2 * Copyright (c) 2007-2013 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
44 #include <net/ip_tunnels.h>
46 #include <net/ndisc.h>
48 static struct kmem_cache
*flow_cache
;
50 static void ovs_sw_flow_mask_set(struct sw_flow_mask
*mask
,
51 struct sw_flow_key_range
*range
, u8 val
);
53 static void update_range__(struct sw_flow_match
*match
,
54 size_t offset
, size_t size
, bool is_mask
)
56 struct sw_flow_key_range
*range
= NULL
;
57 size_t start
= rounddown(offset
, sizeof(long));
58 size_t end
= roundup(offset
+ size
, sizeof(long));
61 range
= &match
->range
;
63 range
= &match
->mask
->range
;
68 if (range
->start
== range
->end
) {
74 if (range
->start
> start
)
81 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
83 update_range__(match, offsetof(struct sw_flow_key, field), \
84 sizeof((match)->key->field), is_mask); \
87 (match)->mask->key.field = value; \
89 (match)->key->field = value; \
93 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
95 update_range__(match, offsetof(struct sw_flow_key, field), \
99 memcpy(&(match)->mask->key.field, value_p, len);\
101 memcpy(&(match)->key->field, value_p, len); \
105 static u16
range_n_bytes(const struct sw_flow_key_range
*range
)
107 return range
->end
- range
->start
;
110 void ovs_match_init(struct sw_flow_match
*match
,
111 struct sw_flow_key
*key
,
112 struct sw_flow_mask
*mask
)
114 memset(match
, 0, sizeof(*match
));
118 memset(key
, 0, sizeof(*key
));
121 memset(&mask
->key
, 0, sizeof(mask
->key
));
122 mask
->range
.start
= mask
->range
.end
= 0;
126 static bool ovs_match_validate(const struct sw_flow_match
*match
,
127 u64 key_attrs
, u64 mask_attrs
)
129 u64 key_expected
= 1 << OVS_KEY_ATTR_ETHERNET
;
130 u64 mask_allowed
= key_attrs
; /* At most allow all key attributes */
132 /* The following mask attributes allowed only if they
133 * pass the validation tests. */
134 mask_allowed
&= ~((1 << OVS_KEY_ATTR_IPV4
)
135 | (1 << OVS_KEY_ATTR_IPV6
)
136 | (1 << OVS_KEY_ATTR_TCP
)
137 | (1 << OVS_KEY_ATTR_UDP
)
138 | (1 << OVS_KEY_ATTR_SCTP
)
139 | (1 << OVS_KEY_ATTR_ICMP
)
140 | (1 << OVS_KEY_ATTR_ICMPV6
)
141 | (1 << OVS_KEY_ATTR_ARP
)
142 | (1 << OVS_KEY_ATTR_ND
));
144 /* Always allowed mask fields. */
145 mask_allowed
|= ((1 << OVS_KEY_ATTR_TUNNEL
)
146 | (1 << OVS_KEY_ATTR_IN_PORT
)
147 | (1 << OVS_KEY_ATTR_ETHERTYPE
));
149 /* Check key attributes. */
150 if (match
->key
->eth
.type
== htons(ETH_P_ARP
)
151 || match
->key
->eth
.type
== htons(ETH_P_RARP
)) {
152 key_expected
|= 1 << OVS_KEY_ATTR_ARP
;
153 if (match
->mask
&& (match
->mask
->key
.eth
.type
== htons(0xffff)))
154 mask_allowed
|= 1 << OVS_KEY_ATTR_ARP
;
157 if (match
->key
->eth
.type
== htons(ETH_P_IP
)) {
158 key_expected
|= 1 << OVS_KEY_ATTR_IPV4
;
159 if (match
->mask
&& (match
->mask
->key
.eth
.type
== htons(0xffff)))
160 mask_allowed
|= 1 << OVS_KEY_ATTR_IPV4
;
162 if (match
->key
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
163 if (match
->key
->ip
.proto
== IPPROTO_UDP
) {
164 key_expected
|= 1 << OVS_KEY_ATTR_UDP
;
165 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
166 mask_allowed
|= 1 << OVS_KEY_ATTR_UDP
;
169 if (match
->key
->ip
.proto
== IPPROTO_SCTP
) {
170 key_expected
|= 1 << OVS_KEY_ATTR_SCTP
;
171 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
172 mask_allowed
|= 1 << OVS_KEY_ATTR_SCTP
;
175 if (match
->key
->ip
.proto
== IPPROTO_TCP
) {
176 key_expected
|= 1 << OVS_KEY_ATTR_TCP
;
177 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
178 mask_allowed
|= 1 << OVS_KEY_ATTR_TCP
;
181 if (match
->key
->ip
.proto
== IPPROTO_ICMP
) {
182 key_expected
|= 1 << OVS_KEY_ATTR_ICMP
;
183 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
184 mask_allowed
|= 1 << OVS_KEY_ATTR_ICMP
;
189 if (match
->key
->eth
.type
== htons(ETH_P_IPV6
)) {
190 key_expected
|= 1 << OVS_KEY_ATTR_IPV6
;
191 if (match
->mask
&& (match
->mask
->key
.eth
.type
== htons(0xffff)))
192 mask_allowed
|= 1 << OVS_KEY_ATTR_IPV6
;
194 if (match
->key
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
195 if (match
->key
->ip
.proto
== IPPROTO_UDP
) {
196 key_expected
|= 1 << OVS_KEY_ATTR_UDP
;
197 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
198 mask_allowed
|= 1 << OVS_KEY_ATTR_UDP
;
201 if (match
->key
->ip
.proto
== IPPROTO_SCTP
) {
202 key_expected
|= 1 << OVS_KEY_ATTR_SCTP
;
203 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
204 mask_allowed
|= 1 << OVS_KEY_ATTR_SCTP
;
207 if (match
->key
->ip
.proto
== IPPROTO_TCP
) {
208 key_expected
|= 1 << OVS_KEY_ATTR_TCP
;
209 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
210 mask_allowed
|= 1 << OVS_KEY_ATTR_TCP
;
213 if (match
->key
->ip
.proto
== IPPROTO_ICMPV6
) {
214 key_expected
|= 1 << OVS_KEY_ATTR_ICMPV6
;
215 if (match
->mask
&& (match
->mask
->key
.ip
.proto
== 0xff))
216 mask_allowed
|= 1 << OVS_KEY_ATTR_ICMPV6
;
218 if (match
->key
->ipv6
.tp
.src
==
219 htons(NDISC_NEIGHBOUR_SOLICITATION
) ||
220 match
->key
->ipv6
.tp
.src
== htons(NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
221 key_expected
|= 1 << OVS_KEY_ATTR_ND
;
222 if (match
->mask
&& (match
->mask
->key
.ipv6
.tp
.src
== htons(0xffff)))
223 mask_allowed
|= 1 << OVS_KEY_ATTR_ND
;
229 if ((key_attrs
& key_expected
) != key_expected
) {
230 /* Key attributes check failed. */
231 OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
232 key_attrs
, key_expected
);
236 if ((mask_attrs
& mask_allowed
) != mask_attrs
) {
237 /* Mask attributes check failed. */
238 OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
239 mask_attrs
, mask_allowed
);
246 static int check_header(struct sk_buff
*skb
, int len
)
248 if (unlikely(skb
->len
< len
))
250 if (unlikely(!pskb_may_pull(skb
, len
)))
255 static bool arphdr_ok(struct sk_buff
*skb
)
257 return pskb_may_pull(skb
, skb_network_offset(skb
) +
258 sizeof(struct arp_eth_header
));
261 static int check_iphdr(struct sk_buff
*skb
)
263 unsigned int nh_ofs
= skb_network_offset(skb
);
267 err
= check_header(skb
, nh_ofs
+ sizeof(struct iphdr
));
271 ip_len
= ip_hdrlen(skb
);
272 if (unlikely(ip_len
< sizeof(struct iphdr
) ||
273 skb
->len
< nh_ofs
+ ip_len
))
276 skb_set_transport_header(skb
, nh_ofs
+ ip_len
);
280 static bool tcphdr_ok(struct sk_buff
*skb
)
282 int th_ofs
= skb_transport_offset(skb
);
285 if (unlikely(!pskb_may_pull(skb
, th_ofs
+ sizeof(struct tcphdr
))))
288 tcp_len
= tcp_hdrlen(skb
);
289 if (unlikely(tcp_len
< sizeof(struct tcphdr
) ||
290 skb
->len
< th_ofs
+ tcp_len
))
296 static bool udphdr_ok(struct sk_buff
*skb
)
298 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
299 sizeof(struct udphdr
));
302 static bool sctphdr_ok(struct sk_buff
*skb
)
304 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
305 sizeof(struct sctphdr
));
308 static bool icmphdr_ok(struct sk_buff
*skb
)
310 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
311 sizeof(struct icmphdr
));
314 u64
ovs_flow_used_time(unsigned long flow_jiffies
)
316 struct timespec cur_ts
;
319 ktime_get_ts(&cur_ts
);
320 idle_ms
= jiffies_to_msecs(jiffies
- flow_jiffies
);
321 cur_ms
= (u64
)cur_ts
.tv_sec
* MSEC_PER_SEC
+
322 cur_ts
.tv_nsec
/ NSEC_PER_MSEC
;
324 return cur_ms
- idle_ms
;
327 static int parse_ipv6hdr(struct sk_buff
*skb
, struct sw_flow_key
*key
)
329 unsigned int nh_ofs
= skb_network_offset(skb
);
337 err
= check_header(skb
, nh_ofs
+ sizeof(*nh
));
342 nexthdr
= nh
->nexthdr
;
343 payload_ofs
= (u8
*)(nh
+ 1) - skb
->data
;
345 key
->ip
.proto
= NEXTHDR_NONE
;
346 key
->ip
.tos
= ipv6_get_dsfield(nh
);
347 key
->ip
.ttl
= nh
->hop_limit
;
348 key
->ipv6
.label
= *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
349 key
->ipv6
.addr
.src
= nh
->saddr
;
350 key
->ipv6
.addr
.dst
= nh
->daddr
;
352 payload_ofs
= ipv6_skip_exthdr(skb
, payload_ofs
, &nexthdr
, &frag_off
);
353 if (unlikely(payload_ofs
< 0))
357 if (frag_off
& htons(~0x7))
358 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
360 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
363 nh_len
= payload_ofs
- nh_ofs
;
364 skb_set_transport_header(skb
, nh_ofs
+ nh_len
);
365 key
->ip
.proto
= nexthdr
;
369 static bool icmp6hdr_ok(struct sk_buff
*skb
)
371 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
372 sizeof(struct icmp6hdr
));
375 void ovs_flow_key_mask(struct sw_flow_key
*dst
, const struct sw_flow_key
*src
,
376 const struct sw_flow_mask
*mask
)
378 const long *m
= (long *)((u8
*)&mask
->key
+ mask
->range
.start
);
379 const long *s
= (long *)((u8
*)src
+ mask
->range
.start
);
380 long *d
= (long *)((u8
*)dst
+ mask
->range
.start
);
383 /* The memory outside of the 'mask->range' are not set since
384 * further operations on 'dst' only uses contents within
387 for (i
= 0; i
< range_n_bytes(&mask
->range
); i
+= sizeof(long))
391 #define TCP_FLAGS_OFFSET 13
392 #define TCP_FLAG_MASK 0x3f
394 void ovs_flow_used(struct sw_flow
*flow
, struct sk_buff
*skb
)
398 if ((flow
->key
.eth
.type
== htons(ETH_P_IP
) ||
399 flow
->key
.eth
.type
== htons(ETH_P_IPV6
)) &&
400 flow
->key
.ip
.proto
== IPPROTO_TCP
&&
401 likely(skb
->len
>= skb_transport_offset(skb
) + sizeof(struct tcphdr
))) {
402 u8
*tcp
= (u8
*)tcp_hdr(skb
);
403 tcp_flags
= *(tcp
+ TCP_FLAGS_OFFSET
) & TCP_FLAG_MASK
;
406 spin_lock(&flow
->lock
);
407 flow
->used
= jiffies
;
408 flow
->packet_count
++;
409 flow
->byte_count
+= skb
->len
;
410 flow
->tcp_flags
|= tcp_flags
;
411 spin_unlock(&flow
->lock
);
414 struct sw_flow_actions
*ovs_flow_actions_alloc(int size
)
416 struct sw_flow_actions
*sfa
;
418 if (size
> MAX_ACTIONS_BUFSIZE
)
419 return ERR_PTR(-EINVAL
);
421 sfa
= kmalloc(sizeof(*sfa
) + size
, GFP_KERNEL
);
423 return ERR_PTR(-ENOMEM
);
425 sfa
->actions_len
= 0;
429 struct sw_flow
*ovs_flow_alloc(void)
431 struct sw_flow
*flow
;
433 flow
= kmem_cache_alloc(flow_cache
, GFP_KERNEL
);
435 return ERR_PTR(-ENOMEM
);
437 spin_lock_init(&flow
->lock
);
438 flow
->sf_acts
= NULL
;
444 static struct hlist_head
*find_bucket(struct flow_table
*table
, u32 hash
)
446 hash
= jhash_1word(hash
, table
->hash_seed
);
447 return flex_array_get(table
->buckets
,
448 (hash
& (table
->n_buckets
- 1)));
451 static struct flex_array
*alloc_buckets(unsigned int n_buckets
)
453 struct flex_array
*buckets
;
456 buckets
= flex_array_alloc(sizeof(struct hlist_head
),
457 n_buckets
, GFP_KERNEL
);
461 err
= flex_array_prealloc(buckets
, 0, n_buckets
, GFP_KERNEL
);
463 flex_array_free(buckets
);
467 for (i
= 0; i
< n_buckets
; i
++)
468 INIT_HLIST_HEAD((struct hlist_head
*)
469 flex_array_get(buckets
, i
));
474 static void free_buckets(struct flex_array
*buckets
)
476 flex_array_free(buckets
);
479 static struct flow_table
*__flow_tbl_alloc(int new_size
)
481 struct flow_table
*table
= kmalloc(sizeof(*table
), GFP_KERNEL
);
486 table
->buckets
= alloc_buckets(new_size
);
488 if (!table
->buckets
) {
492 table
->n_buckets
= new_size
;
495 table
->keep_flows
= false;
496 get_random_bytes(&table
->hash_seed
, sizeof(u32
));
497 table
->mask_list
= NULL
;
502 static void __flow_tbl_destroy(struct flow_table
*table
)
506 if (table
->keep_flows
)
509 for (i
= 0; i
< table
->n_buckets
; i
++) {
510 struct sw_flow
*flow
;
511 struct hlist_head
*head
= flex_array_get(table
->buckets
, i
);
512 struct hlist_node
*n
;
513 int ver
= table
->node_ver
;
515 hlist_for_each_entry_safe(flow
, n
, head
, hash_node
[ver
]) {
516 hlist_del(&flow
->hash_node
[ver
]);
517 ovs_flow_free(flow
, false);
521 BUG_ON(!list_empty(table
->mask_list
));
522 kfree(table
->mask_list
);
525 free_buckets(table
->buckets
);
529 struct flow_table
*ovs_flow_tbl_alloc(int new_size
)
531 struct flow_table
*table
= __flow_tbl_alloc(new_size
);
536 table
->mask_list
= kmalloc(sizeof(struct list_head
), GFP_KERNEL
);
537 if (!table
->mask_list
) {
538 table
->keep_flows
= true;
539 __flow_tbl_destroy(table
);
542 INIT_LIST_HEAD(table
->mask_list
);
547 static void flow_tbl_destroy_rcu_cb(struct rcu_head
*rcu
)
549 struct flow_table
*table
= container_of(rcu
, struct flow_table
, rcu
);
551 __flow_tbl_destroy(table
);
554 void ovs_flow_tbl_destroy(struct flow_table
*table
, bool deferred
)
560 call_rcu(&table
->rcu
, flow_tbl_destroy_rcu_cb
);
562 __flow_tbl_destroy(table
);
565 struct sw_flow
*ovs_flow_dump_next(struct flow_table
*table
, u32
*bucket
, u32
*last
)
567 struct sw_flow
*flow
;
568 struct hlist_head
*head
;
572 ver
= table
->node_ver
;
573 while (*bucket
< table
->n_buckets
) {
575 head
= flex_array_get(table
->buckets
, *bucket
);
576 hlist_for_each_entry_rcu(flow
, head
, hash_node
[ver
]) {
591 static void __tbl_insert(struct flow_table
*table
, struct sw_flow
*flow
)
593 struct hlist_head
*head
;
595 head
= find_bucket(table
, flow
->hash
);
596 hlist_add_head_rcu(&flow
->hash_node
[table
->node_ver
], head
);
601 static void flow_table_copy_flows(struct flow_table
*old
, struct flow_table
*new)
606 old_ver
= old
->node_ver
;
607 new->node_ver
= !old_ver
;
609 /* Insert in new table. */
610 for (i
= 0; i
< old
->n_buckets
; i
++) {
611 struct sw_flow
*flow
;
612 struct hlist_head
*head
;
614 head
= flex_array_get(old
->buckets
, i
);
616 hlist_for_each_entry(flow
, head
, hash_node
[old_ver
])
617 __tbl_insert(new, flow
);
620 new->mask_list
= old
->mask_list
;
621 old
->keep_flows
= true;
624 static struct flow_table
*__flow_tbl_rehash(struct flow_table
*table
, int n_buckets
)
626 struct flow_table
*new_table
;
628 new_table
= __flow_tbl_alloc(n_buckets
);
630 return ERR_PTR(-ENOMEM
);
632 flow_table_copy_flows(table
, new_table
);
637 struct flow_table
*ovs_flow_tbl_rehash(struct flow_table
*table
)
639 return __flow_tbl_rehash(table
, table
->n_buckets
);
642 struct flow_table
*ovs_flow_tbl_expand(struct flow_table
*table
)
644 return __flow_tbl_rehash(table
, table
->n_buckets
* 2);
647 static void __flow_free(struct sw_flow
*flow
)
649 kfree((struct sf_flow_acts __force
*)flow
->sf_acts
);
650 kmem_cache_free(flow_cache
, flow
);
653 static void rcu_free_flow_callback(struct rcu_head
*rcu
)
655 struct sw_flow
*flow
= container_of(rcu
, struct sw_flow
, rcu
);
660 void ovs_flow_free(struct sw_flow
*flow
, bool deferred
)
665 ovs_sw_flow_mask_del_ref(flow
->mask
, deferred
);
668 call_rcu(&flow
->rcu
, rcu_free_flow_callback
);
673 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
674 * The caller must hold rcu_read_lock for this to be sensible. */
675 void ovs_flow_deferred_free_acts(struct sw_flow_actions
*sf_acts
)
677 kfree_rcu(sf_acts
, rcu
);
680 static int parse_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
683 __be16 eth_type
; /* ETH_P_8021Q */
686 struct qtag_prefix
*qp
;
688 if (unlikely(skb
->len
< sizeof(struct qtag_prefix
) + sizeof(__be16
)))
691 if (unlikely(!pskb_may_pull(skb
, sizeof(struct qtag_prefix
) +
695 qp
= (struct qtag_prefix
*) skb
->data
;
696 key
->eth
.tci
= qp
->tci
| htons(VLAN_TAG_PRESENT
);
697 __skb_pull(skb
, sizeof(struct qtag_prefix
));
702 static __be16
parse_ethertype(struct sk_buff
*skb
)
704 struct llc_snap_hdr
{
705 u8 dsap
; /* Always 0xAA */
706 u8 ssap
; /* Always 0xAA */
711 struct llc_snap_hdr
*llc
;
714 proto
= *(__be16
*) skb
->data
;
715 __skb_pull(skb
, sizeof(__be16
));
717 if (ntohs(proto
) >= ETH_P_802_3_MIN
)
720 if (skb
->len
< sizeof(struct llc_snap_hdr
))
721 return htons(ETH_P_802_2
);
723 if (unlikely(!pskb_may_pull(skb
, sizeof(struct llc_snap_hdr
))))
726 llc
= (struct llc_snap_hdr
*) skb
->data
;
727 if (llc
->dsap
!= LLC_SAP_SNAP
||
728 llc
->ssap
!= LLC_SAP_SNAP
||
729 (llc
->oui
[0] | llc
->oui
[1] | llc
->oui
[2]) != 0)
730 return htons(ETH_P_802_2
);
732 __skb_pull(skb
, sizeof(struct llc_snap_hdr
));
734 if (ntohs(llc
->ethertype
) >= ETH_P_802_3_MIN
)
735 return llc
->ethertype
;
737 return htons(ETH_P_802_2
);
740 static int parse_icmpv6(struct sk_buff
*skb
, struct sw_flow_key
*key
,
743 struct icmp6hdr
*icmp
= icmp6_hdr(skb
);
745 /* The ICMPv6 type and code fields use the 16-bit transport port
746 * fields, so we need to store them in 16-bit network byte order.
748 key
->ipv6
.tp
.src
= htons(icmp
->icmp6_type
);
749 key
->ipv6
.tp
.dst
= htons(icmp
->icmp6_code
);
751 if (icmp
->icmp6_code
== 0 &&
752 (icmp
->icmp6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
753 icmp
->icmp6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
754 int icmp_len
= skb
->len
- skb_transport_offset(skb
);
758 /* In order to process neighbor discovery options, we need the
761 if (unlikely(icmp_len
< sizeof(*nd
)))
764 if (unlikely(skb_linearize(skb
)))
767 nd
= (struct nd_msg
*)skb_transport_header(skb
);
768 key
->ipv6
.nd
.target
= nd
->target
;
770 icmp_len
-= sizeof(*nd
);
772 while (icmp_len
>= 8) {
773 struct nd_opt_hdr
*nd_opt
=
774 (struct nd_opt_hdr
*)(nd
->opt
+ offset
);
775 int opt_len
= nd_opt
->nd_opt_len
* 8;
777 if (unlikely(!opt_len
|| opt_len
> icmp_len
))
780 /* Store the link layer address if the appropriate
781 * option is provided. It is considered an error if
782 * the same link layer option is specified twice.
784 if (nd_opt
->nd_opt_type
== ND_OPT_SOURCE_LL_ADDR
786 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.sll
)))
788 memcpy(key
->ipv6
.nd
.sll
,
789 &nd
->opt
[offset
+sizeof(*nd_opt
)], ETH_ALEN
);
790 } else if (nd_opt
->nd_opt_type
== ND_OPT_TARGET_LL_ADDR
792 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.tll
)))
794 memcpy(key
->ipv6
.nd
.tll
,
795 &nd
->opt
[offset
+sizeof(*nd_opt
)], ETH_ALEN
);
806 memset(&key
->ipv6
.nd
.target
, 0, sizeof(key
->ipv6
.nd
.target
));
807 memset(key
->ipv6
.nd
.sll
, 0, sizeof(key
->ipv6
.nd
.sll
));
808 memset(key
->ipv6
.nd
.tll
, 0, sizeof(key
->ipv6
.nd
.tll
));
814 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
815 * @skb: sk_buff that contains the frame, with skb->data pointing to the
817 * @in_port: port number on which @skb was received.
818 * @key: output flow key
820 * The caller must ensure that skb->len >= ETH_HLEN.
822 * Returns 0 if successful, otherwise a negative errno value.
824 * Initializes @skb header pointers as follows:
826 * - skb->mac_header: the Ethernet header.
828 * - skb->network_header: just past the Ethernet header, or just past the
829 * VLAN header, to the first byte of the Ethernet payload.
831 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
832 * on output, then just past the IP header, if one is present and
833 * of a correct length, otherwise the same as skb->network_header.
834 * For other key->eth.type values it is left untouched.
836 int ovs_flow_extract(struct sk_buff
*skb
, u16 in_port
, struct sw_flow_key
*key
)
841 memset(key
, 0, sizeof(*key
));
843 key
->phy
.priority
= skb
->priority
;
844 if (OVS_CB(skb
)->tun_key
)
845 memcpy(&key
->tun_key
, OVS_CB(skb
)->tun_key
, sizeof(key
->tun_key
));
846 key
->phy
.in_port
= in_port
;
847 key
->phy
.skb_mark
= skb
->mark
;
849 skb_reset_mac_header(skb
);
851 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
852 * header in the linear data area.
855 memcpy(key
->eth
.src
, eth
->h_source
, ETH_ALEN
);
856 memcpy(key
->eth
.dst
, eth
->h_dest
, ETH_ALEN
);
858 __skb_pull(skb
, 2 * ETH_ALEN
);
859 /* We are going to push all headers that we pull, so no need to
860 * update skb->csum here.
863 if (vlan_tx_tag_present(skb
))
864 key
->eth
.tci
= htons(skb
->vlan_tci
);
865 else if (eth
->h_proto
== htons(ETH_P_8021Q
))
866 if (unlikely(parse_vlan(skb
, key
)))
869 key
->eth
.type
= parse_ethertype(skb
);
870 if (unlikely(key
->eth
.type
== htons(0)))
873 skb_reset_network_header(skb
);
874 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
877 if (key
->eth
.type
== htons(ETH_P_IP
)) {
881 error
= check_iphdr(skb
);
882 if (unlikely(error
)) {
883 if (error
== -EINVAL
) {
884 skb
->transport_header
= skb
->network_header
;
891 key
->ipv4
.addr
.src
= nh
->saddr
;
892 key
->ipv4
.addr
.dst
= nh
->daddr
;
894 key
->ip
.proto
= nh
->protocol
;
895 key
->ip
.tos
= nh
->tos
;
896 key
->ip
.ttl
= nh
->ttl
;
898 offset
= nh
->frag_off
& htons(IP_OFFSET
);
900 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
903 if (nh
->frag_off
& htons(IP_MF
) ||
904 skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
905 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
907 /* Transport layer. */
908 if (key
->ip
.proto
== IPPROTO_TCP
) {
909 if (tcphdr_ok(skb
)) {
910 struct tcphdr
*tcp
= tcp_hdr(skb
);
911 key
->ipv4
.tp
.src
= tcp
->source
;
912 key
->ipv4
.tp
.dst
= tcp
->dest
;
914 } else if (key
->ip
.proto
== IPPROTO_UDP
) {
915 if (udphdr_ok(skb
)) {
916 struct udphdr
*udp
= udp_hdr(skb
);
917 key
->ipv4
.tp
.src
= udp
->source
;
918 key
->ipv4
.tp
.dst
= udp
->dest
;
920 } else if (key
->ip
.proto
== IPPROTO_SCTP
) {
921 if (sctphdr_ok(skb
)) {
922 struct sctphdr
*sctp
= sctp_hdr(skb
);
923 key
->ipv4
.tp
.src
= sctp
->source
;
924 key
->ipv4
.tp
.dst
= sctp
->dest
;
926 } else if (key
->ip
.proto
== IPPROTO_ICMP
) {
927 if (icmphdr_ok(skb
)) {
928 struct icmphdr
*icmp
= icmp_hdr(skb
);
929 /* The ICMP type and code fields use the 16-bit
930 * transport port fields, so we need to store
931 * them in 16-bit network byte order. */
932 key
->ipv4
.tp
.src
= htons(icmp
->type
);
933 key
->ipv4
.tp
.dst
= htons(icmp
->code
);
937 } else if ((key
->eth
.type
== htons(ETH_P_ARP
) ||
938 key
->eth
.type
== htons(ETH_P_RARP
)) && arphdr_ok(skb
)) {
939 struct arp_eth_header
*arp
;
941 arp
= (struct arp_eth_header
*)skb_network_header(skb
);
943 if (arp
->ar_hrd
== htons(ARPHRD_ETHER
)
944 && arp
->ar_pro
== htons(ETH_P_IP
)
945 && arp
->ar_hln
== ETH_ALEN
946 && arp
->ar_pln
== 4) {
948 /* We only match on the lower 8 bits of the opcode. */
949 if (ntohs(arp
->ar_op
) <= 0xff)
950 key
->ip
.proto
= ntohs(arp
->ar_op
);
951 memcpy(&key
->ipv4
.addr
.src
, arp
->ar_sip
, sizeof(key
->ipv4
.addr
.src
));
952 memcpy(&key
->ipv4
.addr
.dst
, arp
->ar_tip
, sizeof(key
->ipv4
.addr
.dst
));
953 memcpy(key
->ipv4
.arp
.sha
, arp
->ar_sha
, ETH_ALEN
);
954 memcpy(key
->ipv4
.arp
.tha
, arp
->ar_tha
, ETH_ALEN
);
956 } else if (key
->eth
.type
== htons(ETH_P_IPV6
)) {
957 int nh_len
; /* IPv6 Header + Extensions */
959 nh_len
= parse_ipv6hdr(skb
, key
);
960 if (unlikely(nh_len
< 0)) {
961 if (nh_len
== -EINVAL
) {
962 skb
->transport_header
= skb
->network_header
;
970 if (key
->ip
.frag
== OVS_FRAG_TYPE_LATER
)
972 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
973 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
975 /* Transport layer. */
976 if (key
->ip
.proto
== NEXTHDR_TCP
) {
977 if (tcphdr_ok(skb
)) {
978 struct tcphdr
*tcp
= tcp_hdr(skb
);
979 key
->ipv6
.tp
.src
= tcp
->source
;
980 key
->ipv6
.tp
.dst
= tcp
->dest
;
982 } else if (key
->ip
.proto
== NEXTHDR_UDP
) {
983 if (udphdr_ok(skb
)) {
984 struct udphdr
*udp
= udp_hdr(skb
);
985 key
->ipv6
.tp
.src
= udp
->source
;
986 key
->ipv6
.tp
.dst
= udp
->dest
;
988 } else if (key
->ip
.proto
== NEXTHDR_SCTP
) {
989 if (sctphdr_ok(skb
)) {
990 struct sctphdr
*sctp
= sctp_hdr(skb
);
991 key
->ipv6
.tp
.src
= sctp
->source
;
992 key
->ipv6
.tp
.dst
= sctp
->dest
;
994 } else if (key
->ip
.proto
== NEXTHDR_ICMP
) {
995 if (icmp6hdr_ok(skb
)) {
996 error
= parse_icmpv6(skb
, key
, nh_len
);
1006 static u32
ovs_flow_hash(const struct sw_flow_key
*key
, int key_start
,
1009 u32
*hash_key
= (u32
*)((u8
*)key
+ key_start
);
1010 int hash_u32s
= (key_end
- key_start
) >> 2;
1012 /* Make sure number of hash bytes are multiple of u32. */
1013 BUILD_BUG_ON(sizeof(long) % sizeof(u32
));
1015 return jhash2(hash_key
, hash_u32s
, 0);
1018 static int flow_key_start(const struct sw_flow_key
*key
)
1020 if (key
->tun_key
.ipv4_dst
)
1023 return rounddown(offsetof(struct sw_flow_key
, phy
),
1027 static bool __cmp_key(const struct sw_flow_key
*key1
,
1028 const struct sw_flow_key
*key2
, int key_start
, int key_end
)
1030 const long *cp1
= (long *)((u8
*)key1
+ key_start
);
1031 const long *cp2
= (long *)((u8
*)key2
+ key_start
);
1035 for (i
= key_start
; i
< key_end
; i
+= sizeof(long))
1036 diffs
|= *cp1
++ ^ *cp2
++;
1041 static bool __flow_cmp_masked_key(const struct sw_flow
*flow
,
1042 const struct sw_flow_key
*key
, int key_start
, int key_end
)
1044 return __cmp_key(&flow
->key
, key
, key_start
, key_end
);
1047 static bool __flow_cmp_unmasked_key(const struct sw_flow
*flow
,
1048 const struct sw_flow_key
*key
, int key_start
, int key_end
)
1050 return __cmp_key(&flow
->unmasked_key
, key
, key_start
, key_end
);
1053 bool ovs_flow_cmp_unmasked_key(const struct sw_flow
*flow
,
1054 const struct sw_flow_key
*key
, int key_end
)
1057 key_start
= flow_key_start(key
);
1059 return __flow_cmp_unmasked_key(flow
, key
, key_start
, key_end
);
1063 struct sw_flow
*ovs_flow_lookup_unmasked_key(struct flow_table
*table
,
1064 struct sw_flow_match
*match
)
1066 struct sw_flow_key
*unmasked
= match
->key
;
1067 int key_end
= match
->range
.end
;
1068 struct sw_flow
*flow
;
1070 flow
= ovs_flow_lookup(table
, unmasked
);
1071 if (flow
&& (!ovs_flow_cmp_unmasked_key(flow
, unmasked
, key_end
)))
1077 static struct sw_flow
*ovs_masked_flow_lookup(struct flow_table
*table
,
1078 const struct sw_flow_key
*unmasked
,
1079 struct sw_flow_mask
*mask
)
1081 struct sw_flow
*flow
;
1082 struct hlist_head
*head
;
1083 int key_start
= mask
->range
.start
;
1084 int key_end
= mask
->range
.end
;
1086 struct sw_flow_key masked_key
;
1088 ovs_flow_key_mask(&masked_key
, unmasked
, mask
);
1089 hash
= ovs_flow_hash(&masked_key
, key_start
, key_end
);
1090 head
= find_bucket(table
, hash
);
1091 hlist_for_each_entry_rcu(flow
, head
, hash_node
[table
->node_ver
]) {
1092 if (flow
->mask
== mask
&&
1093 __flow_cmp_masked_key(flow
, &masked_key
,
1094 key_start
, key_end
))
1100 struct sw_flow
*ovs_flow_lookup(struct flow_table
*tbl
,
1101 const struct sw_flow_key
*key
)
1103 struct sw_flow
*flow
= NULL
;
1104 struct sw_flow_mask
*mask
;
1106 list_for_each_entry_rcu(mask
, tbl
->mask_list
, list
) {
1107 flow
= ovs_masked_flow_lookup(tbl
, key
, mask
);
1108 if (flow
) /* Found */
1116 void ovs_flow_insert(struct flow_table
*table
, struct sw_flow
*flow
)
1118 flow
->hash
= ovs_flow_hash(&flow
->key
, flow
->mask
->range
.start
,
1119 flow
->mask
->range
.end
);
1120 __tbl_insert(table
, flow
);
1123 void ovs_flow_remove(struct flow_table
*table
, struct sw_flow
*flow
)
1125 BUG_ON(table
->count
== 0);
1126 hlist_del_rcu(&flow
->hash_node
[table
->node_ver
]);
1130 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
1131 const int ovs_key_lens
[OVS_KEY_ATTR_MAX
+ 1] = {
1132 [OVS_KEY_ATTR_ENCAP
] = -1,
1133 [OVS_KEY_ATTR_PRIORITY
] = sizeof(u32
),
1134 [OVS_KEY_ATTR_IN_PORT
] = sizeof(u32
),
1135 [OVS_KEY_ATTR_SKB_MARK
] = sizeof(u32
),
1136 [OVS_KEY_ATTR_ETHERNET
] = sizeof(struct ovs_key_ethernet
),
1137 [OVS_KEY_ATTR_VLAN
] = sizeof(__be16
),
1138 [OVS_KEY_ATTR_ETHERTYPE
] = sizeof(__be16
),
1139 [OVS_KEY_ATTR_IPV4
] = sizeof(struct ovs_key_ipv4
),
1140 [OVS_KEY_ATTR_IPV6
] = sizeof(struct ovs_key_ipv6
),
1141 [OVS_KEY_ATTR_TCP
] = sizeof(struct ovs_key_tcp
),
1142 [OVS_KEY_ATTR_UDP
] = sizeof(struct ovs_key_udp
),
1143 [OVS_KEY_ATTR_SCTP
] = sizeof(struct ovs_key_sctp
),
1144 [OVS_KEY_ATTR_ICMP
] = sizeof(struct ovs_key_icmp
),
1145 [OVS_KEY_ATTR_ICMPV6
] = sizeof(struct ovs_key_icmpv6
),
1146 [OVS_KEY_ATTR_ARP
] = sizeof(struct ovs_key_arp
),
1147 [OVS_KEY_ATTR_ND
] = sizeof(struct ovs_key_nd
),
1148 [OVS_KEY_ATTR_TUNNEL
] = -1,
1151 static bool is_all_zero(const u8
*fp
, size_t size
)
1158 for (i
= 0; i
< size
; i
++)
1165 static int __parse_flow_nlattrs(const struct nlattr
*attr
,
1166 const struct nlattr
*a
[],
1167 u64
*attrsp
, bool nz
)
1169 const struct nlattr
*nla
;
1174 nla_for_each_nested(nla
, attr
, rem
) {
1175 u16 type
= nla_type(nla
);
1178 if (type
> OVS_KEY_ATTR_MAX
) {
1179 OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
1180 type
, OVS_KEY_ATTR_MAX
);
1184 if (attrs
& (1 << type
)) {
1185 OVS_NLERR("Duplicate key attribute (type %d).\n", type
);
1189 expected_len
= ovs_key_lens
[type
];
1190 if (nla_len(nla
) != expected_len
&& expected_len
!= -1) {
1191 OVS_NLERR("Key attribute has unexpected length (type=%d"
1192 ", length=%d, expected=%d).\n", type
,
1193 nla_len(nla
), expected_len
);
1197 if (!nz
|| !is_all_zero(nla_data(nla
), expected_len
)) {
1203 OVS_NLERR("Message has %d unknown bytes.\n", rem
);
1211 static int parse_flow_mask_nlattrs(const struct nlattr
*attr
,
1212 const struct nlattr
*a
[], u64
*attrsp
)
1214 return __parse_flow_nlattrs(attr
, a
, attrsp
, true);
1217 static int parse_flow_nlattrs(const struct nlattr
*attr
,
1218 const struct nlattr
*a
[], u64
*attrsp
)
1220 return __parse_flow_nlattrs(attr
, a
, attrsp
, false);
1223 int ovs_ipv4_tun_from_nlattr(const struct nlattr
*attr
,
1224 struct sw_flow_match
*match
, bool is_mask
)
1229 __be16 tun_flags
= 0;
1231 nla_for_each_nested(a
, attr
, rem
) {
1232 int type
= nla_type(a
);
1233 static const u32 ovs_tunnel_key_lens
[OVS_TUNNEL_KEY_ATTR_MAX
+ 1] = {
1234 [OVS_TUNNEL_KEY_ATTR_ID
] = sizeof(u64
),
1235 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC
] = sizeof(u32
),
1236 [OVS_TUNNEL_KEY_ATTR_IPV4_DST
] = sizeof(u32
),
1237 [OVS_TUNNEL_KEY_ATTR_TOS
] = 1,
1238 [OVS_TUNNEL_KEY_ATTR_TTL
] = 1,
1239 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT
] = 0,
1240 [OVS_TUNNEL_KEY_ATTR_CSUM
] = 0,
1243 if (type
> OVS_TUNNEL_KEY_ATTR_MAX
) {
1244 OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
1245 type
, OVS_TUNNEL_KEY_ATTR_MAX
);
1249 if (ovs_tunnel_key_lens
[type
] != nla_len(a
)) {
1250 OVS_NLERR("IPv4 tunnel attribute type has unexpected "
1251 " length (type=%d, length=%d, expected=%d).\n",
1252 type
, nla_len(a
), ovs_tunnel_key_lens
[type
]);
1257 case OVS_TUNNEL_KEY_ATTR_ID
:
1258 SW_FLOW_KEY_PUT(match
, tun_key
.tun_id
,
1259 nla_get_be64(a
), is_mask
);
1260 tun_flags
|= TUNNEL_KEY
;
1262 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC
:
1263 SW_FLOW_KEY_PUT(match
, tun_key
.ipv4_src
,
1264 nla_get_be32(a
), is_mask
);
1266 case OVS_TUNNEL_KEY_ATTR_IPV4_DST
:
1267 SW_FLOW_KEY_PUT(match
, tun_key
.ipv4_dst
,
1268 nla_get_be32(a
), is_mask
);
1270 case OVS_TUNNEL_KEY_ATTR_TOS
:
1271 SW_FLOW_KEY_PUT(match
, tun_key
.ipv4_tos
,
1272 nla_get_u8(a
), is_mask
);
1274 case OVS_TUNNEL_KEY_ATTR_TTL
:
1275 SW_FLOW_KEY_PUT(match
, tun_key
.ipv4_ttl
,
1276 nla_get_u8(a
), is_mask
);
1279 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT
:
1280 tun_flags
|= TUNNEL_DONT_FRAGMENT
;
1282 case OVS_TUNNEL_KEY_ATTR_CSUM
:
1283 tun_flags
|= TUNNEL_CSUM
;
1290 SW_FLOW_KEY_PUT(match
, tun_key
.tun_flags
, tun_flags
, is_mask
);
1293 OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem
);
1298 if (!match
->key
->tun_key
.ipv4_dst
) {
1299 OVS_NLERR("IPv4 tunnel destination address is zero.\n");
1304 OVS_NLERR("IPv4 tunnel TTL not specified.\n");
1312 int ovs_ipv4_tun_to_nlattr(struct sk_buff
*skb
,
1313 const struct ovs_key_ipv4_tunnel
*tun_key
,
1314 const struct ovs_key_ipv4_tunnel
*output
)
1318 nla
= nla_nest_start(skb
, OVS_KEY_ATTR_TUNNEL
);
1322 if (output
->tun_flags
& TUNNEL_KEY
&&
1323 nla_put_be64(skb
, OVS_TUNNEL_KEY_ATTR_ID
, output
->tun_id
))
1325 if (output
->ipv4_src
&&
1326 nla_put_be32(skb
, OVS_TUNNEL_KEY_ATTR_IPV4_SRC
, output
->ipv4_src
))
1328 if (output
->ipv4_dst
&&
1329 nla_put_be32(skb
, OVS_TUNNEL_KEY_ATTR_IPV4_DST
, output
->ipv4_dst
))
1331 if (output
->ipv4_tos
&&
1332 nla_put_u8(skb
, OVS_TUNNEL_KEY_ATTR_TOS
, output
->ipv4_tos
))
1334 if (nla_put_u8(skb
, OVS_TUNNEL_KEY_ATTR_TTL
, output
->ipv4_ttl
))
1336 if ((output
->tun_flags
& TUNNEL_DONT_FRAGMENT
) &&
1337 nla_put_flag(skb
, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT
))
1339 if ((output
->tun_flags
& TUNNEL_CSUM
) &&
1340 nla_put_flag(skb
, OVS_TUNNEL_KEY_ATTR_CSUM
))
1343 nla_nest_end(skb
, nla
);
1347 static int metadata_from_nlattrs(struct sw_flow_match
*match
, u64
*attrs
,
1348 const struct nlattr
**a
, bool is_mask
)
1350 if (*attrs
& (1 << OVS_KEY_ATTR_PRIORITY
)) {
1351 SW_FLOW_KEY_PUT(match
, phy
.priority
,
1352 nla_get_u32(a
[OVS_KEY_ATTR_PRIORITY
]), is_mask
);
1353 *attrs
&= ~(1 << OVS_KEY_ATTR_PRIORITY
);
1356 if (*attrs
& (1 << OVS_KEY_ATTR_IN_PORT
)) {
1357 u32 in_port
= nla_get_u32(a
[OVS_KEY_ATTR_IN_PORT
]);
1360 in_port
= 0xffffffff; /* Always exact match in_port. */
1361 else if (in_port
>= DP_MAX_PORTS
)
1364 SW_FLOW_KEY_PUT(match
, phy
.in_port
, in_port
, is_mask
);
1365 *attrs
&= ~(1 << OVS_KEY_ATTR_IN_PORT
);
1366 } else if (!is_mask
) {
1367 SW_FLOW_KEY_PUT(match
, phy
.in_port
, DP_MAX_PORTS
, is_mask
);
1370 if (*attrs
& (1 << OVS_KEY_ATTR_SKB_MARK
)) {
1371 uint32_t mark
= nla_get_u32(a
[OVS_KEY_ATTR_SKB_MARK
]);
1373 SW_FLOW_KEY_PUT(match
, phy
.skb_mark
, mark
, is_mask
);
1374 *attrs
&= ~(1 << OVS_KEY_ATTR_SKB_MARK
);
1376 if (*attrs
& (1 << OVS_KEY_ATTR_TUNNEL
)) {
1377 if (ovs_ipv4_tun_from_nlattr(a
[OVS_KEY_ATTR_TUNNEL
], match
,
1380 *attrs
&= ~(1 << OVS_KEY_ATTR_TUNNEL
);
1385 static int ovs_key_from_nlattrs(struct sw_flow_match
*match
, u64 attrs
,
1386 const struct nlattr
**a
, bool is_mask
)
1389 u64 orig_attrs
= attrs
;
1391 err
= metadata_from_nlattrs(match
, &attrs
, a
, is_mask
);
1395 if (attrs
& (1 << OVS_KEY_ATTR_ETHERNET
)) {
1396 const struct ovs_key_ethernet
*eth_key
;
1398 eth_key
= nla_data(a
[OVS_KEY_ATTR_ETHERNET
]);
1399 SW_FLOW_KEY_MEMCPY(match
, eth
.src
,
1400 eth_key
->eth_src
, ETH_ALEN
, is_mask
);
1401 SW_FLOW_KEY_MEMCPY(match
, eth
.dst
,
1402 eth_key
->eth_dst
, ETH_ALEN
, is_mask
);
1403 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERNET
);
1406 if (attrs
& (1 << OVS_KEY_ATTR_VLAN
)) {
1409 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
1410 if (!(tci
& htons(VLAN_TAG_PRESENT
))) {
1412 OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
1414 OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
1419 SW_FLOW_KEY_PUT(match
, eth
.tci
, tci
, is_mask
);
1420 attrs
&= ~(1 << OVS_KEY_ATTR_VLAN
);
1421 } else if (!is_mask
)
1422 SW_FLOW_KEY_PUT(match
, eth
.tci
, htons(0xffff), true);
1424 if (attrs
& (1 << OVS_KEY_ATTR_ETHERTYPE
)) {
1427 eth_type
= nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]);
1429 /* Always exact match EtherType. */
1430 eth_type
= htons(0xffff);
1431 } else if (ntohs(eth_type
) < ETH_P_802_3_MIN
) {
1432 OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
1433 ntohs(eth_type
), ETH_P_802_3_MIN
);
1437 SW_FLOW_KEY_PUT(match
, eth
.type
, eth_type
, is_mask
);
1438 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
1439 } else if (!is_mask
) {
1440 SW_FLOW_KEY_PUT(match
, eth
.type
, htons(ETH_P_802_2
), is_mask
);
1443 if (attrs
& (1 << OVS_KEY_ATTR_IPV4
)) {
1444 const struct ovs_key_ipv4
*ipv4_key
;
1446 ipv4_key
= nla_data(a
[OVS_KEY_ATTR_IPV4
]);
1447 if (!is_mask
&& ipv4_key
->ipv4_frag
> OVS_FRAG_TYPE_MAX
) {
1448 OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
1449 ipv4_key
->ipv4_frag
, OVS_FRAG_TYPE_MAX
);
1452 SW_FLOW_KEY_PUT(match
, ip
.proto
,
1453 ipv4_key
->ipv4_proto
, is_mask
);
1454 SW_FLOW_KEY_PUT(match
, ip
.tos
,
1455 ipv4_key
->ipv4_tos
, is_mask
);
1456 SW_FLOW_KEY_PUT(match
, ip
.ttl
,
1457 ipv4_key
->ipv4_ttl
, is_mask
);
1458 SW_FLOW_KEY_PUT(match
, ip
.frag
,
1459 ipv4_key
->ipv4_frag
, is_mask
);
1460 SW_FLOW_KEY_PUT(match
, ipv4
.addr
.src
,
1461 ipv4_key
->ipv4_src
, is_mask
);
1462 SW_FLOW_KEY_PUT(match
, ipv4
.addr
.dst
,
1463 ipv4_key
->ipv4_dst
, is_mask
);
1464 attrs
&= ~(1 << OVS_KEY_ATTR_IPV4
);
1467 if (attrs
& (1 << OVS_KEY_ATTR_IPV6
)) {
1468 const struct ovs_key_ipv6
*ipv6_key
;
1470 ipv6_key
= nla_data(a
[OVS_KEY_ATTR_IPV6
]);
1471 if (!is_mask
&& ipv6_key
->ipv6_frag
> OVS_FRAG_TYPE_MAX
) {
1472 OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
1473 ipv6_key
->ipv6_frag
, OVS_FRAG_TYPE_MAX
);
1476 SW_FLOW_KEY_PUT(match
, ipv6
.label
,
1477 ipv6_key
->ipv6_label
, is_mask
);
1478 SW_FLOW_KEY_PUT(match
, ip
.proto
,
1479 ipv6_key
->ipv6_proto
, is_mask
);
1480 SW_FLOW_KEY_PUT(match
, ip
.tos
,
1481 ipv6_key
->ipv6_tclass
, is_mask
);
1482 SW_FLOW_KEY_PUT(match
, ip
.ttl
,
1483 ipv6_key
->ipv6_hlimit
, is_mask
);
1484 SW_FLOW_KEY_PUT(match
, ip
.frag
,
1485 ipv6_key
->ipv6_frag
, is_mask
);
1486 SW_FLOW_KEY_MEMCPY(match
, ipv6
.addr
.src
,
1488 sizeof(match
->key
->ipv6
.addr
.src
),
1490 SW_FLOW_KEY_MEMCPY(match
, ipv6
.addr
.dst
,
1492 sizeof(match
->key
->ipv6
.addr
.dst
),
1495 attrs
&= ~(1 << OVS_KEY_ATTR_IPV6
);
1498 if (attrs
& (1 << OVS_KEY_ATTR_ARP
)) {
1499 const struct ovs_key_arp
*arp_key
;
1501 arp_key
= nla_data(a
[OVS_KEY_ATTR_ARP
]);
1502 if (!is_mask
&& (arp_key
->arp_op
& htons(0xff00))) {
1503 OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
1508 SW_FLOW_KEY_PUT(match
, ipv4
.addr
.src
,
1509 arp_key
->arp_sip
, is_mask
);
1510 SW_FLOW_KEY_PUT(match
, ipv4
.addr
.dst
,
1511 arp_key
->arp_tip
, is_mask
);
1512 SW_FLOW_KEY_PUT(match
, ip
.proto
,
1513 ntohs(arp_key
->arp_op
), is_mask
);
1514 SW_FLOW_KEY_MEMCPY(match
, ipv4
.arp
.sha
,
1515 arp_key
->arp_sha
, ETH_ALEN
, is_mask
);
1516 SW_FLOW_KEY_MEMCPY(match
, ipv4
.arp
.tha
,
1517 arp_key
->arp_tha
, ETH_ALEN
, is_mask
);
1519 attrs
&= ~(1 << OVS_KEY_ATTR_ARP
);
1522 if (attrs
& (1 << OVS_KEY_ATTR_TCP
)) {
1523 const struct ovs_key_tcp
*tcp_key
;
1525 tcp_key
= nla_data(a
[OVS_KEY_ATTR_TCP
]);
1526 if (orig_attrs
& (1 << OVS_KEY_ATTR_IPV4
)) {
1527 SW_FLOW_KEY_PUT(match
, ipv4
.tp
.src
,
1528 tcp_key
->tcp_src
, is_mask
);
1529 SW_FLOW_KEY_PUT(match
, ipv4
.tp
.dst
,
1530 tcp_key
->tcp_dst
, is_mask
);
1532 SW_FLOW_KEY_PUT(match
, ipv6
.tp
.src
,
1533 tcp_key
->tcp_src
, is_mask
);
1534 SW_FLOW_KEY_PUT(match
, ipv6
.tp
.dst
,
1535 tcp_key
->tcp_dst
, is_mask
);
1537 attrs
&= ~(1 << OVS_KEY_ATTR_TCP
);
1540 if (attrs
& (1 << OVS_KEY_ATTR_UDP
)) {
1541 const struct ovs_key_udp
*udp_key
;
1543 udp_key
= nla_data(a
[OVS_KEY_ATTR_UDP
]);
1544 if (orig_attrs
& (1 << OVS_KEY_ATTR_IPV4
)) {
1545 SW_FLOW_KEY_PUT(match
, ipv4
.tp
.src
,
1546 udp_key
->udp_src
, is_mask
);
1547 SW_FLOW_KEY_PUT(match
, ipv4
.tp
.dst
,
1548 udp_key
->udp_dst
, is_mask
);
1550 SW_FLOW_KEY_PUT(match
, ipv6
.tp
.src
,
1551 udp_key
->udp_src
, is_mask
);
1552 SW_FLOW_KEY_PUT(match
, ipv6
.tp
.dst
,
1553 udp_key
->udp_dst
, is_mask
);
1555 attrs
&= ~(1 << OVS_KEY_ATTR_UDP
);
1558 if (attrs
& (1 << OVS_KEY_ATTR_SCTP
)) {
1559 const struct ovs_key_sctp
*sctp_key
;
1561 sctp_key
= nla_data(a
[OVS_KEY_ATTR_SCTP
]);
1562 if (orig_attrs
& (1 << OVS_KEY_ATTR_IPV4
)) {
1563 SW_FLOW_KEY_PUT(match
, ipv4
.tp
.src
,
1564 sctp_key
->sctp_src
, is_mask
);
1565 SW_FLOW_KEY_PUT(match
, ipv4
.tp
.dst
,
1566 sctp_key
->sctp_dst
, is_mask
);
1568 SW_FLOW_KEY_PUT(match
, ipv6
.tp
.src
,
1569 sctp_key
->sctp_src
, is_mask
);
1570 SW_FLOW_KEY_PUT(match
, ipv6
.tp
.dst
,
1571 sctp_key
->sctp_dst
, is_mask
);
1573 attrs
&= ~(1 << OVS_KEY_ATTR_SCTP
);
1576 if (attrs
& (1 << OVS_KEY_ATTR_ICMP
)) {
1577 const struct ovs_key_icmp
*icmp_key
;
1579 icmp_key
= nla_data(a
[OVS_KEY_ATTR_ICMP
]);
1580 SW_FLOW_KEY_PUT(match
, ipv4
.tp
.src
,
1581 htons(icmp_key
->icmp_type
), is_mask
);
1582 SW_FLOW_KEY_PUT(match
, ipv4
.tp
.dst
,
1583 htons(icmp_key
->icmp_code
), is_mask
);
1584 attrs
&= ~(1 << OVS_KEY_ATTR_ICMP
);
1587 if (attrs
& (1 << OVS_KEY_ATTR_ICMPV6
)) {
1588 const struct ovs_key_icmpv6
*icmpv6_key
;
1590 icmpv6_key
= nla_data(a
[OVS_KEY_ATTR_ICMPV6
]);
1591 SW_FLOW_KEY_PUT(match
, ipv6
.tp
.src
,
1592 htons(icmpv6_key
->icmpv6_type
), is_mask
);
1593 SW_FLOW_KEY_PUT(match
, ipv6
.tp
.dst
,
1594 htons(icmpv6_key
->icmpv6_code
), is_mask
);
1595 attrs
&= ~(1 << OVS_KEY_ATTR_ICMPV6
);
1598 if (attrs
& (1 << OVS_KEY_ATTR_ND
)) {
1599 const struct ovs_key_nd
*nd_key
;
1601 nd_key
= nla_data(a
[OVS_KEY_ATTR_ND
]);
1602 SW_FLOW_KEY_MEMCPY(match
, ipv6
.nd
.target
,
1604 sizeof(match
->key
->ipv6
.nd
.target
),
1606 SW_FLOW_KEY_MEMCPY(match
, ipv6
.nd
.sll
,
1607 nd_key
->nd_sll
, ETH_ALEN
, is_mask
);
1608 SW_FLOW_KEY_MEMCPY(match
, ipv6
.nd
.tll
,
1609 nd_key
->nd_tll
, ETH_ALEN
, is_mask
);
1610 attrs
&= ~(1 << OVS_KEY_ATTR_ND
);
1620 * ovs_match_from_nlattrs - parses Netlink attributes into a flow key and
1621 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1622 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1623 * does not include any don't care bit.
1624 * @match: receives the extracted flow match information.
1625 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1626 * sequence. The fields should of the packet that triggered the creation
1628 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1629 * attribute specifies the mask field of the wildcarded flow.
1631 int ovs_match_from_nlattrs(struct sw_flow_match
*match
,
1632 const struct nlattr
*key
,
1633 const struct nlattr
*mask
)
1635 const struct nlattr
*a
[OVS_KEY_ATTR_MAX
+ 1];
1636 const struct nlattr
*encap
;
1639 bool encap_valid
= false;
1642 err
= parse_flow_nlattrs(key
, a
, &key_attrs
);
1646 if ((key_attrs
& (1 << OVS_KEY_ATTR_ETHERNET
)) &&
1647 (key_attrs
& (1 << OVS_KEY_ATTR_ETHERTYPE
)) &&
1648 (nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]) == htons(ETH_P_8021Q
))) {
1651 if (!((key_attrs
& (1 << OVS_KEY_ATTR_VLAN
)) &&
1652 (key_attrs
& (1 << OVS_KEY_ATTR_ENCAP
)))) {
1653 OVS_NLERR("Invalid Vlan frame.\n");
1657 key_attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
1658 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
1659 encap
= a
[OVS_KEY_ATTR_ENCAP
];
1660 key_attrs
&= ~(1 << OVS_KEY_ATTR_ENCAP
);
1663 if (tci
& htons(VLAN_TAG_PRESENT
)) {
1664 err
= parse_flow_nlattrs(encap
, a
, &key_attrs
);
1668 /* Corner case for truncated 802.1Q header. */
1669 if (nla_len(encap
)) {
1670 OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
1674 OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
1679 err
= ovs_key_from_nlattrs(match
, key_attrs
, a
, false);
1684 err
= parse_flow_mask_nlattrs(mask
, a
, &mask_attrs
);
1688 if (mask_attrs
& 1ULL << OVS_KEY_ATTR_ENCAP
) {
1689 __be16 eth_type
= 0;
1693 OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
1697 mask_attrs
&= ~(1 << OVS_KEY_ATTR_ENCAP
);
1698 if (a
[OVS_KEY_ATTR_ETHERTYPE
])
1699 eth_type
= nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]);
1701 if (eth_type
== htons(0xffff)) {
1702 mask_attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
1703 encap
= a
[OVS_KEY_ATTR_ENCAP
];
1704 err
= parse_flow_mask_nlattrs(encap
, a
, &mask_attrs
);
1706 OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
1711 if (a
[OVS_KEY_ATTR_VLAN
])
1712 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
1714 if (!(tci
& htons(VLAN_TAG_PRESENT
))) {
1715 OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci
));
1720 err
= ovs_key_from_nlattrs(match
, mask_attrs
, a
, true);
1724 /* Populate exact match flow's key mask. */
1726 ovs_sw_flow_mask_set(match
->mask
, &match
->range
, 0xff);
1729 if (!ovs_match_validate(match
, key_attrs
, mask_attrs
))
1736 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1737 * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
1738 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1741 * This parses a series of Netlink attributes that form a flow key, which must
1742 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1743 * get the metadata, that is, the parts of the flow key that cannot be
1744 * extracted from the packet itself.
1747 int ovs_flow_metadata_from_nlattrs(struct sw_flow
*flow
,
1748 const struct nlattr
*attr
)
1750 struct ovs_key_ipv4_tunnel
*tun_key
= &flow
->key
.tun_key
;
1751 const struct nlattr
*a
[OVS_KEY_ATTR_MAX
+ 1];
1754 struct sw_flow_match match
;
1756 flow
->key
.phy
.in_port
= DP_MAX_PORTS
;
1757 flow
->key
.phy
.priority
= 0;
1758 flow
->key
.phy
.skb_mark
= 0;
1759 memset(tun_key
, 0, sizeof(flow
->key
.tun_key
));
1761 err
= parse_flow_nlattrs(attr
, a
, &attrs
);
1765 memset(&match
, 0, sizeof(match
));
1766 match
.key
= &flow
->key
;
1768 err
= metadata_from_nlattrs(&match
, &attrs
, a
, false);
1775 int ovs_flow_to_nlattrs(const struct sw_flow_key
*swkey
,
1776 const struct sw_flow_key
*output
, struct sk_buff
*skb
)
1778 struct ovs_key_ethernet
*eth_key
;
1779 struct nlattr
*nla
, *encap
;
1780 bool is_mask
= (swkey
!= output
);
1782 if (nla_put_u32(skb
, OVS_KEY_ATTR_PRIORITY
, output
->phy
.priority
))
1783 goto nla_put_failure
;
1785 if ((swkey
->tun_key
.ipv4_dst
|| is_mask
) &&
1786 ovs_ipv4_tun_to_nlattr(skb
, &swkey
->tun_key
, &output
->tun_key
))
1787 goto nla_put_failure
;
1789 if (swkey
->phy
.in_port
== DP_MAX_PORTS
) {
1790 if (is_mask
&& (output
->phy
.in_port
== 0xffff))
1791 if (nla_put_u32(skb
, OVS_KEY_ATTR_IN_PORT
, 0xffffffff))
1792 goto nla_put_failure
;
1795 upper_u16
= !is_mask
? 0 : 0xffff;
1797 if (nla_put_u32(skb
, OVS_KEY_ATTR_IN_PORT
,
1798 (upper_u16
<< 16) | output
->phy
.in_port
))
1799 goto nla_put_failure
;
1802 if (nla_put_u32(skb
, OVS_KEY_ATTR_SKB_MARK
, output
->phy
.skb_mark
))
1803 goto nla_put_failure
;
1805 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ETHERNET
, sizeof(*eth_key
));
1807 goto nla_put_failure
;
1809 eth_key
= nla_data(nla
);
1810 memcpy(eth_key
->eth_src
, output
->eth
.src
, ETH_ALEN
);
1811 memcpy(eth_key
->eth_dst
, output
->eth
.dst
, ETH_ALEN
);
1813 if (swkey
->eth
.tci
|| swkey
->eth
.type
== htons(ETH_P_8021Q
)) {
1815 eth_type
= !is_mask
? htons(ETH_P_8021Q
) : htons(0xffff);
1816 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
, eth_type
) ||
1817 nla_put_be16(skb
, OVS_KEY_ATTR_VLAN
, output
->eth
.tci
))
1818 goto nla_put_failure
;
1819 encap
= nla_nest_start(skb
, OVS_KEY_ATTR_ENCAP
);
1820 if (!swkey
->eth
.tci
)
1825 if (swkey
->eth
.type
== htons(ETH_P_802_2
)) {
1827 * Ethertype 802.2 is represented in the netlink with omitted
1828 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1829 * 0xffff in the mask attribute. Ethertype can also
1832 if (is_mask
&& output
->eth
.type
)
1833 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
,
1835 goto nla_put_failure
;
1839 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
, output
->eth
.type
))
1840 goto nla_put_failure
;
1842 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1843 struct ovs_key_ipv4
*ipv4_key
;
1845 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV4
, sizeof(*ipv4_key
));
1847 goto nla_put_failure
;
1848 ipv4_key
= nla_data(nla
);
1849 ipv4_key
->ipv4_src
= output
->ipv4
.addr
.src
;
1850 ipv4_key
->ipv4_dst
= output
->ipv4
.addr
.dst
;
1851 ipv4_key
->ipv4_proto
= output
->ip
.proto
;
1852 ipv4_key
->ipv4_tos
= output
->ip
.tos
;
1853 ipv4_key
->ipv4_ttl
= output
->ip
.ttl
;
1854 ipv4_key
->ipv4_frag
= output
->ip
.frag
;
1855 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1856 struct ovs_key_ipv6
*ipv6_key
;
1858 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV6
, sizeof(*ipv6_key
));
1860 goto nla_put_failure
;
1861 ipv6_key
= nla_data(nla
);
1862 memcpy(ipv6_key
->ipv6_src
, &output
->ipv6
.addr
.src
,
1863 sizeof(ipv6_key
->ipv6_src
));
1864 memcpy(ipv6_key
->ipv6_dst
, &output
->ipv6
.addr
.dst
,
1865 sizeof(ipv6_key
->ipv6_dst
));
1866 ipv6_key
->ipv6_label
= output
->ipv6
.label
;
1867 ipv6_key
->ipv6_proto
= output
->ip
.proto
;
1868 ipv6_key
->ipv6_tclass
= output
->ip
.tos
;
1869 ipv6_key
->ipv6_hlimit
= output
->ip
.ttl
;
1870 ipv6_key
->ipv6_frag
= output
->ip
.frag
;
1871 } else if (swkey
->eth
.type
== htons(ETH_P_ARP
) ||
1872 swkey
->eth
.type
== htons(ETH_P_RARP
)) {
1873 struct ovs_key_arp
*arp_key
;
1875 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ARP
, sizeof(*arp_key
));
1877 goto nla_put_failure
;
1878 arp_key
= nla_data(nla
);
1879 memset(arp_key
, 0, sizeof(struct ovs_key_arp
));
1880 arp_key
->arp_sip
= output
->ipv4
.addr
.src
;
1881 arp_key
->arp_tip
= output
->ipv4
.addr
.dst
;
1882 arp_key
->arp_op
= htons(output
->ip
.proto
);
1883 memcpy(arp_key
->arp_sha
, output
->ipv4
.arp
.sha
, ETH_ALEN
);
1884 memcpy(arp_key
->arp_tha
, output
->ipv4
.arp
.tha
, ETH_ALEN
);
1887 if ((swkey
->eth
.type
== htons(ETH_P_IP
) ||
1888 swkey
->eth
.type
== htons(ETH_P_IPV6
)) &&
1889 swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1891 if (swkey
->ip
.proto
== IPPROTO_TCP
) {
1892 struct ovs_key_tcp
*tcp_key
;
1894 nla
= nla_reserve(skb
, OVS_KEY_ATTR_TCP
, sizeof(*tcp_key
));
1896 goto nla_put_failure
;
1897 tcp_key
= nla_data(nla
);
1898 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1899 tcp_key
->tcp_src
= output
->ipv4
.tp
.src
;
1900 tcp_key
->tcp_dst
= output
->ipv4
.tp
.dst
;
1901 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1902 tcp_key
->tcp_src
= output
->ipv6
.tp
.src
;
1903 tcp_key
->tcp_dst
= output
->ipv6
.tp
.dst
;
1905 } else if (swkey
->ip
.proto
== IPPROTO_UDP
) {
1906 struct ovs_key_udp
*udp_key
;
1908 nla
= nla_reserve(skb
, OVS_KEY_ATTR_UDP
, sizeof(*udp_key
));
1910 goto nla_put_failure
;
1911 udp_key
= nla_data(nla
);
1912 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1913 udp_key
->udp_src
= output
->ipv4
.tp
.src
;
1914 udp_key
->udp_dst
= output
->ipv4
.tp
.dst
;
1915 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1916 udp_key
->udp_src
= output
->ipv6
.tp
.src
;
1917 udp_key
->udp_dst
= output
->ipv6
.tp
.dst
;
1919 } else if (swkey
->ip
.proto
== IPPROTO_SCTP
) {
1920 struct ovs_key_sctp
*sctp_key
;
1922 nla
= nla_reserve(skb
, OVS_KEY_ATTR_SCTP
, sizeof(*sctp_key
));
1924 goto nla_put_failure
;
1925 sctp_key
= nla_data(nla
);
1926 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1927 sctp_key
->sctp_src
= swkey
->ipv4
.tp
.src
;
1928 sctp_key
->sctp_dst
= swkey
->ipv4
.tp
.dst
;
1929 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1930 sctp_key
->sctp_src
= swkey
->ipv6
.tp
.src
;
1931 sctp_key
->sctp_dst
= swkey
->ipv6
.tp
.dst
;
1933 } else if (swkey
->eth
.type
== htons(ETH_P_IP
) &&
1934 swkey
->ip
.proto
== IPPROTO_ICMP
) {
1935 struct ovs_key_icmp
*icmp_key
;
1937 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMP
, sizeof(*icmp_key
));
1939 goto nla_put_failure
;
1940 icmp_key
= nla_data(nla
);
1941 icmp_key
->icmp_type
= ntohs(output
->ipv4
.tp
.src
);
1942 icmp_key
->icmp_code
= ntohs(output
->ipv4
.tp
.dst
);
1943 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
) &&
1944 swkey
->ip
.proto
== IPPROTO_ICMPV6
) {
1945 struct ovs_key_icmpv6
*icmpv6_key
;
1947 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMPV6
,
1948 sizeof(*icmpv6_key
));
1950 goto nla_put_failure
;
1951 icmpv6_key
= nla_data(nla
);
1952 icmpv6_key
->icmpv6_type
= ntohs(output
->ipv6
.tp
.src
);
1953 icmpv6_key
->icmpv6_code
= ntohs(output
->ipv6
.tp
.dst
);
1955 if (icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
1956 icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
) {
1957 struct ovs_key_nd
*nd_key
;
1959 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ND
, sizeof(*nd_key
));
1961 goto nla_put_failure
;
1962 nd_key
= nla_data(nla
);
1963 memcpy(nd_key
->nd_target
, &output
->ipv6
.nd
.target
,
1964 sizeof(nd_key
->nd_target
));
1965 memcpy(nd_key
->nd_sll
, output
->ipv6
.nd
.sll
, ETH_ALEN
);
1966 memcpy(nd_key
->nd_tll
, output
->ipv6
.nd
.tll
, ETH_ALEN
);
1973 nla_nest_end(skb
, encap
);
1981 /* Initializes the flow module.
1982 * Returns zero if successful or a negative error code. */
1983 int ovs_flow_init(void)
1985 BUILD_BUG_ON(__alignof__(struct sw_flow_key
) % __alignof__(long));
1986 BUILD_BUG_ON(sizeof(struct sw_flow_key
) % sizeof(long));
1988 flow_cache
= kmem_cache_create("sw_flow", sizeof(struct sw_flow
), 0,
1990 if (flow_cache
== NULL
)
1996 /* Uninitializes the flow module. */
1997 void ovs_flow_exit(void)
1999 kmem_cache_destroy(flow_cache
);
2002 struct sw_flow_mask
*ovs_sw_flow_mask_alloc(void)
2004 struct sw_flow_mask
*mask
;
2006 mask
= kmalloc(sizeof(*mask
), GFP_KERNEL
);
2008 mask
->ref_count
= 0;
2013 void ovs_sw_flow_mask_add_ref(struct sw_flow_mask
*mask
)
2018 void ovs_sw_flow_mask_del_ref(struct sw_flow_mask
*mask
, bool deferred
)
2023 BUG_ON(!mask
->ref_count
);
2026 if (!mask
->ref_count
) {
2027 list_del_rcu(&mask
->list
);
2029 kfree_rcu(mask
, rcu
);
2035 static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask
*a
,
2036 const struct sw_flow_mask
*b
)
2038 u8
*a_
= (u8
*)&a
->key
+ a
->range
.start
;
2039 u8
*b_
= (u8
*)&b
->key
+ b
->range
.start
;
2041 return (a
->range
.end
== b
->range
.end
)
2042 && (a
->range
.start
== b
->range
.start
)
2043 && (memcmp(a_
, b_
, range_n_bytes(&a
->range
)) == 0);
2046 struct sw_flow_mask
*ovs_sw_flow_mask_find(const struct flow_table
*tbl
,
2047 const struct sw_flow_mask
*mask
)
2049 struct list_head
*ml
;
2051 list_for_each(ml
, tbl
->mask_list
) {
2052 struct sw_flow_mask
*m
;
2053 m
= container_of(ml
, struct sw_flow_mask
, list
);
2054 if (ovs_sw_flow_mask_equal(mask
, m
))
2062 * add a new mask into the mask list.
2063 * The caller needs to make sure that 'mask' is not the same
2064 * as any masks that are already on the list.
2066 void ovs_sw_flow_mask_insert(struct flow_table
*tbl
, struct sw_flow_mask
*mask
)
2068 list_add_rcu(&mask
->list
, tbl
->mask_list
);
2072 * Set 'range' fields in the mask to the value of 'val'.
2074 static void ovs_sw_flow_mask_set(struct sw_flow_mask
*mask
,
2075 struct sw_flow_key_range
*range
, u8 val
)
2077 u8
*m
= (u8
*)&mask
->key
+ range
->start
;
2079 mask
->range
= *range
;
2080 memset(m
, val
, range_n_bytes(range
));