO
);
384 XFS_STATS_INC(xs_try_logspace
);
387 * This is a new transaction on the ticket, so we need to change the
388 * transaction ID so that the next transaction has a different TID in
389 * the log. Just add one to the existing tid so that we can see chains
390 * of rolling transactions in the log easily.
394 xlog_grant_push_ail(log
, tic
->t_unit_res
);
396 tic
->t_curr_res
= tic
->t_unit_res
;
397 xlog_tic_reset_res(tic
);
402 trace_xfs_log_regrant(log
, tic
);
404 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
409 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
410 trace_xfs_log_regrant_exit(log
, tic
);
411 xlog_verify_grant_tail(log
);
416 * If we are failing, make sure the ticket doesn't have any current
417 * reservations. We don't want to add this back when the ticket/
418 * transaction gets cancelled.
421 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
426 * Reserve log space and return a ticket corresponding the reservation.
428 * Each reservation is going to reserve extra space for a log record header.
429 * When writes happen to the on-disk log, we don't subtract the length of the
430 * log record header from any reservation. By wasting space in each
431 * reservation, we prevent over allocation problems.
435 struct xfs_mount
*mp
,
438 struct xlog_ticket
**ticp
,
443 struct xlog
*log
= mp
->m_log
;
444 struct xlog_ticket
*tic
;
448 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
450 if (XLOG_FORCED_SHUTDOWN(log
))
451 return XFS_ERROR(EIO
);
453 XFS_STATS_INC(xs_try_logspace
);
455 ASSERT(*ticp
== NULL
);
456 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
457 KM_SLEEP
| KM_MAYFAIL
);
459 return XFS_ERROR(ENOMEM
);
461 tic
->t_trans_type
= t_type
;
464 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
467 trace_xfs_log_reserve(log
, tic
);
469 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
474 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
475 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
476 trace_xfs_log_reserve_exit(log
, tic
);
477 xlog_verify_grant_tail(log
);
482 * If we are failing, make sure the ticket doesn't have any current
483 * reservations. We don't want to add this back when the ticket/
484 * transaction gets cancelled.
487 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
495 * 1. currblock field gets updated at startup and after in-core logs
496 * marked as with WANT_SYNC.
500 * This routine is called when a user of a log manager ticket is done with
501 * the reservation. If the ticket was ever used, then a commit record for
502 * the associated transaction is written out as a log operation header with
503 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
504 * a given ticket. If the ticket was one with a permanent reservation, then
505 * a few operations are done differently. Permanent reservation tickets by
506 * default don't release the reservation. They just commit the current
507 * transaction with the belief that the reservation is still needed. A flag
508 * must be passed in before permanent reservations are actually released.
509 * When these type of tickets are not released, they need to be set into
510 * the inited state again. By doing this, a start record will be written
511 * out when the next write occurs.
515 struct xfs_mount
*mp
,
516 struct xlog_ticket
*ticket
,
517 struct xlog_in_core
**iclog
,
520 struct xlog
*log
= mp
->m_log
;
523 if (XLOG_FORCED_SHUTDOWN(log
) ||
525 * If nothing was ever written, don't write out commit record.
526 * If we get an error, just continue and give back the log ticket.
528 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
529 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
530 lsn
= (xfs_lsn_t
) -1;
531 if (ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) {
532 flags
|= XFS_LOG_REL_PERM_RESERV
;
537 if ((ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) == 0 ||
538 (flags
& XFS_LOG_REL_PERM_RESERV
)) {
539 trace_xfs_log_done_nonperm(log
, ticket
);
542 * Release ticket if not permanent reservation or a specific
543 * request has been made to release a permanent reservation.
545 xlog_ungrant_log_space(log
, ticket
);
546 xfs_log_ticket_put(ticket
);
548 trace_xfs_log_done_perm(log
, ticket
);
550 xlog_regrant_reserve_log_space(log
, ticket
);
551 /* If this ticket was a permanent reservation and we aren't
552 * trying to release it, reset the inited flags; so next time
553 * we write, a start record will be written out.
555 ticket
->t_flags
|= XLOG_TIC_INITED
;
562 * Attaches a new iclog I/O completion callback routine during
563 * transaction commit. If the log is in error state, a non-zero
564 * return code is handed back and the caller is responsible for
565 * executing the callback at an appropriate time.
569 struct xfs_mount
*mp
,
570 struct xlog_in_core
*iclog
,
571 xfs_log_callback_t
*cb
)
575 spin_lock(&iclog
->ic_callback_lock
);
576 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
578 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
579 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
581 *(iclog
->ic_callback_tail
) = cb
;
582 iclog
->ic_callback_tail
= &(cb
->cb_next
);
584 spin_unlock(&iclog
->ic_callback_lock
);
589 xfs_log_release_iclog(
590 struct xfs_mount
*mp
,
591 struct xlog_in_core
*iclog
)
593 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
594 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
602 * Mount a log filesystem
604 * mp - ubiquitous xfs mount point structure
605 * log_target - buftarg of on-disk log device
606 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
607 * num_bblocks - Number of BBSIZE blocks in on-disk log
609 * Return error or zero.
614 xfs_buftarg_t
*log_target
,
615 xfs_daddr_t blk_offset
,
621 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
622 xfs_notice(mp
, "Mounting Filesystem");
625 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
626 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
629 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
630 if (IS_ERR(mp
->m_log
)) {
631 error
= -PTR_ERR(mp
->m_log
);
636 * Validate the given log space and drop a critical message via syslog
637 * if the log size is too small that would lead to some unexpected
638 * situations in transaction log space reservation stage.
640 * Note: we can't just reject the mount if the validation fails. This
641 * would mean that people would have to downgrade their kernel just to
642 * remedy the situation as there is no way to grow the log (short of
643 * black magic surgery with xfs_db).
645 * We can, however, reject mounts for CRC format filesystems, as the
646 * mkfs binary being used to make the filesystem should never create a
647 * filesystem with a log that is too small.
649 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
651 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
653 "Log size %d blocks too small, minimum size is %d blocks",
654 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
656 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
658 "Log size %d blocks too large, maximum size is %lld blocks",
659 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
661 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
663 "log size %lld bytes too large, maximum size is %lld bytes",
664 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
669 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
670 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
680 * Initialize the AIL now we have a log.
682 error
= xfs_trans_ail_init(mp
);
684 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
687 mp
->m_log
->l_ailp
= mp
->m_ail
;
690 * skip log recovery on a norecovery mount. pretend it all
693 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
694 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
697 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
699 error
= xlog_recover(mp
->m_log
);
702 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
704 xfs_warn(mp
, "log mount/recovery failed: error %d",
706 goto out_destroy_ail
;
710 /* Normal transactions can now occur */
711 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
714 * Now the log has been fully initialised and we know were our
715 * space grant counters are, we can initialise the permanent ticket
716 * needed for delayed logging to work.
718 xlog_cil_init_post_recovery(mp
->m_log
);
723 xfs_trans_ail_destroy(mp
);
725 xlog_dealloc_log(mp
->m_log
);
731 * Finish the recovery of the file system. This is separate from the
732 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
733 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
736 * If we finish recovery successfully, start the background log work. If we are
737 * not doing recovery, then we have a RO filesystem and we don't need to start
741 xfs_log_mount_finish(xfs_mount_t
*mp
)
745 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
746 error
= xlog_recover_finish(mp
->m_log
);
748 xfs_log_work_queue(mp
);
750 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
758 * Final log writes as part of unmount.
760 * Mark the filesystem clean as unmount happens. Note that during relocation
761 * this routine needs to be executed as part of source-bag while the
762 * deallocation must not be done until source-end.
766 * Unmount record used to have a string "Unmount filesystem--" in the
767 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
768 * We just write the magic number now since that particular field isn't
769 * currently architecture converted and "Unmount" is a bit foo.
770 * As far as I know, there weren't any dependencies on the old behaviour.
774 xfs_log_unmount_write(xfs_mount_t
*mp
)
776 struct xlog
*log
= mp
->m_log
;
777 xlog_in_core_t
*iclog
;
779 xlog_in_core_t
*first_iclog
;
781 xlog_ticket_t
*tic
= NULL
;
786 * Don't write out unmount record on read-only mounts.
787 * Or, if we are doing a forced umount (typically because of IO errors).
789 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
792 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
793 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
796 first_iclog
= iclog
= log
->l_iclog
;
798 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
799 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
800 ASSERT(iclog
->ic_offset
== 0);
802 iclog
= iclog
->ic_next
;
803 } while (iclog
!= first_iclog
);
805 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
806 error
= xfs_log_reserve(mp
, 600, 1, &tic
,
807 XFS_LOG
, 0, XLOG_UNMOUNT_REC_TYPE
);
809 /* the data section must be 32 bit size aligned */
813 __uint32_t pad2
; /* may as well make it 64 bits */
815 .magic
= XLOG_UNMOUNT_TYPE
,
817 struct xfs_log_iovec reg
= {
819 .i_len
= sizeof(magic
),
820 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
822 struct xfs_log_vec vec
= {
827 /* remove inited flag, and account for space used */
829 tic
->t_curr_res
-= sizeof(magic
);
830 error
= xlog_write(log
, &vec
, tic
, &lsn
,
831 NULL
, XLOG_UNMOUNT_TRANS
);
833 * At this point, we're umounting anyway,
834 * so there's no point in transitioning log state
835 * to IOERROR. Just continue...
840 xfs_alert(mp
, "%s: unmount record failed", __func__
);
843 spin_lock(&log
->l_icloglock
);
844 iclog
= log
->l_iclog
;
845 atomic_inc(&iclog
->ic_refcnt
);
846 xlog_state_want_sync(log
, iclog
);
847 spin_unlock(&log
->l_icloglock
);
848 error
= xlog_state_release_iclog(log
, iclog
);
850 spin_lock(&log
->l_icloglock
);
851 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
852 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
853 if (!XLOG_FORCED_SHUTDOWN(log
)) {
854 xlog_wait(&iclog
->ic_force_wait
,
857 spin_unlock(&log
->l_icloglock
);
860 spin_unlock(&log
->l_icloglock
);
863 trace_xfs_log_umount_write(log
, tic
);
864 xlog_ungrant_log_space(log
, tic
);
865 xfs_log_ticket_put(tic
);
869 * We're already in forced_shutdown mode, couldn't
870 * even attempt to write out the unmount transaction.
872 * Go through the motions of sync'ing and releasing
873 * the iclog, even though no I/O will actually happen,
874 * we need to wait for other log I/Os that may already
875 * be in progress. Do this as a separate section of
876 * code so we'll know if we ever get stuck here that
877 * we're in this odd situation of trying to unmount
878 * a file system that went into forced_shutdown as
879 * the result of an unmount..
881 spin_lock(&log
->l_icloglock
);
882 iclog
= log
->l_iclog
;
883 atomic_inc(&iclog
->ic_refcnt
);
885 xlog_state_want_sync(log
, iclog
);
886 spin_unlock(&log
->l_icloglock
);
887 error
= xlog_state_release_iclog(log
, iclog
);
889 spin_lock(&log
->l_icloglock
);
891 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
892 || iclog
->ic_state
== XLOG_STATE_DIRTY
893 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
895 xlog_wait(&iclog
->ic_force_wait
,
898 spin_unlock(&log
->l_icloglock
);
903 } /* xfs_log_unmount_write */
906 * Empty the log for unmount/freeze.
908 * To do this, we first need to shut down the background log work so it is not
909 * trying to cover the log as we clean up. We then need to unpin all objects in
910 * the log so we can then flush them out. Once they have completed their IO and
911 * run the callbacks removing themselves from the AIL, we can write the unmount
916 struct xfs_mount
*mp
)
918 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
919 xfs_log_force(mp
, XFS_LOG_SYNC
);
922 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
923 * will push it, xfs_wait_buftarg() will not wait for it. Further,
924 * xfs_buf_iowait() cannot be used because it was pushed with the
925 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
926 * the IO to complete.
928 xfs_ail_push_all_sync(mp
->m_ail
);
929 xfs_wait_buftarg(mp
->m_ddev_targp
);
930 xfs_buf_lock(mp
->m_sb_bp
);
931 xfs_buf_unlock(mp
->m_sb_bp
);
933 xfs_log_unmount_write(mp
);
937 * Shut down and release the AIL and Log.
939 * During unmount, we need to ensure we flush all the dirty metadata objects
940 * from the AIL so that the log is empty before we write the unmount record to
941 * the log. Once this is done, we can tear down the AIL and the log.
945 struct xfs_mount
*mp
)
949 xfs_trans_ail_destroy(mp
);
950 xlog_dealloc_log(mp
->m_log
);
955 struct xfs_mount
*mp
,
956 struct xfs_log_item
*item
,
958 const struct xfs_item_ops
*ops
)
960 item
->li_mountp
= mp
;
961 item
->li_ailp
= mp
->m_ail
;
962 item
->li_type
= type
;
966 INIT_LIST_HEAD(&item
->li_ail
);
967 INIT_LIST_HEAD(&item
->li_cil
);
971 * Wake up processes waiting for log space after we have moved the log tail.
975 struct xfs_mount
*mp
)
977 struct xlog
*log
= mp
->m_log
;
980 if (XLOG_FORCED_SHUTDOWN(log
))
983 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
984 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
986 spin_lock(&log
->l_write_head
.lock
);
987 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
988 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
989 spin_unlock(&log
->l_write_head
.lock
);
992 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
993 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
995 spin_lock(&log
->l_reserve_head
.lock
);
996 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
997 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
998 spin_unlock(&log
->l_reserve_head
.lock
);
1003 * Determine if we have a transaction that has gone to disk that needs to be
1004 * covered. To begin the transition to the idle state firstly the log needs to
1005 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1006 * we start attempting to cover the log.
1008 * Only if we are then in a state where covering is needed, the caller is
1009 * informed that dummy transactions are required to move the log into the idle
1012 * If there are any items in the AIl or CIL, then we do not want to attempt to
1013 * cover the log as we may be in a situation where there isn't log space
1014 * available to run a dummy transaction and this can lead to deadlocks when the
1015 * tail of the log is pinned by an item that is modified in the CIL. Hence
1016 * there's no point in running a dummy transaction at this point because we
1017 * can't start trying to idle the log until both the CIL and AIL are empty.
1020 xfs_log_need_covered(xfs_mount_t
*mp
)
1022 struct xlog
*log
= mp
->m_log
;
1025 if (!xfs_fs_writable(mp
))
1028 if (!xlog_cil_empty(log
))
1031 spin_lock(&log
->l_icloglock
);
1032 switch (log
->l_covered_state
) {
1033 case XLOG_STATE_COVER_DONE
:
1034 case XLOG_STATE_COVER_DONE2
:
1035 case XLOG_STATE_COVER_IDLE
:
1037 case XLOG_STATE_COVER_NEED
:
1038 case XLOG_STATE_COVER_NEED2
:
1039 if (xfs_ail_min_lsn(log
->l_ailp
))
1041 if (!xlog_iclogs_empty(log
))
1045 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1046 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1048 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1054 spin_unlock(&log
->l_icloglock
);
1059 * We may be holding the log iclog lock upon entering this routine.
1062 xlog_assign_tail_lsn_locked(
1063 struct xfs_mount
*mp
)
1065 struct xlog
*log
= mp
->m_log
;
1066 struct xfs_log_item
*lip
;
1069 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1072 * To make sure we always have a valid LSN for the log tail we keep
1073 * track of the last LSN which was committed in log->l_last_sync_lsn,
1074 * and use that when the AIL was empty.
1076 lip
= xfs_ail_min(mp
->m_ail
);
1078 tail_lsn
= lip
->li_lsn
;
1080 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1081 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1086 xlog_assign_tail_lsn(
1087 struct xfs_mount
*mp
)
1091 spin_lock(&mp
->m_ail
->xa_lock
);
1092 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1093 spin_unlock(&mp
->m_ail
->xa_lock
);
1099 * Return the space in the log between the tail and the head. The head
1100 * is passed in the cycle/bytes formal parms. In the special case where
1101 * the reserve head has wrapped passed the tail, this calculation is no
1102 * longer valid. In this case, just return 0 which means there is no space
1103 * in the log. This works for all places where this function is called
1104 * with the reserve head. Of course, if the write head were to ever
1105 * wrap the tail, we should blow up. Rather than catch this case here,
1106 * we depend on other ASSERTions in other parts of the code. XXXmiken
1108 * This code also handles the case where the reservation head is behind
1109 * the tail. The details of this case are described below, but the end
1110 * result is that we return the size of the log as the amount of space left.
1123 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1124 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1125 tail_bytes
= BBTOB(tail_bytes
);
1126 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1127 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1128 else if (tail_cycle
+ 1 < head_cycle
)
1130 else if (tail_cycle
< head_cycle
) {
1131 ASSERT(tail_cycle
== (head_cycle
- 1));
1132 free_bytes
= tail_bytes
- head_bytes
;
1135 * The reservation head is behind the tail.
1136 * In this case we just want to return the size of the
1137 * log as the amount of space left.
1139 xfs_alert(log
->l_mp
,
1140 "xlog_space_left: head behind tail\n"
1141 " tail_cycle = %d, tail_bytes = %d\n"
1142 " GH cycle = %d, GH bytes = %d",
1143 tail_cycle
, tail_bytes
, head_cycle
, head_bytes
);
1145 free_bytes
= log
->l_logsize
;
1152 * Log function which is called when an io completes.
1154 * The log manager needs its own routine, in order to control what
1155 * happens with the buffer after the write completes.
1158 xlog_iodone(xfs_buf_t
*bp
)
1160 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1161 struct xlog
*l
= iclog
->ic_log
;
1165 * Race to shutdown the filesystem if we see an error.
1167 if (XFS_TEST_ERROR((xfs_buf_geterror(bp
)), l
->l_mp
,
1168 XFS_ERRTAG_IODONE_IOERR
, XFS_RANDOM_IODONE_IOERR
)) {
1169 xfs_buf_ioerror_alert(bp
, __func__
);
1171 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1173 * This flag will be propagated to the trans-committed
1174 * callback routines to let them know that the log-commit
1177 aborted
= XFS_LI_ABORTED
;
1178 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1179 aborted
= XFS_LI_ABORTED
;
1182 /* log I/O is always issued ASYNC */
1183 ASSERT(XFS_BUF_ISASYNC(bp
));
1184 xlog_state_done_syncing(iclog
, aborted
);
1186 * do not reference the buffer (bp) here as we could race
1187 * with it being freed after writing the unmount record to the
1193 * Return size of each in-core log record buffer.
1195 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1197 * If the filesystem blocksize is too large, we may need to choose a
1198 * larger size since the directory code currently logs entire blocks.
1202 xlog_get_iclog_buffer_size(
1203 struct xfs_mount
*mp
,
1209 if (mp
->m_logbufs
<= 0)
1210 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1212 log
->l_iclog_bufs
= mp
->m_logbufs
;
1215 * Buffer size passed in from mount system call.
1217 if (mp
->m_logbsize
> 0) {
1218 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1219 log
->l_iclog_size_log
= 0;
1221 log
->l_iclog_size_log
++;
1225 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1226 /* # headers = size / 32k
1227 * one header holds cycles from 32k of data
1230 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1231 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1233 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1234 log
->l_iclog_heads
= xhdrs
;
1236 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1237 log
->l_iclog_hsize
= BBSIZE
;
1238 log
->l_iclog_heads
= 1;
1243 /* All machines use 32kB buffers by default. */
1244 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1245 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1247 /* the default log size is 16k or 32k which is one header sector */
1248 log
->l_iclog_hsize
= BBSIZE
;
1249 log
->l_iclog_heads
= 1;
1252 /* are we being asked to make the sizes selected above visible? */
1253 if (mp
->m_logbufs
== 0)
1254 mp
->m_logbufs
= log
->l_iclog_bufs
;
1255 if (mp
->m_logbsize
== 0)
1256 mp
->m_logbsize
= log
->l_iclog_size
;
1257 } /* xlog_get_iclog_buffer_size */
1262 struct xfs_mount
*mp
)
1264 queue_delayed_work(mp
->m_log_workqueue
, &mp
->m_log
->l_work
,
1265 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1269 * Every sync period we need to unpin all items in the AIL and push them to
1270 * disk. If there is nothing dirty, then we might need to cover the log to
1271 * indicate that the filesystem is idle.
1275 struct work_struct
*work
)
1277 struct xlog
*log
= container_of(to_delayed_work(work
),
1278 struct xlog
, l_work
);
1279 struct xfs_mount
*mp
= log
->l_mp
;
1281 /* dgc: errors ignored - not fatal and nowhere to report them */
1282 if (xfs_log_need_covered(mp
))
1283 xfs_fs_log_dummy(mp
);
1285 xfs_log_force(mp
, 0);
1287 /* start pushing all the metadata that is currently dirty */
1288 xfs_ail_push_all(mp
->m_ail
);
1290 /* queue us up again */
1291 xfs_log_work_queue(mp
);
1295 * This routine initializes some of the log structure for a given mount point.
1296 * Its primary purpose is to fill in enough, so recovery can occur. However,
1297 * some other stuff may be filled in too.
1299 STATIC
struct xlog
*
1301 struct xfs_mount
*mp
,
1302 struct xfs_buftarg
*log_target
,
1303 xfs_daddr_t blk_offset
,
1307 xlog_rec_header_t
*head
;
1308 xlog_in_core_t
**iclogp
;
1309 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1315 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1317 xfs_warn(mp
, "Log allocation failed: No memory!");
1322 log
->l_targ
= log_target
;
1323 log
->l_logsize
= BBTOB(num_bblks
);
1324 log
->l_logBBstart
= blk_offset
;
1325 log
->l_logBBsize
= num_bblks
;
1326 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1327 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1328 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1330 log
->l_prev_block
= -1;
1331 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1332 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1333 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1334 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1336 xlog_grant_head_init(&log
->l_reserve_head
);
1337 xlog_grant_head_init(&log
->l_write_head
);
1339 error
= EFSCORRUPTED
;
1340 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1341 log2_size
= mp
->m_sb
.sb_logsectlog
;
1342 if (log2_size
< BBSHIFT
) {
1343 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1344 log2_size
, BBSHIFT
);
1348 log2_size
-= BBSHIFT
;
1349 if (log2_size
> mp
->m_sectbb_log
) {
1350 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1351 log2_size
, mp
->m_sectbb_log
);
1355 /* for larger sector sizes, must have v2 or external log */
1356 if (log2_size
&& log
->l_logBBstart
> 0 &&
1357 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1359 "log sector size (0x%x) invalid for configuration.",
1364 log
->l_sectBBsize
= 1 << log2_size
;
1366 xlog_get_iclog_buffer_size(mp
, log
);
1369 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, 0, BTOBB(log
->l_iclog_size
), 0);
1372 bp
->b_iodone
= xlog_iodone
;
1373 ASSERT(xfs_buf_islocked(bp
));
1376 spin_lock_init(&log
->l_icloglock
);
1377 init_waitqueue_head(&log
->l_flush_wait
);
1379 iclogp
= &log
->l_iclog
;
1381 * The amount of memory to allocate for the iclog structure is
1382 * rather funky due to the way the structure is defined. It is
1383 * done this way so that we can use different sizes for machines
1384 * with different amounts of memory. See the definition of
1385 * xlog_in_core_t in xfs_log_priv.h for details.
1387 ASSERT(log
->l_iclog_size
>= 4096);
1388 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1389 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1391 goto out_free_iclog
;
1394 iclog
->ic_prev
= prev_iclog
;
1397 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1398 BTOBB(log
->l_iclog_size
), 0);
1400 goto out_free_iclog
;
1402 bp
->b_iodone
= xlog_iodone
;
1404 iclog
->ic_data
= bp
->b_addr
;
1406 log
->l_iclog_bak
[i
] = (xfs_caddr_t
)&(iclog
->ic_header
);
1408 head
= &iclog
->ic_header
;
1409 memset(head
, 0, sizeof(xlog_rec_header_t
));
1410 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1411 head
->h_version
= cpu_to_be32(
1412 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1413 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1415 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1416 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1418 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1419 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1420 iclog
->ic_log
= log
;
1421 atomic_set(&iclog
->ic_refcnt
, 0);
1422 spin_lock_init(&iclog
->ic_callback_lock
);
1423 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1424 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1426 ASSERT(xfs_buf_islocked(iclog
->ic_bp
));
1427 init_waitqueue_head(&iclog
->ic_force_wait
);
1428 init_waitqueue_head(&iclog
->ic_write_wait
);
1430 iclogp
= &iclog
->ic_next
;
1432 *iclogp
= log
->l_iclog
; /* complete ring */
1433 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1435 error
= xlog_cil_init(log
);
1437 goto out_free_iclog
;
1441 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1442 prev_iclog
= iclog
->ic_next
;
1444 xfs_buf_free(iclog
->ic_bp
);
1447 spinlock_destroy(&log
->l_icloglock
);
1448 xfs_buf_free(log
->l_xbuf
);
1452 return ERR_PTR(-error
);
1453 } /* xlog_alloc_log */
1457 * Write out the commit record of a transaction associated with the given
1458 * ticket. Return the lsn of the commit record.
1463 struct xlog_ticket
*ticket
,
1464 struct xlog_in_core
**iclog
,
1465 xfs_lsn_t
*commitlsnp
)
1467 struct xfs_mount
*mp
= log
->l_mp
;
1469 struct xfs_log_iovec reg
= {
1472 .i_type
= XLOG_REG_TYPE_COMMIT
,
1474 struct xfs_log_vec vec
= {
1479 ASSERT_ALWAYS(iclog
);
1480 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1483 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1488 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1489 * log space. This code pushes on the lsn which would supposedly free up
1490 * the 25% which we want to leave free. We may need to adopt a policy which
1491 * pushes on an lsn which is further along in the log once we reach the high
1492 * water mark. In this manner, we would be creating a low water mark.
1495 xlog_grant_push_ail(
1499 xfs_lsn_t threshold_lsn
= 0;
1500 xfs_lsn_t last_sync_lsn
;
1503 int threshold_block
;
1504 int threshold_cycle
;
1507 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1509 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1510 free_blocks
= BTOBBT(free_bytes
);
1513 * Set the threshold for the minimum number of free blocks in the
1514 * log to the maximum of what the caller needs, one quarter of the
1515 * log, and 256 blocks.
1517 free_threshold
= BTOBB(need_bytes
);
1518 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1519 free_threshold
= MAX(free_threshold
, 256);
1520 if (free_blocks
>= free_threshold
)
1523 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1525 threshold_block
+= free_threshold
;
1526 if (threshold_block
>= log
->l_logBBsize
) {
1527 threshold_block
-= log
->l_logBBsize
;
1528 threshold_cycle
+= 1;
1530 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1533 * Don't pass in an lsn greater than the lsn of the last
1534 * log record known to be on disk. Use a snapshot of the last sync lsn
1535 * so that it doesn't change between the compare and the set.
1537 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1538 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1539 threshold_lsn
= last_sync_lsn
;
1542 * Get the transaction layer to kick the dirty buffers out to
1543 * disk asynchronously. No point in trying to do this if
1544 * the filesystem is shutting down.
1546 if (!XLOG_FORCED_SHUTDOWN(log
))
1547 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1551 * Stamp cycle number in every block
1556 struct xlog_in_core
*iclog
,
1560 int size
= iclog
->ic_offset
+ roundoff
;
1564 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1566 dp
= iclog
->ic_datap
;
1567 for (i
= 0; i
< BTOBB(size
); i
++) {
1568 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1570 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1571 *(__be32
*)dp
= cycle_lsn
;
1575 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1576 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1578 for ( ; i
< BTOBB(size
); i
++) {
1579 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1580 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1581 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1582 *(__be32
*)dp
= cycle_lsn
;
1586 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1587 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1592 * Calculate the checksum for a log buffer.
1594 * This is a little more complicated than it should be because the various
1595 * headers and the actual data are non-contiguous.
1600 struct xlog_rec_header
*rhead
,
1606 /* first generate the crc for the record header ... */
1607 crc
= xfs_start_cksum((char *)rhead
,
1608 sizeof(struct xlog_rec_header
),
1609 offsetof(struct xlog_rec_header
, h_crc
));
1611 /* ... then for additional cycle data for v2 logs ... */
1612 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1613 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1616 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
1617 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1618 sizeof(struct xlog_rec_ext_header
));
1622 /* ... and finally for the payload */
1623 crc
= crc32c(crc
, dp
, size
);
1625 return xfs_end_cksum(crc
);
1629 * The bdstrat callback function for log bufs. This gives us a central
1630 * place to trap bufs in case we get hit by a log I/O error and need to
1631 * shutdown. Actually, in practice, even when we didn't get a log error,
1632 * we transition the iclogs to IOERROR state *after* flushing all existing
1633 * iclogs to disk. This is because we don't want anymore new transactions to be
1634 * started or completed afterwards.
1640 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1642 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1643 xfs_buf_ioerror(bp
, EIO
);
1645 xfs_buf_ioend(bp
, 0);
1647 * It would seem logical to return EIO here, but we rely on
1648 * the log state machine to propagate I/O errors instead of
1654 xfs_buf_iorequest(bp
);
1659 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1660 * fashion. Previously, we should have moved the current iclog
1661 * ptr in the log to point to the next available iclog. This allows further
1662 * write to continue while this code syncs out an iclog ready to go.
1663 * Before an in-core log can be written out, the data section must be scanned
1664 * to save away the 1st word of each BBSIZE block into the header. We replace
1665 * it with the current cycle count. Each BBSIZE block is tagged with the
1666 * cycle count because there in an implicit assumption that drives will
1667 * guarantee that entire 512 byte blocks get written at once. In other words,
1668 * we can't have part of a 512 byte block written and part not written. By
1669 * tagging each block, we will know which blocks are valid when recovering
1670 * after an unclean shutdown.
1672 * This routine is single threaded on the iclog. No other thread can be in
1673 * this routine with the same iclog. Changing contents of iclog can there-
1674 * fore be done without grabbing the state machine lock. Updating the global
1675 * log will require grabbing the lock though.
1677 * The entire log manager uses a logical block numbering scheme. Only
1678 * log_sync (and then only bwrite()) know about the fact that the log may
1679 * not start with block zero on a given device. The log block start offset
1680 * is added immediately before calling bwrite().
1686 struct xlog_in_core
*iclog
)
1690 uint count
; /* byte count of bwrite */
1691 uint count_init
; /* initial count before roundup */
1692 int roundoff
; /* roundoff to BB or stripe */
1693 int split
= 0; /* split write into two regions */
1695 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1698 XFS_STATS_INC(xs_log_writes
);
1699 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1701 /* Add for LR header */
1702 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1704 /* Round out the log write size */
1705 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1706 /* we have a v2 stripe unit to use */
1707 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1709 count
= BBTOB(BTOBB(count_init
));
1711 roundoff
= count
- count_init
;
1712 ASSERT(roundoff
>= 0);
1713 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1714 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1716 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1717 roundoff
< BBTOB(1)));
1719 /* move grant heads by roundoff in sync */
1720 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1721 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1723 /* put cycle number in every block */
1724 xlog_pack_data(log
, iclog
, roundoff
);
1726 /* real byte length */
1727 size
= iclog
->ic_offset
;
1730 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1733 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1735 XFS_STATS_ADD(xs_log_blocks
, BTOBB(count
));
1737 /* Do we need to split this write into 2 parts? */
1738 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1741 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1742 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1743 iclog
->ic_bwritecnt
= 2;
1746 * Bump the cycle numbers at the start of each block in the
1747 * part of the iclog that ends up in the buffer that gets
1748 * written to the start of the log.
1750 * Watch out for the header magic number case, though.
1752 dptr
= (char *)&iclog
->ic_header
+ count
;
1753 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1754 __uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1755 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1757 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1762 iclog
->ic_bwritecnt
= 1;
1765 /* calculcate the checksum */
1766 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1767 iclog
->ic_datap
, size
);
1769 bp
->b_io_length
= BTOBB(count
);
1770 bp
->b_fspriv
= iclog
;
1771 XFS_BUF_ZEROFLAGS(bp
);
1773 bp
->b_flags
|= XBF_SYNCIO
;
1775 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
) {
1776 bp
->b_flags
|= XBF_FUA
;
1779 * Flush the data device before flushing the log to make
1780 * sure all meta data written back from the AIL actually made
1781 * it to disk before stamping the new log tail LSN into the
1782 * log buffer. For an external log we need to issue the
1783 * flush explicitly, and unfortunately synchronously here;
1784 * for an internal log we can simply use the block layer
1785 * state machine for preflushes.
1787 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1788 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1790 bp
->b_flags
|= XBF_FLUSH
;
1793 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1794 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1796 xlog_verify_iclog(log
, iclog
, count
, true);
1798 /* account for log which doesn't start at block #0 */
1799 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1801 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1806 error
= xlog_bdstrat(bp
);
1808 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1812 bp
= iclog
->ic_log
->l_xbuf
;
1813 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1814 xfs_buf_associate_memory(bp
,
1815 (char *)&iclog
->ic_header
+ count
, split
);
1816 bp
->b_fspriv
= iclog
;
1817 XFS_BUF_ZEROFLAGS(bp
);
1819 bp
->b_flags
|= XBF_SYNCIO
;
1820 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1821 bp
->b_flags
|= XBF_FUA
;
1823 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1824 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1826 /* account for internal log which doesn't start at block #0 */
1827 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1829 error
= xlog_bdstrat(bp
);
1831 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1839 * Deallocate a log structure
1845 xlog_in_core_t
*iclog
, *next_iclog
;
1848 xlog_cil_destroy(log
);
1851 * always need to ensure that the extra buffer does not point to memory
1852 * owned by another log buffer before we free it.
1854 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
1855 xfs_buf_free(log
->l_xbuf
);
1857 iclog
= log
->l_iclog
;
1858 for (i
=0; i
<log
->l_iclog_bufs
; i
++) {
1859 xfs_buf_free(iclog
->ic_bp
);
1860 next_iclog
= iclog
->ic_next
;
1864 spinlock_destroy(&log
->l_icloglock
);
1866 log
->l_mp
->m_log
= NULL
;
1868 } /* xlog_dealloc_log */
1871 * Update counters atomically now that memcpy is done.
1875 xlog_state_finish_copy(
1877 struct xlog_in_core
*iclog
,
1881 spin_lock(&log
->l_icloglock
);
1883 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1884 iclog
->ic_offset
+= copy_bytes
;
1886 spin_unlock(&log
->l_icloglock
);
1887 } /* xlog_state_finish_copy */
1893 * print out info relating to regions written which consume
1898 struct xfs_mount
*mp
,
1899 struct xlog_ticket
*ticket
)
1902 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1904 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1905 static char *res_type_str
[XLOG_REG_TYPE_MAX
] = {
1926 static char *trans_type_str
[XFS_TRANS_TYPE_MAX
] = {
1970 "xlog_write: reservation summary:\n"
1971 " trans type = %s (%u)\n"
1972 " unit res = %d bytes\n"
1973 " current res = %d bytes\n"
1974 " total reg = %u bytes (o/flow = %u bytes)\n"
1975 " ophdrs = %u (ophdr space = %u bytes)\n"
1976 " ophdr + reg = %u bytes\n"
1977 " num regions = %u\n",
1978 ((ticket
->t_trans_type
<= 0 ||
1979 ticket
->t_trans_type
> XFS_TRANS_TYPE_MAX
) ?
1980 "bad-trans-type" : trans_type_str
[ticket
->t_trans_type
-1]),
1981 ticket
->t_trans_type
,
1984 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
,
1985 ticket
->t_res_num_ophdrs
, ophdr_spc
,
1986 ticket
->t_res_arr_sum
+
1987 ticket
->t_res_o_flow
+ ophdr_spc
,
1990 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
1991 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
1992 xfs_warn(mp
, "region[%u]: %s - %u bytes\n", i
,
1993 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
1994 "bad-rtype" : res_type_str
[r_type
-1]),
1995 ticket
->t_res_arr
[i
].r_len
);
1998 xfs_alert_tag(mp
, XFS_PTAG_LOGRES
,
1999 "xlog_write: reservation ran out. Need to up reservation");
2000 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
2004 * Calculate the potential space needed by the log vector. Each region gets
2005 * its own xlog_op_header_t and may need to be double word aligned.
2008 xlog_write_calc_vec_length(
2009 struct xlog_ticket
*ticket
,
2010 struct xfs_log_vec
*log_vector
)
2012 struct xfs_log_vec
*lv
;
2017 /* acct for start rec of xact */
2018 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2021 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2022 /* we don't write ordered log vectors */
2023 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2026 headers
+= lv
->lv_niovecs
;
2028 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2029 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2032 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2036 ticket
->t_res_num_ophdrs
+= headers
;
2037 len
+= headers
* sizeof(struct xlog_op_header
);
2043 * If first write for transaction, insert start record We can't be trying to
2044 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2047 xlog_write_start_rec(
2048 struct xlog_op_header
*ophdr
,
2049 struct xlog_ticket
*ticket
)
2051 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2054 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2055 ophdr
->oh_clientid
= ticket
->t_clientid
;
2057 ophdr
->oh_flags
= XLOG_START_TRANS
;
2060 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2062 return sizeof(struct xlog_op_header
);
2065 static xlog_op_header_t
*
2066 xlog_write_setup_ophdr(
2068 struct xlog_op_header
*ophdr
,
2069 struct xlog_ticket
*ticket
,
2072 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2073 ophdr
->oh_clientid
= ticket
->t_clientid
;
2076 /* are we copying a commit or unmount record? */
2077 ophdr
->oh_flags
= flags
;
2080 * We've seen logs corrupted with bad transaction client ids. This
2081 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2082 * and shut down the filesystem.
2084 switch (ophdr
->oh_clientid
) {
2085 case XFS_TRANSACTION
:
2091 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2092 ophdr
->oh_clientid
, ticket
);
2100 * Set up the parameters of the region copy into the log. This has
2101 * to handle region write split across multiple log buffers - this
2102 * state is kept external to this function so that this code can
2103 * be written in an obvious, self documenting manner.
2106 xlog_write_setup_copy(
2107 struct xlog_ticket
*ticket
,
2108 struct xlog_op_header
*ophdr
,
2109 int space_available
,
2113 int *last_was_partial_copy
,
2114 int *bytes_consumed
)
2118 still_to_copy
= space_required
- *bytes_consumed
;
2119 *copy_off
= *bytes_consumed
;
2121 if (still_to_copy
<= space_available
) {
2122 /* write of region completes here */
2123 *copy_len
= still_to_copy
;
2124 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2125 if (*last_was_partial_copy
)
2126 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2127 *last_was_partial_copy
= 0;
2128 *bytes_consumed
= 0;
2132 /* partial write of region, needs extra log op header reservation */
2133 *copy_len
= space_available
;
2134 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2135 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2136 if (*last_was_partial_copy
)
2137 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2138 *bytes_consumed
+= *copy_len
;
2139 (*last_was_partial_copy
)++;
2141 /* account for new log op header */
2142 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2143 ticket
->t_res_num_ophdrs
++;
2145 return sizeof(struct xlog_op_header
);
2149 xlog_write_copy_finish(
2151 struct xlog_in_core
*iclog
,
2156 int *partial_copy_len
,
2158 struct xlog_in_core
**commit_iclog
)
2160 if (*partial_copy
) {
2162 * This iclog has already been marked WANT_SYNC by
2163 * xlog_state_get_iclog_space.
2165 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2168 return xlog_state_release_iclog(log
, iclog
);
2172 *partial_copy_len
= 0;
2174 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2175 /* no more space in this iclog - push it. */
2176 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2180 spin_lock(&log
->l_icloglock
);
2181 xlog_state_want_sync(log
, iclog
);
2182 spin_unlock(&log
->l_icloglock
);
2185 return xlog_state_release_iclog(log
, iclog
);
2186 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2187 *commit_iclog
= iclog
;
2194 * Write some region out to in-core log
2196 * This will be called when writing externally provided regions or when
2197 * writing out a commit record for a given transaction.
2199 * General algorithm:
2200 * 1. Find total length of this write. This may include adding to the
2201 * lengths passed in.
2202 * 2. Check whether we violate the tickets reservation.
2203 * 3. While writing to this iclog
2204 * A. Reserve as much space in this iclog as can get
2205 * B. If this is first write, save away start lsn
2206 * C. While writing this region:
2207 * 1. If first write of transaction, write start record
2208 * 2. Write log operation header (header per region)
2209 * 3. Find out if we can fit entire region into this iclog
2210 * 4. Potentially, verify destination memcpy ptr
2211 * 5. Memcpy (partial) region
2212 * 6. If partial copy, release iclog; otherwise, continue
2213 * copying more regions into current iclog
2214 * 4. Mark want sync bit (in simulation mode)
2215 * 5. Release iclog for potential flush to on-disk log.
2218 * 1. Panic if reservation is overrun. This should never happen since
2219 * reservation amounts are generated internal to the filesystem.
2221 * 1. Tickets are single threaded data structures.
2222 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2223 * syncing routine. When a single log_write region needs to span
2224 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2225 * on all log operation writes which don't contain the end of the
2226 * region. The XLOG_END_TRANS bit is used for the in-core log
2227 * operation which contains the end of the continued log_write region.
2228 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2229 * we don't really know exactly how much space will be used. As a result,
2230 * we don't update ic_offset until the end when we know exactly how many
2231 * bytes have been written out.
2236 struct xfs_log_vec
*log_vector
,
2237 struct xlog_ticket
*ticket
,
2238 xfs_lsn_t
*start_lsn
,
2239 struct xlog_in_core
**commit_iclog
,
2242 struct xlog_in_core
*iclog
= NULL
;
2243 struct xfs_log_iovec
*vecp
;
2244 struct xfs_log_vec
*lv
;
2247 int partial_copy
= 0;
2248 int partial_copy_len
= 0;
2256 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2259 * Region headers and bytes are already accounted for.
2260 * We only need to take into account start records and
2261 * split regions in this function.
2263 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2264 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2267 * Commit record headers need to be accounted for. These
2268 * come in as separate writes so are easy to detect.
2270 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2271 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2273 if (ticket
->t_curr_res
< 0)
2274 xlog_print_tic_res(log
->l_mp
, ticket
);
2278 vecp
= lv
->lv_iovecp
;
2279 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2283 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2284 &contwr
, &log_offset
);
2288 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2289 ptr
= iclog
->ic_datap
+ log_offset
;
2291 /* start_lsn is the first lsn written to. That's all we need. */
2293 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2296 * This loop writes out as many regions as can fit in the amount
2297 * of space which was allocated by xlog_state_get_iclog_space().
2299 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2300 struct xfs_log_iovec
*reg
;
2301 struct xlog_op_header
*ophdr
;
2305 bool ordered
= false;
2307 /* ordered log vectors have no regions to write */
2308 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2309 ASSERT(lv
->lv_niovecs
== 0);
2315 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
2316 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
2318 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2319 if (start_rec_copy
) {
2321 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2325 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2327 return XFS_ERROR(EIO
);
2329 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2330 sizeof(struct xlog_op_header
));
2332 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2333 iclog
->ic_size
-log_offset
,
2335 ©_off
, ©_len
,
2338 xlog_verify_dest_ptr(log
, ptr
);
2341 ASSERT(copy_len
>= 0);
2342 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2343 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
, copy_len
);
2345 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2347 data_cnt
+= contwr
? copy_len
: 0;
2349 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2350 &record_cnt
, &data_cnt
,
2359 * if we had a partial copy, we need to get more iclog
2360 * space but we don't want to increment the region
2361 * index because there is still more is this region to
2364 * If we completed writing this region, and we flushed
2365 * the iclog (indicated by resetting of the record
2366 * count), then we also need to get more log space. If
2367 * this was the last record, though, we are done and
2373 if (++index
== lv
->lv_niovecs
) {
2378 vecp
= lv
->lv_iovecp
;
2380 if (record_cnt
== 0 && ordered
== false) {
2390 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2392 return xlog_state_release_iclog(log
, iclog
);
2394 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2395 *commit_iclog
= iclog
;
2400 /*****************************************************************************
2402 * State Machine functions
2404 *****************************************************************************
2407 /* Clean iclogs starting from the head. This ordering must be
2408 * maintained, so an iclog doesn't become ACTIVE beyond one that
2409 * is SYNCING. This is also required to maintain the notion that we use
2410 * a ordered wait queue to hold off would be writers to the log when every
2411 * iclog is trying to sync to disk.
2413 * State Change: DIRTY -> ACTIVE
2416 xlog_state_clean_log(
2419 xlog_in_core_t
*iclog
;
2422 iclog
= log
->l_iclog
;
2424 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2425 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2426 iclog
->ic_offset
= 0;
2427 ASSERT(iclog
->ic_callback
== NULL
);
2429 * If the number of ops in this iclog indicate it just
2430 * contains the dummy transaction, we can
2431 * change state into IDLE (the second time around).
2432 * Otherwise we should change the state into
2434 * We don't need to cover the dummy.
2437 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2442 * We have two dirty iclogs so start over
2443 * This could also be num of ops indicates
2444 * this is not the dummy going out.
2448 iclog
->ic_header
.h_num_logops
= 0;
2449 memset(iclog
->ic_header
.h_cycle_data
, 0,
2450 sizeof(iclog
->ic_header
.h_cycle_data
));
2451 iclog
->ic_header
.h_lsn
= 0;
2452 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2455 break; /* stop cleaning */
2456 iclog
= iclog
->ic_next
;
2457 } while (iclog
!= log
->l_iclog
);
2459 /* log is locked when we are called */
2461 * Change state for the dummy log recording.
2462 * We usually go to NEED. But we go to NEED2 if the changed indicates
2463 * we are done writing the dummy record.
2464 * If we are done with the second dummy recored (DONE2), then
2468 switch (log
->l_covered_state
) {
2469 case XLOG_STATE_COVER_IDLE
:
2470 case XLOG_STATE_COVER_NEED
:
2471 case XLOG_STATE_COVER_NEED2
:
2472 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2475 case XLOG_STATE_COVER_DONE
:
2477 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2479 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2482 case XLOG_STATE_COVER_DONE2
:
2484 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2486 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2493 } /* xlog_state_clean_log */
2496 xlog_get_lowest_lsn(
2499 xlog_in_core_t
*lsn_log
;
2500 xfs_lsn_t lowest_lsn
, lsn
;
2502 lsn_log
= log
->l_iclog
;
2505 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2506 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2507 if ((lsn
&& !lowest_lsn
) ||
2508 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2512 lsn_log
= lsn_log
->ic_next
;
2513 } while (lsn_log
!= log
->l_iclog
);
2519 xlog_state_do_callback(
2522 struct xlog_in_core
*ciclog
)
2524 xlog_in_core_t
*iclog
;
2525 xlog_in_core_t
*first_iclog
; /* used to know when we've
2526 * processed all iclogs once */
2527 xfs_log_callback_t
*cb
, *cb_next
;
2529 xfs_lsn_t lowest_lsn
;
2530 int ioerrors
; /* counter: iclogs with errors */
2531 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2532 int funcdidcallbacks
; /* flag: function did callbacks */
2533 int repeats
; /* for issuing console warnings if
2534 * looping too many times */
2537 spin_lock(&log
->l_icloglock
);
2538 first_iclog
= iclog
= log
->l_iclog
;
2540 funcdidcallbacks
= 0;
2545 * Scan all iclogs starting with the one pointed to by the
2546 * log. Reset this starting point each time the log is
2547 * unlocked (during callbacks).
2549 * Keep looping through iclogs until one full pass is made
2550 * without running any callbacks.
2552 first_iclog
= log
->l_iclog
;
2553 iclog
= log
->l_iclog
;
2554 loopdidcallbacks
= 0;
2559 /* skip all iclogs in the ACTIVE & DIRTY states */
2560 if (iclog
->ic_state
&
2561 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2562 iclog
= iclog
->ic_next
;
2567 * Between marking a filesystem SHUTDOWN and stopping
2568 * the log, we do flush all iclogs to disk (if there
2569 * wasn't a log I/O error). So, we do want things to
2570 * go smoothly in case of just a SHUTDOWN w/o a
2573 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2575 * Can only perform callbacks in order. Since
2576 * this iclog is not in the DONE_SYNC/
2577 * DO_CALLBACK state, we skip the rest and
2578 * just try to clean up. If we set our iclog
2579 * to DO_CALLBACK, we will not process it when
2580 * we retry since a previous iclog is in the
2581 * CALLBACK and the state cannot change since
2582 * we are holding the l_icloglock.
2584 if (!(iclog
->ic_state
&
2585 (XLOG_STATE_DONE_SYNC
|
2586 XLOG_STATE_DO_CALLBACK
))) {
2587 if (ciclog
&& (ciclog
->ic_state
==
2588 XLOG_STATE_DONE_SYNC
)) {
2589 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2594 * We now have an iclog that is in either the
2595 * DO_CALLBACK or DONE_SYNC states. The other
2596 * states (WANT_SYNC, SYNCING, or CALLBACK were
2597 * caught by the above if and are going to
2598 * clean (i.e. we aren't doing their callbacks)
2603 * We will do one more check here to see if we
2604 * have chased our tail around.
2607 lowest_lsn
= xlog_get_lowest_lsn(log
);
2609 XFS_LSN_CMP(lowest_lsn
,
2610 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2611 iclog
= iclog
->ic_next
;
2612 continue; /* Leave this iclog for
2616 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2620 * Completion of a iclog IO does not imply that
2621 * a transaction has completed, as transactions
2622 * can be large enough to span many iclogs. We
2623 * cannot change the tail of the log half way
2624 * through a transaction as this may be the only
2625 * transaction in the log and moving th etail to
2626 * point to the middle of it will prevent
2627 * recovery from finding the start of the
2628 * transaction. Hence we should only update the
2629 * last_sync_lsn if this iclog contains
2630 * transaction completion callbacks on it.
2632 * We have to do this before we drop the
2633 * icloglock to ensure we are the only one that
2636 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2637 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2638 if (iclog
->ic_callback
)
2639 atomic64_set(&log
->l_last_sync_lsn
,
2640 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2645 spin_unlock(&log
->l_icloglock
);
2648 * Keep processing entries in the callback list until
2649 * we come around and it is empty. We need to
2650 * atomically see that the list is empty and change the
2651 * state to DIRTY so that we don't miss any more
2652 * callbacks being added.
2654 spin_lock(&iclog
->ic_callback_lock
);
2655 cb
= iclog
->ic_callback
;
2657 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2658 iclog
->ic_callback
= NULL
;
2659 spin_unlock(&iclog
->ic_callback_lock
);
2661 /* perform callbacks in the order given */
2662 for (; cb
; cb
= cb_next
) {
2663 cb_next
= cb
->cb_next
;
2664 cb
->cb_func(cb
->cb_arg
, aborted
);
2666 spin_lock(&iclog
->ic_callback_lock
);
2667 cb
= iclog
->ic_callback
;
2673 spin_lock(&log
->l_icloglock
);
2674 ASSERT(iclog
->ic_callback
== NULL
);
2675 spin_unlock(&iclog
->ic_callback_lock
);
2676 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2677 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2680 * Transition from DIRTY to ACTIVE if applicable.
2681 * NOP if STATE_IOERROR.
2683 xlog_state_clean_log(log
);
2685 /* wake up threads waiting in xfs_log_force() */
2686 wake_up_all(&iclog
->ic_force_wait
);
2688 iclog
= iclog
->ic_next
;
2689 } while (first_iclog
!= iclog
);
2691 if (repeats
> 5000) {
2692 flushcnt
+= repeats
;
2695 "%s: possible infinite loop (%d iterations)",
2696 __func__
, flushcnt
);
2698 } while (!ioerrors
&& loopdidcallbacks
);
2701 * make one last gasp attempt to see if iclogs are being left in
2705 if (funcdidcallbacks
) {
2706 first_iclog
= iclog
= log
->l_iclog
;
2708 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2710 * Terminate the loop if iclogs are found in states
2711 * which will cause other threads to clean up iclogs.
2713 * SYNCING - i/o completion will go through logs
2714 * DONE_SYNC - interrupt thread should be waiting for
2716 * IOERROR - give up hope all ye who enter here
2718 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2719 iclog
->ic_state
== XLOG_STATE_SYNCING
||
2720 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2721 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2723 iclog
= iclog
->ic_next
;
2724 } while (first_iclog
!= iclog
);
2728 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2730 spin_unlock(&log
->l_icloglock
);
2733 wake_up_all(&log
->l_flush_wait
);
2738 * Finish transitioning this iclog to the dirty state.
2740 * Make sure that we completely execute this routine only when this is
2741 * the last call to the iclog. There is a good chance that iclog flushes,
2742 * when we reach the end of the physical log, get turned into 2 separate
2743 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2744 * routine. By using the reference count bwritecnt, we guarantee that only
2745 * the second completion goes through.
2747 * Callbacks could take time, so they are done outside the scope of the
2748 * global state machine log lock.
2751 xlog_state_done_syncing(
2752 xlog_in_core_t
*iclog
,
2755 struct xlog
*log
= iclog
->ic_log
;
2757 spin_lock(&log
->l_icloglock
);
2759 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2760 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2761 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2762 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2766 * If we got an error, either on the first buffer, or in the case of
2767 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2768 * and none should ever be attempted to be written to disk
2771 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2772 if (--iclog
->ic_bwritecnt
== 1) {
2773 spin_unlock(&log
->l_icloglock
);
2776 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2780 * Someone could be sleeping prior to writing out the next
2781 * iclog buffer, we wake them all, one will get to do the
2782 * I/O, the others get to wait for the result.
2784 wake_up_all(&iclog
->ic_write_wait
);
2785 spin_unlock(&log
->l_icloglock
);
2786 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2787 } /* xlog_state_done_syncing */
2791 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2792 * sleep. We wait on the flush queue on the head iclog as that should be
2793 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2794 * we will wait here and all new writes will sleep until a sync completes.
2796 * The in-core logs are used in a circular fashion. They are not used
2797 * out-of-order even when an iclog past the head is free.
2800 * * log_offset where xlog_write() can start writing into the in-core
2802 * * in-core log pointer to which xlog_write() should write.
2803 * * boolean indicating this is a continued write to an in-core log.
2804 * If this is the last write, then the in-core log's offset field
2805 * needs to be incremented, depending on the amount of data which
2809 xlog_state_get_iclog_space(
2812 struct xlog_in_core
**iclogp
,
2813 struct xlog_ticket
*ticket
,
2814 int *continued_write
,
2818 xlog_rec_header_t
*head
;
2819 xlog_in_core_t
*iclog
;
2823 spin_lock(&log
->l_icloglock
);
2824 if (XLOG_FORCED_SHUTDOWN(log
)) {
2825 spin_unlock(&log
->l_icloglock
);
2826 return XFS_ERROR(EIO
);
2829 iclog
= log
->l_iclog
;
2830 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2831 XFS_STATS_INC(xs_log_noiclogs
);
2833 /* Wait for log writes to have flushed */
2834 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2838 head
= &iclog
->ic_header
;
2840 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2841 log_offset
= iclog
->ic_offset
;
2843 /* On the 1st write to an iclog, figure out lsn. This works
2844 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2845 * committing to. If the offset is set, that's how many blocks
2848 if (log_offset
== 0) {
2849 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2850 xlog_tic_add_region(ticket
,
2852 XLOG_REG_TYPE_LRHEADER
);
2853 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2854 head
->h_lsn
= cpu_to_be64(
2855 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2856 ASSERT(log
->l_curr_block
>= 0);
2859 /* If there is enough room to write everything, then do it. Otherwise,
2860 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2861 * bit is on, so this will get flushed out. Don't update ic_offset
2862 * until you know exactly how many bytes get copied. Therefore, wait
2863 * until later to update ic_offset.
2865 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2866 * can fit into remaining data section.
2868 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2869 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2872 * If I'm the only one writing to this iclog, sync it to disk.
2873 * We need to do an atomic compare and decrement here to avoid
2874 * racing with concurrent atomic_dec_and_lock() calls in
2875 * xlog_state_release_iclog() when there is more than one
2876 * reference to the iclog.
2878 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2879 /* we are the only one */
2880 spin_unlock(&log
->l_icloglock
);
2881 error
= xlog_state_release_iclog(log
, iclog
);
2885 spin_unlock(&log
->l_icloglock
);
2890 /* Do we have enough room to write the full amount in the remainder
2891 * of this iclog? Or must we continue a write on the next iclog and
2892 * mark this iclog as completely taken? In the case where we switch
2893 * iclogs (to mark it taken), this particular iclog will release/sync
2894 * to disk in xlog_write().
2896 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2897 *continued_write
= 0;
2898 iclog
->ic_offset
+= len
;
2900 *continued_write
= 1;
2901 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2905 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2906 spin_unlock(&log
->l_icloglock
);
2908 *logoffsetp
= log_offset
;
2910 } /* xlog_state_get_iclog_space */
2912 /* The first cnt-1 times through here we don't need to
2913 * move the grant write head because the permanent
2914 * reservation has reserved cnt times the unit amount.
2915 * Release part of current permanent unit reservation and
2916 * reset current reservation to be one units worth. Also
2917 * move grant reservation head forward.
2920 xlog_regrant_reserve_log_space(
2922 struct xlog_ticket
*ticket
)
2924 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
2926 if (ticket
->t_cnt
> 0)
2929 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
2930 ticket
->t_curr_res
);
2931 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
2932 ticket
->t_curr_res
);
2933 ticket
->t_curr_res
= ticket
->t_unit_res
;
2934 xlog_tic_reset_res(ticket
);
2936 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
2938 /* just return if we still have some of the pre-reserved space */
2939 if (ticket
->t_cnt
> 0)
2942 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
2943 ticket
->t_unit_res
);
2945 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
2947 ticket
->t_curr_res
= ticket
->t_unit_res
;
2948 xlog_tic_reset_res(ticket
);
2949 } /* xlog_regrant_reserve_log_space */
2953 * Give back the space left from a reservation.
2955 * All the information we need to make a correct determination of space left
2956 * is present. For non-permanent reservations, things are quite easy. The
2957 * count should have been decremented to zero. We only need to deal with the
2958 * space remaining in the current reservation part of the ticket. If the
2959 * ticket contains a permanent reservation, there may be left over space which
2960 * needs to be released. A count of N means that N-1 refills of the current
2961 * reservation can be done before we need to ask for more space. The first
2962 * one goes to fill up the first current reservation. Once we run out of
2963 * space, the count will stay at zero and the only space remaining will be
2964 * in the current reservation field.
2967 xlog_ungrant_log_space(
2969 struct xlog_ticket
*ticket
)
2973 if (ticket
->t_cnt
> 0)
2976 trace_xfs_log_ungrant_enter(log
, ticket
);
2977 trace_xfs_log_ungrant_sub(log
, ticket
);
2980 * If this is a permanent reservation ticket, we may be able to free
2981 * up more space based on the remaining count.
2983 bytes
= ticket
->t_curr_res
;
2984 if (ticket
->t_cnt
> 0) {
2985 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
2986 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
2989 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
2990 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
2992 trace_xfs_log_ungrant_exit(log
, ticket
);
2994 xfs_log_space_wake(log
->l_mp
);
2998 * Flush iclog to disk if this is the last reference to the given iclog and
2999 * the WANT_SYNC bit is set.
3001 * When this function is entered, the iclog is not necessarily in the
3002 * WANT_SYNC state. It may be sitting around waiting to get filled.
3007 xlog_state_release_iclog(
3009 struct xlog_in_core
*iclog
)
3011 int sync
= 0; /* do we sync? */
3013 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3014 return XFS_ERROR(EIO
);
3016 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3017 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3020 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3021 spin_unlock(&log
->l_icloglock
);
3022 return XFS_ERROR(EIO
);
3024 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3025 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3027 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3028 /* update tail before writing to iclog */
3029 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3031 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3032 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3033 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3034 /* cycle incremented when incrementing curr_block */
3036 spin_unlock(&log
->l_icloglock
);
3039 * We let the log lock go, so it's possible that we hit a log I/O
3040 * error or some other SHUTDOWN condition that marks the iclog
3041 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3042 * this iclog has consistent data, so we ignore IOERROR
3043 * flags after this point.
3046 return xlog_sync(log
, iclog
);
3048 } /* xlog_state_release_iclog */
3052 * This routine will mark the current iclog in the ring as WANT_SYNC
3053 * and move the current iclog pointer to the next iclog in the ring.
3054 * When this routine is called from xlog_state_get_iclog_space(), the
3055 * exact size of the iclog has not yet been determined. All we know is
3056 * that every data block. We have run out of space in this log record.
3059 xlog_state_switch_iclogs(
3061 struct xlog_in_core
*iclog
,
3064 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3066 eventual_size
= iclog
->ic_offset
;
3067 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3068 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3069 log
->l_prev_block
= log
->l_curr_block
;
3070 log
->l_prev_cycle
= log
->l_curr_cycle
;
3072 /* roll log?: ic_offset changed later */
3073 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3075 /* Round up to next log-sunit */
3076 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3077 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3078 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3079 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3082 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3083 log
->l_curr_cycle
++;
3084 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3085 log
->l_curr_cycle
++;
3086 log
->l_curr_block
-= log
->l_logBBsize
;
3087 ASSERT(log
->l_curr_block
>= 0);
3089 ASSERT(iclog
== log
->l_iclog
);
3090 log
->l_iclog
= iclog
->ic_next
;
3091 } /* xlog_state_switch_iclogs */
3094 * Write out all data in the in-core log as of this exact moment in time.
3096 * Data may be written to the in-core log during this call. However,
3097 * we don't guarantee this data will be written out. A change from past
3098 * implementation means this routine will *not* write out zero length LRs.
3100 * Basically, we try and perform an intelligent scan of the in-core logs.
3101 * If we determine there is no flushable data, we just return. There is no
3102 * flushable data if:
3104 * 1. the current iclog is active and has no data; the previous iclog
3105 * is in the active or dirty state.
3106 * 2. the current iclog is drity, and the previous iclog is in the
3107 * active or dirty state.
3111 * 1. the current iclog is not in the active nor dirty state.
3112 * 2. the current iclog dirty, and the previous iclog is not in the
3113 * active nor dirty state.
3114 * 3. the current iclog is active, and there is another thread writing
3115 * to this particular iclog.
3116 * 4. a) the current iclog is active and has no other writers
3117 * b) when we return from flushing out this iclog, it is still
3118 * not in the active nor dirty state.
3122 struct xfs_mount
*mp
,
3126 struct xlog
*log
= mp
->m_log
;
3127 struct xlog_in_core
*iclog
;
3130 XFS_STATS_INC(xs_log_force
);
3132 xlog_cil_force(log
);
3134 spin_lock(&log
->l_icloglock
);
3136 iclog
= log
->l_iclog
;
3137 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3138 spin_unlock(&log
->l_icloglock
);
3139 return XFS_ERROR(EIO
);
3142 /* If the head iclog is not active nor dirty, we just attach
3143 * ourselves to the head and go to sleep.
3145 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3146 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3148 * If the head is dirty or (active and empty), then
3149 * we need to look at the previous iclog. If the previous
3150 * iclog is active or dirty we are done. There is nothing
3151 * to sync out. Otherwise, we attach ourselves to the
3152 * previous iclog and go to sleep.
3154 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3155 (atomic_read(&iclog
->ic_refcnt
) == 0
3156 && iclog
->ic_offset
== 0)) {
3157 iclog
= iclog
->ic_prev
;
3158 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3159 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3164 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3165 /* We are the only one with access to this
3166 * iclog. Flush it out now. There should
3167 * be a roundoff of zero to show that someone
3168 * has already taken care of the roundoff from
3169 * the previous sync.
3171 atomic_inc(&iclog
->ic_refcnt
);
3172 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3173 xlog_state_switch_iclogs(log
, iclog
, 0);
3174 spin_unlock(&log
->l_icloglock
);
3176 if (xlog_state_release_iclog(log
, iclog
))
3177 return XFS_ERROR(EIO
);
3181 spin_lock(&log
->l_icloglock
);
3182 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3183 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3188 /* Someone else is writing to this iclog.
3189 * Use its call to flush out the data. However,
3190 * the other thread may not force out this LR,
3191 * so we mark it WANT_SYNC.
3193 xlog_state_switch_iclogs(log
, iclog
, 0);
3199 /* By the time we come around again, the iclog could've been filled
3200 * which would give it another lsn. If we have a new lsn, just
3201 * return because the relevant data has been flushed.
3204 if (flags
& XFS_LOG_SYNC
) {
3206 * We must check if we're shutting down here, before
3207 * we wait, while we're holding the l_icloglock.
3208 * Then we check again after waking up, in case our
3209 * sleep was disturbed by a bad news.
3211 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3212 spin_unlock(&log
->l_icloglock
);
3213 return XFS_ERROR(EIO
);
3215 XFS_STATS_INC(xs_log_force_sleep
);
3216 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3218 * No need to grab the log lock here since we're
3219 * only deciding whether or not to return EIO
3220 * and the memory read should be atomic.
3222 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3223 return XFS_ERROR(EIO
);
3229 spin_unlock(&log
->l_icloglock
);
3235 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3236 * about errors or whether the log was flushed or not. This is the normal
3237 * interface to use when trying to unpin items or move the log forward.
3246 trace_xfs_log_force(mp
, 0);
3247 error
= _xfs_log_force(mp
, flags
, NULL
);
3249 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3253 * Force the in-core log to disk for a specific LSN.
3255 * Find in-core log with lsn.
3256 * If it is in the DIRTY state, just return.
3257 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3258 * state and go to sleep or return.
3259 * If it is in any other state, go to sleep or return.
3261 * Synchronous forces are implemented with a signal variable. All callers
3262 * to force a given lsn to disk will wait on a the sv attached to the
3263 * specific in-core log. When given in-core log finally completes its
3264 * write to disk, that thread will wake up all threads waiting on the
3269 struct xfs_mount
*mp
,
3274 struct xlog
*log
= mp
->m_log
;
3275 struct xlog_in_core
*iclog
;
3276 int already_slept
= 0;
3280 XFS_STATS_INC(xs_log_force
);
3282 lsn
= xlog_cil_force_lsn(log
, lsn
);
3283 if (lsn
== NULLCOMMITLSN
)
3287 spin_lock(&log
->l_icloglock
);
3288 iclog
= log
->l_iclog
;
3289 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3290 spin_unlock(&log
->l_icloglock
);
3291 return XFS_ERROR(EIO
);
3295 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3296 iclog
= iclog
->ic_next
;
3300 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3301 spin_unlock(&log
->l_icloglock
);
3305 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3307 * We sleep here if we haven't already slept (e.g.
3308 * this is the first time we've looked at the correct
3309 * iclog buf) and the buffer before us is going to
3310 * be sync'ed. The reason for this is that if we
3311 * are doing sync transactions here, by waiting for
3312 * the previous I/O to complete, we can allow a few
3313 * more transactions into this iclog before we close
3316 * Otherwise, we mark the buffer WANT_SYNC, and bump
3317 * up the refcnt so we can release the log (which
3318 * drops the ref count). The state switch keeps new
3319 * transaction commits from using this buffer. When
3320 * the current commits finish writing into the buffer,
3321 * the refcount will drop to zero and the buffer will
3324 if (!already_slept
&&
3325 (iclog
->ic_prev
->ic_state
&
3326 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3327 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3329 XFS_STATS_INC(xs_log_force_sleep
);
3331 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3338 atomic_inc(&iclog
->ic_refcnt
);
3339 xlog_state_switch_iclogs(log
, iclog
, 0);
3340 spin_unlock(&log
->l_icloglock
);
3341 if (xlog_state_release_iclog(log
, iclog
))
3342 return XFS_ERROR(EIO
);
3345 spin_lock(&log
->l_icloglock
);
3348 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3350 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3352 * Don't wait on completion if we know that we've
3353 * gotten a log write error.
3355 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3356 spin_unlock(&log
->l_icloglock
);
3357 return XFS_ERROR(EIO
);
3359 XFS_STATS_INC(xs_log_force_sleep
);
3360 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3362 * No need to grab the log lock here since we're
3363 * only deciding whether or not to return EIO
3364 * and the memory read should be atomic.
3366 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3367 return XFS_ERROR(EIO
);
3371 } else { /* just return */
3372 spin_unlock(&log
->l_icloglock
);
3376 } while (iclog
!= log
->l_iclog
);
3378 spin_unlock(&log
->l_icloglock
);
3383 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3384 * about errors or whether the log was flushed or not. This is the normal
3385 * interface to use when trying to unpin items or move the log forward.
3395 trace_xfs_log_force(mp
, lsn
);
3396 error
= _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3398 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3402 * Called when we want to mark the current iclog as being ready to sync to
3406 xlog_state_want_sync(
3408 struct xlog_in_core
*iclog
)
3410 assert_spin_locked(&log
->l_icloglock
);
3412 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3413 xlog_state_switch_iclogs(log
, iclog
, 0);
3415 ASSERT(iclog
->ic_state
&
3416 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3421 /*****************************************************************************
3425 *****************************************************************************
3429 * Free a used ticket when its refcount falls to zero.
3433 xlog_ticket_t
*ticket
)
3435 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3436 if (atomic_dec_and_test(&ticket
->t_ref
))
3437 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3442 xlog_ticket_t
*ticket
)
3444 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3445 atomic_inc(&ticket
->t_ref
);
3450 * Figure out the total log space unit (in bytes) that would be
3451 * required for a log ticket.
3454 xfs_log_calc_unit_res(
3455 struct xfs_mount
*mp
,
3458 struct xlog
*log
= mp
->m_log
;
3463 * Permanent reservations have up to 'cnt'-1 active log operations
3464 * in the log. A unit in this case is the amount of space for one
3465 * of these log operations. Normal reservations have a cnt of 1
3466 * and their unit amount is the total amount of space required.
3468 * The following lines of code account for non-transaction data
3469 * which occupy space in the on-disk log.
3471 * Normal form of a transaction is:
3472 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3473 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3475 * We need to account for all the leadup data and trailer data
3476 * around the transaction data.
3477 * And then we need to account for the worst case in terms of using
3479 * The worst case will happen if:
3480 * - the placement of the transaction happens to be such that the
3481 * roundoff is at its maximum
3482 * - the transaction data is synced before the commit record is synced
3483 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3484 * Therefore the commit record is in its own Log Record.
3485 * This can happen as the commit record is called with its
3486 * own region to xlog_write().
3487 * This then means that in the worst case, roundoff can happen for
3488 * the commit-rec as well.
3489 * The commit-rec is smaller than padding in this scenario and so it is
3490 * not added separately.
3493 /* for trans header */
3494 unit_bytes
+= sizeof(xlog_op_header_t
);
3495 unit_bytes
+= sizeof(xfs_trans_header_t
);
3498 unit_bytes
+= sizeof(xlog_op_header_t
);
3501 * for LR headers - the space for data in an iclog is the size minus
3502 * the space used for the headers. If we use the iclog size, then we
3503 * undercalculate the number of headers required.
3505 * Furthermore - the addition of op headers for split-recs might
3506 * increase the space required enough to require more log and op
3507 * headers, so take that into account too.
3509 * IMPORTANT: This reservation makes the assumption that if this
3510 * transaction is the first in an iclog and hence has the LR headers
3511 * accounted to it, then the remaining space in the iclog is
3512 * exclusively for this transaction. i.e. if the transaction is larger
3513 * than the iclog, it will be the only thing in that iclog.
3514 * Fundamentally, this means we must pass the entire log vector to
3515 * xlog_write to guarantee this.
3517 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3518 num_headers
= howmany(unit_bytes
, iclog_space
);
3520 /* for split-recs - ophdrs added when data split over LRs */
3521 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3523 /* add extra header reservations if we overrun */
3524 while (!num_headers
||
3525 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3526 unit_bytes
+= sizeof(xlog_op_header_t
);
3529 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3531 /* for commit-rec LR header - note: padding will subsume the ophdr */
3532 unit_bytes
+= log
->l_iclog_hsize
;
3534 /* for roundoff padding for transaction data and one for commit record */
3535 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3536 /* log su roundoff */
3537 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3540 unit_bytes
+= 2 * BBSIZE
;
3547 * Allocate and initialise a new log ticket.
3549 struct xlog_ticket
*
3556 xfs_km_flags_t alloc_flags
)
3558 struct xlog_ticket
*tic
;
3561 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3565 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3567 atomic_set(&tic
->t_ref
, 1);
3568 tic
->t_task
= current
;
3569 INIT_LIST_HEAD(&tic
->t_queue
);
3570 tic
->t_unit_res
= unit_res
;
3571 tic
->t_curr_res
= unit_res
;
3574 tic
->t_tid
= prandom_u32();
3575 tic
->t_clientid
= client
;
3576 tic
->t_flags
= XLOG_TIC_INITED
;
3577 tic
->t_trans_type
= 0;
3579 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3581 xlog_tic_reset_res(tic
);
3587 /******************************************************************************
3589 * Log debug routines
3591 ******************************************************************************
3595 * Make sure that the destination ptr is within the valid data region of
3596 * one of the iclogs. This uses backup pointers stored in a different
3597 * part of the log in case we trash the log structure.
3600 xlog_verify_dest_ptr(
3607 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3608 if (ptr
>= log
->l_iclog_bak
[i
] &&
3609 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3614 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3618 * Check to make sure the grant write head didn't just over lap the tail. If
3619 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3620 * the cycles differ by exactly one and check the byte count.
3622 * This check is run unlocked, so can give false positives. Rather than assert
3623 * on failures, use a warn-once flag and a panic tag to allow the admin to
3624 * determine if they want to panic the machine when such an error occurs. For
3625 * debug kernels this will have the same effect as using an assert but, unlinke
3626 * an assert, it can be turned off at runtime.
3629 xlog_verify_grant_tail(
3632 int tail_cycle
, tail_blocks
;
3635 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3636 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3637 if (tail_cycle
!= cycle
) {
3638 if (cycle
- 1 != tail_cycle
&&
3639 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3640 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3641 "%s: cycle - 1 != tail_cycle", __func__
);
3642 log
->l_flags
|= XLOG_TAIL_WARN
;
3645 if (space
> BBTOB(tail_blocks
) &&
3646 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3647 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3648 "%s: space > BBTOB(tail_blocks)", __func__
);
3649 log
->l_flags
|= XLOG_TAIL_WARN
;
3654 /* check if it will fit */
3656 xlog_verify_tail_lsn(
3658 struct xlog_in_core
*iclog
,
3663 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3665 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3666 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3667 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3669 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3671 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3672 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3674 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3675 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3676 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3678 } /* xlog_verify_tail_lsn */
3681 * Perform a number of checks on the iclog before writing to disk.
3683 * 1. Make sure the iclogs are still circular
3684 * 2. Make sure we have a good magic number
3685 * 3. Make sure we don't have magic numbers in the data
3686 * 4. Check fields of each log operation header for:
3687 * A. Valid client identifier
3688 * B. tid ptr value falls in valid ptr space (user space code)
3689 * C. Length in log record header is correct according to the
3690 * individual operation headers within record.
3691 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3692 * log, check the preceding blocks of the physical log to make sure all
3693 * the cycle numbers agree with the current cycle number.
3698 struct xlog_in_core
*iclog
,
3702 xlog_op_header_t
*ophead
;
3703 xlog_in_core_t
*icptr
;
3704 xlog_in_core_2_t
*xhdr
;
3706 xfs_caddr_t base_ptr
;
3707 __psint_t field_offset
;
3709 int len
, i
, j
, k
, op_len
;
3712 /* check validity of iclog pointers */
3713 spin_lock(&log
->l_icloglock
);
3714 icptr
= log
->l_iclog
;
3715 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3718 if (icptr
!= log
->l_iclog
)
3719 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3720 spin_unlock(&log
->l_icloglock
);
3722 /* check log magic numbers */
3723 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3724 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3726 ptr
= (xfs_caddr_t
) &iclog
->ic_header
;
3727 for (ptr
+= BBSIZE
; ptr
< ((xfs_caddr_t
)&iclog
->ic_header
) + count
;
3729 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3730 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3735 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3736 ptr
= iclog
->ic_datap
;
3738 ophead
= (xlog_op_header_t
*)ptr
;
3739 xhdr
= iclog
->ic_data
;
3740 for (i
= 0; i
< len
; i
++) {
3741 ophead
= (xlog_op_header_t
*)ptr
;
3743 /* clientid is only 1 byte */
3744 field_offset
= (__psint_t
)
3745 ((xfs_caddr_t
)&(ophead
->oh_clientid
) - base_ptr
);
3746 if (!syncing
|| (field_offset
& 0x1ff)) {
3747 clientid
= ophead
->oh_clientid
;
3749 idx
= BTOBBT((xfs_caddr_t
)&(ophead
->oh_clientid
) - iclog
->ic_datap
);
3750 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3751 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3752 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3753 clientid
= xlog_get_client_id(
3754 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3756 clientid
= xlog_get_client_id(
3757 iclog
->ic_header
.h_cycle_data
[idx
]);
3760 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3762 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3763 __func__
, clientid
, ophead
,
3764 (unsigned long)field_offset
);
3767 field_offset
= (__psint_t
)
3768 ((xfs_caddr_t
)&(ophead
->oh_len
) - base_ptr
);
3769 if (!syncing
|| (field_offset
& 0x1ff)) {
3770 op_len
= be32_to_cpu(ophead
->oh_len
);
3772 idx
= BTOBBT((__psint_t
)&ophead
->oh_len
-
3773 (__psint_t
)iclog
->ic_datap
);
3774 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3775 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3776 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3777 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3779 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3782 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3784 } /* xlog_verify_iclog */
3788 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3794 xlog_in_core_t
*iclog
, *ic
;
3796 iclog
= log
->l_iclog
;
3797 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3799 * Mark all the incore logs IOERROR.
3800 * From now on, no log flushes will result.
3804 ic
->ic_state
= XLOG_STATE_IOERROR
;
3806 } while (ic
!= iclog
);
3810 * Return non-zero, if state transition has already happened.
3816 * This is called from xfs_force_shutdown, when we're forcibly
3817 * shutting down the filesystem, typically because of an IO error.
3818 * Our main objectives here are to make sure that:
3819 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3820 * parties to find out, 'atomically'.
3821 * b. those who're sleeping on log reservations, pinned objects and
3822 * other resources get woken up, and be told the bad news.
3823 * c. nothing new gets queued up after (a) and (b) are done.
3824 * d. if !logerror, flush the iclogs to disk, then seal them off
3827 * Note: for delayed logging the !logerror case needs to flush the regions
3828 * held in memory out to the iclogs before flushing them to disk. This needs
3829 * to be done before the log is marked as shutdown, otherwise the flush to the
3833 xfs_log_force_umount(
3834 struct xfs_mount
*mp
,
3843 * If this happens during log recovery, don't worry about
3844 * locking; the log isn't open for business yet.
3847 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3848 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3850 XFS_BUF_DONE(mp
->m_sb_bp
);
3855 * Somebody could've already done the hard work for us.
3856 * No need to get locks for this.
3858 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3859 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3865 * Flush the in memory commit item list before marking the log as
3866 * being shut down. We need to do it in this order to ensure all the
3867 * completed transactions are flushed to disk with the xfs_log_force()
3871 xlog_cil_force(log
);
3874 * mark the filesystem and the as in a shutdown state and wake
3875 * everybody up to tell them the bad news.
3877 spin_lock(&log
->l_icloglock
);
3878 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3880 XFS_BUF_DONE(mp
->m_sb_bp
);
3883 * This flag is sort of redundant because of the mount flag, but
3884 * it's good to maintain the separation between the log and the rest
3887 log
->l_flags
|= XLOG_IO_ERROR
;
3890 * If we hit a log error, we want to mark all the iclogs IOERROR
3891 * while we're still holding the loglock.
3894 retval
= xlog_state_ioerror(log
);
3895 spin_unlock(&log
->l_icloglock
);
3898 * We don't want anybody waiting for log reservations after this. That
3899 * means we have to wake up everybody queued up on reserveq as well as
3900 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3901 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3902 * action is protected by the grant locks.
3904 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3905 xlog_grant_head_wake_all(&log
->l_write_head
);
3907 if (!(log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3910 * Force the incore logs to disk before shutting the
3911 * log down completely.
3913 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3915 spin_lock(&log
->l_icloglock
);
3916 retval
= xlog_state_ioerror(log
);
3917 spin_unlock(&log
->l_icloglock
);
3920 * Wake up everybody waiting on xfs_log_force.
3921 * Callback all log item committed functions as if the
3922 * log writes were completed.
3924 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
3926 #ifdef XFSERRORDEBUG
3928 xlog_in_core_t
*iclog
;
3930 spin_lock(&log
->l_icloglock
);
3931 iclog
= log
->l_iclog
;
3933 ASSERT(iclog
->ic_callback
== 0);
3934 iclog
= iclog
->ic_next
;
3935 } while (iclog
!= log
->l_iclog
);
3936 spin_unlock(&log
->l_icloglock
);
3939 /* return non-zero if log IOERROR transition had already happened */
3947 xlog_in_core_t
*iclog
;
3949 iclog
= log
->l_iclog
;
3951 /* endianness does not matter here, zero is zero in
3954 if (iclog
->ic_header
.h_num_logops
)
3956 iclog
= iclog
->ic_next
;
3957 } while (iclog
!= log
->l_iclog
);