Linux 3.12.28
[linux/fpc-iii.git] / net / sched / sch_netem.c
blobb87e83d0747821bc2251c3b099f91a3358c211d9
1 /*
2 * net/sched/sch_netem.c Network emulator
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
32 #define VERSION "1.3"
34 /* Network Emulation Queuing algorithm.
35 ====================================
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
41 ----------------------------------------------------------------
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
56 Correlated Loss Generator models
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
61 References:
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
71 struct netem_sched_data {
72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 struct rb_root t_root;
75 /* optional qdisc for classful handling (NULL at netem init) */
76 struct Qdisc *qdisc;
78 struct qdisc_watchdog watchdog;
80 psched_tdiff_t latency;
81 psched_tdiff_t jitter;
83 u32 loss;
84 u32 ecn;
85 u32 limit;
86 u32 counter;
87 u32 gap;
88 u32 duplicate;
89 u32 reorder;
90 u32 corrupt;
91 u32 rate;
92 s32 packet_overhead;
93 u32 cell_size;
94 u32 cell_size_reciprocal;
95 s32 cell_overhead;
97 struct crndstate {
98 u32 last;
99 u32 rho;
100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
102 struct disttable {
103 u32 size;
104 s16 table[0];
105 } *delay_dist;
107 enum {
108 CLG_RANDOM,
109 CLG_4_STATES,
110 CLG_GILB_ELL,
111 } loss_model;
113 /* Correlated Loss Generation models */
114 struct clgstate {
115 /* state of the Markov chain */
116 u8 state;
118 /* 4-states and Gilbert-Elliot models */
119 u32 a1; /* p13 for 4-states or p for GE */
120 u32 a2; /* p31 for 4-states or r for GE */
121 u32 a3; /* p32 for 4-states or h for GE */
122 u32 a4; /* p14 for 4-states or 1-k for GE */
123 u32 a5; /* p23 used only in 4-states */
124 } clg;
128 /* Time stamp put into socket buffer control block
129 * Only valid when skbs are in our internal t(ime)fifo queue.
131 struct netem_skb_cb {
132 psched_time_t time_to_send;
133 ktime_t tstamp_save;
136 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
137 * to hold a rb_node structure.
139 * If struct sk_buff layout is changed, the following checks will complain.
141 static struct rb_node *netem_rb_node(struct sk_buff *skb)
143 BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
144 BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
145 offsetof(struct sk_buff, next) + sizeof(skb->next));
146 BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
147 offsetof(struct sk_buff, prev) + sizeof(skb->prev));
148 BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
149 sizeof(skb->prev) +
150 sizeof(skb->tstamp));
151 return (struct rb_node *)&skb->next;
154 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
156 return (struct sk_buff *)rb;
159 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
161 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
162 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
163 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
166 /* init_crandom - initialize correlated random number generator
167 * Use entropy source for initial seed.
169 static void init_crandom(struct crndstate *state, unsigned long rho)
171 state->rho = rho;
172 state->last = net_random();
175 /* get_crandom - correlated random number generator
176 * Next number depends on last value.
177 * rho is scaled to avoid floating point.
179 static u32 get_crandom(struct crndstate *state)
181 u64 value, rho;
182 unsigned long answer;
184 if (state->rho == 0) /* no correlation */
185 return net_random();
187 value = net_random();
188 rho = (u64)state->rho + 1;
189 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
190 state->last = answer;
191 return answer;
194 /* loss_4state - 4-state model loss generator
195 * Generates losses according to the 4-state Markov chain adopted in
196 * the GI (General and Intuitive) loss model.
198 static bool loss_4state(struct netem_sched_data *q)
200 struct clgstate *clg = &q->clg;
201 u32 rnd = net_random();
204 * Makes a comparison between rnd and the transition
205 * probabilities outgoing from the current state, then decides the
206 * next state and if the next packet has to be transmitted or lost.
207 * The four states correspond to:
208 * 1 => successfully transmitted packets within a gap period
209 * 4 => isolated losses within a gap period
210 * 3 => lost packets within a burst period
211 * 2 => successfully transmitted packets within a burst period
213 switch (clg->state) {
214 case 1:
215 if (rnd < clg->a4) {
216 clg->state = 4;
217 return true;
218 } else if (clg->a4 < rnd && rnd < clg->a1) {
219 clg->state = 3;
220 return true;
221 } else if (clg->a1 < rnd)
222 clg->state = 1;
224 break;
225 case 2:
226 if (rnd < clg->a5) {
227 clg->state = 3;
228 return true;
229 } else
230 clg->state = 2;
232 break;
233 case 3:
234 if (rnd < clg->a3)
235 clg->state = 2;
236 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
237 clg->state = 1;
238 return true;
239 } else if (clg->a2 + clg->a3 < rnd) {
240 clg->state = 3;
241 return true;
243 break;
244 case 4:
245 clg->state = 1;
246 break;
249 return false;
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253 * Generates losses according to the Gilbert-Elliot loss model or
254 * its special cases (Gilbert or Simple Gilbert)
256 * Makes a comparison between random number and the transition
257 * probabilities outgoing from the current state, then decides the
258 * next state. A second random number is extracted and the comparison
259 * with the loss probability of the current state decides if the next
260 * packet will be transmitted or lost.
262 static bool loss_gilb_ell(struct netem_sched_data *q)
264 struct clgstate *clg = &q->clg;
266 switch (clg->state) {
267 case 1:
268 if (net_random() < clg->a1)
269 clg->state = 2;
270 if (net_random() < clg->a4)
271 return true;
272 case 2:
273 if (net_random() < clg->a2)
274 clg->state = 1;
275 if (clg->a3 > net_random())
276 return true;
279 return false;
282 static bool loss_event(struct netem_sched_data *q)
284 switch (q->loss_model) {
285 case CLG_RANDOM:
286 /* Random packet drop 0 => none, ~0 => all */
287 return q->loss && q->loss >= get_crandom(&q->loss_cor);
289 case CLG_4_STATES:
290 /* 4state loss model algorithm (used also for GI model)
291 * Extracts a value from the markov 4 state loss generator,
292 * if it is 1 drops a packet and if needed writes the event in
293 * the kernel logs
295 return loss_4state(q);
297 case CLG_GILB_ELL:
298 /* Gilbert-Elliot loss model algorithm
299 * Extracts a value from the Gilbert-Elliot loss generator,
300 * if it is 1 drops a packet and if needed writes the event in
301 * the kernel logs
303 return loss_gilb_ell(q);
306 return false; /* not reached */
310 /* tabledist - return a pseudo-randomly distributed value with mean mu and
311 * std deviation sigma. Uses table lookup to approximate the desired
312 * distribution, and a uniformly-distributed pseudo-random source.
314 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
315 struct crndstate *state,
316 const struct disttable *dist)
318 psched_tdiff_t x;
319 long t;
320 u32 rnd;
322 if (sigma == 0)
323 return mu;
325 rnd = get_crandom(state);
327 /* default uniform distribution */
328 if (dist == NULL)
329 return (rnd % (2*sigma)) - sigma + mu;
331 t = dist->table[rnd % dist->size];
332 x = (sigma % NETEM_DIST_SCALE) * t;
333 if (x >= 0)
334 x += NETEM_DIST_SCALE/2;
335 else
336 x -= NETEM_DIST_SCALE/2;
338 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
341 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
343 u64 ticks;
345 len += q->packet_overhead;
347 if (q->cell_size) {
348 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
350 if (len > cells * q->cell_size) /* extra cell needed for remainder */
351 cells++;
352 len = cells * (q->cell_size + q->cell_overhead);
355 ticks = (u64)len * NSEC_PER_SEC;
357 do_div(ticks, q->rate);
358 return PSCHED_NS2TICKS(ticks);
361 static void tfifo_reset(struct Qdisc *sch)
363 struct netem_sched_data *q = qdisc_priv(sch);
364 struct rb_node *p;
366 while ((p = rb_first(&q->t_root))) {
367 struct sk_buff *skb = netem_rb_to_skb(p);
369 rb_erase(p, &q->t_root);
370 skb->next = NULL;
371 skb->prev = NULL;
372 kfree_skb(skb);
376 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
378 struct netem_sched_data *q = qdisc_priv(sch);
379 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
380 struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
382 while (*p) {
383 struct sk_buff *skb;
385 parent = *p;
386 skb = netem_rb_to_skb(parent);
387 if (tnext >= netem_skb_cb(skb)->time_to_send)
388 p = &parent->rb_right;
389 else
390 p = &parent->rb_left;
392 rb_link_node(netem_rb_node(nskb), parent, p);
393 rb_insert_color(netem_rb_node(nskb), &q->t_root);
394 sch->q.qlen++;
398 * Insert one skb into qdisc.
399 * Note: parent depends on return value to account for queue length.
400 * NET_XMIT_DROP: queue length didn't change.
401 * NET_XMIT_SUCCESS: one skb was queued.
403 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
405 struct netem_sched_data *q = qdisc_priv(sch);
406 /* We don't fill cb now as skb_unshare() may invalidate it */
407 struct netem_skb_cb *cb;
408 struct sk_buff *skb2;
409 int count = 1;
411 /* Random duplication */
412 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
413 ++count;
415 /* Drop packet? */
416 if (loss_event(q)) {
417 if (q->ecn && INET_ECN_set_ce(skb))
418 sch->qstats.drops++; /* mark packet */
419 else
420 --count;
422 if (count == 0) {
423 sch->qstats.drops++;
424 kfree_skb(skb);
425 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
428 /* If a delay is expected, orphan the skb. (orphaning usually takes
429 * place at TX completion time, so _before_ the link transit delay)
431 if (q->latency || q->jitter)
432 skb_orphan_partial(skb);
435 * If we need to duplicate packet, then re-insert at top of the
436 * qdisc tree, since parent queuer expects that only one
437 * skb will be queued.
439 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
440 struct Qdisc *rootq = qdisc_root(sch);
441 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
442 q->duplicate = 0;
444 qdisc_enqueue_root(skb2, rootq);
445 q->duplicate = dupsave;
449 * Randomized packet corruption.
450 * Make copy if needed since we are modifying
451 * If packet is going to be hardware checksummed, then
452 * do it now in software before we mangle it.
454 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
455 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
456 (skb->ip_summed == CHECKSUM_PARTIAL &&
457 skb_checksum_help(skb)))
458 return qdisc_drop(skb, sch);
460 skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
463 if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
464 return qdisc_reshape_fail(skb, sch);
466 sch->qstats.backlog += qdisc_pkt_len(skb);
468 cb = netem_skb_cb(skb);
469 if (q->gap == 0 || /* not doing reordering */
470 q->counter < q->gap - 1 || /* inside last reordering gap */
471 q->reorder < get_crandom(&q->reorder_cor)) {
472 psched_time_t now;
473 psched_tdiff_t delay;
475 delay = tabledist(q->latency, q->jitter,
476 &q->delay_cor, q->delay_dist);
478 now = psched_get_time();
480 if (q->rate) {
481 struct sk_buff *last;
483 if (!skb_queue_empty(&sch->q))
484 last = skb_peek_tail(&sch->q);
485 else
486 last = netem_rb_to_skb(rb_last(&q->t_root));
487 if (last) {
489 * Last packet in queue is reference point (now),
490 * calculate this time bonus and subtract
491 * from delay.
493 delay -= netem_skb_cb(last)->time_to_send - now;
494 delay = max_t(psched_tdiff_t, 0, delay);
495 now = netem_skb_cb(last)->time_to_send;
498 delay += packet_len_2_sched_time(skb->len, q);
501 cb->time_to_send = now + delay;
502 cb->tstamp_save = skb->tstamp;
503 ++q->counter;
504 tfifo_enqueue(skb, sch);
505 } else {
507 * Do re-ordering by putting one out of N packets at the front
508 * of the queue.
510 cb->time_to_send = psched_get_time();
511 q->counter = 0;
513 __skb_queue_head(&sch->q, skb);
514 sch->qstats.requeues++;
517 return NET_XMIT_SUCCESS;
520 static unsigned int netem_drop(struct Qdisc *sch)
522 struct netem_sched_data *q = qdisc_priv(sch);
523 unsigned int len;
525 len = qdisc_queue_drop(sch);
527 if (!len) {
528 struct rb_node *p = rb_first(&q->t_root);
530 if (p) {
531 struct sk_buff *skb = netem_rb_to_skb(p);
533 rb_erase(p, &q->t_root);
534 sch->q.qlen--;
535 skb->next = NULL;
536 skb->prev = NULL;
537 len = qdisc_pkt_len(skb);
538 sch->qstats.backlog -= len;
539 kfree_skb(skb);
542 if (!len && q->qdisc && q->qdisc->ops->drop)
543 len = q->qdisc->ops->drop(q->qdisc);
544 if (len)
545 sch->qstats.drops++;
547 return len;
550 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
552 struct netem_sched_data *q = qdisc_priv(sch);
553 struct sk_buff *skb;
554 struct rb_node *p;
556 if (qdisc_is_throttled(sch))
557 return NULL;
559 tfifo_dequeue:
560 skb = __skb_dequeue(&sch->q);
561 if (skb) {
562 deliver:
563 sch->qstats.backlog -= qdisc_pkt_len(skb);
564 qdisc_unthrottled(sch);
565 qdisc_bstats_update(sch, skb);
566 return skb;
568 p = rb_first(&q->t_root);
569 if (p) {
570 psched_time_t time_to_send;
572 skb = netem_rb_to_skb(p);
574 /* if more time remaining? */
575 time_to_send = netem_skb_cb(skb)->time_to_send;
576 if (time_to_send <= psched_get_time()) {
577 rb_erase(p, &q->t_root);
579 sch->q.qlen--;
580 skb->next = NULL;
581 skb->prev = NULL;
582 skb->tstamp = netem_skb_cb(skb)->tstamp_save;
584 #ifdef CONFIG_NET_CLS_ACT
586 * If it's at ingress let's pretend the delay is
587 * from the network (tstamp will be updated).
589 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
590 skb->tstamp.tv64 = 0;
591 #endif
593 if (q->qdisc) {
594 int err = qdisc_enqueue(skb, q->qdisc);
596 if (unlikely(err != NET_XMIT_SUCCESS)) {
597 if (net_xmit_drop_count(err)) {
598 sch->qstats.drops++;
599 qdisc_tree_decrease_qlen(sch, 1);
602 goto tfifo_dequeue;
604 goto deliver;
607 if (q->qdisc) {
608 skb = q->qdisc->ops->dequeue(q->qdisc);
609 if (skb)
610 goto deliver;
612 qdisc_watchdog_schedule(&q->watchdog, time_to_send);
615 if (q->qdisc) {
616 skb = q->qdisc->ops->dequeue(q->qdisc);
617 if (skb)
618 goto deliver;
620 return NULL;
623 static void netem_reset(struct Qdisc *sch)
625 struct netem_sched_data *q = qdisc_priv(sch);
627 qdisc_reset_queue(sch);
628 tfifo_reset(sch);
629 if (q->qdisc)
630 qdisc_reset(q->qdisc);
631 qdisc_watchdog_cancel(&q->watchdog);
634 static void dist_free(struct disttable *d)
636 if (d) {
637 if (is_vmalloc_addr(d))
638 vfree(d);
639 else
640 kfree(d);
645 * Distribution data is a variable size payload containing
646 * signed 16 bit values.
648 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
650 struct netem_sched_data *q = qdisc_priv(sch);
651 size_t n = nla_len(attr)/sizeof(__s16);
652 const __s16 *data = nla_data(attr);
653 spinlock_t *root_lock;
654 struct disttable *d;
655 int i;
656 size_t s;
658 if (n > NETEM_DIST_MAX)
659 return -EINVAL;
661 s = sizeof(struct disttable) + n * sizeof(s16);
662 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
663 if (!d)
664 d = vmalloc(s);
665 if (!d)
666 return -ENOMEM;
668 d->size = n;
669 for (i = 0; i < n; i++)
670 d->table[i] = data[i];
672 root_lock = qdisc_root_sleeping_lock(sch);
674 spin_lock_bh(root_lock);
675 swap(q->delay_dist, d);
676 spin_unlock_bh(root_lock);
678 dist_free(d);
679 return 0;
682 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
684 struct netem_sched_data *q = qdisc_priv(sch);
685 const struct tc_netem_corr *c = nla_data(attr);
687 init_crandom(&q->delay_cor, c->delay_corr);
688 init_crandom(&q->loss_cor, c->loss_corr);
689 init_crandom(&q->dup_cor, c->dup_corr);
692 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
694 struct netem_sched_data *q = qdisc_priv(sch);
695 const struct tc_netem_reorder *r = nla_data(attr);
697 q->reorder = r->probability;
698 init_crandom(&q->reorder_cor, r->correlation);
701 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
703 struct netem_sched_data *q = qdisc_priv(sch);
704 const struct tc_netem_corrupt *r = nla_data(attr);
706 q->corrupt = r->probability;
707 init_crandom(&q->corrupt_cor, r->correlation);
710 static void get_rate(struct Qdisc *sch, const struct nlattr *attr)
712 struct netem_sched_data *q = qdisc_priv(sch);
713 const struct tc_netem_rate *r = nla_data(attr);
715 q->rate = r->rate;
716 q->packet_overhead = r->packet_overhead;
717 q->cell_size = r->cell_size;
718 if (q->cell_size)
719 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
720 q->cell_overhead = r->cell_overhead;
723 static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
725 struct netem_sched_data *q = qdisc_priv(sch);
726 const struct nlattr *la;
727 int rem;
729 nla_for_each_nested(la, attr, rem) {
730 u16 type = nla_type(la);
732 switch(type) {
733 case NETEM_LOSS_GI: {
734 const struct tc_netem_gimodel *gi = nla_data(la);
736 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
737 pr_info("netem: incorrect gi model size\n");
738 return -EINVAL;
741 q->loss_model = CLG_4_STATES;
743 q->clg.state = 1;
744 q->clg.a1 = gi->p13;
745 q->clg.a2 = gi->p31;
746 q->clg.a3 = gi->p32;
747 q->clg.a4 = gi->p14;
748 q->clg.a5 = gi->p23;
749 break;
752 case NETEM_LOSS_GE: {
753 const struct tc_netem_gemodel *ge = nla_data(la);
755 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
756 pr_info("netem: incorrect ge model size\n");
757 return -EINVAL;
760 q->loss_model = CLG_GILB_ELL;
761 q->clg.state = 1;
762 q->clg.a1 = ge->p;
763 q->clg.a2 = ge->r;
764 q->clg.a3 = ge->h;
765 q->clg.a4 = ge->k1;
766 break;
769 default:
770 pr_info("netem: unknown loss type %u\n", type);
771 return -EINVAL;
775 return 0;
778 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
779 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
780 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
781 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
782 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
783 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
784 [TCA_NETEM_ECN] = { .type = NLA_U32 },
787 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
788 const struct nla_policy *policy, int len)
790 int nested_len = nla_len(nla) - NLA_ALIGN(len);
792 if (nested_len < 0) {
793 pr_info("netem: invalid attributes len %d\n", nested_len);
794 return -EINVAL;
797 if (nested_len >= nla_attr_size(0))
798 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
799 nested_len, policy);
801 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
802 return 0;
805 /* Parse netlink message to set options */
806 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
808 struct netem_sched_data *q = qdisc_priv(sch);
809 struct nlattr *tb[TCA_NETEM_MAX + 1];
810 struct tc_netem_qopt *qopt;
811 int ret;
813 if (opt == NULL)
814 return -EINVAL;
816 qopt = nla_data(opt);
817 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
818 if (ret < 0)
819 return ret;
821 sch->limit = qopt->limit;
823 q->latency = qopt->latency;
824 q->jitter = qopt->jitter;
825 q->limit = qopt->limit;
826 q->gap = qopt->gap;
827 q->counter = 0;
828 q->loss = qopt->loss;
829 q->duplicate = qopt->duplicate;
831 /* for compatibility with earlier versions.
832 * if gap is set, need to assume 100% probability
834 if (q->gap)
835 q->reorder = ~0;
837 if (tb[TCA_NETEM_CORR])
838 get_correlation(sch, tb[TCA_NETEM_CORR]);
840 if (tb[TCA_NETEM_DELAY_DIST]) {
841 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
842 if (ret)
843 return ret;
846 if (tb[TCA_NETEM_REORDER])
847 get_reorder(sch, tb[TCA_NETEM_REORDER]);
849 if (tb[TCA_NETEM_CORRUPT])
850 get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
852 if (tb[TCA_NETEM_RATE])
853 get_rate(sch, tb[TCA_NETEM_RATE]);
855 if (tb[TCA_NETEM_ECN])
856 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
858 q->loss_model = CLG_RANDOM;
859 if (tb[TCA_NETEM_LOSS])
860 ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
862 return ret;
865 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
867 struct netem_sched_data *q = qdisc_priv(sch);
868 int ret;
870 if (!opt)
871 return -EINVAL;
873 qdisc_watchdog_init(&q->watchdog, sch);
875 q->loss_model = CLG_RANDOM;
876 ret = netem_change(sch, opt);
877 if (ret)
878 pr_info("netem: change failed\n");
879 return ret;
882 static void netem_destroy(struct Qdisc *sch)
884 struct netem_sched_data *q = qdisc_priv(sch);
886 qdisc_watchdog_cancel(&q->watchdog);
887 if (q->qdisc)
888 qdisc_destroy(q->qdisc);
889 dist_free(q->delay_dist);
892 static int dump_loss_model(const struct netem_sched_data *q,
893 struct sk_buff *skb)
895 struct nlattr *nest;
897 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
898 if (nest == NULL)
899 goto nla_put_failure;
901 switch (q->loss_model) {
902 case CLG_RANDOM:
903 /* legacy loss model */
904 nla_nest_cancel(skb, nest);
905 return 0; /* no data */
907 case CLG_4_STATES: {
908 struct tc_netem_gimodel gi = {
909 .p13 = q->clg.a1,
910 .p31 = q->clg.a2,
911 .p32 = q->clg.a3,
912 .p14 = q->clg.a4,
913 .p23 = q->clg.a5,
916 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
917 goto nla_put_failure;
918 break;
920 case CLG_GILB_ELL: {
921 struct tc_netem_gemodel ge = {
922 .p = q->clg.a1,
923 .r = q->clg.a2,
924 .h = q->clg.a3,
925 .k1 = q->clg.a4,
928 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
929 goto nla_put_failure;
930 break;
934 nla_nest_end(skb, nest);
935 return 0;
937 nla_put_failure:
938 nla_nest_cancel(skb, nest);
939 return -1;
942 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
944 const struct netem_sched_data *q = qdisc_priv(sch);
945 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
946 struct tc_netem_qopt qopt;
947 struct tc_netem_corr cor;
948 struct tc_netem_reorder reorder;
949 struct tc_netem_corrupt corrupt;
950 struct tc_netem_rate rate;
952 qopt.latency = q->latency;
953 qopt.jitter = q->jitter;
954 qopt.limit = q->limit;
955 qopt.loss = q->loss;
956 qopt.gap = q->gap;
957 qopt.duplicate = q->duplicate;
958 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
959 goto nla_put_failure;
961 cor.delay_corr = q->delay_cor.rho;
962 cor.loss_corr = q->loss_cor.rho;
963 cor.dup_corr = q->dup_cor.rho;
964 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
965 goto nla_put_failure;
967 reorder.probability = q->reorder;
968 reorder.correlation = q->reorder_cor.rho;
969 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
970 goto nla_put_failure;
972 corrupt.probability = q->corrupt;
973 corrupt.correlation = q->corrupt_cor.rho;
974 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
975 goto nla_put_failure;
977 rate.rate = q->rate;
978 rate.packet_overhead = q->packet_overhead;
979 rate.cell_size = q->cell_size;
980 rate.cell_overhead = q->cell_overhead;
981 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
982 goto nla_put_failure;
984 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
985 goto nla_put_failure;
987 if (dump_loss_model(q, skb) != 0)
988 goto nla_put_failure;
990 return nla_nest_end(skb, nla);
992 nla_put_failure:
993 nlmsg_trim(skb, nla);
994 return -1;
997 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
998 struct sk_buff *skb, struct tcmsg *tcm)
1000 struct netem_sched_data *q = qdisc_priv(sch);
1002 if (cl != 1 || !q->qdisc) /* only one class */
1003 return -ENOENT;
1005 tcm->tcm_handle |= TC_H_MIN(1);
1006 tcm->tcm_info = q->qdisc->handle;
1008 return 0;
1011 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1012 struct Qdisc **old)
1014 struct netem_sched_data *q = qdisc_priv(sch);
1016 sch_tree_lock(sch);
1017 *old = q->qdisc;
1018 q->qdisc = new;
1019 if (*old) {
1020 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1021 qdisc_reset(*old);
1023 sch_tree_unlock(sch);
1025 return 0;
1028 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1030 struct netem_sched_data *q = qdisc_priv(sch);
1031 return q->qdisc;
1034 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1036 return 1;
1039 static void netem_put(struct Qdisc *sch, unsigned long arg)
1043 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1045 if (!walker->stop) {
1046 if (walker->count >= walker->skip)
1047 if (walker->fn(sch, 1, walker) < 0) {
1048 walker->stop = 1;
1049 return;
1051 walker->count++;
1055 static const struct Qdisc_class_ops netem_class_ops = {
1056 .graft = netem_graft,
1057 .leaf = netem_leaf,
1058 .get = netem_get,
1059 .put = netem_put,
1060 .walk = netem_walk,
1061 .dump = netem_dump_class,
1064 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1065 .id = "netem",
1066 .cl_ops = &netem_class_ops,
1067 .priv_size = sizeof(struct netem_sched_data),
1068 .enqueue = netem_enqueue,
1069 .dequeue = netem_dequeue,
1070 .peek = qdisc_peek_dequeued,
1071 .drop = netem_drop,
1072 .init = netem_init,
1073 .reset = netem_reset,
1074 .destroy = netem_destroy,
1075 .change = netem_change,
1076 .dump = netem_dump,
1077 .owner = THIS_MODULE,
1081 static int __init netem_module_init(void)
1083 pr_info("netem: version " VERSION "\n");
1084 return register_qdisc(&netem_qdisc_ops);
1086 static void __exit netem_module_exit(void)
1088 unregister_qdisc(&netem_qdisc_ops);
1090 module_init(netem_module_init)
1091 module_exit(netem_module_exit)
1092 MODULE_LICENSE("GPL");