1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
24 #define list_entry_next(pos, member) \
25 list_entry(pos->member.next, typeof(*pos), member)
28 * Ceph uses the messenger to exchange ceph_msg messages with other
29 * hosts in the system. The messenger provides ordered and reliable
30 * delivery. We tolerate TCP disconnects by reconnecting (with
31 * exponential backoff) in the case of a fault (disconnection, bad
32 * crc, protocol error). Acks allow sent messages to be discarded by
37 * We track the state of the socket on a given connection using
38 * values defined below. The transition to a new socket state is
39 * handled by a function which verifies we aren't coming from an
43 * | NEW* | transient initial state
45 * | con_sock_state_init()
48 * | CLOSED | initialized, but no socket (and no
49 * ---------- TCP connection)
51 * | \ con_sock_state_connecting()
52 * | ----------------------
54 * + con_sock_state_closed() \
55 * |+--------------------------- \
58 * | | CLOSING | socket event; \ \
59 * | ----------- await close \ \
62 * | + con_sock_state_closing() \ |
64 * | / --------------- | |
67 * | / -----------------| CONNECTING | socket created, TCP
68 * | | / -------------- connect initiated
69 * | | | con_sock_state_connected()
72 * | CONNECTED | TCP connection established
75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
95 * ceph_connection flag bits
97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
98 * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104 static bool con_flag_valid(unsigned long con_flag
)
107 case CON_FLAG_LOSSYTX
:
108 case CON_FLAG_KEEPALIVE_PENDING
:
109 case CON_FLAG_WRITE_PENDING
:
110 case CON_FLAG_SOCK_CLOSED
:
111 case CON_FLAG_BACKOFF
:
118 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
120 BUG_ON(!con_flag_valid(con_flag
));
122 clear_bit(con_flag
, &con
->flags
);
125 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
127 BUG_ON(!con_flag_valid(con_flag
));
129 set_bit(con_flag
, &con
->flags
);
132 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
134 BUG_ON(!con_flag_valid(con_flag
));
136 return test_bit(con_flag
, &con
->flags
);
139 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
140 unsigned long con_flag
)
142 BUG_ON(!con_flag_valid(con_flag
));
144 return test_and_clear_bit(con_flag
, &con
->flags
);
147 static bool con_flag_test_and_set(struct ceph_connection
*con
,
148 unsigned long con_flag
)
150 BUG_ON(!con_flag_valid(con_flag
));
152 return test_and_set_bit(con_flag
, &con
->flags
);
155 /* Slab caches for frequently-allocated structures */
157 static struct kmem_cache
*ceph_msg_cache
;
158 static struct kmem_cache
*ceph_msg_data_cache
;
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
162 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
163 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class
;
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
173 #define SKIP_BUF_SIZE 1024
175 static void queue_con(struct ceph_connection
*con
);
176 static void con_work(struct work_struct
*);
177 static void con_fault(struct ceph_connection
*con
);
180 * Nicely render a sockaddr as a string. An array of formatted
181 * strings is used, to approximate reentrancy.
183 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
184 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
185 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
186 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
189 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
191 static struct page
*zero_page
; /* used in certain error cases */
193 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
197 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
198 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
200 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
203 switch (ss
->ss_family
) {
205 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
206 ntohs(in4
->sin_port
));
210 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
211 ntohs(in6
->sin6_port
));
215 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
221 EXPORT_SYMBOL(ceph_pr_addr
);
223 static void encode_my_addr(struct ceph_messenger
*msgr
)
225 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
226 ceph_encode_addr(&msgr
->my_enc_addr
);
230 * work queue for all reading and writing to/from the socket.
232 static struct workqueue_struct
*ceph_msgr_wq
;
234 static int ceph_msgr_slab_init(void)
236 BUG_ON(ceph_msg_cache
);
237 ceph_msg_cache
= kmem_cache_create("ceph_msg",
238 sizeof (struct ceph_msg
),
239 __alignof__(struct ceph_msg
), 0, NULL
);
244 BUG_ON(ceph_msg_data_cache
);
245 ceph_msg_data_cache
= kmem_cache_create("ceph_msg_data",
246 sizeof (struct ceph_msg_data
),
247 __alignof__(struct ceph_msg_data
),
249 if (ceph_msg_data_cache
)
252 kmem_cache_destroy(ceph_msg_cache
);
253 ceph_msg_cache
= NULL
;
258 static void ceph_msgr_slab_exit(void)
260 BUG_ON(!ceph_msg_data_cache
);
261 kmem_cache_destroy(ceph_msg_data_cache
);
262 ceph_msg_data_cache
= NULL
;
264 BUG_ON(!ceph_msg_cache
);
265 kmem_cache_destroy(ceph_msg_cache
);
266 ceph_msg_cache
= NULL
;
269 static void _ceph_msgr_exit(void)
272 destroy_workqueue(ceph_msgr_wq
);
276 ceph_msgr_slab_exit();
278 BUG_ON(zero_page
== NULL
);
280 page_cache_release(zero_page
);
284 int ceph_msgr_init(void)
286 BUG_ON(zero_page
!= NULL
);
287 zero_page
= ZERO_PAGE(0);
288 page_cache_get(zero_page
);
290 if (ceph_msgr_slab_init())
293 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", 0, 0);
297 pr_err("msgr_init failed to create workqueue\n");
302 EXPORT_SYMBOL(ceph_msgr_init
);
304 void ceph_msgr_exit(void)
306 BUG_ON(ceph_msgr_wq
== NULL
);
310 EXPORT_SYMBOL(ceph_msgr_exit
);
312 void ceph_msgr_flush(void)
314 flush_workqueue(ceph_msgr_wq
);
316 EXPORT_SYMBOL(ceph_msgr_flush
);
318 /* Connection socket state transition functions */
320 static void con_sock_state_init(struct ceph_connection
*con
)
324 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
325 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
326 printk("%s: unexpected old state %d\n", __func__
, old_state
);
327 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
328 CON_SOCK_STATE_CLOSED
);
331 static void con_sock_state_connecting(struct ceph_connection
*con
)
335 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
336 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
337 printk("%s: unexpected old state %d\n", __func__
, old_state
);
338 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
339 CON_SOCK_STATE_CONNECTING
);
342 static void con_sock_state_connected(struct ceph_connection
*con
)
346 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
347 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
348 printk("%s: unexpected old state %d\n", __func__
, old_state
);
349 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
350 CON_SOCK_STATE_CONNECTED
);
353 static void con_sock_state_closing(struct ceph_connection
*con
)
357 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
358 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
359 old_state
!= CON_SOCK_STATE_CONNECTED
&&
360 old_state
!= CON_SOCK_STATE_CLOSING
))
361 printk("%s: unexpected old state %d\n", __func__
, old_state
);
362 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
363 CON_SOCK_STATE_CLOSING
);
366 static void con_sock_state_closed(struct ceph_connection
*con
)
370 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
371 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
372 old_state
!= CON_SOCK_STATE_CLOSING
&&
373 old_state
!= CON_SOCK_STATE_CONNECTING
&&
374 old_state
!= CON_SOCK_STATE_CLOSED
))
375 printk("%s: unexpected old state %d\n", __func__
, old_state
);
376 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
377 CON_SOCK_STATE_CLOSED
);
381 * socket callback functions
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock
*sk
, int count_unused
)
387 struct ceph_connection
*con
= sk
->sk_user_data
;
388 if (atomic_read(&con
->msgr
->stopping
)) {
392 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
393 dout("%s on %p state = %lu, queueing work\n", __func__
,
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock
*sk
)
402 struct ceph_connection
*con
= sk
->sk_user_data
;
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
411 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
412 if (sk_stream_is_writeable(sk
)) {
413 dout("%s %p queueing write work\n", __func__
, con
);
414 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
418 dout("%s %p nothing to write\n", __func__
, con
);
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock
*sk
)
425 struct ceph_connection
*con
= sk
->sk_user_data
;
427 dout("%s %p state = %lu sk_state = %u\n", __func__
,
428 con
, con
->state
, sk
->sk_state
);
430 switch (sk
->sk_state
) {
432 dout("%s TCP_CLOSE\n", __func__
);
434 dout("%s TCP_CLOSE_WAIT\n", __func__
);
435 con_sock_state_closing(con
);
436 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
439 case TCP_ESTABLISHED
:
440 dout("%s TCP_ESTABLISHED\n", __func__
);
441 con_sock_state_connected(con
);
444 default: /* Everything else is uninteresting */
450 * set up socket callbacks
452 static void set_sock_callbacks(struct socket
*sock
,
453 struct ceph_connection
*con
)
455 struct sock
*sk
= sock
->sk
;
456 sk
->sk_user_data
= con
;
457 sk
->sk_data_ready
= ceph_sock_data_ready
;
458 sk
->sk_write_space
= ceph_sock_write_space
;
459 sk
->sk_state_change
= ceph_sock_state_change
;
468 * initiate connection to a remote socket.
470 static int ceph_tcp_connect(struct ceph_connection
*con
)
472 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
477 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
481 sock
->sk
->sk_allocation
= GFP_NOFS
;
483 #ifdef CONFIG_LOCKDEP
484 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
487 set_sock_callbacks(sock
, con
);
489 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
491 con_sock_state_connecting(con
);
492 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
494 if (ret
== -EINPROGRESS
) {
495 dout("connect %s EINPROGRESS sk_state = %u\n",
496 ceph_pr_addr(&con
->peer_addr
.in_addr
),
498 } else if (ret
< 0) {
499 pr_err("connect %s error %d\n",
500 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
502 con
->error_msg
= "connect error";
510 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
512 struct kvec iov
= {buf
, len
};
513 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
516 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
522 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
523 int page_offset
, size_t length
)
528 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
532 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
539 * write something. @more is true if caller will be sending more data
542 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
543 size_t kvlen
, size_t len
, int more
)
545 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
549 msg
.msg_flags
|= MSG_MORE
;
551 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
553 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
559 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
560 int offset
, size_t size
, bool more
)
562 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
565 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
572 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
573 int offset
, size_t size
, bool more
)
578 /* sendpage cannot properly handle pages with page_count == 0,
579 * we need to fallback to sendmsg if that's the case */
580 if (page_count(page
) >= 1)
581 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
583 iov
.iov_base
= kmap(page
) + offset
;
585 ret
= ceph_tcp_sendmsg(sock
, &iov
, 1, size
, more
);
592 * Shutdown/close the socket for the given connection.
594 static int con_close_socket(struct ceph_connection
*con
)
598 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
600 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
601 sock_release(con
->sock
);
606 * Forcibly clear the SOCK_CLOSED flag. It gets set
607 * independent of the connection mutex, and we could have
608 * received a socket close event before we had the chance to
609 * shut the socket down.
611 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
613 con_sock_state_closed(con
);
618 * Reset a connection. Discard all incoming and outgoing messages
619 * and clear *_seq state.
621 static void ceph_msg_remove(struct ceph_msg
*msg
)
623 list_del_init(&msg
->list_head
);
624 BUG_ON(msg
->con
== NULL
);
625 msg
->con
->ops
->put(msg
->con
);
630 static void ceph_msg_remove_list(struct list_head
*head
)
632 while (!list_empty(head
)) {
633 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
635 ceph_msg_remove(msg
);
639 static void reset_connection(struct ceph_connection
*con
)
641 /* reset connection, out_queue, msg_ and connect_seq */
642 /* discard existing out_queue and msg_seq */
643 dout("reset_connection %p\n", con
);
644 ceph_msg_remove_list(&con
->out_queue
);
645 ceph_msg_remove_list(&con
->out_sent
);
648 BUG_ON(con
->in_msg
->con
!= con
);
649 con
->in_msg
->con
= NULL
;
650 ceph_msg_put(con
->in_msg
);
655 con
->connect_seq
= 0;
658 ceph_msg_put(con
->out_msg
);
662 con
->in_seq_acked
= 0;
666 * mark a peer down. drop any open connections.
668 void ceph_con_close(struct ceph_connection
*con
)
670 mutex_lock(&con
->mutex
);
671 dout("con_close %p peer %s\n", con
,
672 ceph_pr_addr(&con
->peer_addr
.in_addr
));
673 con
->state
= CON_STATE_CLOSED
;
675 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
676 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
677 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
678 con_flag_clear(con
, CON_FLAG_BACKOFF
);
680 reset_connection(con
);
681 con
->peer_global_seq
= 0;
682 cancel_delayed_work(&con
->work
);
683 con_close_socket(con
);
684 mutex_unlock(&con
->mutex
);
686 EXPORT_SYMBOL(ceph_con_close
);
689 * Reopen a closed connection, with a new peer address.
691 void ceph_con_open(struct ceph_connection
*con
,
692 __u8 entity_type
, __u64 entity_num
,
693 struct ceph_entity_addr
*addr
)
695 mutex_lock(&con
->mutex
);
696 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
698 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
699 con
->state
= CON_STATE_PREOPEN
;
701 con
->peer_name
.type
= (__u8
) entity_type
;
702 con
->peer_name
.num
= cpu_to_le64(entity_num
);
704 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
705 con
->delay
= 0; /* reset backoff memory */
706 mutex_unlock(&con
->mutex
);
709 EXPORT_SYMBOL(ceph_con_open
);
712 * return true if this connection ever successfully opened
714 bool ceph_con_opened(struct ceph_connection
*con
)
716 return con
->connect_seq
> 0;
720 * initialize a new connection.
722 void ceph_con_init(struct ceph_connection
*con
, void *private,
723 const struct ceph_connection_operations
*ops
,
724 struct ceph_messenger
*msgr
)
726 dout("con_init %p\n", con
);
727 memset(con
, 0, sizeof(*con
));
728 con
->private = private;
732 con_sock_state_init(con
);
734 mutex_init(&con
->mutex
);
735 INIT_LIST_HEAD(&con
->out_queue
);
736 INIT_LIST_HEAD(&con
->out_sent
);
737 INIT_DELAYED_WORK(&con
->work
, con_work
);
739 con
->state
= CON_STATE_CLOSED
;
741 EXPORT_SYMBOL(ceph_con_init
);
745 * We maintain a global counter to order connection attempts. Get
746 * a unique seq greater than @gt.
748 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
752 spin_lock(&msgr
->global_seq_lock
);
753 if (msgr
->global_seq
< gt
)
754 msgr
->global_seq
= gt
;
755 ret
= ++msgr
->global_seq
;
756 spin_unlock(&msgr
->global_seq_lock
);
760 static void con_out_kvec_reset(struct ceph_connection
*con
)
762 con
->out_kvec_left
= 0;
763 con
->out_kvec_bytes
= 0;
764 con
->out_kvec_cur
= &con
->out_kvec
[0];
767 static void con_out_kvec_add(struct ceph_connection
*con
,
768 size_t size
, void *data
)
772 index
= con
->out_kvec_left
;
773 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
775 con
->out_kvec
[index
].iov_len
= size
;
776 con
->out_kvec
[index
].iov_base
= data
;
777 con
->out_kvec_left
++;
778 con
->out_kvec_bytes
+= size
;
784 * For a bio data item, a piece is whatever remains of the next
785 * entry in the current bio iovec, or the first entry in the next
788 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
791 struct ceph_msg_data
*data
= cursor
->data
;
794 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
798 BUG_ON(!bio
->bi_vcnt
);
800 cursor
->resid
= min(length
, data
->bio_length
);
802 cursor
->vector_index
= 0;
803 cursor
->vector_offset
= 0;
804 cursor
->last_piece
= length
<= bio
->bi_io_vec
[0].bv_len
;
807 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
811 struct ceph_msg_data
*data
= cursor
->data
;
813 struct bio_vec
*bio_vec
;
816 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
821 index
= cursor
->vector_index
;
822 BUG_ON(index
>= (unsigned int) bio
->bi_vcnt
);
824 bio_vec
= &bio
->bi_io_vec
[index
];
825 BUG_ON(cursor
->vector_offset
>= bio_vec
->bv_len
);
826 *page_offset
= (size_t) (bio_vec
->bv_offset
+ cursor
->vector_offset
);
827 BUG_ON(*page_offset
>= PAGE_SIZE
);
828 if (cursor
->last_piece
) /* pagelist offset is always 0 */
829 *length
= cursor
->resid
;
831 *length
= (size_t) (bio_vec
->bv_len
- cursor
->vector_offset
);
832 BUG_ON(*length
> cursor
->resid
);
833 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
835 return bio_vec
->bv_page
;
838 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
842 struct bio_vec
*bio_vec
;
845 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
850 index
= cursor
->vector_index
;
851 BUG_ON(index
>= (unsigned int) bio
->bi_vcnt
);
852 bio_vec
= &bio
->bi_io_vec
[index
];
854 /* Advance the cursor offset */
856 BUG_ON(cursor
->resid
< bytes
);
857 cursor
->resid
-= bytes
;
858 cursor
->vector_offset
+= bytes
;
859 if (cursor
->vector_offset
< bio_vec
->bv_len
)
860 return false; /* more bytes to process in this segment */
861 BUG_ON(cursor
->vector_offset
!= bio_vec
->bv_len
);
863 /* Move on to the next segment, and possibly the next bio */
865 if (++index
== (unsigned int) bio
->bi_vcnt
) {
870 cursor
->vector_index
= index
;
871 cursor
->vector_offset
= 0;
873 if (!cursor
->last_piece
) {
874 BUG_ON(!cursor
->resid
);
876 /* A short read is OK, so use <= rather than == */
877 if (cursor
->resid
<= bio
->bi_io_vec
[index
].bv_len
)
878 cursor
->last_piece
= true;
883 #endif /* CONFIG_BLOCK */
886 * For a page array, a piece comes from the first page in the array
887 * that has not already been fully consumed.
889 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
892 struct ceph_msg_data
*data
= cursor
->data
;
895 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
897 BUG_ON(!data
->pages
);
898 BUG_ON(!data
->length
);
900 cursor
->resid
= min(length
, data
->length
);
901 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
902 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
903 cursor
->page_index
= 0;
904 BUG_ON(page_count
> (int)USHRT_MAX
);
905 cursor
->page_count
= (unsigned short)page_count
;
906 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
907 cursor
->last_piece
= (size_t)cursor
->page_offset
+ length
<= PAGE_SIZE
;
911 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
912 size_t *page_offset
, size_t *length
)
914 struct ceph_msg_data
*data
= cursor
->data
;
916 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
918 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
919 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
921 *page_offset
= cursor
->page_offset
;
922 if (cursor
->last_piece
)
923 *length
= cursor
->resid
;
925 *length
= PAGE_SIZE
- *page_offset
;
927 return data
->pages
[cursor
->page_index
];
930 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
933 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
935 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
937 /* Advance the cursor page offset */
939 cursor
->resid
-= bytes
;
940 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
941 if (!bytes
|| cursor
->page_offset
)
942 return false; /* more bytes to process in the current page */
944 /* Move on to the next page; offset is already at 0 */
946 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
947 cursor
->page_index
++;
948 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
954 * For a pagelist, a piece is whatever remains to be consumed in the
955 * first page in the list, or the front of the next page.
958 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
961 struct ceph_msg_data
*data
= cursor
->data
;
962 struct ceph_pagelist
*pagelist
;
965 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
967 pagelist
= data
->pagelist
;
971 return; /* pagelist can be assigned but empty */
973 BUG_ON(list_empty(&pagelist
->head
));
974 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
976 cursor
->resid
= min(length
, pagelist
->length
);
979 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
983 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
984 size_t *page_offset
, size_t *length
)
986 struct ceph_msg_data
*data
= cursor
->data
;
987 struct ceph_pagelist
*pagelist
;
989 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
991 pagelist
= data
->pagelist
;
994 BUG_ON(!cursor
->page
);
995 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
997 /* offset of first page in pagelist is always 0 */
998 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
999 if (cursor
->last_piece
)
1000 *length
= cursor
->resid
;
1002 *length
= PAGE_SIZE
- *page_offset
;
1004 return cursor
->page
;
1007 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1010 struct ceph_msg_data
*data
= cursor
->data
;
1011 struct ceph_pagelist
*pagelist
;
1013 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1015 pagelist
= data
->pagelist
;
1018 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1019 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1021 /* Advance the cursor offset */
1023 cursor
->resid
-= bytes
;
1024 cursor
->offset
+= bytes
;
1025 /* offset of first page in pagelist is always 0 */
1026 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1027 return false; /* more bytes to process in the current page */
1029 /* Move on to the next page */
1031 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1032 cursor
->page
= list_entry_next(cursor
->page
, lru
);
1033 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1039 * Message data is handled (sent or received) in pieces, where each
1040 * piece resides on a single page. The network layer might not
1041 * consume an entire piece at once. A data item's cursor keeps
1042 * track of which piece is next to process and how much remains to
1043 * be processed in that piece. It also tracks whether the current
1044 * piece is the last one in the data item.
1046 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1048 size_t length
= cursor
->total_resid
;
1050 switch (cursor
->data
->type
) {
1051 case CEPH_MSG_DATA_PAGELIST
:
1052 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1054 case CEPH_MSG_DATA_PAGES
:
1055 ceph_msg_data_pages_cursor_init(cursor
, length
);
1058 case CEPH_MSG_DATA_BIO
:
1059 ceph_msg_data_bio_cursor_init(cursor
, length
);
1061 #endif /* CONFIG_BLOCK */
1062 case CEPH_MSG_DATA_NONE
:
1067 cursor
->need_crc
= true;
1070 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1072 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1073 struct ceph_msg_data
*data
;
1076 BUG_ON(length
> msg
->data_length
);
1077 BUG_ON(list_empty(&msg
->data
));
1079 cursor
->data_head
= &msg
->data
;
1080 cursor
->total_resid
= length
;
1081 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1082 cursor
->data
= data
;
1084 __ceph_msg_data_cursor_init(cursor
);
1088 * Return the page containing the next piece to process for a given
1089 * data item, and supply the page offset and length of that piece.
1090 * Indicate whether this is the last piece in this data item.
1092 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1093 size_t *page_offset
, size_t *length
,
1098 switch (cursor
->data
->type
) {
1099 case CEPH_MSG_DATA_PAGELIST
:
1100 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1102 case CEPH_MSG_DATA_PAGES
:
1103 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1106 case CEPH_MSG_DATA_BIO
:
1107 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1109 #endif /* CONFIG_BLOCK */
1110 case CEPH_MSG_DATA_NONE
:
1116 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1119 *last_piece
= cursor
->last_piece
;
1125 * Returns true if the result moves the cursor on to the next piece
1128 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1133 BUG_ON(bytes
> cursor
->resid
);
1134 switch (cursor
->data
->type
) {
1135 case CEPH_MSG_DATA_PAGELIST
:
1136 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1138 case CEPH_MSG_DATA_PAGES
:
1139 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1142 case CEPH_MSG_DATA_BIO
:
1143 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1145 #endif /* CONFIG_BLOCK */
1146 case CEPH_MSG_DATA_NONE
:
1151 cursor
->total_resid
-= bytes
;
1153 if (!cursor
->resid
&& cursor
->total_resid
) {
1154 WARN_ON(!cursor
->last_piece
);
1155 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1156 cursor
->data
= list_entry_next(cursor
->data
, links
);
1157 __ceph_msg_data_cursor_init(cursor
);
1160 cursor
->need_crc
= new_piece
;
1165 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1170 /* Initialize data cursor */
1172 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1176 * Prepare footer for currently outgoing message, and finish things
1177 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1179 static void prepare_write_message_footer(struct ceph_connection
*con
)
1181 struct ceph_msg
*m
= con
->out_msg
;
1182 int v
= con
->out_kvec_left
;
1184 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1186 dout("prepare_write_message_footer %p\n", con
);
1187 con
->out_kvec_is_msg
= true;
1188 con
->out_kvec
[v
].iov_base
= &m
->footer
;
1189 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
1190 con
->out_kvec_bytes
+= sizeof(m
->footer
);
1191 con
->out_kvec_left
++;
1192 con
->out_more
= m
->more_to_follow
;
1193 con
->out_msg_done
= true;
1197 * Prepare headers for the next outgoing message.
1199 static void prepare_write_message(struct ceph_connection
*con
)
1204 con_out_kvec_reset(con
);
1205 con
->out_kvec_is_msg
= true;
1206 con
->out_msg_done
= false;
1208 /* Sneak an ack in there first? If we can get it into the same
1209 * TCP packet that's a good thing. */
1210 if (con
->in_seq
> con
->in_seq_acked
) {
1211 con
->in_seq_acked
= con
->in_seq
;
1212 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1213 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1214 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1215 &con
->out_temp_ack
);
1218 BUG_ON(list_empty(&con
->out_queue
));
1219 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1221 BUG_ON(m
->con
!= con
);
1223 /* put message on sent list */
1225 list_move_tail(&m
->list_head
, &con
->out_sent
);
1228 * only assign outgoing seq # if we haven't sent this message
1229 * yet. if it is requeued, resend with it's original seq.
1231 if (m
->needs_out_seq
) {
1232 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1233 m
->needs_out_seq
= false;
1235 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1237 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1238 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1239 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1241 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1243 /* tag + hdr + front + middle */
1244 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1245 con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
1246 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1249 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1250 m
->middle
->vec
.iov_base
);
1252 /* fill in crc (except data pages), footer */
1253 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1254 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1255 con
->out_msg
->footer
.flags
= 0;
1257 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1258 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1260 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1261 m
->middle
->vec
.iov_len
);
1262 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1264 con
->out_msg
->footer
.middle_crc
= 0;
1265 dout("%s front_crc %u middle_crc %u\n", __func__
,
1266 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1267 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1269 /* is there a data payload? */
1270 con
->out_msg
->footer
.data_crc
= 0;
1271 if (m
->data_length
) {
1272 prepare_message_data(con
->out_msg
, m
->data_length
);
1273 con
->out_more
= 1; /* data + footer will follow */
1275 /* no, queue up footer too and be done */
1276 prepare_write_message_footer(con
);
1279 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1285 static void prepare_write_ack(struct ceph_connection
*con
)
1287 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1288 con
->in_seq_acked
, con
->in_seq
);
1289 con
->in_seq_acked
= con
->in_seq
;
1291 con_out_kvec_reset(con
);
1293 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1295 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1296 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1297 &con
->out_temp_ack
);
1299 con
->out_more
= 1; /* more will follow.. eventually.. */
1300 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1304 * Prepare to share the seq during handshake
1306 static void prepare_write_seq(struct ceph_connection
*con
)
1308 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1309 con
->in_seq_acked
, con
->in_seq
);
1310 con
->in_seq_acked
= con
->in_seq
;
1312 con_out_kvec_reset(con
);
1314 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1315 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1316 &con
->out_temp_ack
);
1318 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1322 * Prepare to write keepalive byte.
1324 static void prepare_write_keepalive(struct ceph_connection
*con
)
1326 dout("prepare_write_keepalive %p\n", con
);
1327 con_out_kvec_reset(con
);
1328 con_out_kvec_add(con
, sizeof (tag_keepalive
), &tag_keepalive
);
1329 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1333 * Connection negotiation.
1336 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1339 struct ceph_auth_handshake
*auth
;
1341 if (!con
->ops
->get_authorizer
) {
1342 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1343 con
->out_connect
.authorizer_len
= 0;
1347 /* Can't hold the mutex while getting authorizer */
1348 mutex_unlock(&con
->mutex
);
1349 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1350 mutex_lock(&con
->mutex
);
1354 if (con
->state
!= CON_STATE_NEGOTIATING
)
1355 return ERR_PTR(-EAGAIN
);
1357 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1358 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1363 * We connected to a peer and are saying hello.
1365 static void prepare_write_banner(struct ceph_connection
*con
)
1367 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1368 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1369 &con
->msgr
->my_enc_addr
);
1372 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1375 static int prepare_write_connect(struct ceph_connection
*con
)
1377 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1380 struct ceph_auth_handshake
*auth
;
1382 switch (con
->peer_name
.type
) {
1383 case CEPH_ENTITY_TYPE_MON
:
1384 proto
= CEPH_MONC_PROTOCOL
;
1386 case CEPH_ENTITY_TYPE_OSD
:
1387 proto
= CEPH_OSDC_PROTOCOL
;
1389 case CEPH_ENTITY_TYPE_MDS
:
1390 proto
= CEPH_MDSC_PROTOCOL
;
1396 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1397 con
->connect_seq
, global_seq
, proto
);
1399 con
->out_connect
.features
= cpu_to_le64(con
->msgr
->supported_features
);
1400 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1401 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1402 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1403 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1404 con
->out_connect
.flags
= 0;
1406 auth_proto
= CEPH_AUTH_UNKNOWN
;
1407 auth
= get_connect_authorizer(con
, &auth_proto
);
1409 return PTR_ERR(auth
);
1411 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1412 con
->out_connect
.authorizer_len
= auth
?
1413 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1415 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1417 if (auth
&& auth
->authorizer_buf_len
)
1418 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1419 auth
->authorizer_buf
);
1422 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1428 * write as much of pending kvecs to the socket as we can.
1430 * 0 -> socket full, but more to do
1433 static int write_partial_kvec(struct ceph_connection
*con
)
1437 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1438 while (con
->out_kvec_bytes
> 0) {
1439 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1440 con
->out_kvec_left
, con
->out_kvec_bytes
,
1444 con
->out_kvec_bytes
-= ret
;
1445 if (con
->out_kvec_bytes
== 0)
1448 /* account for full iov entries consumed */
1449 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1450 BUG_ON(!con
->out_kvec_left
);
1451 ret
-= con
->out_kvec_cur
->iov_len
;
1452 con
->out_kvec_cur
++;
1453 con
->out_kvec_left
--;
1455 /* and for a partially-consumed entry */
1457 con
->out_kvec_cur
->iov_len
-= ret
;
1458 con
->out_kvec_cur
->iov_base
+= ret
;
1461 con
->out_kvec_left
= 0;
1462 con
->out_kvec_is_msg
= false;
1465 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1466 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1467 return ret
; /* done! */
1470 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1471 unsigned int page_offset
,
1472 unsigned int length
)
1477 BUG_ON(kaddr
== NULL
);
1478 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1484 * Write as much message data payload as we can. If we finish, queue
1486 * 1 -> done, footer is now queued in out_kvec[].
1487 * 0 -> socket full, but more to do
1490 static int write_partial_message_data(struct ceph_connection
*con
)
1492 struct ceph_msg
*msg
= con
->out_msg
;
1493 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1494 bool do_datacrc
= !con
->msgr
->nocrc
;
1497 dout("%s %p msg %p\n", __func__
, con
, msg
);
1499 if (list_empty(&msg
->data
))
1503 * Iterate through each page that contains data to be
1504 * written, and send as much as possible for each.
1506 * If we are calculating the data crc (the default), we will
1507 * need to map the page. If we have no pages, they have
1508 * been revoked, so use the zero page.
1510 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1511 while (cursor
->resid
) {
1519 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
1521 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1522 length
, last_piece
);
1525 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1529 if (do_datacrc
&& cursor
->need_crc
)
1530 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1531 need_crc
= ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
1534 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1536 /* prepare and queue up footer, too */
1538 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1540 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1541 con_out_kvec_reset(con
);
1542 prepare_write_message_footer(con
);
1544 return 1; /* must return > 0 to indicate success */
1550 static int write_partial_skip(struct ceph_connection
*con
)
1554 while (con
->out_skip
> 0) {
1555 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1557 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1560 con
->out_skip
-= ret
;
1568 * Prepare to read connection handshake, or an ack.
1570 static void prepare_read_banner(struct ceph_connection
*con
)
1572 dout("prepare_read_banner %p\n", con
);
1573 con
->in_base_pos
= 0;
1576 static void prepare_read_connect(struct ceph_connection
*con
)
1578 dout("prepare_read_connect %p\n", con
);
1579 con
->in_base_pos
= 0;
1582 static void prepare_read_ack(struct ceph_connection
*con
)
1584 dout("prepare_read_ack %p\n", con
);
1585 con
->in_base_pos
= 0;
1588 static void prepare_read_seq(struct ceph_connection
*con
)
1590 dout("prepare_read_seq %p\n", con
);
1591 con
->in_base_pos
= 0;
1592 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1595 static void prepare_read_tag(struct ceph_connection
*con
)
1597 dout("prepare_read_tag %p\n", con
);
1598 con
->in_base_pos
= 0;
1599 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1603 * Prepare to read a message.
1605 static int prepare_read_message(struct ceph_connection
*con
)
1607 dout("prepare_read_message %p\n", con
);
1608 BUG_ON(con
->in_msg
!= NULL
);
1609 con
->in_base_pos
= 0;
1610 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1615 static int read_partial(struct ceph_connection
*con
,
1616 int end
, int size
, void *object
)
1618 while (con
->in_base_pos
< end
) {
1619 int left
= end
- con
->in_base_pos
;
1620 int have
= size
- left
;
1621 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1624 con
->in_base_pos
+= ret
;
1631 * Read all or part of the connect-side handshake on a new connection
1633 static int read_partial_banner(struct ceph_connection
*con
)
1639 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1642 size
= strlen(CEPH_BANNER
);
1644 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1648 size
= sizeof (con
->actual_peer_addr
);
1650 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1654 size
= sizeof (con
->peer_addr_for_me
);
1656 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1664 static int read_partial_connect(struct ceph_connection
*con
)
1670 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1672 size
= sizeof (con
->in_reply
);
1674 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1678 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1680 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1684 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1685 con
, (int)con
->in_reply
.tag
,
1686 le32_to_cpu(con
->in_reply
.connect_seq
),
1687 le32_to_cpu(con
->in_reply
.global_seq
));
1694 * Verify the hello banner looks okay.
1696 static int verify_hello(struct ceph_connection
*con
)
1698 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1699 pr_err("connect to %s got bad banner\n",
1700 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1701 con
->error_msg
= "protocol error, bad banner";
1707 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1709 switch (ss
->ss_family
) {
1711 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1714 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1715 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1716 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1717 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1722 static int addr_port(struct sockaddr_storage
*ss
)
1724 switch (ss
->ss_family
) {
1726 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1728 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1733 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1735 switch (ss
->ss_family
) {
1737 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1740 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1746 * Unlike other *_pton function semantics, zero indicates success.
1748 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1749 char delim
, const char **ipend
)
1751 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1752 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1754 memset(ss
, 0, sizeof(*ss
));
1756 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1757 ss
->ss_family
= AF_INET
;
1761 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1762 ss
->ss_family
= AF_INET6
;
1770 * Extract hostname string and resolve using kernel DNS facility.
1772 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1773 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1774 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1776 const char *end
, *delim_p
;
1777 char *colon_p
, *ip_addr
= NULL
;
1781 * The end of the hostname occurs immediately preceding the delimiter or
1782 * the port marker (':') where the delimiter takes precedence.
1784 delim_p
= memchr(name
, delim
, namelen
);
1785 colon_p
= memchr(name
, ':', namelen
);
1787 if (delim_p
&& colon_p
)
1788 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1789 else if (!delim_p
&& colon_p
)
1793 if (!end
) /* case: hostname:/ */
1794 end
= name
+ namelen
;
1800 /* do dns_resolve upcall */
1801 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1803 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1811 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1812 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1817 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1818 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1825 * Parse a server name (IP or hostname). If a valid IP address is not found
1826 * then try to extract a hostname to resolve using userspace DNS upcall.
1828 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1829 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1833 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1835 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1841 * Parse an ip[:port] list into an addr array. Use the default
1842 * monitor port if a port isn't specified.
1844 int ceph_parse_ips(const char *c
, const char *end
,
1845 struct ceph_entity_addr
*addr
,
1846 int max_count
, int *count
)
1848 int i
, ret
= -EINVAL
;
1851 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1852 for (i
= 0; i
< max_count
; i
++) {
1854 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1863 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1872 dout("missing matching ']'\n");
1879 if (p
< end
&& *p
== ':') {
1882 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1883 port
= (port
* 10) + (*p
- '0');
1886 if (port
> 65535 || port
== 0)
1889 port
= CEPH_MON_PORT
;
1892 addr_set_port(ss
, port
);
1894 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1911 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1914 EXPORT_SYMBOL(ceph_parse_ips
);
1916 static int process_banner(struct ceph_connection
*con
)
1918 dout("process_banner on %p\n", con
);
1920 if (verify_hello(con
) < 0)
1923 ceph_decode_addr(&con
->actual_peer_addr
);
1924 ceph_decode_addr(&con
->peer_addr_for_me
);
1927 * Make sure the other end is who we wanted. note that the other
1928 * end may not yet know their ip address, so if it's 0.0.0.0, give
1929 * them the benefit of the doubt.
1931 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1932 sizeof(con
->peer_addr
)) != 0 &&
1933 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1934 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1935 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1936 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1937 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1938 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1939 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1940 con
->error_msg
= "wrong peer at address";
1945 * did we learn our address?
1947 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1948 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1950 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1951 &con
->peer_addr_for_me
.in_addr
,
1952 sizeof(con
->peer_addr_for_me
.in_addr
));
1953 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1954 encode_my_addr(con
->msgr
);
1955 dout("process_banner learned my addr is %s\n",
1956 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1962 static int process_connect(struct ceph_connection
*con
)
1964 u64 sup_feat
= con
->msgr
->supported_features
;
1965 u64 req_feat
= con
->msgr
->required_features
;
1966 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
1969 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1971 switch (con
->in_reply
.tag
) {
1972 case CEPH_MSGR_TAG_FEATURES
:
1973 pr_err("%s%lld %s feature set mismatch,"
1974 " my %llx < server's %llx, missing %llx\n",
1975 ENTITY_NAME(con
->peer_name
),
1976 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1977 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1978 con
->error_msg
= "missing required protocol features";
1979 reset_connection(con
);
1982 case CEPH_MSGR_TAG_BADPROTOVER
:
1983 pr_err("%s%lld %s protocol version mismatch,"
1984 " my %d != server's %d\n",
1985 ENTITY_NAME(con
->peer_name
),
1986 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1987 le32_to_cpu(con
->out_connect
.protocol_version
),
1988 le32_to_cpu(con
->in_reply
.protocol_version
));
1989 con
->error_msg
= "protocol version mismatch";
1990 reset_connection(con
);
1993 case CEPH_MSGR_TAG_BADAUTHORIZER
:
1995 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
1997 if (con
->auth_retry
== 2) {
1998 con
->error_msg
= "connect authorization failure";
2001 con_out_kvec_reset(con
);
2002 ret
= prepare_write_connect(con
);
2005 prepare_read_connect(con
);
2008 case CEPH_MSGR_TAG_RESETSESSION
:
2010 * If we connected with a large connect_seq but the peer
2011 * has no record of a session with us (no connection, or
2012 * connect_seq == 0), they will send RESETSESION to indicate
2013 * that they must have reset their session, and may have
2016 dout("process_connect got RESET peer seq %u\n",
2017 le32_to_cpu(con
->in_reply
.connect_seq
));
2018 pr_err("%s%lld %s connection reset\n",
2019 ENTITY_NAME(con
->peer_name
),
2020 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2021 reset_connection(con
);
2022 con_out_kvec_reset(con
);
2023 ret
= prepare_write_connect(con
);
2026 prepare_read_connect(con
);
2028 /* Tell ceph about it. */
2029 mutex_unlock(&con
->mutex
);
2030 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2031 if (con
->ops
->peer_reset
)
2032 con
->ops
->peer_reset(con
);
2033 mutex_lock(&con
->mutex
);
2034 if (con
->state
!= CON_STATE_NEGOTIATING
)
2038 case CEPH_MSGR_TAG_RETRY_SESSION
:
2040 * If we sent a smaller connect_seq than the peer has, try
2041 * again with a larger value.
2043 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2044 le32_to_cpu(con
->out_connect
.connect_seq
),
2045 le32_to_cpu(con
->in_reply
.connect_seq
));
2046 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2047 con_out_kvec_reset(con
);
2048 ret
= prepare_write_connect(con
);
2051 prepare_read_connect(con
);
2054 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2056 * If we sent a smaller global_seq than the peer has, try
2057 * again with a larger value.
2059 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2060 con
->peer_global_seq
,
2061 le32_to_cpu(con
->in_reply
.global_seq
));
2062 get_global_seq(con
->msgr
,
2063 le32_to_cpu(con
->in_reply
.global_seq
));
2064 con_out_kvec_reset(con
);
2065 ret
= prepare_write_connect(con
);
2068 prepare_read_connect(con
);
2071 case CEPH_MSGR_TAG_SEQ
:
2072 case CEPH_MSGR_TAG_READY
:
2073 if (req_feat
& ~server_feat
) {
2074 pr_err("%s%lld %s protocol feature mismatch,"
2075 " my required %llx > server's %llx, need %llx\n",
2076 ENTITY_NAME(con
->peer_name
),
2077 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2078 req_feat
, server_feat
, req_feat
& ~server_feat
);
2079 con
->error_msg
= "missing required protocol features";
2080 reset_connection(con
);
2084 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2085 con
->state
= CON_STATE_OPEN
;
2086 con
->auth_retry
= 0; /* we authenticated; clear flag */
2087 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2089 con
->peer_features
= server_feat
;
2090 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2091 con
->peer_global_seq
,
2092 le32_to_cpu(con
->in_reply
.connect_seq
),
2094 WARN_ON(con
->connect_seq
!=
2095 le32_to_cpu(con
->in_reply
.connect_seq
));
2097 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2098 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2100 con
->delay
= 0; /* reset backoff memory */
2102 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2103 prepare_write_seq(con
);
2104 prepare_read_seq(con
);
2106 prepare_read_tag(con
);
2110 case CEPH_MSGR_TAG_WAIT
:
2112 * If there is a connection race (we are opening
2113 * connections to each other), one of us may just have
2114 * to WAIT. This shouldn't happen if we are the
2117 pr_err("process_connect got WAIT as client\n");
2118 con
->error_msg
= "protocol error, got WAIT as client";
2122 pr_err("connect protocol error, will retry\n");
2123 con
->error_msg
= "protocol error, garbage tag during connect";
2131 * read (part of) an ack
2133 static int read_partial_ack(struct ceph_connection
*con
)
2135 int size
= sizeof (con
->in_temp_ack
);
2138 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2142 * We can finally discard anything that's been acked.
2144 static void process_ack(struct ceph_connection
*con
)
2147 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2150 while (!list_empty(&con
->out_sent
)) {
2151 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2153 seq
= le64_to_cpu(m
->hdr
.seq
);
2156 dout("got ack for seq %llu type %d at %p\n", seq
,
2157 le16_to_cpu(m
->hdr
.type
), m
);
2158 m
->ack_stamp
= jiffies
;
2161 prepare_read_tag(con
);
2165 static int read_partial_message_section(struct ceph_connection
*con
,
2166 struct kvec
*section
,
2167 unsigned int sec_len
, u32
*crc
)
2173 while (section
->iov_len
< sec_len
) {
2174 BUG_ON(section
->iov_base
== NULL
);
2175 left
= sec_len
- section
->iov_len
;
2176 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2177 section
->iov_len
, left
);
2180 section
->iov_len
+= ret
;
2182 if (section
->iov_len
== sec_len
)
2183 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2188 static int read_partial_msg_data(struct ceph_connection
*con
)
2190 struct ceph_msg
*msg
= con
->in_msg
;
2191 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2192 const bool do_datacrc
= !con
->msgr
->nocrc
;
2200 if (list_empty(&msg
->data
))
2204 crc
= con
->in_data_crc
;
2205 while (cursor
->resid
) {
2206 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
2208 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2211 con
->in_data_crc
= crc
;
2217 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2218 (void) ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
2221 con
->in_data_crc
= crc
;
2223 return 1; /* must return > 0 to indicate success */
2227 * read (part of) a message.
2229 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2231 static int read_partial_message(struct ceph_connection
*con
)
2233 struct ceph_msg
*m
= con
->in_msg
;
2237 unsigned int front_len
, middle_len
, data_len
;
2238 bool do_datacrc
= !con
->msgr
->nocrc
;
2242 dout("read_partial_message con %p msg %p\n", con
, m
);
2245 size
= sizeof (con
->in_hdr
);
2247 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2251 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2252 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2253 pr_err("read_partial_message bad hdr "
2254 " crc %u != expected %u\n",
2255 crc
, con
->in_hdr
.crc
);
2259 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2260 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2262 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2263 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2265 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2266 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2270 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2271 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2272 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2273 ENTITY_NAME(con
->peer_name
),
2274 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2275 seq
, con
->in_seq
+ 1);
2276 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2278 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2280 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2281 pr_err("read_partial_message bad seq %lld expected %lld\n",
2282 seq
, con
->in_seq
+ 1);
2283 con
->error_msg
= "bad message sequence # for incoming message";
2287 /* allocate message? */
2291 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2292 front_len
, data_len
);
2293 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2297 BUG_ON(!con
->in_msg
^ skip
);
2298 if (con
->in_msg
&& data_len
> con
->in_msg
->data_length
) {
2299 pr_warning("%s skipping long message (%u > %zd)\n",
2300 __func__
, data_len
, con
->in_msg
->data_length
);
2301 ceph_msg_put(con
->in_msg
);
2306 /* skip this message */
2307 dout("alloc_msg said skip message\n");
2308 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2310 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2315 BUG_ON(!con
->in_msg
);
2316 BUG_ON(con
->in_msg
->con
!= con
);
2318 m
->front
.iov_len
= 0; /* haven't read it yet */
2320 m
->middle
->vec
.iov_len
= 0;
2322 /* prepare for data payload, if any */
2325 prepare_message_data(con
->in_msg
, data_len
);
2329 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2330 &con
->in_front_crc
);
2336 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2338 &con
->in_middle_crc
);
2345 ret
= read_partial_msg_data(con
);
2351 size
= sizeof (m
->footer
);
2353 ret
= read_partial(con
, end
, size
, &m
->footer
);
2357 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2358 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2359 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2362 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2363 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2364 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2367 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2368 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2369 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2373 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2374 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2375 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2376 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2380 return 1; /* done! */
2384 * Process message. This happens in the worker thread. The callback should
2385 * be careful not to do anything that waits on other incoming messages or it
2388 static void process_message(struct ceph_connection
*con
)
2390 struct ceph_msg
*msg
;
2392 BUG_ON(con
->in_msg
->con
!= con
);
2393 con
->in_msg
->con
= NULL
;
2398 /* if first message, set peer_name */
2399 if (con
->peer_name
.type
== 0)
2400 con
->peer_name
= msg
->hdr
.src
;
2403 mutex_unlock(&con
->mutex
);
2405 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2406 msg
, le64_to_cpu(msg
->hdr
.seq
),
2407 ENTITY_NAME(msg
->hdr
.src
),
2408 le16_to_cpu(msg
->hdr
.type
),
2409 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2410 le32_to_cpu(msg
->hdr
.front_len
),
2411 le32_to_cpu(msg
->hdr
.data_len
),
2412 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2413 con
->ops
->dispatch(con
, msg
);
2415 mutex_lock(&con
->mutex
);
2420 * Write something to the socket. Called in a worker thread when the
2421 * socket appears to be writeable and we have something ready to send.
2423 static int try_write(struct ceph_connection
*con
)
2427 dout("try_write start %p state %lu\n", con
, con
->state
);
2430 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2432 /* open the socket first? */
2433 if (con
->state
== CON_STATE_PREOPEN
) {
2435 con
->state
= CON_STATE_CONNECTING
;
2437 con_out_kvec_reset(con
);
2438 prepare_write_banner(con
);
2439 prepare_read_banner(con
);
2441 BUG_ON(con
->in_msg
);
2442 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2443 dout("try_write initiating connect on %p new state %lu\n",
2445 ret
= ceph_tcp_connect(con
);
2447 con
->error_msg
= "connect error";
2453 /* kvec data queued? */
2454 if (con
->out_skip
) {
2455 ret
= write_partial_skip(con
);
2459 if (con
->out_kvec_left
) {
2460 ret
= write_partial_kvec(con
);
2467 if (con
->out_msg_done
) {
2468 ceph_msg_put(con
->out_msg
);
2469 con
->out_msg
= NULL
; /* we're done with this one */
2473 ret
= write_partial_message_data(con
);
2475 goto more_kvec
; /* we need to send the footer, too! */
2479 dout("try_write write_partial_message_data err %d\n",
2486 if (con
->state
== CON_STATE_OPEN
) {
2487 /* is anything else pending? */
2488 if (!list_empty(&con
->out_queue
)) {
2489 prepare_write_message(con
);
2492 if (con
->in_seq
> con
->in_seq_acked
) {
2493 prepare_write_ack(con
);
2496 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2497 prepare_write_keepalive(con
);
2502 /* Nothing to do! */
2503 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2504 dout("try_write nothing else to write.\n");
2507 dout("try_write done on %p ret %d\n", con
, ret
);
2514 * Read what we can from the socket.
2516 static int try_read(struct ceph_connection
*con
)
2521 dout("try_read start on %p state %lu\n", con
, con
->state
);
2522 if (con
->state
!= CON_STATE_CONNECTING
&&
2523 con
->state
!= CON_STATE_NEGOTIATING
&&
2524 con
->state
!= CON_STATE_OPEN
)
2529 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2532 if (con
->state
== CON_STATE_CONNECTING
) {
2533 dout("try_read connecting\n");
2534 ret
= read_partial_banner(con
);
2537 ret
= process_banner(con
);
2541 con
->state
= CON_STATE_NEGOTIATING
;
2544 * Received banner is good, exchange connection info.
2545 * Do not reset out_kvec, as sending our banner raced
2546 * with receiving peer banner after connect completed.
2548 ret
= prepare_write_connect(con
);
2551 prepare_read_connect(con
);
2553 /* Send connection info before awaiting response */
2557 if (con
->state
== CON_STATE_NEGOTIATING
) {
2558 dout("try_read negotiating\n");
2559 ret
= read_partial_connect(con
);
2562 ret
= process_connect(con
);
2568 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2570 if (con
->in_base_pos
< 0) {
2572 * skipping + discarding content.
2574 * FIXME: there must be a better way to do this!
2576 static char buf
[SKIP_BUF_SIZE
];
2577 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2579 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2580 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2583 con
->in_base_pos
+= ret
;
2584 if (con
->in_base_pos
)
2587 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2591 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2594 dout("try_read got tag %d\n", (int)con
->in_tag
);
2595 switch (con
->in_tag
) {
2596 case CEPH_MSGR_TAG_MSG
:
2597 prepare_read_message(con
);
2599 case CEPH_MSGR_TAG_ACK
:
2600 prepare_read_ack(con
);
2602 case CEPH_MSGR_TAG_CLOSE
:
2603 con_close_socket(con
);
2604 con
->state
= CON_STATE_CLOSED
;
2610 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2611 ret
= read_partial_message(con
);
2615 con
->error_msg
= "bad crc";
2619 con
->error_msg
= "io error";
2624 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2626 process_message(con
);
2627 if (con
->state
== CON_STATE_OPEN
)
2628 prepare_read_tag(con
);
2631 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2632 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2634 * the final handshake seq exchange is semantically
2635 * equivalent to an ACK
2637 ret
= read_partial_ack(con
);
2645 dout("try_read done on %p ret %d\n", con
, ret
);
2649 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2650 con
->error_msg
= "protocol error, garbage tag";
2657 * Atomically queue work on a connection after the specified delay.
2658 * Bump @con reference to avoid races with connection teardown.
2659 * Returns 0 if work was queued, or an error code otherwise.
2661 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2663 if (!con
->ops
->get(con
)) {
2664 dout("%s %p ref count 0\n", __func__
, con
);
2669 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2670 dout("%s %p - already queued\n", __func__
, con
);
2676 dout("%s %p %lu\n", __func__
, con
, delay
);
2681 static void queue_con(struct ceph_connection
*con
)
2683 (void) queue_con_delay(con
, 0);
2686 static bool con_sock_closed(struct ceph_connection
*con
)
2688 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2692 case CON_STATE_ ## x: \
2693 con->error_msg = "socket closed (con state " #x ")"; \
2696 switch (con
->state
) {
2704 pr_warning("%s con %p unrecognized state %lu\n",
2705 __func__
, con
, con
->state
);
2706 con
->error_msg
= "unrecognized con state";
2715 static bool con_backoff(struct ceph_connection
*con
)
2719 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2722 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2724 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2726 BUG_ON(ret
== -ENOENT
);
2727 con_flag_set(con
, CON_FLAG_BACKOFF
);
2733 /* Finish fault handling; con->mutex must *not* be held here */
2735 static void con_fault_finish(struct ceph_connection
*con
)
2738 * in case we faulted due to authentication, invalidate our
2739 * current tickets so that we can get new ones.
2741 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2742 dout("calling invalidate_authorizer()\n");
2743 con
->ops
->invalidate_authorizer(con
);
2746 if (con
->ops
->fault
)
2747 con
->ops
->fault(con
);
2751 * Do some work on a connection. Drop a connection ref when we're done.
2753 static void con_work(struct work_struct
*work
)
2755 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2759 mutex_lock(&con
->mutex
);
2763 if ((fault
= con_sock_closed(con
))) {
2764 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2767 if (con_backoff(con
)) {
2768 dout("%s: con %p BACKOFF\n", __func__
, con
);
2771 if (con
->state
== CON_STATE_STANDBY
) {
2772 dout("%s: con %p STANDBY\n", __func__
, con
);
2775 if (con
->state
== CON_STATE_CLOSED
) {
2776 dout("%s: con %p CLOSED\n", __func__
, con
);
2780 if (con
->state
== CON_STATE_PREOPEN
) {
2781 dout("%s: con %p PREOPEN\n", __func__
, con
);
2785 ret
= try_read(con
);
2789 con
->error_msg
= "socket error on read";
2794 ret
= try_write(con
);
2798 con
->error_msg
= "socket error on write";
2802 break; /* If we make it to here, we're done */
2806 mutex_unlock(&con
->mutex
);
2809 con_fault_finish(con
);
2815 * Generic error/fault handler. A retry mechanism is used with
2816 * exponential backoff
2818 static void con_fault(struct ceph_connection
*con
)
2820 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2821 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2822 dout("fault %p state %lu to peer %s\n",
2823 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2825 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2826 con
->state
!= CON_STATE_NEGOTIATING
&&
2827 con
->state
!= CON_STATE_OPEN
);
2829 con_close_socket(con
);
2831 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2832 dout("fault on LOSSYTX channel, marking CLOSED\n");
2833 con
->state
= CON_STATE_CLOSED
;
2838 BUG_ON(con
->in_msg
->con
!= con
);
2839 con
->in_msg
->con
= NULL
;
2840 ceph_msg_put(con
->in_msg
);
2845 /* Requeue anything that hasn't been acked */
2846 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2848 /* If there are no messages queued or keepalive pending, place
2849 * the connection in a STANDBY state */
2850 if (list_empty(&con
->out_queue
) &&
2851 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2852 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2853 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2854 con
->state
= CON_STATE_STANDBY
;
2856 /* retry after a delay. */
2857 con
->state
= CON_STATE_PREOPEN
;
2858 if (con
->delay
== 0)
2859 con
->delay
= BASE_DELAY_INTERVAL
;
2860 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2862 con_flag_set(con
, CON_FLAG_BACKOFF
);
2870 * initialize a new messenger instance
2872 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2873 struct ceph_entity_addr
*myaddr
,
2874 u32 supported_features
,
2875 u32 required_features
,
2878 msgr
->supported_features
= supported_features
;
2879 msgr
->required_features
= required_features
;
2881 spin_lock_init(&msgr
->global_seq_lock
);
2884 msgr
->inst
.addr
= *myaddr
;
2886 /* select a random nonce */
2887 msgr
->inst
.addr
.type
= 0;
2888 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2889 encode_my_addr(msgr
);
2890 msgr
->nocrc
= nocrc
;
2892 atomic_set(&msgr
->stopping
, 0);
2894 dout("%s %p\n", __func__
, msgr
);
2896 EXPORT_SYMBOL(ceph_messenger_init
);
2898 static void clear_standby(struct ceph_connection
*con
)
2900 /* come back from STANDBY? */
2901 if (con
->state
== CON_STATE_STANDBY
) {
2902 dout("clear_standby %p and ++connect_seq\n", con
);
2903 con
->state
= CON_STATE_PREOPEN
;
2905 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
2906 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
2911 * Queue up an outgoing message on the given connection.
2913 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2916 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2917 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2918 msg
->needs_out_seq
= true;
2920 mutex_lock(&con
->mutex
);
2922 if (con
->state
== CON_STATE_CLOSED
) {
2923 dout("con_send %p closed, dropping %p\n", con
, msg
);
2925 mutex_unlock(&con
->mutex
);
2929 BUG_ON(msg
->con
!= NULL
);
2930 msg
->con
= con
->ops
->get(con
);
2931 BUG_ON(msg
->con
== NULL
);
2933 BUG_ON(!list_empty(&msg
->list_head
));
2934 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2935 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2936 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2937 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2938 le32_to_cpu(msg
->hdr
.front_len
),
2939 le32_to_cpu(msg
->hdr
.middle_len
),
2940 le32_to_cpu(msg
->hdr
.data_len
));
2943 mutex_unlock(&con
->mutex
);
2945 /* if there wasn't anything waiting to send before, queue
2947 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
2950 EXPORT_SYMBOL(ceph_con_send
);
2953 * Revoke a message that was previously queued for send
2955 void ceph_msg_revoke(struct ceph_msg
*msg
)
2957 struct ceph_connection
*con
= msg
->con
;
2960 return; /* Message not in our possession */
2962 mutex_lock(&con
->mutex
);
2963 if (!list_empty(&msg
->list_head
)) {
2964 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
2965 list_del_init(&msg
->list_head
);
2966 BUG_ON(msg
->con
== NULL
);
2967 msg
->con
->ops
->put(msg
->con
);
2973 if (con
->out_msg
== msg
) {
2974 dout("%s %p msg %p - was sending\n", __func__
, con
, msg
);
2975 con
->out_msg
= NULL
;
2976 if (con
->out_kvec_is_msg
) {
2977 con
->out_skip
= con
->out_kvec_bytes
;
2978 con
->out_kvec_is_msg
= false;
2984 mutex_unlock(&con
->mutex
);
2988 * Revoke a message that we may be reading data into
2990 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
2992 struct ceph_connection
*con
;
2994 BUG_ON(msg
== NULL
);
2996 dout("%s msg %p null con\n", __func__
, msg
);
2998 return; /* Message not in our possession */
3002 mutex_lock(&con
->mutex
);
3003 if (con
->in_msg
== msg
) {
3004 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3005 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3006 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3008 /* skip rest of message */
3009 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3010 con
->in_base_pos
= con
->in_base_pos
-
3011 sizeof(struct ceph_msg_header
) -
3015 sizeof(struct ceph_msg_footer
);
3016 ceph_msg_put(con
->in_msg
);
3018 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3021 dout("%s %p in_msg %p msg %p no-op\n",
3022 __func__
, con
, con
->in_msg
, msg
);
3024 mutex_unlock(&con
->mutex
);
3028 * Queue a keepalive byte to ensure the tcp connection is alive.
3030 void ceph_con_keepalive(struct ceph_connection
*con
)
3032 dout("con_keepalive %p\n", con
);
3033 mutex_lock(&con
->mutex
);
3035 mutex_unlock(&con
->mutex
);
3036 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3037 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3040 EXPORT_SYMBOL(ceph_con_keepalive
);
3042 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3044 struct ceph_msg_data
*data
;
3046 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3049 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3052 INIT_LIST_HEAD(&data
->links
);
3057 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3062 WARN_ON(!list_empty(&data
->links
));
3063 if (data
->type
== CEPH_MSG_DATA_PAGELIST
) {
3064 ceph_pagelist_release(data
->pagelist
);
3065 kfree(data
->pagelist
);
3067 kmem_cache_free(ceph_msg_data_cache
, data
);
3070 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3071 size_t length
, size_t alignment
)
3073 struct ceph_msg_data
*data
;
3078 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3080 data
->pages
= pages
;
3081 data
->length
= length
;
3082 data
->alignment
= alignment
& ~PAGE_MASK
;
3084 list_add_tail(&data
->links
, &msg
->data
);
3085 msg
->data_length
+= length
;
3087 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3089 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3090 struct ceph_pagelist
*pagelist
)
3092 struct ceph_msg_data
*data
;
3095 BUG_ON(!pagelist
->length
);
3097 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3099 data
->pagelist
= pagelist
;
3101 list_add_tail(&data
->links
, &msg
->data
);
3102 msg
->data_length
+= pagelist
->length
;
3104 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3107 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3110 struct ceph_msg_data
*data
;
3114 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3117 data
->bio_length
= length
;
3119 list_add_tail(&data
->links
, &msg
->data
);
3120 msg
->data_length
+= length
;
3122 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3123 #endif /* CONFIG_BLOCK */
3126 * construct a new message with given type, size
3127 * the new msg has a ref count of 1.
3129 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3134 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3138 m
->hdr
.type
= cpu_to_le16(type
);
3139 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3140 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3142 INIT_LIST_HEAD(&m
->list_head
);
3143 kref_init(&m
->kref
);
3144 INIT_LIST_HEAD(&m
->data
);
3148 if (front_len
> PAGE_CACHE_SIZE
) {
3149 m
->front
.iov_base
= __vmalloc(front_len
, flags
,
3151 m
->front_is_vmalloc
= true;
3153 m
->front
.iov_base
= kmalloc(front_len
, flags
);
3155 if (m
->front
.iov_base
== NULL
) {
3156 dout("ceph_msg_new can't allocate %d bytes\n",
3161 m
->front
.iov_base
= NULL
;
3163 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3165 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3172 pr_err("msg_new can't create type %d front %d\n", type
,
3176 dout("msg_new can't create type %d front %d\n", type
,
3181 EXPORT_SYMBOL(ceph_msg_new
);
3184 * Allocate "middle" portion of a message, if it is needed and wasn't
3185 * allocated by alloc_msg. This allows us to read a small fixed-size
3186 * per-type header in the front and then gracefully fail (i.e.,
3187 * propagate the error to the caller based on info in the front) when
3188 * the middle is too large.
3190 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3192 int type
= le16_to_cpu(msg
->hdr
.type
);
3193 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3195 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3196 ceph_msg_type_name(type
), middle_len
);
3197 BUG_ON(!middle_len
);
3198 BUG_ON(msg
->middle
);
3200 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3207 * Allocate a message for receiving an incoming message on a
3208 * connection, and save the result in con->in_msg. Uses the
3209 * connection's private alloc_msg op if available.
3211 * Returns 0 on success, or a negative error code.
3213 * On success, if we set *skip = 1:
3214 * - the next message should be skipped and ignored.
3215 * - con->in_msg == NULL
3216 * or if we set *skip = 0:
3217 * - con->in_msg is non-null.
3218 * On error (ENOMEM, EAGAIN, ...),
3219 * - con->in_msg == NULL
3221 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3223 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3224 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3225 struct ceph_msg
*msg
;
3228 BUG_ON(con
->in_msg
!= NULL
);
3229 BUG_ON(!con
->ops
->alloc_msg
);
3231 mutex_unlock(&con
->mutex
);
3232 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3233 mutex_lock(&con
->mutex
);
3234 if (con
->state
!= CON_STATE_OPEN
) {
3242 con
->in_msg
->con
= con
->ops
->get(con
);
3243 BUG_ON(con
->in_msg
->con
== NULL
);
3246 * Null message pointer means either we should skip
3247 * this message or we couldn't allocate memory. The
3248 * former is not an error.
3252 con
->error_msg
= "error allocating memory for incoming message";
3256 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3258 if (middle_len
&& !con
->in_msg
->middle
) {
3259 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3261 ceph_msg_put(con
->in_msg
);
3271 * Free a generically kmalloc'd message.
3273 void ceph_msg_kfree(struct ceph_msg
*m
)
3275 dout("msg_kfree %p\n", m
);
3276 if (m
->front_is_vmalloc
)
3277 vfree(m
->front
.iov_base
);
3279 kfree(m
->front
.iov_base
);
3280 kmem_cache_free(ceph_msg_cache
, m
);
3284 * Drop a msg ref. Destroy as needed.
3286 void ceph_msg_last_put(struct kref
*kref
)
3288 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3290 struct list_head
*links
;
3291 struct list_head
*next
;
3293 dout("ceph_msg_put last one on %p\n", m
);
3294 WARN_ON(!list_empty(&m
->list_head
));
3296 /* drop middle, data, if any */
3298 ceph_buffer_put(m
->middle
);
3302 list_splice_init(&m
->data
, &data
);
3303 list_for_each_safe(links
, next
, &data
) {
3304 struct ceph_msg_data
*data
;
3306 data
= list_entry(links
, struct ceph_msg_data
, links
);
3307 list_del_init(links
);
3308 ceph_msg_data_destroy(data
);
3313 ceph_msgpool_put(m
->pool
, m
);
3317 EXPORT_SYMBOL(ceph_msg_last_put
);
3319 void ceph_msg_dump(struct ceph_msg
*msg
)
3321 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3322 msg
->front_alloc_len
, msg
->data_length
);
3323 print_hex_dump(KERN_DEBUG
, "header: ",
3324 DUMP_PREFIX_OFFSET
, 16, 1,
3325 &msg
->hdr
, sizeof(msg
->hdr
), true);
3326 print_hex_dump(KERN_DEBUG
, " front: ",
3327 DUMP_PREFIX_OFFSET
, 16, 1,
3328 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3330 print_hex_dump(KERN_DEBUG
, "middle: ",
3331 DUMP_PREFIX_OFFSET
, 16, 1,
3332 msg
->middle
->vec
.iov_base
,
3333 msg
->middle
->vec
.iov_len
, true);
3334 print_hex_dump(KERN_DEBUG
, "footer: ",
3335 DUMP_PREFIX_OFFSET
, 16, 1,
3336 &msg
->footer
, sizeof(msg
->footer
), true);
3338 EXPORT_SYMBOL(ceph_msg_dump
);