3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
161 * true if a page was allocated from pfmemalloc reserves for network-based
164 static bool pfmemalloc_active __read_mostly
;
170 * - LIFO ordering, to hand out cache-warm objects from _alloc
171 * - reduce the number of linked list operations
172 * - reduce spinlock operations
174 * The limit is stored in the per-cpu structure to reduce the data cache
181 unsigned int batchcount
;
182 unsigned int touched
;
185 * Must have this definition in here for the proper
186 * alignment of array_cache. Also simplifies accessing
189 * Entries should not be directly dereferenced as
190 * entries belonging to slabs marked pfmemalloc will
191 * have the lower bits set SLAB_OBJ_PFMEMALLOC
195 #define SLAB_OBJ_PFMEMALLOC 1
196 static inline bool is_obj_pfmemalloc(void *objp
)
198 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
201 static inline void set_obj_pfmemalloc(void **objp
)
203 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
207 static inline void clear_obj_pfmemalloc(void **objp
)
209 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
213 * bootstrap: The caches do not work without cpuarrays anymore, but the
214 * cpuarrays are allocated from the generic caches...
216 #define BOOT_CPUCACHE_ENTRIES 1
217 struct arraycache_init
{
218 struct array_cache cache
;
219 void *entries
[BOOT_CPUCACHE_ENTRIES
];
223 * Need this for bootstrapping a per node allocator.
225 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
226 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
227 #define CACHE_CACHE 0
228 #define SIZE_AC MAX_NUMNODES
229 #define SIZE_NODE (2 * MAX_NUMNODES)
231 static int drain_freelist(struct kmem_cache
*cache
,
232 struct kmem_cache_node
*n
, int tofree
);
233 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
235 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
236 static void cache_reap(struct work_struct
*unused
);
238 static int slab_early_init
= 1;
240 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
241 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
243 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
245 INIT_LIST_HEAD(&parent
->slabs_full
);
246 INIT_LIST_HEAD(&parent
->slabs_partial
);
247 INIT_LIST_HEAD(&parent
->slabs_free
);
248 parent
->shared
= NULL
;
249 parent
->alien
= NULL
;
250 parent
->colour_next
= 0;
251 spin_lock_init(&parent
->list_lock
);
252 parent
->free_objects
= 0;
253 parent
->free_touched
= 0;
256 #define MAKE_LIST(cachep, listp, slab, nodeid) \
258 INIT_LIST_HEAD(listp); \
259 list_splice(&(cachep->node[nodeid]->slab), listp); \
262 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
264 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
265 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
266 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
269 #define CFLGS_OFF_SLAB (0x80000000UL)
270 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
272 #define BATCHREFILL_LIMIT 16
274 * Optimization question: fewer reaps means less probability for unnessary
275 * cpucache drain/refill cycles.
277 * OTOH the cpuarrays can contain lots of objects,
278 * which could lock up otherwise freeable slabs.
280 #define REAPTIMEOUT_CPUC (2*HZ)
281 #define REAPTIMEOUT_LIST3 (4*HZ)
284 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
285 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
286 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
287 #define STATS_INC_GROWN(x) ((x)->grown++)
288 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
289 #define STATS_SET_HIGH(x) \
291 if ((x)->num_active > (x)->high_mark) \
292 (x)->high_mark = (x)->num_active; \
294 #define STATS_INC_ERR(x) ((x)->errors++)
295 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
296 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
297 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
298 #define STATS_SET_FREEABLE(x, i) \
300 if ((x)->max_freeable < i) \
301 (x)->max_freeable = i; \
303 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
304 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
305 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
306 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
308 #define STATS_INC_ACTIVE(x) do { } while (0)
309 #define STATS_DEC_ACTIVE(x) do { } while (0)
310 #define STATS_INC_ALLOCED(x) do { } while (0)
311 #define STATS_INC_GROWN(x) do { } while (0)
312 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
313 #define STATS_SET_HIGH(x) do { } while (0)
314 #define STATS_INC_ERR(x) do { } while (0)
315 #define STATS_INC_NODEALLOCS(x) do { } while (0)
316 #define STATS_INC_NODEFREES(x) do { } while (0)
317 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
318 #define STATS_SET_FREEABLE(x, i) do { } while (0)
319 #define STATS_INC_ALLOCHIT(x) do { } while (0)
320 #define STATS_INC_ALLOCMISS(x) do { } while (0)
321 #define STATS_INC_FREEHIT(x) do { } while (0)
322 #define STATS_INC_FREEMISS(x) do { } while (0)
328 * memory layout of objects:
330 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
331 * the end of an object is aligned with the end of the real
332 * allocation. Catches writes behind the end of the allocation.
333 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
335 * cachep->obj_offset: The real object.
336 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
337 * cachep->size - 1* BYTES_PER_WORD: last caller address
338 * [BYTES_PER_WORD long]
340 static int obj_offset(struct kmem_cache
*cachep
)
342 return cachep
->obj_offset
;
345 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
347 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
348 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
349 sizeof(unsigned long long));
352 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
354 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
355 if (cachep
->flags
& SLAB_STORE_USER
)
356 return (unsigned long long *)(objp
+ cachep
->size
-
357 sizeof(unsigned long long) -
359 return (unsigned long long *) (objp
+ cachep
->size
-
360 sizeof(unsigned long long));
363 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
365 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
366 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
371 #define obj_offset(x) 0
372 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
373 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
374 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
379 * Do not go above this order unless 0 objects fit into the slab or
380 * overridden on the command line.
382 #define SLAB_MAX_ORDER_HI 1
383 #define SLAB_MAX_ORDER_LO 0
384 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
385 static bool slab_max_order_set __initdata
;
387 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
389 struct page
*page
= virt_to_head_page(obj
);
390 return page
->slab_cache
;
393 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
396 return page
->s_mem
+ cache
->size
* idx
;
400 * We want to avoid an expensive divide : (offset / cache->size)
401 * Using the fact that size is a constant for a particular cache,
402 * we can replace (offset / cache->size) by
403 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
405 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
406 const struct page
*page
, void *obj
)
408 u32 offset
= (obj
- page
->s_mem
);
409 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
412 static struct arraycache_init initarray_generic
=
413 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot
= {
418 .limit
= BOOT_CPUCACHE_ENTRIES
,
420 .size
= sizeof(struct kmem_cache
),
421 .name
= "kmem_cache",
424 #define BAD_ALIEN_MAGIC 0x01020304ul
426 #ifdef CONFIG_LOCKDEP
429 * Slab sometimes uses the kmalloc slabs to store the slab headers
430 * for other slabs "off slab".
431 * The locking for this is tricky in that it nests within the locks
432 * of all other slabs in a few places; to deal with this special
433 * locking we put on-slab caches into a separate lock-class.
435 * We set lock class for alien array caches which are up during init.
436 * The lock annotation will be lost if all cpus of a node goes down and
437 * then comes back up during hotplug
439 static struct lock_class_key on_slab_l3_key
;
440 static struct lock_class_key on_slab_alc_key
;
442 static struct lock_class_key debugobj_l3_key
;
443 static struct lock_class_key debugobj_alc_key
;
445 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
446 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
449 struct array_cache
**alc
;
450 struct kmem_cache_node
*n
;
457 lockdep_set_class(&n
->list_lock
, l3_key
);
460 * FIXME: This check for BAD_ALIEN_MAGIC
461 * should go away when common slab code is taught to
462 * work even without alien caches.
463 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
464 * for alloc_alien_cache,
466 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
470 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
474 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
476 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
479 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
483 for_each_online_node(node
)
484 slab_set_debugobj_lock_classes_node(cachep
, node
);
487 static void init_node_lock_keys(int q
)
494 for (i
= 1; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
495 struct kmem_cache_node
*n
;
496 struct kmem_cache
*cache
= kmalloc_caches
[i
];
502 if (!n
|| OFF_SLAB(cache
))
505 slab_set_lock_classes(cache
, &on_slab_l3_key
,
506 &on_slab_alc_key
, q
);
510 static void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int q
)
512 if (!cachep
->node
[q
])
515 slab_set_lock_classes(cachep
, &on_slab_l3_key
,
516 &on_slab_alc_key
, q
);
519 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
523 VM_BUG_ON(OFF_SLAB(cachep
));
525 on_slab_lock_classes_node(cachep
, node
);
528 static inline void init_lock_keys(void)
533 init_node_lock_keys(node
);
536 static void init_node_lock_keys(int q
)
540 static inline void init_lock_keys(void)
544 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
548 static inline void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int node
)
552 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
556 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
561 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
563 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
565 return cachep
->array
[smp_processor_id()];
568 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
570 return ALIGN(nr_objs
* sizeof(unsigned int), align
);
574 * Calculate the number of objects and left-over bytes for a given buffer size.
576 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
577 size_t align
, int flags
, size_t *left_over
,
582 size_t slab_size
= PAGE_SIZE
<< gfporder
;
585 * The slab management structure can be either off the slab or
586 * on it. For the latter case, the memory allocated for a
589 * - One unsigned int for each object
590 * - Padding to respect alignment of @align
591 * - @buffer_size bytes for each object
593 * If the slab management structure is off the slab, then the
594 * alignment will already be calculated into the size. Because
595 * the slabs are all pages aligned, the objects will be at the
596 * correct alignment when allocated.
598 if (flags
& CFLGS_OFF_SLAB
) {
600 nr_objs
= slab_size
/ buffer_size
;
604 * Ignore padding for the initial guess. The padding
605 * is at most @align-1 bytes, and @buffer_size is at
606 * least @align. In the worst case, this result will
607 * be one greater than the number of objects that fit
608 * into the memory allocation when taking the padding
611 nr_objs
= (slab_size
) / (buffer_size
+ sizeof(unsigned int));
614 * This calculated number will be either the right
615 * amount, or one greater than what we want.
617 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
621 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
624 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
628 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
630 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
633 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
634 function
, cachep
->name
, msg
);
636 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
641 * By default on NUMA we use alien caches to stage the freeing of
642 * objects allocated from other nodes. This causes massive memory
643 * inefficiencies when using fake NUMA setup to split memory into a
644 * large number of small nodes, so it can be disabled on the command
648 static int use_alien_caches __read_mostly
= 1;
649 static int __init
noaliencache_setup(char *s
)
651 use_alien_caches
= 0;
654 __setup("noaliencache", noaliencache_setup
);
656 static int __init
slab_max_order_setup(char *str
)
658 get_option(&str
, &slab_max_order
);
659 slab_max_order
= slab_max_order
< 0 ? 0 :
660 min(slab_max_order
, MAX_ORDER
- 1);
661 slab_max_order_set
= true;
665 __setup("slab_max_order=", slab_max_order_setup
);
669 * Special reaping functions for NUMA systems called from cache_reap().
670 * These take care of doing round robin flushing of alien caches (containing
671 * objects freed on different nodes from which they were allocated) and the
672 * flushing of remote pcps by calling drain_node_pages.
674 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
676 static void init_reap_node(int cpu
)
680 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
681 if (node
== MAX_NUMNODES
)
682 node
= first_node(node_online_map
);
684 per_cpu(slab_reap_node
, cpu
) = node
;
687 static void next_reap_node(void)
689 int node
= __this_cpu_read(slab_reap_node
);
691 node
= next_node(node
, node_online_map
);
692 if (unlikely(node
>= MAX_NUMNODES
))
693 node
= first_node(node_online_map
);
694 __this_cpu_write(slab_reap_node
, node
);
698 #define init_reap_node(cpu) do { } while (0)
699 #define next_reap_node(void) do { } while (0)
703 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
704 * via the workqueue/eventd.
705 * Add the CPU number into the expiration time to minimize the possibility of
706 * the CPUs getting into lockstep and contending for the global cache chain
709 static void start_cpu_timer(int cpu
)
711 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
714 * When this gets called from do_initcalls via cpucache_init(),
715 * init_workqueues() has already run, so keventd will be setup
718 if (keventd_up() && reap_work
->work
.func
== NULL
) {
720 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
721 schedule_delayed_work_on(cpu
, reap_work
,
722 __round_jiffies_relative(HZ
, cpu
));
726 static struct array_cache
*alloc_arraycache(int node
, int entries
,
727 int batchcount
, gfp_t gfp
)
729 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
730 struct array_cache
*nc
= NULL
;
732 nc
= kmalloc_node(memsize
, gfp
, node
);
734 * The array_cache structures contain pointers to free object.
735 * However, when such objects are allocated or transferred to another
736 * cache the pointers are not cleared and they could be counted as
737 * valid references during a kmemleak scan. Therefore, kmemleak must
738 * not scan such objects.
740 kmemleak_no_scan(nc
);
744 nc
->batchcount
= batchcount
;
746 spin_lock_init(&nc
->lock
);
751 static inline bool is_slab_pfmemalloc(struct page
*page
)
753 return PageSlabPfmemalloc(page
);
756 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
757 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
758 struct array_cache
*ac
)
760 struct kmem_cache_node
*n
= cachep
->node
[numa_mem_id()];
764 if (!pfmemalloc_active
)
767 spin_lock_irqsave(&n
->list_lock
, flags
);
768 list_for_each_entry(page
, &n
->slabs_full
, lru
)
769 if (is_slab_pfmemalloc(page
))
772 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
773 if (is_slab_pfmemalloc(page
))
776 list_for_each_entry(page
, &n
->slabs_free
, lru
)
777 if (is_slab_pfmemalloc(page
))
780 pfmemalloc_active
= false;
782 spin_unlock_irqrestore(&n
->list_lock
, flags
);
785 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
786 gfp_t flags
, bool force_refill
)
789 void *objp
= ac
->entry
[--ac
->avail
];
791 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
792 if (unlikely(is_obj_pfmemalloc(objp
))) {
793 struct kmem_cache_node
*n
;
795 if (gfp_pfmemalloc_allowed(flags
)) {
796 clear_obj_pfmemalloc(&objp
);
800 /* The caller cannot use PFMEMALLOC objects, find another one */
801 for (i
= 0; i
< ac
->avail
; i
++) {
802 /* If a !PFMEMALLOC object is found, swap them */
803 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
805 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
806 ac
->entry
[ac
->avail
] = objp
;
812 * If there are empty slabs on the slabs_free list and we are
813 * being forced to refill the cache, mark this one !pfmemalloc.
815 n
= cachep
->node
[numa_mem_id()];
816 if (!list_empty(&n
->slabs_free
) && force_refill
) {
817 struct page
*page
= virt_to_head_page(objp
);
818 ClearPageSlabPfmemalloc(page
);
819 clear_obj_pfmemalloc(&objp
);
820 recheck_pfmemalloc_active(cachep
, ac
);
824 /* No !PFMEMALLOC objects available */
832 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
833 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
837 if (unlikely(sk_memalloc_socks()))
838 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
840 objp
= ac
->entry
[--ac
->avail
];
845 static void *__ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
848 if (unlikely(pfmemalloc_active
)) {
849 /* Some pfmemalloc slabs exist, check if this is one */
850 struct page
*page
= virt_to_head_page(objp
);
851 if (PageSlabPfmemalloc(page
))
852 set_obj_pfmemalloc(&objp
);
858 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
861 if (unlikely(sk_memalloc_socks()))
862 objp
= __ac_put_obj(cachep
, ac
, objp
);
864 ac
->entry
[ac
->avail
++] = objp
;
868 * Transfer objects in one arraycache to another.
869 * Locking must be handled by the caller.
871 * Return the number of entries transferred.
873 static int transfer_objects(struct array_cache
*to
,
874 struct array_cache
*from
, unsigned int max
)
876 /* Figure out how many entries to transfer */
877 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
882 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
892 #define drain_alien_cache(cachep, alien) do { } while (0)
893 #define reap_alien(cachep, n) do { } while (0)
895 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
897 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
900 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
904 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
909 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
915 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
916 gfp_t flags
, int nodeid
)
921 #else /* CONFIG_NUMA */
923 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
924 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
926 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
928 struct array_cache
**ac_ptr
;
929 int memsize
= sizeof(void *) * nr_node_ids
;
934 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
937 if (i
== node
|| !node_online(i
))
939 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
941 for (i
--; i
>= 0; i
--)
951 static void free_alien_cache(struct array_cache
**ac_ptr
)
962 static void __drain_alien_cache(struct kmem_cache
*cachep
,
963 struct array_cache
*ac
, int node
)
965 struct kmem_cache_node
*n
= cachep
->node
[node
];
968 spin_lock(&n
->list_lock
);
970 * Stuff objects into the remote nodes shared array first.
971 * That way we could avoid the overhead of putting the objects
972 * into the free lists and getting them back later.
975 transfer_objects(n
->shared
, ac
, ac
->limit
);
977 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
979 spin_unlock(&n
->list_lock
);
984 * Called from cache_reap() to regularly drain alien caches round robin.
986 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
988 int node
= __this_cpu_read(slab_reap_node
);
991 struct array_cache
*ac
= n
->alien
[node
];
993 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
994 __drain_alien_cache(cachep
, ac
, node
);
995 spin_unlock_irq(&ac
->lock
);
1000 static void drain_alien_cache(struct kmem_cache
*cachep
,
1001 struct array_cache
**alien
)
1004 struct array_cache
*ac
;
1005 unsigned long flags
;
1007 for_each_online_node(i
) {
1010 spin_lock_irqsave(&ac
->lock
, flags
);
1011 __drain_alien_cache(cachep
, ac
, i
);
1012 spin_unlock_irqrestore(&ac
->lock
, flags
);
1017 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1019 int nodeid
= page_to_nid(virt_to_page(objp
));
1020 struct kmem_cache_node
*n
;
1021 struct array_cache
*alien
= NULL
;
1024 node
= numa_mem_id();
1027 * Make sure we are not freeing a object from another node to the array
1028 * cache on this cpu.
1030 if (likely(nodeid
== node
))
1033 n
= cachep
->node
[node
];
1034 STATS_INC_NODEFREES(cachep
);
1035 if (n
->alien
&& n
->alien
[nodeid
]) {
1036 alien
= n
->alien
[nodeid
];
1037 spin_lock(&alien
->lock
);
1038 if (unlikely(alien
->avail
== alien
->limit
)) {
1039 STATS_INC_ACOVERFLOW(cachep
);
1040 __drain_alien_cache(cachep
, alien
, nodeid
);
1042 ac_put_obj(cachep
, alien
, objp
);
1043 spin_unlock(&alien
->lock
);
1045 spin_lock(&(cachep
->node
[nodeid
])->list_lock
);
1046 free_block(cachep
, &objp
, 1, nodeid
);
1047 spin_unlock(&(cachep
->node
[nodeid
])->list_lock
);
1054 * Allocates and initializes node for a node on each slab cache, used for
1055 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1056 * will be allocated off-node since memory is not yet online for the new node.
1057 * When hotplugging memory or a cpu, existing node are not replaced if
1060 * Must hold slab_mutex.
1062 static int init_cache_node_node(int node
)
1064 struct kmem_cache
*cachep
;
1065 struct kmem_cache_node
*n
;
1066 const int memsize
= sizeof(struct kmem_cache_node
);
1068 list_for_each_entry(cachep
, &slab_caches
, list
) {
1070 * Set up the size64 kmemlist for cpu before we can
1071 * begin anything. Make sure some other cpu on this
1072 * node has not already allocated this
1074 if (!cachep
->node
[node
]) {
1075 n
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1078 kmem_cache_node_init(n
);
1079 n
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1080 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1083 * The l3s don't come and go as CPUs come and
1084 * go. slab_mutex is sufficient
1087 cachep
->node
[node
] = n
;
1090 spin_lock_irq(&cachep
->node
[node
]->list_lock
);
1091 cachep
->node
[node
]->free_limit
=
1092 (1 + nr_cpus_node(node
)) *
1093 cachep
->batchcount
+ cachep
->num
;
1094 spin_unlock_irq(&cachep
->node
[node
]->list_lock
);
1099 static inline int slabs_tofree(struct kmem_cache
*cachep
,
1100 struct kmem_cache_node
*n
)
1102 return (n
->free_objects
+ cachep
->num
- 1) / cachep
->num
;
1105 static void cpuup_canceled(long cpu
)
1107 struct kmem_cache
*cachep
;
1108 struct kmem_cache_node
*n
= NULL
;
1109 int node
= cpu_to_mem(cpu
);
1110 const struct cpumask
*mask
= cpumask_of_node(node
);
1112 list_for_each_entry(cachep
, &slab_caches
, list
) {
1113 struct array_cache
*nc
;
1114 struct array_cache
*shared
;
1115 struct array_cache
**alien
;
1117 /* cpu is dead; no one can alloc from it. */
1118 nc
= cachep
->array
[cpu
];
1119 cachep
->array
[cpu
] = NULL
;
1120 n
= cachep
->node
[node
];
1123 goto free_array_cache
;
1125 spin_lock_irq(&n
->list_lock
);
1127 /* Free limit for this kmem_cache_node */
1128 n
->free_limit
-= cachep
->batchcount
;
1130 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1132 if (!cpumask_empty(mask
)) {
1133 spin_unlock_irq(&n
->list_lock
);
1134 goto free_array_cache
;
1139 free_block(cachep
, shared
->entry
,
1140 shared
->avail
, node
);
1147 spin_unlock_irq(&n
->list_lock
);
1151 drain_alien_cache(cachep
, alien
);
1152 free_alien_cache(alien
);
1158 * In the previous loop, all the objects were freed to
1159 * the respective cache's slabs, now we can go ahead and
1160 * shrink each nodelist to its limit.
1162 list_for_each_entry(cachep
, &slab_caches
, list
) {
1163 n
= cachep
->node
[node
];
1166 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1170 static int cpuup_prepare(long cpu
)
1172 struct kmem_cache
*cachep
;
1173 struct kmem_cache_node
*n
= NULL
;
1174 int node
= cpu_to_mem(cpu
);
1178 * We need to do this right in the beginning since
1179 * alloc_arraycache's are going to use this list.
1180 * kmalloc_node allows us to add the slab to the right
1181 * kmem_cache_node and not this cpu's kmem_cache_node
1183 err
= init_cache_node_node(node
);
1188 * Now we can go ahead with allocating the shared arrays and
1191 list_for_each_entry(cachep
, &slab_caches
, list
) {
1192 struct array_cache
*nc
;
1193 struct array_cache
*shared
= NULL
;
1194 struct array_cache
**alien
= NULL
;
1196 nc
= alloc_arraycache(node
, cachep
->limit
,
1197 cachep
->batchcount
, GFP_KERNEL
);
1200 if (cachep
->shared
) {
1201 shared
= alloc_arraycache(node
,
1202 cachep
->shared
* cachep
->batchcount
,
1203 0xbaadf00d, GFP_KERNEL
);
1209 if (use_alien_caches
) {
1210 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1217 cachep
->array
[cpu
] = nc
;
1218 n
= cachep
->node
[node
];
1221 spin_lock_irq(&n
->list_lock
);
1224 * We are serialised from CPU_DEAD or
1225 * CPU_UP_CANCELLED by the cpucontrol lock
1236 spin_unlock_irq(&n
->list_lock
);
1238 free_alien_cache(alien
);
1239 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1240 slab_set_debugobj_lock_classes_node(cachep
, node
);
1241 else if (!OFF_SLAB(cachep
) &&
1242 !(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1243 on_slab_lock_classes_node(cachep
, node
);
1245 init_node_lock_keys(node
);
1249 cpuup_canceled(cpu
);
1253 static int cpuup_callback(struct notifier_block
*nfb
,
1254 unsigned long action
, void *hcpu
)
1256 long cpu
= (long)hcpu
;
1260 case CPU_UP_PREPARE
:
1261 case CPU_UP_PREPARE_FROZEN
:
1262 mutex_lock(&slab_mutex
);
1263 err
= cpuup_prepare(cpu
);
1264 mutex_unlock(&slab_mutex
);
1267 case CPU_ONLINE_FROZEN
:
1268 start_cpu_timer(cpu
);
1270 #ifdef CONFIG_HOTPLUG_CPU
1271 case CPU_DOWN_PREPARE
:
1272 case CPU_DOWN_PREPARE_FROZEN
:
1274 * Shutdown cache reaper. Note that the slab_mutex is
1275 * held so that if cache_reap() is invoked it cannot do
1276 * anything expensive but will only modify reap_work
1277 * and reschedule the timer.
1279 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1280 /* Now the cache_reaper is guaranteed to be not running. */
1281 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1283 case CPU_DOWN_FAILED
:
1284 case CPU_DOWN_FAILED_FROZEN
:
1285 start_cpu_timer(cpu
);
1288 case CPU_DEAD_FROZEN
:
1290 * Even if all the cpus of a node are down, we don't free the
1291 * kmem_cache_node of any cache. This to avoid a race between
1292 * cpu_down, and a kmalloc allocation from another cpu for
1293 * memory from the node of the cpu going down. The node
1294 * structure is usually allocated from kmem_cache_create() and
1295 * gets destroyed at kmem_cache_destroy().
1299 case CPU_UP_CANCELED
:
1300 case CPU_UP_CANCELED_FROZEN
:
1301 mutex_lock(&slab_mutex
);
1302 cpuup_canceled(cpu
);
1303 mutex_unlock(&slab_mutex
);
1306 return notifier_from_errno(err
);
1309 static struct notifier_block cpucache_notifier
= {
1310 &cpuup_callback
, NULL
, 0
1313 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1315 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1316 * Returns -EBUSY if all objects cannot be drained so that the node is not
1319 * Must hold slab_mutex.
1321 static int __meminit
drain_cache_node_node(int node
)
1323 struct kmem_cache
*cachep
;
1326 list_for_each_entry(cachep
, &slab_caches
, list
) {
1327 struct kmem_cache_node
*n
;
1329 n
= cachep
->node
[node
];
1333 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1335 if (!list_empty(&n
->slabs_full
) ||
1336 !list_empty(&n
->slabs_partial
)) {
1344 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1345 unsigned long action
, void *arg
)
1347 struct memory_notify
*mnb
= arg
;
1351 nid
= mnb
->status_change_nid
;
1356 case MEM_GOING_ONLINE
:
1357 mutex_lock(&slab_mutex
);
1358 ret
= init_cache_node_node(nid
);
1359 mutex_unlock(&slab_mutex
);
1361 case MEM_GOING_OFFLINE
:
1362 mutex_lock(&slab_mutex
);
1363 ret
= drain_cache_node_node(nid
);
1364 mutex_unlock(&slab_mutex
);
1368 case MEM_CANCEL_ONLINE
:
1369 case MEM_CANCEL_OFFLINE
:
1373 return notifier_from_errno(ret
);
1375 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1378 * swap the static kmem_cache_node with kmalloced memory
1380 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1383 struct kmem_cache_node
*ptr
;
1385 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1388 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1390 * Do not assume that spinlocks can be initialized via memcpy:
1392 spin_lock_init(&ptr
->list_lock
);
1394 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1395 cachep
->node
[nodeid
] = ptr
;
1399 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1400 * size of kmem_cache_node.
1402 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1406 for_each_online_node(node
) {
1407 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1408 cachep
->node
[node
]->next_reap
= jiffies
+
1410 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1415 * The memory after the last cpu cache pointer is used for the
1418 static void setup_node_pointer(struct kmem_cache
*cachep
)
1420 cachep
->node
= (struct kmem_cache_node
**)&cachep
->array
[nr_cpu_ids
];
1424 * Initialisation. Called after the page allocator have been initialised and
1425 * before smp_init().
1427 void __init
kmem_cache_init(void)
1431 BUILD_BUG_ON(sizeof(((struct page
*)NULL
)->lru
) <
1432 sizeof(struct rcu_head
));
1433 kmem_cache
= &kmem_cache_boot
;
1434 setup_node_pointer(kmem_cache
);
1436 if (num_possible_nodes() == 1)
1437 use_alien_caches
= 0;
1439 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1440 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1442 set_up_node(kmem_cache
, CACHE_CACHE
);
1445 * Fragmentation resistance on low memory - only use bigger
1446 * page orders on machines with more than 32MB of memory if
1447 * not overridden on the command line.
1449 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1450 slab_max_order
= SLAB_MAX_ORDER_HI
;
1452 /* Bootstrap is tricky, because several objects are allocated
1453 * from caches that do not exist yet:
1454 * 1) initialize the kmem_cache cache: it contains the struct
1455 * kmem_cache structures of all caches, except kmem_cache itself:
1456 * kmem_cache is statically allocated.
1457 * Initially an __init data area is used for the head array and the
1458 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1459 * array at the end of the bootstrap.
1460 * 2) Create the first kmalloc cache.
1461 * The struct kmem_cache for the new cache is allocated normally.
1462 * An __init data area is used for the head array.
1463 * 3) Create the remaining kmalloc caches, with minimally sized
1465 * 4) Replace the __init data head arrays for kmem_cache and the first
1466 * kmalloc cache with kmalloc allocated arrays.
1467 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1468 * the other cache's with kmalloc allocated memory.
1469 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1472 /* 1) create the kmem_cache */
1475 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1477 create_boot_cache(kmem_cache
, "kmem_cache",
1478 offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1479 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1480 SLAB_HWCACHE_ALIGN
);
1481 list_add(&kmem_cache
->list
, &slab_caches
);
1483 /* 2+3) create the kmalloc caches */
1486 * Initialize the caches that provide memory for the array cache and the
1487 * kmem_cache_node structures first. Without this, further allocations will
1491 kmalloc_caches
[INDEX_AC
] = create_kmalloc_cache("kmalloc-ac",
1492 kmalloc_size(INDEX_AC
), ARCH_KMALLOC_FLAGS
);
1494 if (INDEX_AC
!= INDEX_NODE
)
1495 kmalloc_caches
[INDEX_NODE
] =
1496 create_kmalloc_cache("kmalloc-node",
1497 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
);
1499 slab_early_init
= 0;
1501 /* 4) Replace the bootstrap head arrays */
1503 struct array_cache
*ptr
;
1505 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1507 memcpy(ptr
, cpu_cache_get(kmem_cache
),
1508 sizeof(struct arraycache_init
));
1510 * Do not assume that spinlocks can be initialized via memcpy:
1512 spin_lock_init(&ptr
->lock
);
1514 kmem_cache
->array
[smp_processor_id()] = ptr
;
1516 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1518 BUG_ON(cpu_cache_get(kmalloc_caches
[INDEX_AC
])
1519 != &initarray_generic
.cache
);
1520 memcpy(ptr
, cpu_cache_get(kmalloc_caches
[INDEX_AC
]),
1521 sizeof(struct arraycache_init
));
1523 * Do not assume that spinlocks can be initialized via memcpy:
1525 spin_lock_init(&ptr
->lock
);
1527 kmalloc_caches
[INDEX_AC
]->array
[smp_processor_id()] = ptr
;
1529 /* 5) Replace the bootstrap kmem_cache_node */
1533 for_each_online_node(nid
) {
1534 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1536 init_list(kmalloc_caches
[INDEX_AC
],
1537 &init_kmem_cache_node
[SIZE_AC
+ nid
], nid
);
1539 if (INDEX_AC
!= INDEX_NODE
) {
1540 init_list(kmalloc_caches
[INDEX_NODE
],
1541 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1546 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1549 void __init
kmem_cache_init_late(void)
1551 struct kmem_cache
*cachep
;
1555 /* 6) resize the head arrays to their final sizes */
1556 mutex_lock(&slab_mutex
);
1557 list_for_each_entry(cachep
, &slab_caches
, list
)
1558 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1560 mutex_unlock(&slab_mutex
);
1562 /* Annotate slab for lockdep -- annotate the malloc caches */
1569 * Register a cpu startup notifier callback that initializes
1570 * cpu_cache_get for all new cpus
1572 register_cpu_notifier(&cpucache_notifier
);
1576 * Register a memory hotplug callback that initializes and frees
1579 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1583 * The reap timers are started later, with a module init call: That part
1584 * of the kernel is not yet operational.
1588 static int __init
cpucache_init(void)
1593 * Register the timers that return unneeded pages to the page allocator
1595 for_each_online_cpu(cpu
)
1596 start_cpu_timer(cpu
);
1602 __initcall(cpucache_init
);
1604 static noinline
void
1605 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1607 struct kmem_cache_node
*n
;
1609 unsigned long flags
;
1613 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1615 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1616 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1618 for_each_online_node(node
) {
1619 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1620 unsigned long active_slabs
= 0, num_slabs
= 0;
1622 n
= cachep
->node
[node
];
1626 spin_lock_irqsave(&n
->list_lock
, flags
);
1627 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
1628 active_objs
+= cachep
->num
;
1631 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
1632 active_objs
+= page
->active
;
1635 list_for_each_entry(page
, &n
->slabs_free
, lru
)
1638 free_objects
+= n
->free_objects
;
1639 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1641 num_slabs
+= active_slabs
;
1642 num_objs
= num_slabs
* cachep
->num
;
1644 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1645 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1651 * Interface to system's page allocator. No need to hold the cache-lock.
1653 * If we requested dmaable memory, we will get it. Even if we
1654 * did not request dmaable memory, we might get it, but that
1655 * would be relatively rare and ignorable.
1657 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1663 flags
|= cachep
->allocflags
;
1664 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1665 flags
|= __GFP_RECLAIMABLE
;
1667 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1669 if (!(flags
& __GFP_NOWARN
) && printk_ratelimit())
1670 slab_out_of_memory(cachep
, flags
, nodeid
);
1674 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1675 if (unlikely(page
->pfmemalloc
))
1676 pfmemalloc_active
= true;
1678 nr_pages
= (1 << cachep
->gfporder
);
1679 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1680 add_zone_page_state(page_zone(page
),
1681 NR_SLAB_RECLAIMABLE
, nr_pages
);
1683 add_zone_page_state(page_zone(page
),
1684 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1685 __SetPageSlab(page
);
1686 if (page
->pfmemalloc
)
1687 SetPageSlabPfmemalloc(page
);
1688 memcg_bind_pages(cachep
, cachep
->gfporder
);
1690 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1691 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1694 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1696 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1703 * Interface to system's page release.
1705 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1707 const unsigned long nr_freed
= (1 << cachep
->gfporder
);
1709 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1711 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1712 sub_zone_page_state(page_zone(page
),
1713 NR_SLAB_RECLAIMABLE
, nr_freed
);
1715 sub_zone_page_state(page_zone(page
),
1716 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1718 BUG_ON(!PageSlab(page
));
1719 __ClearPageSlabPfmemalloc(page
);
1720 __ClearPageSlab(page
);
1721 page_mapcount_reset(page
);
1722 page
->mapping
= NULL
;
1724 memcg_release_pages(cachep
, cachep
->gfporder
);
1725 if (current
->reclaim_state
)
1726 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1727 __free_memcg_kmem_pages(page
, cachep
->gfporder
);
1730 static void kmem_rcu_free(struct rcu_head
*head
)
1732 struct kmem_cache
*cachep
;
1735 page
= container_of(head
, struct page
, rcu_head
);
1736 cachep
= page
->slab_cache
;
1738 kmem_freepages(cachep
, page
);
1743 #ifdef CONFIG_DEBUG_PAGEALLOC
1744 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1745 unsigned long caller
)
1747 int size
= cachep
->object_size
;
1749 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1751 if (size
< 5 * sizeof(unsigned long))
1754 *addr
++ = 0x12345678;
1756 *addr
++ = smp_processor_id();
1757 size
-= 3 * sizeof(unsigned long);
1759 unsigned long *sptr
= &caller
;
1760 unsigned long svalue
;
1762 while (!kstack_end(sptr
)) {
1764 if (kernel_text_address(svalue
)) {
1766 size
-= sizeof(unsigned long);
1767 if (size
<= sizeof(unsigned long))
1773 *addr
++ = 0x87654321;
1777 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1779 int size
= cachep
->object_size
;
1780 addr
= &((char *)addr
)[obj_offset(cachep
)];
1782 memset(addr
, val
, size
);
1783 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1786 static void dump_line(char *data
, int offset
, int limit
)
1789 unsigned char error
= 0;
1792 printk(KERN_ERR
"%03x: ", offset
);
1793 for (i
= 0; i
< limit
; i
++) {
1794 if (data
[offset
+ i
] != POISON_FREE
) {
1795 error
= data
[offset
+ i
];
1799 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1800 &data
[offset
], limit
, 1);
1802 if (bad_count
== 1) {
1803 error
^= POISON_FREE
;
1804 if (!(error
& (error
- 1))) {
1805 printk(KERN_ERR
"Single bit error detected. Probably "
1808 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1811 printk(KERN_ERR
"Run a memory test tool.\n");
1820 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1825 if (cachep
->flags
& SLAB_RED_ZONE
) {
1826 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1827 *dbg_redzone1(cachep
, objp
),
1828 *dbg_redzone2(cachep
, objp
));
1831 if (cachep
->flags
& SLAB_STORE_USER
) {
1832 printk(KERN_ERR
"Last user: [<%p>](%pSR)\n",
1833 *dbg_userword(cachep
, objp
),
1834 *dbg_userword(cachep
, objp
));
1836 realobj
= (char *)objp
+ obj_offset(cachep
);
1837 size
= cachep
->object_size
;
1838 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1841 if (i
+ limit
> size
)
1843 dump_line(realobj
, i
, limit
);
1847 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1853 realobj
= (char *)objp
+ obj_offset(cachep
);
1854 size
= cachep
->object_size
;
1856 for (i
= 0; i
< size
; i
++) {
1857 char exp
= POISON_FREE
;
1860 if (realobj
[i
] != exp
) {
1866 "Slab corruption (%s): %s start=%p, len=%d\n",
1867 print_tainted(), cachep
->name
, realobj
, size
);
1868 print_objinfo(cachep
, objp
, 0);
1870 /* Hexdump the affected line */
1873 if (i
+ limit
> size
)
1875 dump_line(realobj
, i
, limit
);
1878 /* Limit to 5 lines */
1884 /* Print some data about the neighboring objects, if they
1887 struct page
*page
= virt_to_head_page(objp
);
1890 objnr
= obj_to_index(cachep
, page
, objp
);
1892 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1893 realobj
= (char *)objp
+ obj_offset(cachep
);
1894 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1896 print_objinfo(cachep
, objp
, 2);
1898 if (objnr
+ 1 < cachep
->num
) {
1899 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1900 realobj
= (char *)objp
+ obj_offset(cachep
);
1901 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1903 print_objinfo(cachep
, objp
, 2);
1910 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1914 for (i
= 0; i
< cachep
->num
; i
++) {
1915 void *objp
= index_to_obj(cachep
, page
, i
);
1917 if (cachep
->flags
& SLAB_POISON
) {
1918 #ifdef CONFIG_DEBUG_PAGEALLOC
1919 if (cachep
->size
% PAGE_SIZE
== 0 &&
1921 kernel_map_pages(virt_to_page(objp
),
1922 cachep
->size
/ PAGE_SIZE
, 1);
1924 check_poison_obj(cachep
, objp
);
1926 check_poison_obj(cachep
, objp
);
1929 if (cachep
->flags
& SLAB_RED_ZONE
) {
1930 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1931 slab_error(cachep
, "start of a freed object "
1933 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1934 slab_error(cachep
, "end of a freed object "
1940 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1947 * slab_destroy - destroy and release all objects in a slab
1948 * @cachep: cache pointer being destroyed
1949 * @page: page pointer being destroyed
1951 * Destroy all the objs in a slab, and release the mem back to the system.
1952 * Before calling the slab must have been unlinked from the cache. The
1953 * cache-lock is not held/needed.
1955 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
1959 freelist
= page
->freelist
;
1960 slab_destroy_debugcheck(cachep
, page
);
1961 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1962 struct rcu_head
*head
;
1965 * RCU free overloads the RCU head over the LRU.
1966 * slab_page has been overloeaded over the LRU,
1967 * however it is not used from now on so that
1968 * we can use it safely.
1970 head
= (void *)&page
->rcu_head
;
1971 call_rcu(head
, kmem_rcu_free
);
1974 kmem_freepages(cachep
, page
);
1978 * From now on, we don't use freelist
1979 * although actual page can be freed in rcu context
1981 if (OFF_SLAB(cachep
))
1982 kmem_cache_free(cachep
->freelist_cache
, freelist
);
1986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1992 * Also calculates the number of objects per slab.
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1998 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1999 size_t size
, size_t align
, unsigned long flags
)
2001 unsigned long offslab_limit
;
2002 size_t left_over
= 0;
2005 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2009 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2013 if (flags
& CFLGS_OFF_SLAB
) {
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2019 offslab_limit
= size
;
2020 offslab_limit
/= sizeof(unsigned int);
2022 if (num
> offslab_limit
)
2026 /* Found something acceptable - save it away */
2028 cachep
->gfporder
= gfporder
;
2029 left_over
= remainder
;
2032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2036 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2043 if (gfporder
>= slab_max_order
)
2047 * Acceptable internal fragmentation?
2049 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2055 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2057 if (slab_state
>= FULL
)
2058 return enable_cpucache(cachep
, gfp
);
2060 if (slab_state
== DOWN
) {
2062 * Note: Creation of first cache (kmem_cache).
2063 * The setup_node is taken care
2064 * of by the caller of __kmem_cache_create
2066 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2067 slab_state
= PARTIAL
;
2068 } else if (slab_state
== PARTIAL
) {
2070 * Note: the second kmem_cache_create must create the cache
2071 * that's used by kmalloc(24), otherwise the creation of
2072 * further caches will BUG().
2074 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2077 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2078 * the second cache, then we need to set up all its node/,
2079 * otherwise the creation of further caches will BUG().
2081 set_up_node(cachep
, SIZE_AC
);
2082 if (INDEX_AC
== INDEX_NODE
)
2083 slab_state
= PARTIAL_NODE
;
2085 slab_state
= PARTIAL_ARRAYCACHE
;
2087 /* Remaining boot caches */
2088 cachep
->array
[smp_processor_id()] =
2089 kmalloc(sizeof(struct arraycache_init
), gfp
);
2091 if (slab_state
== PARTIAL_ARRAYCACHE
) {
2092 set_up_node(cachep
, SIZE_NODE
);
2093 slab_state
= PARTIAL_NODE
;
2096 for_each_online_node(node
) {
2097 cachep
->node
[node
] =
2098 kmalloc_node(sizeof(struct kmem_cache_node
),
2100 BUG_ON(!cachep
->node
[node
]);
2101 kmem_cache_node_init(cachep
->node
[node
]);
2105 cachep
->node
[numa_mem_id()]->next_reap
=
2106 jiffies
+ REAPTIMEOUT_LIST3
+
2107 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2109 cpu_cache_get(cachep
)->avail
= 0;
2110 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2111 cpu_cache_get(cachep
)->batchcount
= 1;
2112 cpu_cache_get(cachep
)->touched
= 0;
2113 cachep
->batchcount
= 1;
2114 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2119 * __kmem_cache_create - Create a cache.
2120 * @cachep: cache management descriptor
2121 * @flags: SLAB flags
2123 * Returns a ptr to the cache on success, NULL on failure.
2124 * Cannot be called within a int, but can be interrupted.
2125 * The @ctor is run when new pages are allocated by the cache.
2129 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2130 * to catch references to uninitialised memory.
2132 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2133 * for buffer overruns.
2135 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2136 * cacheline. This can be beneficial if you're counting cycles as closely
2140 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2142 size_t left_over
, freelist_size
, ralign
;
2145 size_t size
= cachep
->size
;
2150 * Enable redzoning and last user accounting, except for caches with
2151 * large objects, if the increased size would increase the object size
2152 * above the next power of two: caches with object sizes just above a
2153 * power of two have a significant amount of internal fragmentation.
2155 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2156 2 * sizeof(unsigned long long)))
2157 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2158 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2159 flags
|= SLAB_POISON
;
2161 if (flags
& SLAB_DESTROY_BY_RCU
)
2162 BUG_ON(flags
& SLAB_POISON
);
2166 * Check that size is in terms of words. This is needed to avoid
2167 * unaligned accesses for some archs when redzoning is used, and makes
2168 * sure any on-slab bufctl's are also correctly aligned.
2170 if (size
& (BYTES_PER_WORD
- 1)) {
2171 size
+= (BYTES_PER_WORD
- 1);
2172 size
&= ~(BYTES_PER_WORD
- 1);
2176 * Redzoning and user store require word alignment or possibly larger.
2177 * Note this will be overridden by architecture or caller mandated
2178 * alignment if either is greater than BYTES_PER_WORD.
2180 if (flags
& SLAB_STORE_USER
)
2181 ralign
= BYTES_PER_WORD
;
2183 if (flags
& SLAB_RED_ZONE
) {
2184 ralign
= REDZONE_ALIGN
;
2185 /* If redzoning, ensure that the second redzone is suitably
2186 * aligned, by adjusting the object size accordingly. */
2187 size
+= REDZONE_ALIGN
- 1;
2188 size
&= ~(REDZONE_ALIGN
- 1);
2191 /* 3) caller mandated alignment */
2192 if (ralign
< cachep
->align
) {
2193 ralign
= cachep
->align
;
2195 /* disable debug if necessary */
2196 if (ralign
> __alignof__(unsigned long long))
2197 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2201 cachep
->align
= ralign
;
2203 if (slab_is_available())
2208 setup_node_pointer(cachep
);
2212 * Both debugging options require word-alignment which is calculated
2215 if (flags
& SLAB_RED_ZONE
) {
2216 /* add space for red zone words */
2217 cachep
->obj_offset
+= sizeof(unsigned long long);
2218 size
+= 2 * sizeof(unsigned long long);
2220 if (flags
& SLAB_STORE_USER
) {
2221 /* user store requires one word storage behind the end of
2222 * the real object. But if the second red zone needs to be
2223 * aligned to 64 bits, we must allow that much space.
2225 if (flags
& SLAB_RED_ZONE
)
2226 size
+= REDZONE_ALIGN
;
2228 size
+= BYTES_PER_WORD
;
2230 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2231 if (size
>= kmalloc_size(INDEX_NODE
+ 1)
2232 && cachep
->object_size
> cache_line_size()
2233 && ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2234 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2241 * Determine if the slab management is 'on' or 'off' slab.
2242 * (bootstrapping cannot cope with offslab caches so don't do
2243 * it too early on. Always use on-slab management when
2244 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2246 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2247 !(flags
& SLAB_NOLEAKTRACE
))
2249 * Size is large, assume best to place the slab management obj
2250 * off-slab (should allow better packing of objs).
2252 flags
|= CFLGS_OFF_SLAB
;
2254 size
= ALIGN(size
, cachep
->align
);
2256 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2262 ALIGN(cachep
->num
* sizeof(unsigned int), cachep
->align
);
2265 * If the slab has been placed off-slab, and we have enough space then
2266 * move it on-slab. This is at the expense of any extra colouring.
2268 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= freelist_size
) {
2269 flags
&= ~CFLGS_OFF_SLAB
;
2270 left_over
-= freelist_size
;
2273 if (flags
& CFLGS_OFF_SLAB
) {
2274 /* really off slab. No need for manual alignment */
2275 freelist_size
= cachep
->num
* sizeof(unsigned int);
2277 #ifdef CONFIG_PAGE_POISONING
2278 /* If we're going to use the generic kernel_map_pages()
2279 * poisoning, then it's going to smash the contents of
2280 * the redzone and userword anyhow, so switch them off.
2282 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2283 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2287 cachep
->colour_off
= cache_line_size();
2288 /* Offset must be a multiple of the alignment. */
2289 if (cachep
->colour_off
< cachep
->align
)
2290 cachep
->colour_off
= cachep
->align
;
2291 cachep
->colour
= left_over
/ cachep
->colour_off
;
2292 cachep
->freelist_size
= freelist_size
;
2293 cachep
->flags
= flags
;
2294 cachep
->allocflags
= __GFP_COMP
;
2295 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2296 cachep
->allocflags
|= GFP_DMA
;
2297 cachep
->size
= size
;
2298 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2300 if (flags
& CFLGS_OFF_SLAB
) {
2301 cachep
->freelist_cache
= kmalloc_slab(freelist_size
, 0u);
2303 * This is a possibility for one of the malloc_sizes caches.
2304 * But since we go off slab only for object size greater than
2305 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2306 * this should not happen at all.
2307 * But leave a BUG_ON for some lucky dude.
2309 BUG_ON(ZERO_OR_NULL_PTR(cachep
->freelist_cache
));
2312 err
= setup_cpu_cache(cachep
, gfp
);
2314 __kmem_cache_shutdown(cachep
);
2318 if (flags
& SLAB_DEBUG_OBJECTS
) {
2320 * Would deadlock through slab_destroy()->call_rcu()->
2321 * debug_object_activate()->kmem_cache_alloc().
2323 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2325 slab_set_debugobj_lock_classes(cachep
);
2326 } else if (!OFF_SLAB(cachep
) && !(flags
& SLAB_DESTROY_BY_RCU
))
2327 on_slab_lock_classes(cachep
);
2333 static void check_irq_off(void)
2335 BUG_ON(!irqs_disabled());
2338 static void check_irq_on(void)
2340 BUG_ON(irqs_disabled());
2343 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2347 assert_spin_locked(&cachep
->node
[numa_mem_id()]->list_lock
);
2351 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2355 assert_spin_locked(&cachep
->node
[node
]->list_lock
);
2360 #define check_irq_off() do { } while(0)
2361 #define check_irq_on() do { } while(0)
2362 #define check_spinlock_acquired(x) do { } while(0)
2363 #define check_spinlock_acquired_node(x, y) do { } while(0)
2366 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
2367 struct array_cache
*ac
,
2368 int force
, int node
);
2370 static void do_drain(void *arg
)
2372 struct kmem_cache
*cachep
= arg
;
2373 struct array_cache
*ac
;
2374 int node
= numa_mem_id();
2377 ac
= cpu_cache_get(cachep
);
2378 spin_lock(&cachep
->node
[node
]->list_lock
);
2379 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2380 spin_unlock(&cachep
->node
[node
]->list_lock
);
2384 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2386 struct kmem_cache_node
*n
;
2389 on_each_cpu(do_drain
, cachep
, 1);
2391 for_each_online_node(node
) {
2392 n
= cachep
->node
[node
];
2394 drain_alien_cache(cachep
, n
->alien
);
2397 for_each_online_node(node
) {
2398 n
= cachep
->node
[node
];
2400 drain_array(cachep
, n
, n
->shared
, 1, node
);
2405 * Remove slabs from the list of free slabs.
2406 * Specify the number of slabs to drain in tofree.
2408 * Returns the actual number of slabs released.
2410 static int drain_freelist(struct kmem_cache
*cache
,
2411 struct kmem_cache_node
*n
, int tofree
)
2413 struct list_head
*p
;
2418 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2420 spin_lock_irq(&n
->list_lock
);
2421 p
= n
->slabs_free
.prev
;
2422 if (p
== &n
->slabs_free
) {
2423 spin_unlock_irq(&n
->list_lock
);
2427 page
= list_entry(p
, struct page
, lru
);
2429 BUG_ON(page
->active
);
2431 list_del(&page
->lru
);
2433 * Safe to drop the lock. The slab is no longer linked
2436 n
->free_objects
-= cache
->num
;
2437 spin_unlock_irq(&n
->list_lock
);
2438 slab_destroy(cache
, page
);
2445 /* Called with slab_mutex held to protect against cpu hotplug */
2446 static int __cache_shrink(struct kmem_cache
*cachep
)
2449 struct kmem_cache_node
*n
;
2451 drain_cpu_caches(cachep
);
2454 for_each_online_node(i
) {
2455 n
= cachep
->node
[i
];
2459 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
2461 ret
+= !list_empty(&n
->slabs_full
) ||
2462 !list_empty(&n
->slabs_partial
);
2464 return (ret
? 1 : 0);
2468 * kmem_cache_shrink - Shrink a cache.
2469 * @cachep: The cache to shrink.
2471 * Releases as many slabs as possible for a cache.
2472 * To help debugging, a zero exit status indicates all slabs were released.
2474 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2477 BUG_ON(!cachep
|| in_interrupt());
2480 mutex_lock(&slab_mutex
);
2481 ret
= __cache_shrink(cachep
);
2482 mutex_unlock(&slab_mutex
);
2486 EXPORT_SYMBOL(kmem_cache_shrink
);
2488 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2491 struct kmem_cache_node
*n
;
2492 int rc
= __cache_shrink(cachep
);
2497 for_each_online_cpu(i
)
2498 kfree(cachep
->array
[i
]);
2500 /* NUMA: free the node structures */
2501 for_each_online_node(i
) {
2502 n
= cachep
->node
[i
];
2505 free_alien_cache(n
->alien
);
2513 * Get the memory for a slab management obj.
2514 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2515 * always come from malloc_sizes caches. The slab descriptor cannot
2516 * come from the same cache which is getting created because,
2517 * when we are searching for an appropriate cache for these
2518 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2519 * If we are creating a malloc_sizes cache here it would not be visible to
2520 * kmem_find_general_cachep till the initialization is complete.
2521 * Hence we cannot have freelist_cache same as the original cache.
2523 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2524 struct page
*page
, int colour_off
,
2525 gfp_t local_flags
, int nodeid
)
2528 void *addr
= page_address(page
);
2530 if (OFF_SLAB(cachep
)) {
2531 /* Slab management obj is off-slab. */
2532 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2533 local_flags
, nodeid
);
2537 freelist
= addr
+ colour_off
;
2538 colour_off
+= cachep
->freelist_size
;
2541 page
->s_mem
= addr
+ colour_off
;
2545 static inline unsigned int *slab_freelist(struct page
*page
)
2547 return (unsigned int *)(page
->freelist
);
2550 static void cache_init_objs(struct kmem_cache
*cachep
,
2555 for (i
= 0; i
< cachep
->num
; i
++) {
2556 void *objp
= index_to_obj(cachep
, page
, i
);
2558 /* need to poison the objs? */
2559 if (cachep
->flags
& SLAB_POISON
)
2560 poison_obj(cachep
, objp
, POISON_FREE
);
2561 if (cachep
->flags
& SLAB_STORE_USER
)
2562 *dbg_userword(cachep
, objp
) = NULL
;
2564 if (cachep
->flags
& SLAB_RED_ZONE
) {
2565 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2566 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2569 * Constructors are not allowed to allocate memory from the same
2570 * cache which they are a constructor for. Otherwise, deadlock.
2571 * They must also be threaded.
2573 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2574 cachep
->ctor(objp
+ obj_offset(cachep
));
2576 if (cachep
->flags
& SLAB_RED_ZONE
) {
2577 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2578 slab_error(cachep
, "constructor overwrote the"
2579 " end of an object");
2580 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2581 slab_error(cachep
, "constructor overwrote the"
2582 " start of an object");
2584 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2585 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2586 kernel_map_pages(virt_to_page(objp
),
2587 cachep
->size
/ PAGE_SIZE
, 0);
2592 slab_freelist(page
)[i
] = i
;
2596 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2598 if (CONFIG_ZONE_DMA_FLAG
) {
2599 if (flags
& GFP_DMA
)
2600 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2602 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2606 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
,
2611 objp
= index_to_obj(cachep
, page
, slab_freelist(page
)[page
->active
]);
2614 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2620 static void slab_put_obj(struct kmem_cache
*cachep
, struct page
*page
,
2621 void *objp
, int nodeid
)
2623 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2627 /* Verify that the slab belongs to the intended node */
2628 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2630 /* Verify double free bug */
2631 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2632 if (slab_freelist(page
)[i
] == objnr
) {
2633 printk(KERN_ERR
"slab: double free detected in cache "
2634 "'%s', objp %p\n", cachep
->name
, objp
);
2640 slab_freelist(page
)[page
->active
] = objnr
;
2644 * Map pages beginning at addr to the given cache and slab. This is required
2645 * for the slab allocator to be able to lookup the cache and slab of a
2646 * virtual address for kfree, ksize, and slab debugging.
2648 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2651 page
->slab_cache
= cache
;
2652 page
->freelist
= freelist
;
2656 * Grow (by 1) the number of slabs within a cache. This is called by
2657 * kmem_cache_alloc() when there are no active objs left in a cache.
2659 static int cache_grow(struct kmem_cache
*cachep
,
2660 gfp_t flags
, int nodeid
, struct page
*page
)
2665 struct kmem_cache_node
*n
;
2668 * Be lazy and only check for valid flags here, keeping it out of the
2669 * critical path in kmem_cache_alloc().
2671 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2672 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2674 /* Take the node list lock to change the colour_next on this node */
2676 n
= cachep
->node
[nodeid
];
2677 spin_lock(&n
->list_lock
);
2679 /* Get colour for the slab, and cal the next value. */
2680 offset
= n
->colour_next
;
2682 if (n
->colour_next
>= cachep
->colour
)
2684 spin_unlock(&n
->list_lock
);
2686 offset
*= cachep
->colour_off
;
2688 if (local_flags
& __GFP_WAIT
)
2692 * The test for missing atomic flag is performed here, rather than
2693 * the more obvious place, simply to reduce the critical path length
2694 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2695 * will eventually be caught here (where it matters).
2697 kmem_flagcheck(cachep
, flags
);
2700 * Get mem for the objs. Attempt to allocate a physical page from
2704 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2708 /* Get slab management. */
2709 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2710 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2714 slab_map_pages(cachep
, page
, freelist
);
2716 cache_init_objs(cachep
, page
);
2718 if (local_flags
& __GFP_WAIT
)
2719 local_irq_disable();
2721 spin_lock(&n
->list_lock
);
2723 /* Make slab active. */
2724 list_add_tail(&page
->lru
, &(n
->slabs_free
));
2725 STATS_INC_GROWN(cachep
);
2726 n
->free_objects
+= cachep
->num
;
2727 spin_unlock(&n
->list_lock
);
2730 kmem_freepages(cachep
, page
);
2732 if (local_flags
& __GFP_WAIT
)
2733 local_irq_disable();
2740 * Perform extra freeing checks:
2741 * - detect bad pointers.
2742 * - POISON/RED_ZONE checking
2744 static void kfree_debugcheck(const void *objp
)
2746 if (!virt_addr_valid(objp
)) {
2747 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2748 (unsigned long)objp
);
2753 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2755 unsigned long long redzone1
, redzone2
;
2757 redzone1
= *dbg_redzone1(cache
, obj
);
2758 redzone2
= *dbg_redzone2(cache
, obj
);
2763 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2766 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2767 slab_error(cache
, "double free detected");
2769 slab_error(cache
, "memory outside object was overwritten");
2771 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2772 obj
, redzone1
, redzone2
);
2775 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2776 unsigned long caller
)
2781 BUG_ON(virt_to_cache(objp
) != cachep
);
2783 objp
-= obj_offset(cachep
);
2784 kfree_debugcheck(objp
);
2785 page
= virt_to_head_page(objp
);
2787 if (cachep
->flags
& SLAB_RED_ZONE
) {
2788 verify_redzone_free(cachep
, objp
);
2789 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2790 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2792 if (cachep
->flags
& SLAB_STORE_USER
)
2793 *dbg_userword(cachep
, objp
) = (void *)caller
;
2795 objnr
= obj_to_index(cachep
, page
, objp
);
2797 BUG_ON(objnr
>= cachep
->num
);
2798 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2800 if (cachep
->flags
& SLAB_POISON
) {
2801 #ifdef CONFIG_DEBUG_PAGEALLOC
2802 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2803 store_stackinfo(cachep
, objp
, caller
);
2804 kernel_map_pages(virt_to_page(objp
),
2805 cachep
->size
/ PAGE_SIZE
, 0);
2807 poison_obj(cachep
, objp
, POISON_FREE
);
2810 poison_obj(cachep
, objp
, POISON_FREE
);
2817 #define kfree_debugcheck(x) do { } while(0)
2818 #define cache_free_debugcheck(x,objp,z) (objp)
2821 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
2825 struct kmem_cache_node
*n
;
2826 struct array_cache
*ac
;
2830 node
= numa_mem_id();
2831 if (unlikely(force_refill
))
2834 ac
= cpu_cache_get(cachep
);
2835 batchcount
= ac
->batchcount
;
2836 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2838 * If there was little recent activity on this cache, then
2839 * perform only a partial refill. Otherwise we could generate
2842 batchcount
= BATCHREFILL_LIMIT
;
2844 n
= cachep
->node
[node
];
2846 BUG_ON(ac
->avail
> 0 || !n
);
2847 spin_lock(&n
->list_lock
);
2849 /* See if we can refill from the shared array */
2850 if (n
->shared
&& transfer_objects(ac
, n
->shared
, batchcount
)) {
2851 n
->shared
->touched
= 1;
2855 while (batchcount
> 0) {
2856 struct list_head
*entry
;
2858 /* Get slab alloc is to come from. */
2859 entry
= n
->slabs_partial
.next
;
2860 if (entry
== &n
->slabs_partial
) {
2861 n
->free_touched
= 1;
2862 entry
= n
->slabs_free
.next
;
2863 if (entry
== &n
->slabs_free
)
2867 page
= list_entry(entry
, struct page
, lru
);
2868 check_spinlock_acquired(cachep
);
2871 * The slab was either on partial or free list so
2872 * there must be at least one object available for
2875 BUG_ON(page
->active
>= cachep
->num
);
2877 while (page
->active
< cachep
->num
&& batchcount
--) {
2878 STATS_INC_ALLOCED(cachep
);
2879 STATS_INC_ACTIVE(cachep
);
2880 STATS_SET_HIGH(cachep
);
2882 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, page
,
2886 /* move slabp to correct slabp list: */
2887 list_del(&page
->lru
);
2888 if (page
->active
== cachep
->num
)
2889 list_add(&page
->list
, &n
->slabs_full
);
2891 list_add(&page
->list
, &n
->slabs_partial
);
2895 n
->free_objects
-= ac
->avail
;
2897 spin_unlock(&n
->list_lock
);
2899 if (unlikely(!ac
->avail
)) {
2902 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
2904 /* cache_grow can reenable interrupts, then ac could change. */
2905 ac
= cpu_cache_get(cachep
);
2906 node
= numa_mem_id();
2908 /* no objects in sight? abort */
2909 if (!x
&& (ac
->avail
== 0 || force_refill
))
2912 if (!ac
->avail
) /* objects refilled by interrupt? */
2917 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
2920 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2923 might_sleep_if(flags
& __GFP_WAIT
);
2925 kmem_flagcheck(cachep
, flags
);
2930 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2931 gfp_t flags
, void *objp
, unsigned long caller
)
2935 if (cachep
->flags
& SLAB_POISON
) {
2936 #ifdef CONFIG_DEBUG_PAGEALLOC
2937 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2938 kernel_map_pages(virt_to_page(objp
),
2939 cachep
->size
/ PAGE_SIZE
, 1);
2941 check_poison_obj(cachep
, objp
);
2943 check_poison_obj(cachep
, objp
);
2945 poison_obj(cachep
, objp
, POISON_INUSE
);
2947 if (cachep
->flags
& SLAB_STORE_USER
)
2948 *dbg_userword(cachep
, objp
) = (void *)caller
;
2950 if (cachep
->flags
& SLAB_RED_ZONE
) {
2951 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2952 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2953 slab_error(cachep
, "double free, or memory outside"
2954 " object was overwritten");
2956 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2957 objp
, *dbg_redzone1(cachep
, objp
),
2958 *dbg_redzone2(cachep
, objp
));
2960 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2961 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2963 objp
+= obj_offset(cachep
);
2964 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
2966 if (ARCH_SLAB_MINALIGN
&&
2967 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
2968 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2969 objp
, (int)ARCH_SLAB_MINALIGN
);
2974 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2977 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
2979 if (cachep
== kmem_cache
)
2982 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
2985 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2988 struct array_cache
*ac
;
2989 bool force_refill
= false;
2993 ac
= cpu_cache_get(cachep
);
2994 if (likely(ac
->avail
)) {
2996 objp
= ac_get_obj(cachep
, ac
, flags
, false);
2999 * Allow for the possibility all avail objects are not allowed
3000 * by the current flags
3003 STATS_INC_ALLOCHIT(cachep
);
3006 force_refill
= true;
3009 STATS_INC_ALLOCMISS(cachep
);
3010 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
3012 * the 'ac' may be updated by cache_alloc_refill(),
3013 * and kmemleak_erase() requires its correct value.
3015 ac
= cpu_cache_get(cachep
);
3019 * To avoid a false negative, if an object that is in one of the
3020 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3021 * treat the array pointers as a reference to the object.
3024 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3030 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3032 * If we are in_interrupt, then process context, including cpusets and
3033 * mempolicy, may not apply and should not be used for allocation policy.
3035 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3037 int nid_alloc
, nid_here
;
3039 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3041 nid_alloc
= nid_here
= numa_mem_id();
3042 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3043 nid_alloc
= cpuset_slab_spread_node();
3044 else if (current
->mempolicy
)
3045 nid_alloc
= slab_node();
3046 if (nid_alloc
!= nid_here
)
3047 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3052 * Fallback function if there was no memory available and no objects on a
3053 * certain node and fall back is permitted. First we scan all the
3054 * available node for available objects. If that fails then we
3055 * perform an allocation without specifying a node. This allows the page
3056 * allocator to do its reclaim / fallback magic. We then insert the
3057 * slab into the proper nodelist and then allocate from it.
3059 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3061 struct zonelist
*zonelist
;
3065 enum zone_type high_zoneidx
= gfp_zone(flags
);
3068 unsigned int cpuset_mems_cookie
;
3070 if (flags
& __GFP_THISNODE
)
3073 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3076 cpuset_mems_cookie
= get_mems_allowed();
3077 zonelist
= node_zonelist(slab_node(), flags
);
3081 * Look through allowed nodes for objects available
3082 * from existing per node queues.
3084 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3085 nid
= zone_to_nid(zone
);
3087 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3089 cache
->node
[nid
]->free_objects
) {
3090 obj
= ____cache_alloc_node(cache
,
3091 flags
| GFP_THISNODE
, nid
);
3099 * This allocation will be performed within the constraints
3100 * of the current cpuset / memory policy requirements.
3101 * We may trigger various forms of reclaim on the allowed
3102 * set and go into memory reserves if necessary.
3106 if (local_flags
& __GFP_WAIT
)
3108 kmem_flagcheck(cache
, flags
);
3109 page
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3110 if (local_flags
& __GFP_WAIT
)
3111 local_irq_disable();
3114 * Insert into the appropriate per node queues
3116 nid
= page_to_nid(page
);
3117 if (cache_grow(cache
, flags
, nid
, page
)) {
3118 obj
= ____cache_alloc_node(cache
,
3119 flags
| GFP_THISNODE
, nid
);
3122 * Another processor may allocate the
3123 * objects in the slab since we are
3124 * not holding any locks.
3128 /* cache_grow already freed obj */
3134 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !obj
))
3140 * A interface to enable slab creation on nodeid
3142 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3145 struct list_head
*entry
;
3147 struct kmem_cache_node
*n
;
3151 VM_BUG_ON(nodeid
> num_online_nodes());
3152 n
= cachep
->node
[nodeid
];
3157 spin_lock(&n
->list_lock
);
3158 entry
= n
->slabs_partial
.next
;
3159 if (entry
== &n
->slabs_partial
) {
3160 n
->free_touched
= 1;
3161 entry
= n
->slabs_free
.next
;
3162 if (entry
== &n
->slabs_free
)
3166 page
= list_entry(entry
, struct page
, lru
);
3167 check_spinlock_acquired_node(cachep
, nodeid
);
3169 STATS_INC_NODEALLOCS(cachep
);
3170 STATS_INC_ACTIVE(cachep
);
3171 STATS_SET_HIGH(cachep
);
3173 BUG_ON(page
->active
== cachep
->num
);
3175 obj
= slab_get_obj(cachep
, page
, nodeid
);
3177 /* move slabp to correct slabp list: */
3178 list_del(&page
->lru
);
3180 if (page
->active
== cachep
->num
)
3181 list_add(&page
->lru
, &n
->slabs_full
);
3183 list_add(&page
->lru
, &n
->slabs_partial
);
3185 spin_unlock(&n
->list_lock
);
3189 spin_unlock(&n
->list_lock
);
3190 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3194 return fallback_alloc(cachep
, flags
);
3200 static __always_inline
void *
3201 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3202 unsigned long caller
)
3204 unsigned long save_flags
;
3206 int slab_node
= numa_mem_id();
3208 flags
&= gfp_allowed_mask
;
3210 lockdep_trace_alloc(flags
);
3212 if (slab_should_failslab(cachep
, flags
))
3215 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3217 cache_alloc_debugcheck_before(cachep
, flags
);
3218 local_irq_save(save_flags
);
3220 if (nodeid
== NUMA_NO_NODE
)
3223 if (unlikely(!cachep
->node
[nodeid
])) {
3224 /* Node not bootstrapped yet */
3225 ptr
= fallback_alloc(cachep
, flags
);
3229 if (nodeid
== slab_node
) {
3231 * Use the locally cached objects if possible.
3232 * However ____cache_alloc does not allow fallback
3233 * to other nodes. It may fail while we still have
3234 * objects on other nodes available.
3236 ptr
= ____cache_alloc(cachep
, flags
);
3240 /* ___cache_alloc_node can fall back to other nodes */
3241 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3243 local_irq_restore(save_flags
);
3244 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3245 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3249 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3251 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3252 memset(ptr
, 0, cachep
->object_size
);
3257 static __always_inline
void *
3258 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3262 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3263 objp
= alternate_node_alloc(cache
, flags
);
3267 objp
= ____cache_alloc(cache
, flags
);
3270 * We may just have run out of memory on the local node.
3271 * ____cache_alloc_node() knows how to locate memory on other nodes
3274 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3281 static __always_inline
void *
3282 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3284 return ____cache_alloc(cachep
, flags
);
3287 #endif /* CONFIG_NUMA */
3289 static __always_inline
void *
3290 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3292 unsigned long save_flags
;
3295 flags
&= gfp_allowed_mask
;
3297 lockdep_trace_alloc(flags
);
3299 if (slab_should_failslab(cachep
, flags
))
3302 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3304 cache_alloc_debugcheck_before(cachep
, flags
);
3305 local_irq_save(save_flags
);
3306 objp
= __do_cache_alloc(cachep
, flags
);
3307 local_irq_restore(save_flags
);
3308 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3309 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3314 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3316 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3317 memset(objp
, 0, cachep
->object_size
);
3323 * Caller needs to acquire correct kmem_list's list_lock
3325 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3329 struct kmem_cache_node
*n
;
3331 for (i
= 0; i
< nr_objects
; i
++) {
3335 clear_obj_pfmemalloc(&objpp
[i
]);
3338 page
= virt_to_head_page(objp
);
3339 n
= cachep
->node
[node
];
3340 list_del(&page
->lru
);
3341 check_spinlock_acquired_node(cachep
, node
);
3342 slab_put_obj(cachep
, page
, objp
, node
);
3343 STATS_DEC_ACTIVE(cachep
);
3346 /* fixup slab chains */
3347 if (page
->active
== 0) {
3348 if (n
->free_objects
> n
->free_limit
) {
3349 n
->free_objects
-= cachep
->num
;
3350 /* No need to drop any previously held
3351 * lock here, even if we have a off-slab slab
3352 * descriptor it is guaranteed to come from
3353 * a different cache, refer to comments before
3356 slab_destroy(cachep
, page
);
3358 list_add(&page
->lru
, &n
->slabs_free
);
3361 /* Unconditionally move a slab to the end of the
3362 * partial list on free - maximum time for the
3363 * other objects to be freed, too.
3365 list_add_tail(&page
->lru
, &n
->slabs_partial
);
3370 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3373 struct kmem_cache_node
*n
;
3374 int node
= numa_mem_id();
3376 batchcount
= ac
->batchcount
;
3378 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3381 n
= cachep
->node
[node
];
3382 spin_lock(&n
->list_lock
);
3384 struct array_cache
*shared_array
= n
->shared
;
3385 int max
= shared_array
->limit
- shared_array
->avail
;
3387 if (batchcount
> max
)
3389 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3390 ac
->entry
, sizeof(void *) * batchcount
);
3391 shared_array
->avail
+= batchcount
;
3396 free_block(cachep
, ac
->entry
, batchcount
, node
);
3401 struct list_head
*p
;
3403 p
= n
->slabs_free
.next
;
3404 while (p
!= &(n
->slabs_free
)) {
3407 page
= list_entry(p
, struct page
, lru
);
3408 BUG_ON(page
->active
);
3413 STATS_SET_FREEABLE(cachep
, i
);
3416 spin_unlock(&n
->list_lock
);
3417 ac
->avail
-= batchcount
;
3418 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3422 * Release an obj back to its cache. If the obj has a constructed state, it must
3423 * be in this state _before_ it is released. Called with disabled ints.
3425 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3426 unsigned long caller
)
3428 struct array_cache
*ac
= cpu_cache_get(cachep
);
3431 kmemleak_free_recursive(objp
, cachep
->flags
);
3432 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3434 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3437 * Skip calling cache_free_alien() when the platform is not numa.
3438 * This will avoid cache misses that happen while accessing slabp (which
3439 * is per page memory reference) to get nodeid. Instead use a global
3440 * variable to skip the call, which is mostly likely to be present in
3443 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3446 if (likely(ac
->avail
< ac
->limit
)) {
3447 STATS_INC_FREEHIT(cachep
);
3449 STATS_INC_FREEMISS(cachep
);
3450 cache_flusharray(cachep
, ac
);
3453 ac_put_obj(cachep
, ac
, objp
);
3457 * kmem_cache_alloc - Allocate an object
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3461 * Allocate an object from this cache. The flags are only relevant
3462 * if the cache has no available objects.
3464 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3466 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3468 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3469 cachep
->object_size
, cachep
->size
, flags
);
3473 EXPORT_SYMBOL(kmem_cache_alloc
);
3475 #ifdef CONFIG_TRACING
3477 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3481 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3483 trace_kmalloc(_RET_IP_
, ret
,
3484 size
, cachep
->size
, flags
);
3487 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3492 * kmem_cache_alloc_node - Allocate an object on the specified node
3493 * @cachep: The cache to allocate from.
3494 * @flags: See kmalloc().
3495 * @nodeid: node number of the target node.
3497 * Identical to kmem_cache_alloc but it will allocate memory on the given
3498 * node, which can improve the performance for cpu bound structures.
3500 * Fallback to other node is possible if __GFP_THISNODE is not set.
3502 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3504 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3506 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3507 cachep
->object_size
, cachep
->size
,
3512 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3514 #ifdef CONFIG_TRACING
3515 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3522 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3524 trace_kmalloc_node(_RET_IP_
, ret
,
3529 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3532 static __always_inline
void *
3533 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3535 struct kmem_cache
*cachep
;
3537 cachep
= kmalloc_slab(size
, flags
);
3538 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3540 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3543 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3544 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3546 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3548 EXPORT_SYMBOL(__kmalloc_node
);
3550 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3551 int node
, unsigned long caller
)
3553 return __do_kmalloc_node(size
, flags
, node
, caller
);
3555 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3557 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3559 return __do_kmalloc_node(size
, flags
, node
, 0);
3561 EXPORT_SYMBOL(__kmalloc_node
);
3562 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3563 #endif /* CONFIG_NUMA */
3566 * __do_kmalloc - allocate memory
3567 * @size: how many bytes of memory are required.
3568 * @flags: the type of memory to allocate (see kmalloc).
3569 * @caller: function caller for debug tracking of the caller
3571 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3572 unsigned long caller
)
3574 struct kmem_cache
*cachep
;
3577 /* If you want to save a few bytes .text space: replace
3579 * Then kmalloc uses the uninlined functions instead of the inline
3582 cachep
= kmalloc_slab(size
, flags
);
3583 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3585 ret
= slab_alloc(cachep
, flags
, caller
);
3587 trace_kmalloc(caller
, ret
,
3588 size
, cachep
->size
, flags
);
3594 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3595 void *__kmalloc(size_t size
, gfp_t flags
)
3597 return __do_kmalloc(size
, flags
, _RET_IP_
);
3599 EXPORT_SYMBOL(__kmalloc
);
3601 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3603 return __do_kmalloc(size
, flags
, caller
);
3605 EXPORT_SYMBOL(__kmalloc_track_caller
);
3608 void *__kmalloc(size_t size
, gfp_t flags
)
3610 return __do_kmalloc(size
, flags
, 0);
3612 EXPORT_SYMBOL(__kmalloc
);
3616 * kmem_cache_free - Deallocate an object
3617 * @cachep: The cache the allocation was from.
3618 * @objp: The previously allocated object.
3620 * Free an object which was previously allocated from this
3623 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3625 unsigned long flags
;
3626 cachep
= cache_from_obj(cachep
, objp
);
3630 local_irq_save(flags
);
3631 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3632 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3633 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3634 __cache_free(cachep
, objp
, _RET_IP_
);
3635 local_irq_restore(flags
);
3637 trace_kmem_cache_free(_RET_IP_
, objp
);
3639 EXPORT_SYMBOL(kmem_cache_free
);
3642 * kfree - free previously allocated memory
3643 * @objp: pointer returned by kmalloc.
3645 * If @objp is NULL, no operation is performed.
3647 * Don't free memory not originally allocated by kmalloc()
3648 * or you will run into trouble.
3650 void kfree(const void *objp
)
3652 struct kmem_cache
*c
;
3653 unsigned long flags
;
3655 trace_kfree(_RET_IP_
, objp
);
3657 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3659 local_irq_save(flags
);
3660 kfree_debugcheck(objp
);
3661 c
= virt_to_cache(objp
);
3662 debug_check_no_locks_freed(objp
, c
->object_size
);
3664 debug_check_no_obj_freed(objp
, c
->object_size
);
3665 __cache_free(c
, (void *)objp
, _RET_IP_
);
3666 local_irq_restore(flags
);
3668 EXPORT_SYMBOL(kfree
);
3671 * This initializes kmem_cache_node or resizes various caches for all nodes.
3673 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3676 struct kmem_cache_node
*n
;
3677 struct array_cache
*new_shared
;
3678 struct array_cache
**new_alien
= NULL
;
3680 for_each_online_node(node
) {
3682 if (use_alien_caches
) {
3683 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3689 if (cachep
->shared
) {
3690 new_shared
= alloc_arraycache(node
,
3691 cachep
->shared
*cachep
->batchcount
,
3694 free_alien_cache(new_alien
);
3699 n
= cachep
->node
[node
];
3701 struct array_cache
*shared
= n
->shared
;
3703 spin_lock_irq(&n
->list_lock
);
3706 free_block(cachep
, shared
->entry
,
3707 shared
->avail
, node
);
3709 n
->shared
= new_shared
;
3711 n
->alien
= new_alien
;
3714 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3715 cachep
->batchcount
+ cachep
->num
;
3716 spin_unlock_irq(&n
->list_lock
);
3718 free_alien_cache(new_alien
);
3721 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
3723 free_alien_cache(new_alien
);
3728 kmem_cache_node_init(n
);
3729 n
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3730 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3731 n
->shared
= new_shared
;
3732 n
->alien
= new_alien
;
3733 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3734 cachep
->batchcount
+ cachep
->num
;
3735 cachep
->node
[node
] = n
;
3740 if (!cachep
->list
.next
) {
3741 /* Cache is not active yet. Roll back what we did */
3744 if (cachep
->node
[node
]) {
3745 n
= cachep
->node
[node
];
3748 free_alien_cache(n
->alien
);
3750 cachep
->node
[node
] = NULL
;
3758 struct ccupdate_struct
{
3759 struct kmem_cache
*cachep
;
3760 struct array_cache
*new[0];
3763 static void do_ccupdate_local(void *info
)
3765 struct ccupdate_struct
*new = info
;
3766 struct array_cache
*old
;
3769 old
= cpu_cache_get(new->cachep
);
3771 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3772 new->new[smp_processor_id()] = old
;
3775 /* Always called with the slab_mutex held */
3776 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3777 int batchcount
, int shared
, gfp_t gfp
)
3779 struct ccupdate_struct
*new;
3782 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
3787 for_each_online_cpu(i
) {
3788 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
3791 for (i
--; i
>= 0; i
--)
3797 new->cachep
= cachep
;
3799 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3802 cachep
->batchcount
= batchcount
;
3803 cachep
->limit
= limit
;
3804 cachep
->shared
= shared
;
3806 for_each_online_cpu(i
) {
3807 struct array_cache
*ccold
= new->new[i
];
3810 spin_lock_irq(&cachep
->node
[cpu_to_mem(i
)]->list_lock
);
3811 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
3812 spin_unlock_irq(&cachep
->node
[cpu_to_mem(i
)]->list_lock
);
3816 return alloc_kmemlist(cachep
, gfp
);
3819 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3820 int batchcount
, int shared
, gfp_t gfp
)
3823 struct kmem_cache
*c
= NULL
;
3826 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3828 if (slab_state
< FULL
)
3831 if ((ret
< 0) || !is_root_cache(cachep
))
3834 VM_BUG_ON(!mutex_is_locked(&slab_mutex
));
3835 for_each_memcg_cache_index(i
) {
3836 c
= cache_from_memcg_idx(cachep
, i
);
3838 /* return value determined by the parent cache only */
3839 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3845 /* Called with slab_mutex held always */
3846 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3853 if (!is_root_cache(cachep
)) {
3854 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3855 limit
= root
->limit
;
3856 shared
= root
->shared
;
3857 batchcount
= root
->batchcount
;
3860 if (limit
&& shared
&& batchcount
)
3863 * The head array serves three purposes:
3864 * - create a LIFO ordering, i.e. return objects that are cache-warm
3865 * - reduce the number of spinlock operations.
3866 * - reduce the number of linked list operations on the slab and
3867 * bufctl chains: array operations are cheaper.
3868 * The numbers are guessed, we should auto-tune as described by
3871 if (cachep
->size
> 131072)
3873 else if (cachep
->size
> PAGE_SIZE
)
3875 else if (cachep
->size
> 1024)
3877 else if (cachep
->size
> 256)
3883 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3884 * allocation behaviour: Most allocs on one cpu, most free operations
3885 * on another cpu. For these cases, an efficient object passing between
3886 * cpus is necessary. This is provided by a shared array. The array
3887 * replaces Bonwick's magazine layer.
3888 * On uniprocessor, it's functionally equivalent (but less efficient)
3889 * to a larger limit. Thus disabled by default.
3892 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3897 * With debugging enabled, large batchcount lead to excessively long
3898 * periods with disabled local interrupts. Limit the batchcount
3903 batchcount
= (limit
+ 1) / 2;
3905 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3907 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3908 cachep
->name
, -err
);
3913 * Drain an array if it contains any elements taking the node lock only if
3914 * necessary. Note that the node listlock also protects the array_cache
3915 * if drain_array() is used on the shared array.
3917 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
3918 struct array_cache
*ac
, int force
, int node
)
3922 if (!ac
|| !ac
->avail
)
3924 if (ac
->touched
&& !force
) {
3927 spin_lock_irq(&n
->list_lock
);
3929 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3930 if (tofree
> ac
->avail
)
3931 tofree
= (ac
->avail
+ 1) / 2;
3932 free_block(cachep
, ac
->entry
, tofree
, node
);
3933 ac
->avail
-= tofree
;
3934 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3935 sizeof(void *) * ac
->avail
);
3937 spin_unlock_irq(&n
->list_lock
);
3942 * cache_reap - Reclaim memory from caches.
3943 * @w: work descriptor
3945 * Called from workqueue/eventd every few seconds.
3947 * - clear the per-cpu caches for this CPU.
3948 * - return freeable pages to the main free memory pool.
3950 * If we cannot acquire the cache chain mutex then just give up - we'll try
3951 * again on the next iteration.
3953 static void cache_reap(struct work_struct
*w
)
3955 struct kmem_cache
*searchp
;
3956 struct kmem_cache_node
*n
;
3957 int node
= numa_mem_id();
3958 struct delayed_work
*work
= to_delayed_work(w
);
3960 if (!mutex_trylock(&slab_mutex
))
3961 /* Give up. Setup the next iteration. */
3964 list_for_each_entry(searchp
, &slab_caches
, list
) {
3968 * We only take the node lock if absolutely necessary and we
3969 * have established with reasonable certainty that
3970 * we can do some work if the lock was obtained.
3972 n
= searchp
->node
[node
];
3974 reap_alien(searchp
, n
);
3976 drain_array(searchp
, n
, cpu_cache_get(searchp
), 0, node
);
3979 * These are racy checks but it does not matter
3980 * if we skip one check or scan twice.
3982 if (time_after(n
->next_reap
, jiffies
))
3985 n
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3987 drain_array(searchp
, n
, n
->shared
, 0, node
);
3989 if (n
->free_touched
)
3990 n
->free_touched
= 0;
3994 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
3995 5 * searchp
->num
- 1) / (5 * searchp
->num
));
3996 STATS_ADD_REAPED(searchp
, freed
);
4002 mutex_unlock(&slab_mutex
);
4005 /* Set up the next iteration */
4006 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4009 #ifdef CONFIG_SLABINFO
4010 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4013 unsigned long active_objs
;
4014 unsigned long num_objs
;
4015 unsigned long active_slabs
= 0;
4016 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4020 struct kmem_cache_node
*n
;
4024 for_each_online_node(node
) {
4025 n
= cachep
->node
[node
];
4030 spin_lock_irq(&n
->list_lock
);
4032 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
4033 if (page
->active
!= cachep
->num
&& !error
)
4034 error
= "slabs_full accounting error";
4035 active_objs
+= cachep
->num
;
4038 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
4039 if (page
->active
== cachep
->num
&& !error
)
4040 error
= "slabs_partial accounting error";
4041 if (!page
->active
&& !error
)
4042 error
= "slabs_partial accounting error";
4043 active_objs
+= page
->active
;
4046 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
4047 if (page
->active
&& !error
)
4048 error
= "slabs_free accounting error";
4051 free_objects
+= n
->free_objects
;
4053 shared_avail
+= n
->shared
->avail
;
4055 spin_unlock_irq(&n
->list_lock
);
4057 num_slabs
+= active_slabs
;
4058 num_objs
= num_slabs
* cachep
->num
;
4059 if (num_objs
- active_objs
!= free_objects
&& !error
)
4060 error
= "free_objects accounting error";
4062 name
= cachep
->name
;
4064 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4066 sinfo
->active_objs
= active_objs
;
4067 sinfo
->num_objs
= num_objs
;
4068 sinfo
->active_slabs
= active_slabs
;
4069 sinfo
->num_slabs
= num_slabs
;
4070 sinfo
->shared_avail
= shared_avail
;
4071 sinfo
->limit
= cachep
->limit
;
4072 sinfo
->batchcount
= cachep
->batchcount
;
4073 sinfo
->shared
= cachep
->shared
;
4074 sinfo
->objects_per_slab
= cachep
->num
;
4075 sinfo
->cache_order
= cachep
->gfporder
;
4078 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4082 unsigned long high
= cachep
->high_mark
;
4083 unsigned long allocs
= cachep
->num_allocations
;
4084 unsigned long grown
= cachep
->grown
;
4085 unsigned long reaped
= cachep
->reaped
;
4086 unsigned long errors
= cachep
->errors
;
4087 unsigned long max_freeable
= cachep
->max_freeable
;
4088 unsigned long node_allocs
= cachep
->node_allocs
;
4089 unsigned long node_frees
= cachep
->node_frees
;
4090 unsigned long overflows
= cachep
->node_overflow
;
4092 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4093 "%4lu %4lu %4lu %4lu %4lu",
4094 allocs
, high
, grown
,
4095 reaped
, errors
, max_freeable
, node_allocs
,
4096 node_frees
, overflows
);
4100 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4101 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4102 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4103 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4105 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4106 allochit
, allocmiss
, freehit
, freemiss
);
4111 #define MAX_SLABINFO_WRITE 128
4113 * slabinfo_write - Tuning for the slab allocator
4115 * @buffer: user buffer
4116 * @count: data length
4119 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4120 size_t count
, loff_t
*ppos
)
4122 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4123 int limit
, batchcount
, shared
, res
;
4124 struct kmem_cache
*cachep
;
4126 if (count
> MAX_SLABINFO_WRITE
)
4128 if (copy_from_user(&kbuf
, buffer
, count
))
4130 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4132 tmp
= strchr(kbuf
, ' ');
4137 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4140 /* Find the cache in the chain of caches. */
4141 mutex_lock(&slab_mutex
);
4143 list_for_each_entry(cachep
, &slab_caches
, list
) {
4144 if (!strcmp(cachep
->name
, kbuf
)) {
4145 if (limit
< 1 || batchcount
< 1 ||
4146 batchcount
> limit
|| shared
< 0) {
4149 res
= do_tune_cpucache(cachep
, limit
,
4156 mutex_unlock(&slab_mutex
);
4162 #ifdef CONFIG_DEBUG_SLAB_LEAK
4164 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4166 mutex_lock(&slab_mutex
);
4167 return seq_list_start(&slab_caches
, *pos
);
4170 static inline int add_caller(unsigned long *n
, unsigned long v
)
4180 unsigned long *q
= p
+ 2 * i
;
4194 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4200 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
,
4208 for (i
= 0, p
= page
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4211 for (j
= page
->active
; j
< c
->num
; j
++) {
4212 /* Skip freed item */
4213 if (slab_freelist(page
)[j
] == i
) {
4221 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4226 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4228 #ifdef CONFIG_KALLSYMS
4229 unsigned long offset
, size
;
4230 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4232 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4233 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4235 seq_printf(m
, " [%s]", modname
);
4239 seq_printf(m
, "%p", (void *)address
);
4242 static int leaks_show(struct seq_file
*m
, void *p
)
4244 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4246 struct kmem_cache_node
*n
;
4248 unsigned long *x
= m
->private;
4252 if (!(cachep
->flags
& SLAB_STORE_USER
))
4254 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4257 /* OK, we can do it */
4261 for_each_online_node(node
) {
4262 n
= cachep
->node
[node
];
4267 spin_lock_irq(&n
->list_lock
);
4269 list_for_each_entry(page
, &n
->slabs_full
, lru
)
4270 handle_slab(x
, cachep
, page
);
4271 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
4272 handle_slab(x
, cachep
, page
);
4273 spin_unlock_irq(&n
->list_lock
);
4275 name
= cachep
->name
;
4277 /* Increase the buffer size */
4278 mutex_unlock(&slab_mutex
);
4279 m
->private = kzalloc(x
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4281 /* Too bad, we are really out */
4283 mutex_lock(&slab_mutex
);
4286 *(unsigned long *)m
->private = x
[0] * 2;
4288 mutex_lock(&slab_mutex
);
4289 /* Now make sure this entry will be retried */
4293 for (i
= 0; i
< x
[1]; i
++) {
4294 seq_printf(m
, "%s: %lu ", name
, x
[2*i
+3]);
4295 show_symbol(m
, x
[2*i
+2]);
4302 static const struct seq_operations slabstats_op
= {
4303 .start
= leaks_start
,
4309 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4311 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4314 ret
= seq_open(file
, &slabstats_op
);
4316 struct seq_file
*m
= file
->private_data
;
4317 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4326 static const struct file_operations proc_slabstats_operations
= {
4327 .open
= slabstats_open
,
4329 .llseek
= seq_lseek
,
4330 .release
= seq_release_private
,
4334 static int __init
slab_proc_init(void)
4336 #ifdef CONFIG_DEBUG_SLAB_LEAK
4337 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4341 module_init(slab_proc_init
);
4345 * ksize - get the actual amount of memory allocated for a given object
4346 * @objp: Pointer to the object
4348 * kmalloc may internally round up allocations and return more memory
4349 * than requested. ksize() can be used to determine the actual amount of
4350 * memory allocated. The caller may use this additional memory, even though
4351 * a smaller amount of memory was initially specified with the kmalloc call.
4352 * The caller must guarantee that objp points to a valid object previously
4353 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4354 * must not be freed during the duration of the call.
4356 size_t ksize(const void *objp
)
4359 if (unlikely(objp
== ZERO_SIZE_PTR
))
4362 return virt_to_cache(objp
)->object_size
;
4364 EXPORT_SYMBOL(ksize
);