Staging: bcm: CmHost: moved and removed declarations and tmp bracing.
[linux/fpc-iii.git] / mm / slab.c
blobb264214c77ead2f8426ae476354231dc7c52169a
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
130 #include "slab.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
164 static bool pfmemalloc_active __read_mostly;
167 * struct array_cache
169 * Purpose:
170 * - LIFO ordering, to hand out cache-warm objects from _alloc
171 * - reduce the number of linked list operations
172 * - reduce spinlock operations
174 * The limit is stored in the per-cpu structure to reduce the data cache
175 * footprint.
178 struct array_cache {
179 unsigned int avail;
180 unsigned int limit;
181 unsigned int batchcount;
182 unsigned int touched;
183 spinlock_t lock;
184 void *entry[]; /*
185 * Must have this definition in here for the proper
186 * alignment of array_cache. Also simplifies accessing
187 * the entries.
189 * Entries should not be directly dereferenced as
190 * entries belonging to slabs marked pfmemalloc will
191 * have the lower bits set SLAB_OBJ_PFMEMALLOC
195 #define SLAB_OBJ_PFMEMALLOC 1
196 static inline bool is_obj_pfmemalloc(void *objp)
198 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
201 static inline void set_obj_pfmemalloc(void **objp)
203 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
204 return;
207 static inline void clear_obj_pfmemalloc(void **objp)
209 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
213 * bootstrap: The caches do not work without cpuarrays anymore, but the
214 * cpuarrays are allocated from the generic caches...
216 #define BOOT_CPUCACHE_ENTRIES 1
217 struct arraycache_init {
218 struct array_cache cache;
219 void *entries[BOOT_CPUCACHE_ENTRIES];
223 * Need this for bootstrapping a per node allocator.
225 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
226 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
227 #define CACHE_CACHE 0
228 #define SIZE_AC MAX_NUMNODES
229 #define SIZE_NODE (2 * MAX_NUMNODES)
231 static int drain_freelist(struct kmem_cache *cache,
232 struct kmem_cache_node *n, int tofree);
233 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
234 int node);
235 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
236 static void cache_reap(struct work_struct *unused);
238 static int slab_early_init = 1;
240 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
241 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
243 static void kmem_cache_node_init(struct kmem_cache_node *parent)
245 INIT_LIST_HEAD(&parent->slabs_full);
246 INIT_LIST_HEAD(&parent->slabs_partial);
247 INIT_LIST_HEAD(&parent->slabs_free);
248 parent->shared = NULL;
249 parent->alien = NULL;
250 parent->colour_next = 0;
251 spin_lock_init(&parent->list_lock);
252 parent->free_objects = 0;
253 parent->free_touched = 0;
256 #define MAKE_LIST(cachep, listp, slab, nodeid) \
257 do { \
258 INIT_LIST_HEAD(listp); \
259 list_splice(&(cachep->node[nodeid]->slab), listp); \
260 } while (0)
262 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
263 do { \
264 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
265 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
266 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
267 } while (0)
269 #define CFLGS_OFF_SLAB (0x80000000UL)
270 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
272 #define BATCHREFILL_LIMIT 16
274 * Optimization question: fewer reaps means less probability for unnessary
275 * cpucache drain/refill cycles.
277 * OTOH the cpuarrays can contain lots of objects,
278 * which could lock up otherwise freeable slabs.
280 #define REAPTIMEOUT_CPUC (2*HZ)
281 #define REAPTIMEOUT_LIST3 (4*HZ)
283 #if STATS
284 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
285 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
286 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
287 #define STATS_INC_GROWN(x) ((x)->grown++)
288 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
289 #define STATS_SET_HIGH(x) \
290 do { \
291 if ((x)->num_active > (x)->high_mark) \
292 (x)->high_mark = (x)->num_active; \
293 } while (0)
294 #define STATS_INC_ERR(x) ((x)->errors++)
295 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
296 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
297 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
298 #define STATS_SET_FREEABLE(x, i) \
299 do { \
300 if ((x)->max_freeable < i) \
301 (x)->max_freeable = i; \
302 } while (0)
303 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
304 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
305 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
306 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
307 #else
308 #define STATS_INC_ACTIVE(x) do { } while (0)
309 #define STATS_DEC_ACTIVE(x) do { } while (0)
310 #define STATS_INC_ALLOCED(x) do { } while (0)
311 #define STATS_INC_GROWN(x) do { } while (0)
312 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
313 #define STATS_SET_HIGH(x) do { } while (0)
314 #define STATS_INC_ERR(x) do { } while (0)
315 #define STATS_INC_NODEALLOCS(x) do { } while (0)
316 #define STATS_INC_NODEFREES(x) do { } while (0)
317 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
318 #define STATS_SET_FREEABLE(x, i) do { } while (0)
319 #define STATS_INC_ALLOCHIT(x) do { } while (0)
320 #define STATS_INC_ALLOCMISS(x) do { } while (0)
321 #define STATS_INC_FREEHIT(x) do { } while (0)
322 #define STATS_INC_FREEMISS(x) do { } while (0)
323 #endif
325 #if DEBUG
328 * memory layout of objects:
329 * 0 : objp
330 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
331 * the end of an object is aligned with the end of the real
332 * allocation. Catches writes behind the end of the allocation.
333 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
334 * redzone word.
335 * cachep->obj_offset: The real object.
336 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
337 * cachep->size - 1* BYTES_PER_WORD: last caller address
338 * [BYTES_PER_WORD long]
340 static int obj_offset(struct kmem_cache *cachep)
342 return cachep->obj_offset;
345 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
347 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
348 return (unsigned long long*) (objp + obj_offset(cachep) -
349 sizeof(unsigned long long));
352 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
354 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
355 if (cachep->flags & SLAB_STORE_USER)
356 return (unsigned long long *)(objp + cachep->size -
357 sizeof(unsigned long long) -
358 REDZONE_ALIGN);
359 return (unsigned long long *) (objp + cachep->size -
360 sizeof(unsigned long long));
363 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
365 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
366 return (void **)(objp + cachep->size - BYTES_PER_WORD);
369 #else
371 #define obj_offset(x) 0
372 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
373 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
374 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
376 #endif
379 * Do not go above this order unless 0 objects fit into the slab or
380 * overridden on the command line.
382 #define SLAB_MAX_ORDER_HI 1
383 #define SLAB_MAX_ORDER_LO 0
384 static int slab_max_order = SLAB_MAX_ORDER_LO;
385 static bool slab_max_order_set __initdata;
387 static inline struct kmem_cache *virt_to_cache(const void *obj)
389 struct page *page = virt_to_head_page(obj);
390 return page->slab_cache;
393 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
394 unsigned int idx)
396 return page->s_mem + cache->size * idx;
400 * We want to avoid an expensive divide : (offset / cache->size)
401 * Using the fact that size is a constant for a particular cache,
402 * we can replace (offset / cache->size) by
403 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
405 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
406 const struct page *page, void *obj)
408 u32 offset = (obj - page->s_mem);
409 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
412 static struct arraycache_init initarray_generic =
413 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
415 /* internal cache of cache description objs */
416 static struct kmem_cache kmem_cache_boot = {
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
420 .size = sizeof(struct kmem_cache),
421 .name = "kmem_cache",
424 #define BAD_ALIEN_MAGIC 0x01020304ul
426 #ifdef CONFIG_LOCKDEP
429 * Slab sometimes uses the kmalloc slabs to store the slab headers
430 * for other slabs "off slab".
431 * The locking for this is tricky in that it nests within the locks
432 * of all other slabs in a few places; to deal with this special
433 * locking we put on-slab caches into a separate lock-class.
435 * We set lock class for alien array caches which are up during init.
436 * The lock annotation will be lost if all cpus of a node goes down and
437 * then comes back up during hotplug
439 static struct lock_class_key on_slab_l3_key;
440 static struct lock_class_key on_slab_alc_key;
442 static struct lock_class_key debugobj_l3_key;
443 static struct lock_class_key debugobj_alc_key;
445 static void slab_set_lock_classes(struct kmem_cache *cachep,
446 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
447 int q)
449 struct array_cache **alc;
450 struct kmem_cache_node *n;
451 int r;
453 n = cachep->node[q];
454 if (!n)
455 return;
457 lockdep_set_class(&n->list_lock, l3_key);
458 alc = n->alien;
460 * FIXME: This check for BAD_ALIEN_MAGIC
461 * should go away when common slab code is taught to
462 * work even without alien caches.
463 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
464 * for alloc_alien_cache,
466 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
467 return;
468 for_each_node(r) {
469 if (alc[r])
470 lockdep_set_class(&alc[r]->lock, alc_key);
474 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
476 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
479 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
481 int node;
483 for_each_online_node(node)
484 slab_set_debugobj_lock_classes_node(cachep, node);
487 static void init_node_lock_keys(int q)
489 int i;
491 if (slab_state < UP)
492 return;
494 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
495 struct kmem_cache_node *n;
496 struct kmem_cache *cache = kmalloc_caches[i];
498 if (!cache)
499 continue;
501 n = cache->node[q];
502 if (!n || OFF_SLAB(cache))
503 continue;
505 slab_set_lock_classes(cache, &on_slab_l3_key,
506 &on_slab_alc_key, q);
510 static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
512 if (!cachep->node[q])
513 return;
515 slab_set_lock_classes(cachep, &on_slab_l3_key,
516 &on_slab_alc_key, q);
519 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
521 int node;
523 VM_BUG_ON(OFF_SLAB(cachep));
524 for_each_node(node)
525 on_slab_lock_classes_node(cachep, node);
528 static inline void init_lock_keys(void)
530 int node;
532 for_each_node(node)
533 init_node_lock_keys(node);
535 #else
536 static void init_node_lock_keys(int q)
540 static inline void init_lock_keys(void)
544 static inline void on_slab_lock_classes(struct kmem_cache *cachep)
548 static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
552 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
556 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
559 #endif
561 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
563 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
565 return cachep->array[smp_processor_id()];
568 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
570 return ALIGN(nr_objs * sizeof(unsigned int), align);
574 * Calculate the number of objects and left-over bytes for a given buffer size.
576 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
577 size_t align, int flags, size_t *left_over,
578 unsigned int *num)
580 int nr_objs;
581 size_t mgmt_size;
582 size_t slab_size = PAGE_SIZE << gfporder;
585 * The slab management structure can be either off the slab or
586 * on it. For the latter case, the memory allocated for a
587 * slab is used for:
589 * - One unsigned int for each object
590 * - Padding to respect alignment of @align
591 * - @buffer_size bytes for each object
593 * If the slab management structure is off the slab, then the
594 * alignment will already be calculated into the size. Because
595 * the slabs are all pages aligned, the objects will be at the
596 * correct alignment when allocated.
598 if (flags & CFLGS_OFF_SLAB) {
599 mgmt_size = 0;
600 nr_objs = slab_size / buffer_size;
602 } else {
604 * Ignore padding for the initial guess. The padding
605 * is at most @align-1 bytes, and @buffer_size is at
606 * least @align. In the worst case, this result will
607 * be one greater than the number of objects that fit
608 * into the memory allocation when taking the padding
609 * into account.
611 nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
614 * This calculated number will be either the right
615 * amount, or one greater than what we want.
617 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
618 > slab_size)
619 nr_objs--;
621 mgmt_size = slab_mgmt_size(nr_objs, align);
623 *num = nr_objs;
624 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
627 #if DEBUG
628 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
630 static void __slab_error(const char *function, struct kmem_cache *cachep,
631 char *msg)
633 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
634 function, cachep->name, msg);
635 dump_stack();
636 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
638 #endif
641 * By default on NUMA we use alien caches to stage the freeing of
642 * objects allocated from other nodes. This causes massive memory
643 * inefficiencies when using fake NUMA setup to split memory into a
644 * large number of small nodes, so it can be disabled on the command
645 * line
648 static int use_alien_caches __read_mostly = 1;
649 static int __init noaliencache_setup(char *s)
651 use_alien_caches = 0;
652 return 1;
654 __setup("noaliencache", noaliencache_setup);
656 static int __init slab_max_order_setup(char *str)
658 get_option(&str, &slab_max_order);
659 slab_max_order = slab_max_order < 0 ? 0 :
660 min(slab_max_order, MAX_ORDER - 1);
661 slab_max_order_set = true;
663 return 1;
665 __setup("slab_max_order=", slab_max_order_setup);
667 #ifdef CONFIG_NUMA
669 * Special reaping functions for NUMA systems called from cache_reap().
670 * These take care of doing round robin flushing of alien caches (containing
671 * objects freed on different nodes from which they were allocated) and the
672 * flushing of remote pcps by calling drain_node_pages.
674 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
676 static void init_reap_node(int cpu)
678 int node;
680 node = next_node(cpu_to_mem(cpu), node_online_map);
681 if (node == MAX_NUMNODES)
682 node = first_node(node_online_map);
684 per_cpu(slab_reap_node, cpu) = node;
687 static void next_reap_node(void)
689 int node = __this_cpu_read(slab_reap_node);
691 node = next_node(node, node_online_map);
692 if (unlikely(node >= MAX_NUMNODES))
693 node = first_node(node_online_map);
694 __this_cpu_write(slab_reap_node, node);
697 #else
698 #define init_reap_node(cpu) do { } while (0)
699 #define next_reap_node(void) do { } while (0)
700 #endif
703 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
704 * via the workqueue/eventd.
705 * Add the CPU number into the expiration time to minimize the possibility of
706 * the CPUs getting into lockstep and contending for the global cache chain
707 * lock.
709 static void start_cpu_timer(int cpu)
711 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
714 * When this gets called from do_initcalls via cpucache_init(),
715 * init_workqueues() has already run, so keventd will be setup
716 * at that time.
718 if (keventd_up() && reap_work->work.func == NULL) {
719 init_reap_node(cpu);
720 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
721 schedule_delayed_work_on(cpu, reap_work,
722 __round_jiffies_relative(HZ, cpu));
726 static struct array_cache *alloc_arraycache(int node, int entries,
727 int batchcount, gfp_t gfp)
729 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
730 struct array_cache *nc = NULL;
732 nc = kmalloc_node(memsize, gfp, node);
734 * The array_cache structures contain pointers to free object.
735 * However, when such objects are allocated or transferred to another
736 * cache the pointers are not cleared and they could be counted as
737 * valid references during a kmemleak scan. Therefore, kmemleak must
738 * not scan such objects.
740 kmemleak_no_scan(nc);
741 if (nc) {
742 nc->avail = 0;
743 nc->limit = entries;
744 nc->batchcount = batchcount;
745 nc->touched = 0;
746 spin_lock_init(&nc->lock);
748 return nc;
751 static inline bool is_slab_pfmemalloc(struct page *page)
753 return PageSlabPfmemalloc(page);
756 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
757 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
758 struct array_cache *ac)
760 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
761 struct page *page;
762 unsigned long flags;
764 if (!pfmemalloc_active)
765 return;
767 spin_lock_irqsave(&n->list_lock, flags);
768 list_for_each_entry(page, &n->slabs_full, lru)
769 if (is_slab_pfmemalloc(page))
770 goto out;
772 list_for_each_entry(page, &n->slabs_partial, lru)
773 if (is_slab_pfmemalloc(page))
774 goto out;
776 list_for_each_entry(page, &n->slabs_free, lru)
777 if (is_slab_pfmemalloc(page))
778 goto out;
780 pfmemalloc_active = false;
781 out:
782 spin_unlock_irqrestore(&n->list_lock, flags);
785 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
786 gfp_t flags, bool force_refill)
788 int i;
789 void *objp = ac->entry[--ac->avail];
791 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
792 if (unlikely(is_obj_pfmemalloc(objp))) {
793 struct kmem_cache_node *n;
795 if (gfp_pfmemalloc_allowed(flags)) {
796 clear_obj_pfmemalloc(&objp);
797 return objp;
800 /* The caller cannot use PFMEMALLOC objects, find another one */
801 for (i = 0; i < ac->avail; i++) {
802 /* If a !PFMEMALLOC object is found, swap them */
803 if (!is_obj_pfmemalloc(ac->entry[i])) {
804 objp = ac->entry[i];
805 ac->entry[i] = ac->entry[ac->avail];
806 ac->entry[ac->avail] = objp;
807 return objp;
812 * If there are empty slabs on the slabs_free list and we are
813 * being forced to refill the cache, mark this one !pfmemalloc.
815 n = cachep->node[numa_mem_id()];
816 if (!list_empty(&n->slabs_free) && force_refill) {
817 struct page *page = virt_to_head_page(objp);
818 ClearPageSlabPfmemalloc(page);
819 clear_obj_pfmemalloc(&objp);
820 recheck_pfmemalloc_active(cachep, ac);
821 return objp;
824 /* No !PFMEMALLOC objects available */
825 ac->avail++;
826 objp = NULL;
829 return objp;
832 static inline void *ac_get_obj(struct kmem_cache *cachep,
833 struct array_cache *ac, gfp_t flags, bool force_refill)
835 void *objp;
837 if (unlikely(sk_memalloc_socks()))
838 objp = __ac_get_obj(cachep, ac, flags, force_refill);
839 else
840 objp = ac->entry[--ac->avail];
842 return objp;
845 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
846 void *objp)
848 if (unlikely(pfmemalloc_active)) {
849 /* Some pfmemalloc slabs exist, check if this is one */
850 struct page *page = virt_to_head_page(objp);
851 if (PageSlabPfmemalloc(page))
852 set_obj_pfmemalloc(&objp);
855 return objp;
858 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
859 void *objp)
861 if (unlikely(sk_memalloc_socks()))
862 objp = __ac_put_obj(cachep, ac, objp);
864 ac->entry[ac->avail++] = objp;
868 * Transfer objects in one arraycache to another.
869 * Locking must be handled by the caller.
871 * Return the number of entries transferred.
873 static int transfer_objects(struct array_cache *to,
874 struct array_cache *from, unsigned int max)
876 /* Figure out how many entries to transfer */
877 int nr = min3(from->avail, max, to->limit - to->avail);
879 if (!nr)
880 return 0;
882 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
883 sizeof(void *) *nr);
885 from->avail -= nr;
886 to->avail += nr;
887 return nr;
890 #ifndef CONFIG_NUMA
892 #define drain_alien_cache(cachep, alien) do { } while (0)
893 #define reap_alien(cachep, n) do { } while (0)
895 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
897 return (struct array_cache **)BAD_ALIEN_MAGIC;
900 static inline void free_alien_cache(struct array_cache **ac_ptr)
904 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
906 return 0;
909 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
910 gfp_t flags)
912 return NULL;
915 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
916 gfp_t flags, int nodeid)
918 return NULL;
921 #else /* CONFIG_NUMA */
923 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
924 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
926 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
928 struct array_cache **ac_ptr;
929 int memsize = sizeof(void *) * nr_node_ids;
930 int i;
932 if (limit > 1)
933 limit = 12;
934 ac_ptr = kzalloc_node(memsize, gfp, node);
935 if (ac_ptr) {
936 for_each_node(i) {
937 if (i == node || !node_online(i))
938 continue;
939 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
940 if (!ac_ptr[i]) {
941 for (i--; i >= 0; i--)
942 kfree(ac_ptr[i]);
943 kfree(ac_ptr);
944 return NULL;
948 return ac_ptr;
951 static void free_alien_cache(struct array_cache **ac_ptr)
953 int i;
955 if (!ac_ptr)
956 return;
957 for_each_node(i)
958 kfree(ac_ptr[i]);
959 kfree(ac_ptr);
962 static void __drain_alien_cache(struct kmem_cache *cachep,
963 struct array_cache *ac, int node)
965 struct kmem_cache_node *n = cachep->node[node];
967 if (ac->avail) {
968 spin_lock(&n->list_lock);
970 * Stuff objects into the remote nodes shared array first.
971 * That way we could avoid the overhead of putting the objects
972 * into the free lists and getting them back later.
974 if (n->shared)
975 transfer_objects(n->shared, ac, ac->limit);
977 free_block(cachep, ac->entry, ac->avail, node);
978 ac->avail = 0;
979 spin_unlock(&n->list_lock);
984 * Called from cache_reap() to regularly drain alien caches round robin.
986 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
988 int node = __this_cpu_read(slab_reap_node);
990 if (n->alien) {
991 struct array_cache *ac = n->alien[node];
993 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
994 __drain_alien_cache(cachep, ac, node);
995 spin_unlock_irq(&ac->lock);
1000 static void drain_alien_cache(struct kmem_cache *cachep,
1001 struct array_cache **alien)
1003 int i = 0;
1004 struct array_cache *ac;
1005 unsigned long flags;
1007 for_each_online_node(i) {
1008 ac = alien[i];
1009 if (ac) {
1010 spin_lock_irqsave(&ac->lock, flags);
1011 __drain_alien_cache(cachep, ac, i);
1012 spin_unlock_irqrestore(&ac->lock, flags);
1017 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1019 int nodeid = page_to_nid(virt_to_page(objp));
1020 struct kmem_cache_node *n;
1021 struct array_cache *alien = NULL;
1022 int node;
1024 node = numa_mem_id();
1027 * Make sure we are not freeing a object from another node to the array
1028 * cache on this cpu.
1030 if (likely(nodeid == node))
1031 return 0;
1033 n = cachep->node[node];
1034 STATS_INC_NODEFREES(cachep);
1035 if (n->alien && n->alien[nodeid]) {
1036 alien = n->alien[nodeid];
1037 spin_lock(&alien->lock);
1038 if (unlikely(alien->avail == alien->limit)) {
1039 STATS_INC_ACOVERFLOW(cachep);
1040 __drain_alien_cache(cachep, alien, nodeid);
1042 ac_put_obj(cachep, alien, objp);
1043 spin_unlock(&alien->lock);
1044 } else {
1045 spin_lock(&(cachep->node[nodeid])->list_lock);
1046 free_block(cachep, &objp, 1, nodeid);
1047 spin_unlock(&(cachep->node[nodeid])->list_lock);
1049 return 1;
1051 #endif
1054 * Allocates and initializes node for a node on each slab cache, used for
1055 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1056 * will be allocated off-node since memory is not yet online for the new node.
1057 * When hotplugging memory or a cpu, existing node are not replaced if
1058 * already in use.
1060 * Must hold slab_mutex.
1062 static int init_cache_node_node(int node)
1064 struct kmem_cache *cachep;
1065 struct kmem_cache_node *n;
1066 const int memsize = sizeof(struct kmem_cache_node);
1068 list_for_each_entry(cachep, &slab_caches, list) {
1070 * Set up the size64 kmemlist for cpu before we can
1071 * begin anything. Make sure some other cpu on this
1072 * node has not already allocated this
1074 if (!cachep->node[node]) {
1075 n = kmalloc_node(memsize, GFP_KERNEL, node);
1076 if (!n)
1077 return -ENOMEM;
1078 kmem_cache_node_init(n);
1079 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1080 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1083 * The l3s don't come and go as CPUs come and
1084 * go. slab_mutex is sufficient
1085 * protection here.
1087 cachep->node[node] = n;
1090 spin_lock_irq(&cachep->node[node]->list_lock);
1091 cachep->node[node]->free_limit =
1092 (1 + nr_cpus_node(node)) *
1093 cachep->batchcount + cachep->num;
1094 spin_unlock_irq(&cachep->node[node]->list_lock);
1096 return 0;
1099 static inline int slabs_tofree(struct kmem_cache *cachep,
1100 struct kmem_cache_node *n)
1102 return (n->free_objects + cachep->num - 1) / cachep->num;
1105 static void cpuup_canceled(long cpu)
1107 struct kmem_cache *cachep;
1108 struct kmem_cache_node *n = NULL;
1109 int node = cpu_to_mem(cpu);
1110 const struct cpumask *mask = cpumask_of_node(node);
1112 list_for_each_entry(cachep, &slab_caches, list) {
1113 struct array_cache *nc;
1114 struct array_cache *shared;
1115 struct array_cache **alien;
1117 /* cpu is dead; no one can alloc from it. */
1118 nc = cachep->array[cpu];
1119 cachep->array[cpu] = NULL;
1120 n = cachep->node[node];
1122 if (!n)
1123 goto free_array_cache;
1125 spin_lock_irq(&n->list_lock);
1127 /* Free limit for this kmem_cache_node */
1128 n->free_limit -= cachep->batchcount;
1129 if (nc)
1130 free_block(cachep, nc->entry, nc->avail, node);
1132 if (!cpumask_empty(mask)) {
1133 spin_unlock_irq(&n->list_lock);
1134 goto free_array_cache;
1137 shared = n->shared;
1138 if (shared) {
1139 free_block(cachep, shared->entry,
1140 shared->avail, node);
1141 n->shared = NULL;
1144 alien = n->alien;
1145 n->alien = NULL;
1147 spin_unlock_irq(&n->list_lock);
1149 kfree(shared);
1150 if (alien) {
1151 drain_alien_cache(cachep, alien);
1152 free_alien_cache(alien);
1154 free_array_cache:
1155 kfree(nc);
1158 * In the previous loop, all the objects were freed to
1159 * the respective cache's slabs, now we can go ahead and
1160 * shrink each nodelist to its limit.
1162 list_for_each_entry(cachep, &slab_caches, list) {
1163 n = cachep->node[node];
1164 if (!n)
1165 continue;
1166 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1170 static int cpuup_prepare(long cpu)
1172 struct kmem_cache *cachep;
1173 struct kmem_cache_node *n = NULL;
1174 int node = cpu_to_mem(cpu);
1175 int err;
1178 * We need to do this right in the beginning since
1179 * alloc_arraycache's are going to use this list.
1180 * kmalloc_node allows us to add the slab to the right
1181 * kmem_cache_node and not this cpu's kmem_cache_node
1183 err = init_cache_node_node(node);
1184 if (err < 0)
1185 goto bad;
1188 * Now we can go ahead with allocating the shared arrays and
1189 * array caches
1191 list_for_each_entry(cachep, &slab_caches, list) {
1192 struct array_cache *nc;
1193 struct array_cache *shared = NULL;
1194 struct array_cache **alien = NULL;
1196 nc = alloc_arraycache(node, cachep->limit,
1197 cachep->batchcount, GFP_KERNEL);
1198 if (!nc)
1199 goto bad;
1200 if (cachep->shared) {
1201 shared = alloc_arraycache(node,
1202 cachep->shared * cachep->batchcount,
1203 0xbaadf00d, GFP_KERNEL);
1204 if (!shared) {
1205 kfree(nc);
1206 goto bad;
1209 if (use_alien_caches) {
1210 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1211 if (!alien) {
1212 kfree(shared);
1213 kfree(nc);
1214 goto bad;
1217 cachep->array[cpu] = nc;
1218 n = cachep->node[node];
1219 BUG_ON(!n);
1221 spin_lock_irq(&n->list_lock);
1222 if (!n->shared) {
1224 * We are serialised from CPU_DEAD or
1225 * CPU_UP_CANCELLED by the cpucontrol lock
1227 n->shared = shared;
1228 shared = NULL;
1230 #ifdef CONFIG_NUMA
1231 if (!n->alien) {
1232 n->alien = alien;
1233 alien = NULL;
1235 #endif
1236 spin_unlock_irq(&n->list_lock);
1237 kfree(shared);
1238 free_alien_cache(alien);
1239 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1240 slab_set_debugobj_lock_classes_node(cachep, node);
1241 else if (!OFF_SLAB(cachep) &&
1242 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1243 on_slab_lock_classes_node(cachep, node);
1245 init_node_lock_keys(node);
1247 return 0;
1248 bad:
1249 cpuup_canceled(cpu);
1250 return -ENOMEM;
1253 static int cpuup_callback(struct notifier_block *nfb,
1254 unsigned long action, void *hcpu)
1256 long cpu = (long)hcpu;
1257 int err = 0;
1259 switch (action) {
1260 case CPU_UP_PREPARE:
1261 case CPU_UP_PREPARE_FROZEN:
1262 mutex_lock(&slab_mutex);
1263 err = cpuup_prepare(cpu);
1264 mutex_unlock(&slab_mutex);
1265 break;
1266 case CPU_ONLINE:
1267 case CPU_ONLINE_FROZEN:
1268 start_cpu_timer(cpu);
1269 break;
1270 #ifdef CONFIG_HOTPLUG_CPU
1271 case CPU_DOWN_PREPARE:
1272 case CPU_DOWN_PREPARE_FROZEN:
1274 * Shutdown cache reaper. Note that the slab_mutex is
1275 * held so that if cache_reap() is invoked it cannot do
1276 * anything expensive but will only modify reap_work
1277 * and reschedule the timer.
1279 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1280 /* Now the cache_reaper is guaranteed to be not running. */
1281 per_cpu(slab_reap_work, cpu).work.func = NULL;
1282 break;
1283 case CPU_DOWN_FAILED:
1284 case CPU_DOWN_FAILED_FROZEN:
1285 start_cpu_timer(cpu);
1286 break;
1287 case CPU_DEAD:
1288 case CPU_DEAD_FROZEN:
1290 * Even if all the cpus of a node are down, we don't free the
1291 * kmem_cache_node of any cache. This to avoid a race between
1292 * cpu_down, and a kmalloc allocation from another cpu for
1293 * memory from the node of the cpu going down. The node
1294 * structure is usually allocated from kmem_cache_create() and
1295 * gets destroyed at kmem_cache_destroy().
1297 /* fall through */
1298 #endif
1299 case CPU_UP_CANCELED:
1300 case CPU_UP_CANCELED_FROZEN:
1301 mutex_lock(&slab_mutex);
1302 cpuup_canceled(cpu);
1303 mutex_unlock(&slab_mutex);
1304 break;
1306 return notifier_from_errno(err);
1309 static struct notifier_block cpucache_notifier = {
1310 &cpuup_callback, NULL, 0
1313 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1315 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1316 * Returns -EBUSY if all objects cannot be drained so that the node is not
1317 * removed.
1319 * Must hold slab_mutex.
1321 static int __meminit drain_cache_node_node(int node)
1323 struct kmem_cache *cachep;
1324 int ret = 0;
1326 list_for_each_entry(cachep, &slab_caches, list) {
1327 struct kmem_cache_node *n;
1329 n = cachep->node[node];
1330 if (!n)
1331 continue;
1333 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1335 if (!list_empty(&n->slabs_full) ||
1336 !list_empty(&n->slabs_partial)) {
1337 ret = -EBUSY;
1338 break;
1341 return ret;
1344 static int __meminit slab_memory_callback(struct notifier_block *self,
1345 unsigned long action, void *arg)
1347 struct memory_notify *mnb = arg;
1348 int ret = 0;
1349 int nid;
1351 nid = mnb->status_change_nid;
1352 if (nid < 0)
1353 goto out;
1355 switch (action) {
1356 case MEM_GOING_ONLINE:
1357 mutex_lock(&slab_mutex);
1358 ret = init_cache_node_node(nid);
1359 mutex_unlock(&slab_mutex);
1360 break;
1361 case MEM_GOING_OFFLINE:
1362 mutex_lock(&slab_mutex);
1363 ret = drain_cache_node_node(nid);
1364 mutex_unlock(&slab_mutex);
1365 break;
1366 case MEM_ONLINE:
1367 case MEM_OFFLINE:
1368 case MEM_CANCEL_ONLINE:
1369 case MEM_CANCEL_OFFLINE:
1370 break;
1372 out:
1373 return notifier_from_errno(ret);
1375 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1378 * swap the static kmem_cache_node with kmalloced memory
1380 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1381 int nodeid)
1383 struct kmem_cache_node *ptr;
1385 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1386 BUG_ON(!ptr);
1388 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1390 * Do not assume that spinlocks can be initialized via memcpy:
1392 spin_lock_init(&ptr->list_lock);
1394 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1395 cachep->node[nodeid] = ptr;
1399 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1400 * size of kmem_cache_node.
1402 static void __init set_up_node(struct kmem_cache *cachep, int index)
1404 int node;
1406 for_each_online_node(node) {
1407 cachep->node[node] = &init_kmem_cache_node[index + node];
1408 cachep->node[node]->next_reap = jiffies +
1409 REAPTIMEOUT_LIST3 +
1410 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1415 * The memory after the last cpu cache pointer is used for the
1416 * the node pointer.
1418 static void setup_node_pointer(struct kmem_cache *cachep)
1420 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1424 * Initialisation. Called after the page allocator have been initialised and
1425 * before smp_init().
1427 void __init kmem_cache_init(void)
1429 int i;
1431 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1432 sizeof(struct rcu_head));
1433 kmem_cache = &kmem_cache_boot;
1434 setup_node_pointer(kmem_cache);
1436 if (num_possible_nodes() == 1)
1437 use_alien_caches = 0;
1439 for (i = 0; i < NUM_INIT_LISTS; i++)
1440 kmem_cache_node_init(&init_kmem_cache_node[i]);
1442 set_up_node(kmem_cache, CACHE_CACHE);
1445 * Fragmentation resistance on low memory - only use bigger
1446 * page orders on machines with more than 32MB of memory if
1447 * not overridden on the command line.
1449 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1450 slab_max_order = SLAB_MAX_ORDER_HI;
1452 /* Bootstrap is tricky, because several objects are allocated
1453 * from caches that do not exist yet:
1454 * 1) initialize the kmem_cache cache: it contains the struct
1455 * kmem_cache structures of all caches, except kmem_cache itself:
1456 * kmem_cache is statically allocated.
1457 * Initially an __init data area is used for the head array and the
1458 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1459 * array at the end of the bootstrap.
1460 * 2) Create the first kmalloc cache.
1461 * The struct kmem_cache for the new cache is allocated normally.
1462 * An __init data area is used for the head array.
1463 * 3) Create the remaining kmalloc caches, with minimally sized
1464 * head arrays.
1465 * 4) Replace the __init data head arrays for kmem_cache and the first
1466 * kmalloc cache with kmalloc allocated arrays.
1467 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1468 * the other cache's with kmalloc allocated memory.
1469 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1472 /* 1) create the kmem_cache */
1475 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1477 create_boot_cache(kmem_cache, "kmem_cache",
1478 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1479 nr_node_ids * sizeof(struct kmem_cache_node *),
1480 SLAB_HWCACHE_ALIGN);
1481 list_add(&kmem_cache->list, &slab_caches);
1483 /* 2+3) create the kmalloc caches */
1486 * Initialize the caches that provide memory for the array cache and the
1487 * kmem_cache_node structures first. Without this, further allocations will
1488 * bug.
1491 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1492 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1494 if (INDEX_AC != INDEX_NODE)
1495 kmalloc_caches[INDEX_NODE] =
1496 create_kmalloc_cache("kmalloc-node",
1497 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1499 slab_early_init = 0;
1501 /* 4) Replace the bootstrap head arrays */
1503 struct array_cache *ptr;
1505 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1507 memcpy(ptr, cpu_cache_get(kmem_cache),
1508 sizeof(struct arraycache_init));
1510 * Do not assume that spinlocks can be initialized via memcpy:
1512 spin_lock_init(&ptr->lock);
1514 kmem_cache->array[smp_processor_id()] = ptr;
1516 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1518 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1519 != &initarray_generic.cache);
1520 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1521 sizeof(struct arraycache_init));
1523 * Do not assume that spinlocks can be initialized via memcpy:
1525 spin_lock_init(&ptr->lock);
1527 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1529 /* 5) Replace the bootstrap kmem_cache_node */
1531 int nid;
1533 for_each_online_node(nid) {
1534 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1536 init_list(kmalloc_caches[INDEX_AC],
1537 &init_kmem_cache_node[SIZE_AC + nid], nid);
1539 if (INDEX_AC != INDEX_NODE) {
1540 init_list(kmalloc_caches[INDEX_NODE],
1541 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1546 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1549 void __init kmem_cache_init_late(void)
1551 struct kmem_cache *cachep;
1553 slab_state = UP;
1555 /* 6) resize the head arrays to their final sizes */
1556 mutex_lock(&slab_mutex);
1557 list_for_each_entry(cachep, &slab_caches, list)
1558 if (enable_cpucache(cachep, GFP_NOWAIT))
1559 BUG();
1560 mutex_unlock(&slab_mutex);
1562 /* Annotate slab for lockdep -- annotate the malloc caches */
1563 init_lock_keys();
1565 /* Done! */
1566 slab_state = FULL;
1569 * Register a cpu startup notifier callback that initializes
1570 * cpu_cache_get for all new cpus
1572 register_cpu_notifier(&cpucache_notifier);
1574 #ifdef CONFIG_NUMA
1576 * Register a memory hotplug callback that initializes and frees
1577 * node.
1579 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1580 #endif
1583 * The reap timers are started later, with a module init call: That part
1584 * of the kernel is not yet operational.
1588 static int __init cpucache_init(void)
1590 int cpu;
1593 * Register the timers that return unneeded pages to the page allocator
1595 for_each_online_cpu(cpu)
1596 start_cpu_timer(cpu);
1598 /* Done! */
1599 slab_state = FULL;
1600 return 0;
1602 __initcall(cpucache_init);
1604 static noinline void
1605 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1607 struct kmem_cache_node *n;
1608 struct page *page;
1609 unsigned long flags;
1610 int node;
1612 printk(KERN_WARNING
1613 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1614 nodeid, gfpflags);
1615 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1616 cachep->name, cachep->size, cachep->gfporder);
1618 for_each_online_node(node) {
1619 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1620 unsigned long active_slabs = 0, num_slabs = 0;
1622 n = cachep->node[node];
1623 if (!n)
1624 continue;
1626 spin_lock_irqsave(&n->list_lock, flags);
1627 list_for_each_entry(page, &n->slabs_full, lru) {
1628 active_objs += cachep->num;
1629 active_slabs++;
1631 list_for_each_entry(page, &n->slabs_partial, lru) {
1632 active_objs += page->active;
1633 active_slabs++;
1635 list_for_each_entry(page, &n->slabs_free, lru)
1636 num_slabs++;
1638 free_objects += n->free_objects;
1639 spin_unlock_irqrestore(&n->list_lock, flags);
1641 num_slabs += active_slabs;
1642 num_objs = num_slabs * cachep->num;
1643 printk(KERN_WARNING
1644 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1645 node, active_slabs, num_slabs, active_objs, num_objs,
1646 free_objects);
1651 * Interface to system's page allocator. No need to hold the cache-lock.
1653 * If we requested dmaable memory, we will get it. Even if we
1654 * did not request dmaable memory, we might get it, but that
1655 * would be relatively rare and ignorable.
1657 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1658 int nodeid)
1660 struct page *page;
1661 int nr_pages;
1663 flags |= cachep->allocflags;
1664 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1665 flags |= __GFP_RECLAIMABLE;
1667 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1668 if (!page) {
1669 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1670 slab_out_of_memory(cachep, flags, nodeid);
1671 return NULL;
1674 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1675 if (unlikely(page->pfmemalloc))
1676 pfmemalloc_active = true;
1678 nr_pages = (1 << cachep->gfporder);
1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 add_zone_page_state(page_zone(page),
1681 NR_SLAB_RECLAIMABLE, nr_pages);
1682 else
1683 add_zone_page_state(page_zone(page),
1684 NR_SLAB_UNRECLAIMABLE, nr_pages);
1685 __SetPageSlab(page);
1686 if (page->pfmemalloc)
1687 SetPageSlabPfmemalloc(page);
1688 memcg_bind_pages(cachep, cachep->gfporder);
1690 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1691 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1693 if (cachep->ctor)
1694 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1695 else
1696 kmemcheck_mark_unallocated_pages(page, nr_pages);
1699 return page;
1703 * Interface to system's page release.
1705 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1707 const unsigned long nr_freed = (1 << cachep->gfporder);
1709 kmemcheck_free_shadow(page, cachep->gfporder);
1711 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1712 sub_zone_page_state(page_zone(page),
1713 NR_SLAB_RECLAIMABLE, nr_freed);
1714 else
1715 sub_zone_page_state(page_zone(page),
1716 NR_SLAB_UNRECLAIMABLE, nr_freed);
1718 BUG_ON(!PageSlab(page));
1719 __ClearPageSlabPfmemalloc(page);
1720 __ClearPageSlab(page);
1721 page_mapcount_reset(page);
1722 page->mapping = NULL;
1724 memcg_release_pages(cachep, cachep->gfporder);
1725 if (current->reclaim_state)
1726 current->reclaim_state->reclaimed_slab += nr_freed;
1727 __free_memcg_kmem_pages(page, cachep->gfporder);
1730 static void kmem_rcu_free(struct rcu_head *head)
1732 struct kmem_cache *cachep;
1733 struct page *page;
1735 page = container_of(head, struct page, rcu_head);
1736 cachep = page->slab_cache;
1738 kmem_freepages(cachep, page);
1741 #if DEBUG
1743 #ifdef CONFIG_DEBUG_PAGEALLOC
1744 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1745 unsigned long caller)
1747 int size = cachep->object_size;
1749 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1751 if (size < 5 * sizeof(unsigned long))
1752 return;
1754 *addr++ = 0x12345678;
1755 *addr++ = caller;
1756 *addr++ = smp_processor_id();
1757 size -= 3 * sizeof(unsigned long);
1759 unsigned long *sptr = &caller;
1760 unsigned long svalue;
1762 while (!kstack_end(sptr)) {
1763 svalue = *sptr++;
1764 if (kernel_text_address(svalue)) {
1765 *addr++ = svalue;
1766 size -= sizeof(unsigned long);
1767 if (size <= sizeof(unsigned long))
1768 break;
1773 *addr++ = 0x87654321;
1775 #endif
1777 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1779 int size = cachep->object_size;
1780 addr = &((char *)addr)[obj_offset(cachep)];
1782 memset(addr, val, size);
1783 *(unsigned char *)(addr + size - 1) = POISON_END;
1786 static void dump_line(char *data, int offset, int limit)
1788 int i;
1789 unsigned char error = 0;
1790 int bad_count = 0;
1792 printk(KERN_ERR "%03x: ", offset);
1793 for (i = 0; i < limit; i++) {
1794 if (data[offset + i] != POISON_FREE) {
1795 error = data[offset + i];
1796 bad_count++;
1799 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1800 &data[offset], limit, 1);
1802 if (bad_count == 1) {
1803 error ^= POISON_FREE;
1804 if (!(error & (error - 1))) {
1805 printk(KERN_ERR "Single bit error detected. Probably "
1806 "bad RAM.\n");
1807 #ifdef CONFIG_X86
1808 printk(KERN_ERR "Run memtest86+ or a similar memory "
1809 "test tool.\n");
1810 #else
1811 printk(KERN_ERR "Run a memory test tool.\n");
1812 #endif
1816 #endif
1818 #if DEBUG
1820 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1822 int i, size;
1823 char *realobj;
1825 if (cachep->flags & SLAB_RED_ZONE) {
1826 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1827 *dbg_redzone1(cachep, objp),
1828 *dbg_redzone2(cachep, objp));
1831 if (cachep->flags & SLAB_STORE_USER) {
1832 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1833 *dbg_userword(cachep, objp),
1834 *dbg_userword(cachep, objp));
1836 realobj = (char *)objp + obj_offset(cachep);
1837 size = cachep->object_size;
1838 for (i = 0; i < size && lines; i += 16, lines--) {
1839 int limit;
1840 limit = 16;
1841 if (i + limit > size)
1842 limit = size - i;
1843 dump_line(realobj, i, limit);
1847 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1849 char *realobj;
1850 int size, i;
1851 int lines = 0;
1853 realobj = (char *)objp + obj_offset(cachep);
1854 size = cachep->object_size;
1856 for (i = 0; i < size; i++) {
1857 char exp = POISON_FREE;
1858 if (i == size - 1)
1859 exp = POISON_END;
1860 if (realobj[i] != exp) {
1861 int limit;
1862 /* Mismatch ! */
1863 /* Print header */
1864 if (lines == 0) {
1865 printk(KERN_ERR
1866 "Slab corruption (%s): %s start=%p, len=%d\n",
1867 print_tainted(), cachep->name, realobj, size);
1868 print_objinfo(cachep, objp, 0);
1870 /* Hexdump the affected line */
1871 i = (i / 16) * 16;
1872 limit = 16;
1873 if (i + limit > size)
1874 limit = size - i;
1875 dump_line(realobj, i, limit);
1876 i += 16;
1877 lines++;
1878 /* Limit to 5 lines */
1879 if (lines > 5)
1880 break;
1883 if (lines != 0) {
1884 /* Print some data about the neighboring objects, if they
1885 * exist:
1887 struct page *page = virt_to_head_page(objp);
1888 unsigned int objnr;
1890 objnr = obj_to_index(cachep, page, objp);
1891 if (objnr) {
1892 objp = index_to_obj(cachep, page, objnr - 1);
1893 realobj = (char *)objp + obj_offset(cachep);
1894 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1895 realobj, size);
1896 print_objinfo(cachep, objp, 2);
1898 if (objnr + 1 < cachep->num) {
1899 objp = index_to_obj(cachep, page, objnr + 1);
1900 realobj = (char *)objp + obj_offset(cachep);
1901 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1902 realobj, size);
1903 print_objinfo(cachep, objp, 2);
1907 #endif
1909 #if DEBUG
1910 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1911 struct page *page)
1913 int i;
1914 for (i = 0; i < cachep->num; i++) {
1915 void *objp = index_to_obj(cachep, page, i);
1917 if (cachep->flags & SLAB_POISON) {
1918 #ifdef CONFIG_DEBUG_PAGEALLOC
1919 if (cachep->size % PAGE_SIZE == 0 &&
1920 OFF_SLAB(cachep))
1921 kernel_map_pages(virt_to_page(objp),
1922 cachep->size / PAGE_SIZE, 1);
1923 else
1924 check_poison_obj(cachep, objp);
1925 #else
1926 check_poison_obj(cachep, objp);
1927 #endif
1929 if (cachep->flags & SLAB_RED_ZONE) {
1930 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1931 slab_error(cachep, "start of a freed object "
1932 "was overwritten");
1933 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1934 slab_error(cachep, "end of a freed object "
1935 "was overwritten");
1939 #else
1940 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1941 struct page *page)
1944 #endif
1947 * slab_destroy - destroy and release all objects in a slab
1948 * @cachep: cache pointer being destroyed
1949 * @page: page pointer being destroyed
1951 * Destroy all the objs in a slab, and release the mem back to the system.
1952 * Before calling the slab must have been unlinked from the cache. The
1953 * cache-lock is not held/needed.
1955 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1957 void *freelist;
1959 freelist = page->freelist;
1960 slab_destroy_debugcheck(cachep, page);
1961 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1962 struct rcu_head *head;
1965 * RCU free overloads the RCU head over the LRU.
1966 * slab_page has been overloeaded over the LRU,
1967 * however it is not used from now on so that
1968 * we can use it safely.
1970 head = (void *)&page->rcu_head;
1971 call_rcu(head, kmem_rcu_free);
1973 } else {
1974 kmem_freepages(cachep, page);
1978 * From now on, we don't use freelist
1979 * although actual page can be freed in rcu context
1981 if (OFF_SLAB(cachep))
1982 kmem_cache_free(cachep->freelist_cache, freelist);
1986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1992 * Also calculates the number of objects per slab.
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1998 static size_t calculate_slab_order(struct kmem_cache *cachep,
1999 size_t size, size_t align, unsigned long flags)
2001 unsigned long offslab_limit;
2002 size_t left_over = 0;
2003 int gfporder;
2005 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2006 unsigned int num;
2007 size_t remainder;
2009 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2010 if (!num)
2011 continue;
2013 if (flags & CFLGS_OFF_SLAB) {
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2019 offslab_limit = size;
2020 offslab_limit /= sizeof(unsigned int);
2022 if (num > offslab_limit)
2023 break;
2026 /* Found something acceptable - save it away */
2027 cachep->num = num;
2028 cachep->gfporder = gfporder;
2029 left_over = remainder;
2032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2036 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 break;
2040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2043 if (gfporder >= slab_max_order)
2044 break;
2047 * Acceptable internal fragmentation?
2049 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2050 break;
2052 return left_over;
2055 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2057 if (slab_state >= FULL)
2058 return enable_cpucache(cachep, gfp);
2060 if (slab_state == DOWN) {
2062 * Note: Creation of first cache (kmem_cache).
2063 * The setup_node is taken care
2064 * of by the caller of __kmem_cache_create
2066 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2067 slab_state = PARTIAL;
2068 } else if (slab_state == PARTIAL) {
2070 * Note: the second kmem_cache_create must create the cache
2071 * that's used by kmalloc(24), otherwise the creation of
2072 * further caches will BUG().
2074 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2077 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2078 * the second cache, then we need to set up all its node/,
2079 * otherwise the creation of further caches will BUG().
2081 set_up_node(cachep, SIZE_AC);
2082 if (INDEX_AC == INDEX_NODE)
2083 slab_state = PARTIAL_NODE;
2084 else
2085 slab_state = PARTIAL_ARRAYCACHE;
2086 } else {
2087 /* Remaining boot caches */
2088 cachep->array[smp_processor_id()] =
2089 kmalloc(sizeof(struct arraycache_init), gfp);
2091 if (slab_state == PARTIAL_ARRAYCACHE) {
2092 set_up_node(cachep, SIZE_NODE);
2093 slab_state = PARTIAL_NODE;
2094 } else {
2095 int node;
2096 for_each_online_node(node) {
2097 cachep->node[node] =
2098 kmalloc_node(sizeof(struct kmem_cache_node),
2099 gfp, node);
2100 BUG_ON(!cachep->node[node]);
2101 kmem_cache_node_init(cachep->node[node]);
2105 cachep->node[numa_mem_id()]->next_reap =
2106 jiffies + REAPTIMEOUT_LIST3 +
2107 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2109 cpu_cache_get(cachep)->avail = 0;
2110 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2111 cpu_cache_get(cachep)->batchcount = 1;
2112 cpu_cache_get(cachep)->touched = 0;
2113 cachep->batchcount = 1;
2114 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2115 return 0;
2119 * __kmem_cache_create - Create a cache.
2120 * @cachep: cache management descriptor
2121 * @flags: SLAB flags
2123 * Returns a ptr to the cache on success, NULL on failure.
2124 * Cannot be called within a int, but can be interrupted.
2125 * The @ctor is run when new pages are allocated by the cache.
2127 * The flags are
2129 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2130 * to catch references to uninitialised memory.
2132 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2133 * for buffer overruns.
2135 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2136 * cacheline. This can be beneficial if you're counting cycles as closely
2137 * as davem.
2140 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2142 size_t left_over, freelist_size, ralign;
2143 gfp_t gfp;
2144 int err;
2145 size_t size = cachep->size;
2147 #if DEBUG
2148 #if FORCED_DEBUG
2150 * Enable redzoning and last user accounting, except for caches with
2151 * large objects, if the increased size would increase the object size
2152 * above the next power of two: caches with object sizes just above a
2153 * power of two have a significant amount of internal fragmentation.
2155 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2156 2 * sizeof(unsigned long long)))
2157 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2158 if (!(flags & SLAB_DESTROY_BY_RCU))
2159 flags |= SLAB_POISON;
2160 #endif
2161 if (flags & SLAB_DESTROY_BY_RCU)
2162 BUG_ON(flags & SLAB_POISON);
2163 #endif
2166 * Check that size is in terms of words. This is needed to avoid
2167 * unaligned accesses for some archs when redzoning is used, and makes
2168 * sure any on-slab bufctl's are also correctly aligned.
2170 if (size & (BYTES_PER_WORD - 1)) {
2171 size += (BYTES_PER_WORD - 1);
2172 size &= ~(BYTES_PER_WORD - 1);
2176 * Redzoning and user store require word alignment or possibly larger.
2177 * Note this will be overridden by architecture or caller mandated
2178 * alignment if either is greater than BYTES_PER_WORD.
2180 if (flags & SLAB_STORE_USER)
2181 ralign = BYTES_PER_WORD;
2183 if (flags & SLAB_RED_ZONE) {
2184 ralign = REDZONE_ALIGN;
2185 /* If redzoning, ensure that the second redzone is suitably
2186 * aligned, by adjusting the object size accordingly. */
2187 size += REDZONE_ALIGN - 1;
2188 size &= ~(REDZONE_ALIGN - 1);
2191 /* 3) caller mandated alignment */
2192 if (ralign < cachep->align) {
2193 ralign = cachep->align;
2195 /* disable debug if necessary */
2196 if (ralign > __alignof__(unsigned long long))
2197 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2199 * 4) Store it.
2201 cachep->align = ralign;
2203 if (slab_is_available())
2204 gfp = GFP_KERNEL;
2205 else
2206 gfp = GFP_NOWAIT;
2208 setup_node_pointer(cachep);
2209 #if DEBUG
2212 * Both debugging options require word-alignment which is calculated
2213 * into align above.
2215 if (flags & SLAB_RED_ZONE) {
2216 /* add space for red zone words */
2217 cachep->obj_offset += sizeof(unsigned long long);
2218 size += 2 * sizeof(unsigned long long);
2220 if (flags & SLAB_STORE_USER) {
2221 /* user store requires one word storage behind the end of
2222 * the real object. But if the second red zone needs to be
2223 * aligned to 64 bits, we must allow that much space.
2225 if (flags & SLAB_RED_ZONE)
2226 size += REDZONE_ALIGN;
2227 else
2228 size += BYTES_PER_WORD;
2230 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2231 if (size >= kmalloc_size(INDEX_NODE + 1)
2232 && cachep->object_size > cache_line_size()
2233 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2234 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2235 size = PAGE_SIZE;
2237 #endif
2238 #endif
2241 * Determine if the slab management is 'on' or 'off' slab.
2242 * (bootstrapping cannot cope with offslab caches so don't do
2243 * it too early on. Always use on-slab management when
2244 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2246 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2247 !(flags & SLAB_NOLEAKTRACE))
2249 * Size is large, assume best to place the slab management obj
2250 * off-slab (should allow better packing of objs).
2252 flags |= CFLGS_OFF_SLAB;
2254 size = ALIGN(size, cachep->align);
2256 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2258 if (!cachep->num)
2259 return -E2BIG;
2261 freelist_size =
2262 ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
2265 * If the slab has been placed off-slab, and we have enough space then
2266 * move it on-slab. This is at the expense of any extra colouring.
2268 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2269 flags &= ~CFLGS_OFF_SLAB;
2270 left_over -= freelist_size;
2273 if (flags & CFLGS_OFF_SLAB) {
2274 /* really off slab. No need for manual alignment */
2275 freelist_size = cachep->num * sizeof(unsigned int);
2277 #ifdef CONFIG_PAGE_POISONING
2278 /* If we're going to use the generic kernel_map_pages()
2279 * poisoning, then it's going to smash the contents of
2280 * the redzone and userword anyhow, so switch them off.
2282 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2283 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2284 #endif
2287 cachep->colour_off = cache_line_size();
2288 /* Offset must be a multiple of the alignment. */
2289 if (cachep->colour_off < cachep->align)
2290 cachep->colour_off = cachep->align;
2291 cachep->colour = left_over / cachep->colour_off;
2292 cachep->freelist_size = freelist_size;
2293 cachep->flags = flags;
2294 cachep->allocflags = __GFP_COMP;
2295 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2296 cachep->allocflags |= GFP_DMA;
2297 cachep->size = size;
2298 cachep->reciprocal_buffer_size = reciprocal_value(size);
2300 if (flags & CFLGS_OFF_SLAB) {
2301 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2303 * This is a possibility for one of the malloc_sizes caches.
2304 * But since we go off slab only for object size greater than
2305 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2306 * this should not happen at all.
2307 * But leave a BUG_ON for some lucky dude.
2309 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2312 err = setup_cpu_cache(cachep, gfp);
2313 if (err) {
2314 __kmem_cache_shutdown(cachep);
2315 return err;
2318 if (flags & SLAB_DEBUG_OBJECTS) {
2320 * Would deadlock through slab_destroy()->call_rcu()->
2321 * debug_object_activate()->kmem_cache_alloc().
2323 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2325 slab_set_debugobj_lock_classes(cachep);
2326 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2327 on_slab_lock_classes(cachep);
2329 return 0;
2332 #if DEBUG
2333 static void check_irq_off(void)
2335 BUG_ON(!irqs_disabled());
2338 static void check_irq_on(void)
2340 BUG_ON(irqs_disabled());
2343 static void check_spinlock_acquired(struct kmem_cache *cachep)
2345 #ifdef CONFIG_SMP
2346 check_irq_off();
2347 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2348 #endif
2351 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2353 #ifdef CONFIG_SMP
2354 check_irq_off();
2355 assert_spin_locked(&cachep->node[node]->list_lock);
2356 #endif
2359 #else
2360 #define check_irq_off() do { } while(0)
2361 #define check_irq_on() do { } while(0)
2362 #define check_spinlock_acquired(x) do { } while(0)
2363 #define check_spinlock_acquired_node(x, y) do { } while(0)
2364 #endif
2366 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2367 struct array_cache *ac,
2368 int force, int node);
2370 static void do_drain(void *arg)
2372 struct kmem_cache *cachep = arg;
2373 struct array_cache *ac;
2374 int node = numa_mem_id();
2376 check_irq_off();
2377 ac = cpu_cache_get(cachep);
2378 spin_lock(&cachep->node[node]->list_lock);
2379 free_block(cachep, ac->entry, ac->avail, node);
2380 spin_unlock(&cachep->node[node]->list_lock);
2381 ac->avail = 0;
2384 static void drain_cpu_caches(struct kmem_cache *cachep)
2386 struct kmem_cache_node *n;
2387 int node;
2389 on_each_cpu(do_drain, cachep, 1);
2390 check_irq_on();
2391 for_each_online_node(node) {
2392 n = cachep->node[node];
2393 if (n && n->alien)
2394 drain_alien_cache(cachep, n->alien);
2397 for_each_online_node(node) {
2398 n = cachep->node[node];
2399 if (n)
2400 drain_array(cachep, n, n->shared, 1, node);
2405 * Remove slabs from the list of free slabs.
2406 * Specify the number of slabs to drain in tofree.
2408 * Returns the actual number of slabs released.
2410 static int drain_freelist(struct kmem_cache *cache,
2411 struct kmem_cache_node *n, int tofree)
2413 struct list_head *p;
2414 int nr_freed;
2415 struct page *page;
2417 nr_freed = 0;
2418 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2420 spin_lock_irq(&n->list_lock);
2421 p = n->slabs_free.prev;
2422 if (p == &n->slabs_free) {
2423 spin_unlock_irq(&n->list_lock);
2424 goto out;
2427 page = list_entry(p, struct page, lru);
2428 #if DEBUG
2429 BUG_ON(page->active);
2430 #endif
2431 list_del(&page->lru);
2433 * Safe to drop the lock. The slab is no longer linked
2434 * to the cache.
2436 n->free_objects -= cache->num;
2437 spin_unlock_irq(&n->list_lock);
2438 slab_destroy(cache, page);
2439 nr_freed++;
2441 out:
2442 return nr_freed;
2445 /* Called with slab_mutex held to protect against cpu hotplug */
2446 static int __cache_shrink(struct kmem_cache *cachep)
2448 int ret = 0, i = 0;
2449 struct kmem_cache_node *n;
2451 drain_cpu_caches(cachep);
2453 check_irq_on();
2454 for_each_online_node(i) {
2455 n = cachep->node[i];
2456 if (!n)
2457 continue;
2459 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2461 ret += !list_empty(&n->slabs_full) ||
2462 !list_empty(&n->slabs_partial);
2464 return (ret ? 1 : 0);
2468 * kmem_cache_shrink - Shrink a cache.
2469 * @cachep: The cache to shrink.
2471 * Releases as many slabs as possible for a cache.
2472 * To help debugging, a zero exit status indicates all slabs were released.
2474 int kmem_cache_shrink(struct kmem_cache *cachep)
2476 int ret;
2477 BUG_ON(!cachep || in_interrupt());
2479 get_online_cpus();
2480 mutex_lock(&slab_mutex);
2481 ret = __cache_shrink(cachep);
2482 mutex_unlock(&slab_mutex);
2483 put_online_cpus();
2484 return ret;
2486 EXPORT_SYMBOL(kmem_cache_shrink);
2488 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2490 int i;
2491 struct kmem_cache_node *n;
2492 int rc = __cache_shrink(cachep);
2494 if (rc)
2495 return rc;
2497 for_each_online_cpu(i)
2498 kfree(cachep->array[i]);
2500 /* NUMA: free the node structures */
2501 for_each_online_node(i) {
2502 n = cachep->node[i];
2503 if (n) {
2504 kfree(n->shared);
2505 free_alien_cache(n->alien);
2506 kfree(n);
2509 return 0;
2513 * Get the memory for a slab management obj.
2514 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2515 * always come from malloc_sizes caches. The slab descriptor cannot
2516 * come from the same cache which is getting created because,
2517 * when we are searching for an appropriate cache for these
2518 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2519 * If we are creating a malloc_sizes cache here it would not be visible to
2520 * kmem_find_general_cachep till the initialization is complete.
2521 * Hence we cannot have freelist_cache same as the original cache.
2523 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2524 struct page *page, int colour_off,
2525 gfp_t local_flags, int nodeid)
2527 void *freelist;
2528 void *addr = page_address(page);
2530 if (OFF_SLAB(cachep)) {
2531 /* Slab management obj is off-slab. */
2532 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2533 local_flags, nodeid);
2534 if (!freelist)
2535 return NULL;
2536 } else {
2537 freelist = addr + colour_off;
2538 colour_off += cachep->freelist_size;
2540 page->active = 0;
2541 page->s_mem = addr + colour_off;
2542 return freelist;
2545 static inline unsigned int *slab_freelist(struct page *page)
2547 return (unsigned int *)(page->freelist);
2550 static void cache_init_objs(struct kmem_cache *cachep,
2551 struct page *page)
2553 int i;
2555 for (i = 0; i < cachep->num; i++) {
2556 void *objp = index_to_obj(cachep, page, i);
2557 #if DEBUG
2558 /* need to poison the objs? */
2559 if (cachep->flags & SLAB_POISON)
2560 poison_obj(cachep, objp, POISON_FREE);
2561 if (cachep->flags & SLAB_STORE_USER)
2562 *dbg_userword(cachep, objp) = NULL;
2564 if (cachep->flags & SLAB_RED_ZONE) {
2565 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2566 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2569 * Constructors are not allowed to allocate memory from the same
2570 * cache which they are a constructor for. Otherwise, deadlock.
2571 * They must also be threaded.
2573 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2574 cachep->ctor(objp + obj_offset(cachep));
2576 if (cachep->flags & SLAB_RED_ZONE) {
2577 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2578 slab_error(cachep, "constructor overwrote the"
2579 " end of an object");
2580 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2581 slab_error(cachep, "constructor overwrote the"
2582 " start of an object");
2584 if ((cachep->size % PAGE_SIZE) == 0 &&
2585 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2586 kernel_map_pages(virt_to_page(objp),
2587 cachep->size / PAGE_SIZE, 0);
2588 #else
2589 if (cachep->ctor)
2590 cachep->ctor(objp);
2591 #endif
2592 slab_freelist(page)[i] = i;
2596 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2598 if (CONFIG_ZONE_DMA_FLAG) {
2599 if (flags & GFP_DMA)
2600 BUG_ON(!(cachep->allocflags & GFP_DMA));
2601 else
2602 BUG_ON(cachep->allocflags & GFP_DMA);
2606 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2607 int nodeid)
2609 void *objp;
2611 objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]);
2612 page->active++;
2613 #if DEBUG
2614 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2615 #endif
2617 return objp;
2620 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2621 void *objp, int nodeid)
2623 unsigned int objnr = obj_to_index(cachep, page, objp);
2624 #if DEBUG
2625 unsigned int i;
2627 /* Verify that the slab belongs to the intended node */
2628 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2630 /* Verify double free bug */
2631 for (i = page->active; i < cachep->num; i++) {
2632 if (slab_freelist(page)[i] == objnr) {
2633 printk(KERN_ERR "slab: double free detected in cache "
2634 "'%s', objp %p\n", cachep->name, objp);
2635 BUG();
2638 #endif
2639 page->active--;
2640 slab_freelist(page)[page->active] = objnr;
2644 * Map pages beginning at addr to the given cache and slab. This is required
2645 * for the slab allocator to be able to lookup the cache and slab of a
2646 * virtual address for kfree, ksize, and slab debugging.
2648 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2649 void *freelist)
2651 page->slab_cache = cache;
2652 page->freelist = freelist;
2656 * Grow (by 1) the number of slabs within a cache. This is called by
2657 * kmem_cache_alloc() when there are no active objs left in a cache.
2659 static int cache_grow(struct kmem_cache *cachep,
2660 gfp_t flags, int nodeid, struct page *page)
2662 void *freelist;
2663 size_t offset;
2664 gfp_t local_flags;
2665 struct kmem_cache_node *n;
2668 * Be lazy and only check for valid flags here, keeping it out of the
2669 * critical path in kmem_cache_alloc().
2671 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2672 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2674 /* Take the node list lock to change the colour_next on this node */
2675 check_irq_off();
2676 n = cachep->node[nodeid];
2677 spin_lock(&n->list_lock);
2679 /* Get colour for the slab, and cal the next value. */
2680 offset = n->colour_next;
2681 n->colour_next++;
2682 if (n->colour_next >= cachep->colour)
2683 n->colour_next = 0;
2684 spin_unlock(&n->list_lock);
2686 offset *= cachep->colour_off;
2688 if (local_flags & __GFP_WAIT)
2689 local_irq_enable();
2692 * The test for missing atomic flag is performed here, rather than
2693 * the more obvious place, simply to reduce the critical path length
2694 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2695 * will eventually be caught here (where it matters).
2697 kmem_flagcheck(cachep, flags);
2700 * Get mem for the objs. Attempt to allocate a physical page from
2701 * 'nodeid'.
2703 if (!page)
2704 page = kmem_getpages(cachep, local_flags, nodeid);
2705 if (!page)
2706 goto failed;
2708 /* Get slab management. */
2709 freelist = alloc_slabmgmt(cachep, page, offset,
2710 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2711 if (!freelist)
2712 goto opps1;
2714 slab_map_pages(cachep, page, freelist);
2716 cache_init_objs(cachep, page);
2718 if (local_flags & __GFP_WAIT)
2719 local_irq_disable();
2720 check_irq_off();
2721 spin_lock(&n->list_lock);
2723 /* Make slab active. */
2724 list_add_tail(&page->lru, &(n->slabs_free));
2725 STATS_INC_GROWN(cachep);
2726 n->free_objects += cachep->num;
2727 spin_unlock(&n->list_lock);
2728 return 1;
2729 opps1:
2730 kmem_freepages(cachep, page);
2731 failed:
2732 if (local_flags & __GFP_WAIT)
2733 local_irq_disable();
2734 return 0;
2737 #if DEBUG
2740 * Perform extra freeing checks:
2741 * - detect bad pointers.
2742 * - POISON/RED_ZONE checking
2744 static void kfree_debugcheck(const void *objp)
2746 if (!virt_addr_valid(objp)) {
2747 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2748 (unsigned long)objp);
2749 BUG();
2753 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2755 unsigned long long redzone1, redzone2;
2757 redzone1 = *dbg_redzone1(cache, obj);
2758 redzone2 = *dbg_redzone2(cache, obj);
2761 * Redzone is ok.
2763 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2764 return;
2766 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2767 slab_error(cache, "double free detected");
2768 else
2769 slab_error(cache, "memory outside object was overwritten");
2771 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2772 obj, redzone1, redzone2);
2775 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2776 unsigned long caller)
2778 unsigned int objnr;
2779 struct page *page;
2781 BUG_ON(virt_to_cache(objp) != cachep);
2783 objp -= obj_offset(cachep);
2784 kfree_debugcheck(objp);
2785 page = virt_to_head_page(objp);
2787 if (cachep->flags & SLAB_RED_ZONE) {
2788 verify_redzone_free(cachep, objp);
2789 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2790 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2792 if (cachep->flags & SLAB_STORE_USER)
2793 *dbg_userword(cachep, objp) = (void *)caller;
2795 objnr = obj_to_index(cachep, page, objp);
2797 BUG_ON(objnr >= cachep->num);
2798 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2800 if (cachep->flags & SLAB_POISON) {
2801 #ifdef CONFIG_DEBUG_PAGEALLOC
2802 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2803 store_stackinfo(cachep, objp, caller);
2804 kernel_map_pages(virt_to_page(objp),
2805 cachep->size / PAGE_SIZE, 0);
2806 } else {
2807 poison_obj(cachep, objp, POISON_FREE);
2809 #else
2810 poison_obj(cachep, objp, POISON_FREE);
2811 #endif
2813 return objp;
2816 #else
2817 #define kfree_debugcheck(x) do { } while(0)
2818 #define cache_free_debugcheck(x,objp,z) (objp)
2819 #endif
2821 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2822 bool force_refill)
2824 int batchcount;
2825 struct kmem_cache_node *n;
2826 struct array_cache *ac;
2827 int node;
2829 check_irq_off();
2830 node = numa_mem_id();
2831 if (unlikely(force_refill))
2832 goto force_grow;
2833 retry:
2834 ac = cpu_cache_get(cachep);
2835 batchcount = ac->batchcount;
2836 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2838 * If there was little recent activity on this cache, then
2839 * perform only a partial refill. Otherwise we could generate
2840 * refill bouncing.
2842 batchcount = BATCHREFILL_LIMIT;
2844 n = cachep->node[node];
2846 BUG_ON(ac->avail > 0 || !n);
2847 spin_lock(&n->list_lock);
2849 /* See if we can refill from the shared array */
2850 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2851 n->shared->touched = 1;
2852 goto alloc_done;
2855 while (batchcount > 0) {
2856 struct list_head *entry;
2857 struct page *page;
2858 /* Get slab alloc is to come from. */
2859 entry = n->slabs_partial.next;
2860 if (entry == &n->slabs_partial) {
2861 n->free_touched = 1;
2862 entry = n->slabs_free.next;
2863 if (entry == &n->slabs_free)
2864 goto must_grow;
2867 page = list_entry(entry, struct page, lru);
2868 check_spinlock_acquired(cachep);
2871 * The slab was either on partial or free list so
2872 * there must be at least one object available for
2873 * allocation.
2875 BUG_ON(page->active >= cachep->num);
2877 while (page->active < cachep->num && batchcount--) {
2878 STATS_INC_ALLOCED(cachep);
2879 STATS_INC_ACTIVE(cachep);
2880 STATS_SET_HIGH(cachep);
2882 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2883 node));
2886 /* move slabp to correct slabp list: */
2887 list_del(&page->lru);
2888 if (page->active == cachep->num)
2889 list_add(&page->list, &n->slabs_full);
2890 else
2891 list_add(&page->list, &n->slabs_partial);
2894 must_grow:
2895 n->free_objects -= ac->avail;
2896 alloc_done:
2897 spin_unlock(&n->list_lock);
2899 if (unlikely(!ac->avail)) {
2900 int x;
2901 force_grow:
2902 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2904 /* cache_grow can reenable interrupts, then ac could change. */
2905 ac = cpu_cache_get(cachep);
2906 node = numa_mem_id();
2908 /* no objects in sight? abort */
2909 if (!x && (ac->avail == 0 || force_refill))
2910 return NULL;
2912 if (!ac->avail) /* objects refilled by interrupt? */
2913 goto retry;
2915 ac->touched = 1;
2917 return ac_get_obj(cachep, ac, flags, force_refill);
2920 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2921 gfp_t flags)
2923 might_sleep_if(flags & __GFP_WAIT);
2924 #if DEBUG
2925 kmem_flagcheck(cachep, flags);
2926 #endif
2929 #if DEBUG
2930 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2931 gfp_t flags, void *objp, unsigned long caller)
2933 if (!objp)
2934 return objp;
2935 if (cachep->flags & SLAB_POISON) {
2936 #ifdef CONFIG_DEBUG_PAGEALLOC
2937 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2938 kernel_map_pages(virt_to_page(objp),
2939 cachep->size / PAGE_SIZE, 1);
2940 else
2941 check_poison_obj(cachep, objp);
2942 #else
2943 check_poison_obj(cachep, objp);
2944 #endif
2945 poison_obj(cachep, objp, POISON_INUSE);
2947 if (cachep->flags & SLAB_STORE_USER)
2948 *dbg_userword(cachep, objp) = (void *)caller;
2950 if (cachep->flags & SLAB_RED_ZONE) {
2951 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2952 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2953 slab_error(cachep, "double free, or memory outside"
2954 " object was overwritten");
2955 printk(KERN_ERR
2956 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2957 objp, *dbg_redzone1(cachep, objp),
2958 *dbg_redzone2(cachep, objp));
2960 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2961 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2963 objp += obj_offset(cachep);
2964 if (cachep->ctor && cachep->flags & SLAB_POISON)
2965 cachep->ctor(objp);
2966 if (ARCH_SLAB_MINALIGN &&
2967 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2968 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2969 objp, (int)ARCH_SLAB_MINALIGN);
2971 return objp;
2973 #else
2974 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2975 #endif
2977 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2979 if (cachep == kmem_cache)
2980 return false;
2982 return should_failslab(cachep->object_size, flags, cachep->flags);
2985 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2987 void *objp;
2988 struct array_cache *ac;
2989 bool force_refill = false;
2991 check_irq_off();
2993 ac = cpu_cache_get(cachep);
2994 if (likely(ac->avail)) {
2995 ac->touched = 1;
2996 objp = ac_get_obj(cachep, ac, flags, false);
2999 * Allow for the possibility all avail objects are not allowed
3000 * by the current flags
3002 if (objp) {
3003 STATS_INC_ALLOCHIT(cachep);
3004 goto out;
3006 force_refill = true;
3009 STATS_INC_ALLOCMISS(cachep);
3010 objp = cache_alloc_refill(cachep, flags, force_refill);
3012 * the 'ac' may be updated by cache_alloc_refill(),
3013 * and kmemleak_erase() requires its correct value.
3015 ac = cpu_cache_get(cachep);
3017 out:
3019 * To avoid a false negative, if an object that is in one of the
3020 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3021 * treat the array pointers as a reference to the object.
3023 if (objp)
3024 kmemleak_erase(&ac->entry[ac->avail]);
3025 return objp;
3028 #ifdef CONFIG_NUMA
3030 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3032 * If we are in_interrupt, then process context, including cpusets and
3033 * mempolicy, may not apply and should not be used for allocation policy.
3035 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3037 int nid_alloc, nid_here;
3039 if (in_interrupt() || (flags & __GFP_THISNODE))
3040 return NULL;
3041 nid_alloc = nid_here = numa_mem_id();
3042 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3043 nid_alloc = cpuset_slab_spread_node();
3044 else if (current->mempolicy)
3045 nid_alloc = slab_node();
3046 if (nid_alloc != nid_here)
3047 return ____cache_alloc_node(cachep, flags, nid_alloc);
3048 return NULL;
3052 * Fallback function if there was no memory available and no objects on a
3053 * certain node and fall back is permitted. First we scan all the
3054 * available node for available objects. If that fails then we
3055 * perform an allocation without specifying a node. This allows the page
3056 * allocator to do its reclaim / fallback magic. We then insert the
3057 * slab into the proper nodelist and then allocate from it.
3059 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3061 struct zonelist *zonelist;
3062 gfp_t local_flags;
3063 struct zoneref *z;
3064 struct zone *zone;
3065 enum zone_type high_zoneidx = gfp_zone(flags);
3066 void *obj = NULL;
3067 int nid;
3068 unsigned int cpuset_mems_cookie;
3070 if (flags & __GFP_THISNODE)
3071 return NULL;
3073 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3075 retry_cpuset:
3076 cpuset_mems_cookie = get_mems_allowed();
3077 zonelist = node_zonelist(slab_node(), flags);
3079 retry:
3081 * Look through allowed nodes for objects available
3082 * from existing per node queues.
3084 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3085 nid = zone_to_nid(zone);
3087 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3088 cache->node[nid] &&
3089 cache->node[nid]->free_objects) {
3090 obj = ____cache_alloc_node(cache,
3091 flags | GFP_THISNODE, nid);
3092 if (obj)
3093 break;
3097 if (!obj) {
3099 * This allocation will be performed within the constraints
3100 * of the current cpuset / memory policy requirements.
3101 * We may trigger various forms of reclaim on the allowed
3102 * set and go into memory reserves if necessary.
3104 struct page *page;
3106 if (local_flags & __GFP_WAIT)
3107 local_irq_enable();
3108 kmem_flagcheck(cache, flags);
3109 page = kmem_getpages(cache, local_flags, numa_mem_id());
3110 if (local_flags & __GFP_WAIT)
3111 local_irq_disable();
3112 if (page) {
3114 * Insert into the appropriate per node queues
3116 nid = page_to_nid(page);
3117 if (cache_grow(cache, flags, nid, page)) {
3118 obj = ____cache_alloc_node(cache,
3119 flags | GFP_THISNODE, nid);
3120 if (!obj)
3122 * Another processor may allocate the
3123 * objects in the slab since we are
3124 * not holding any locks.
3126 goto retry;
3127 } else {
3128 /* cache_grow already freed obj */
3129 obj = NULL;
3134 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3135 goto retry_cpuset;
3136 return obj;
3140 * A interface to enable slab creation on nodeid
3142 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3143 int nodeid)
3145 struct list_head *entry;
3146 struct page *page;
3147 struct kmem_cache_node *n;
3148 void *obj;
3149 int x;
3151 VM_BUG_ON(nodeid > num_online_nodes());
3152 n = cachep->node[nodeid];
3153 BUG_ON(!n);
3155 retry:
3156 check_irq_off();
3157 spin_lock(&n->list_lock);
3158 entry = n->slabs_partial.next;
3159 if (entry == &n->slabs_partial) {
3160 n->free_touched = 1;
3161 entry = n->slabs_free.next;
3162 if (entry == &n->slabs_free)
3163 goto must_grow;
3166 page = list_entry(entry, struct page, lru);
3167 check_spinlock_acquired_node(cachep, nodeid);
3169 STATS_INC_NODEALLOCS(cachep);
3170 STATS_INC_ACTIVE(cachep);
3171 STATS_SET_HIGH(cachep);
3173 BUG_ON(page->active == cachep->num);
3175 obj = slab_get_obj(cachep, page, nodeid);
3176 n->free_objects--;
3177 /* move slabp to correct slabp list: */
3178 list_del(&page->lru);
3180 if (page->active == cachep->num)
3181 list_add(&page->lru, &n->slabs_full);
3182 else
3183 list_add(&page->lru, &n->slabs_partial);
3185 spin_unlock(&n->list_lock);
3186 goto done;
3188 must_grow:
3189 spin_unlock(&n->list_lock);
3190 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3191 if (x)
3192 goto retry;
3194 return fallback_alloc(cachep, flags);
3196 done:
3197 return obj;
3200 static __always_inline void *
3201 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3202 unsigned long caller)
3204 unsigned long save_flags;
3205 void *ptr;
3206 int slab_node = numa_mem_id();
3208 flags &= gfp_allowed_mask;
3210 lockdep_trace_alloc(flags);
3212 if (slab_should_failslab(cachep, flags))
3213 return NULL;
3215 cachep = memcg_kmem_get_cache(cachep, flags);
3217 cache_alloc_debugcheck_before(cachep, flags);
3218 local_irq_save(save_flags);
3220 if (nodeid == NUMA_NO_NODE)
3221 nodeid = slab_node;
3223 if (unlikely(!cachep->node[nodeid])) {
3224 /* Node not bootstrapped yet */
3225 ptr = fallback_alloc(cachep, flags);
3226 goto out;
3229 if (nodeid == slab_node) {
3231 * Use the locally cached objects if possible.
3232 * However ____cache_alloc does not allow fallback
3233 * to other nodes. It may fail while we still have
3234 * objects on other nodes available.
3236 ptr = ____cache_alloc(cachep, flags);
3237 if (ptr)
3238 goto out;
3240 /* ___cache_alloc_node can fall back to other nodes */
3241 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3242 out:
3243 local_irq_restore(save_flags);
3244 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3245 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3246 flags);
3248 if (likely(ptr))
3249 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3251 if (unlikely((flags & __GFP_ZERO) && ptr))
3252 memset(ptr, 0, cachep->object_size);
3254 return ptr;
3257 static __always_inline void *
3258 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3260 void *objp;
3262 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3263 objp = alternate_node_alloc(cache, flags);
3264 if (objp)
3265 goto out;
3267 objp = ____cache_alloc(cache, flags);
3270 * We may just have run out of memory on the local node.
3271 * ____cache_alloc_node() knows how to locate memory on other nodes
3273 if (!objp)
3274 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3276 out:
3277 return objp;
3279 #else
3281 static __always_inline void *
3282 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3284 return ____cache_alloc(cachep, flags);
3287 #endif /* CONFIG_NUMA */
3289 static __always_inline void *
3290 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3292 unsigned long save_flags;
3293 void *objp;
3295 flags &= gfp_allowed_mask;
3297 lockdep_trace_alloc(flags);
3299 if (slab_should_failslab(cachep, flags))
3300 return NULL;
3302 cachep = memcg_kmem_get_cache(cachep, flags);
3304 cache_alloc_debugcheck_before(cachep, flags);
3305 local_irq_save(save_flags);
3306 objp = __do_cache_alloc(cachep, flags);
3307 local_irq_restore(save_flags);
3308 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3309 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3310 flags);
3311 prefetchw(objp);
3313 if (likely(objp))
3314 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3316 if (unlikely((flags & __GFP_ZERO) && objp))
3317 memset(objp, 0, cachep->object_size);
3319 return objp;
3323 * Caller needs to acquire correct kmem_list's list_lock
3325 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3326 int node)
3328 int i;
3329 struct kmem_cache_node *n;
3331 for (i = 0; i < nr_objects; i++) {
3332 void *objp;
3333 struct page *page;
3335 clear_obj_pfmemalloc(&objpp[i]);
3336 objp = objpp[i];
3338 page = virt_to_head_page(objp);
3339 n = cachep->node[node];
3340 list_del(&page->lru);
3341 check_spinlock_acquired_node(cachep, node);
3342 slab_put_obj(cachep, page, objp, node);
3343 STATS_DEC_ACTIVE(cachep);
3344 n->free_objects++;
3346 /* fixup slab chains */
3347 if (page->active == 0) {
3348 if (n->free_objects > n->free_limit) {
3349 n->free_objects -= cachep->num;
3350 /* No need to drop any previously held
3351 * lock here, even if we have a off-slab slab
3352 * descriptor it is guaranteed to come from
3353 * a different cache, refer to comments before
3354 * alloc_slabmgmt.
3356 slab_destroy(cachep, page);
3357 } else {
3358 list_add(&page->lru, &n->slabs_free);
3360 } else {
3361 /* Unconditionally move a slab to the end of the
3362 * partial list on free - maximum time for the
3363 * other objects to be freed, too.
3365 list_add_tail(&page->lru, &n->slabs_partial);
3370 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3372 int batchcount;
3373 struct kmem_cache_node *n;
3374 int node = numa_mem_id();
3376 batchcount = ac->batchcount;
3377 #if DEBUG
3378 BUG_ON(!batchcount || batchcount > ac->avail);
3379 #endif
3380 check_irq_off();
3381 n = cachep->node[node];
3382 spin_lock(&n->list_lock);
3383 if (n->shared) {
3384 struct array_cache *shared_array = n->shared;
3385 int max = shared_array->limit - shared_array->avail;
3386 if (max) {
3387 if (batchcount > max)
3388 batchcount = max;
3389 memcpy(&(shared_array->entry[shared_array->avail]),
3390 ac->entry, sizeof(void *) * batchcount);
3391 shared_array->avail += batchcount;
3392 goto free_done;
3396 free_block(cachep, ac->entry, batchcount, node);
3397 free_done:
3398 #if STATS
3400 int i = 0;
3401 struct list_head *p;
3403 p = n->slabs_free.next;
3404 while (p != &(n->slabs_free)) {
3405 struct page *page;
3407 page = list_entry(p, struct page, lru);
3408 BUG_ON(page->active);
3410 i++;
3411 p = p->next;
3413 STATS_SET_FREEABLE(cachep, i);
3415 #endif
3416 spin_unlock(&n->list_lock);
3417 ac->avail -= batchcount;
3418 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3422 * Release an obj back to its cache. If the obj has a constructed state, it must
3423 * be in this state _before_ it is released. Called with disabled ints.
3425 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3426 unsigned long caller)
3428 struct array_cache *ac = cpu_cache_get(cachep);
3430 check_irq_off();
3431 kmemleak_free_recursive(objp, cachep->flags);
3432 objp = cache_free_debugcheck(cachep, objp, caller);
3434 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3437 * Skip calling cache_free_alien() when the platform is not numa.
3438 * This will avoid cache misses that happen while accessing slabp (which
3439 * is per page memory reference) to get nodeid. Instead use a global
3440 * variable to skip the call, which is mostly likely to be present in
3441 * the cache.
3443 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3444 return;
3446 if (likely(ac->avail < ac->limit)) {
3447 STATS_INC_FREEHIT(cachep);
3448 } else {
3449 STATS_INC_FREEMISS(cachep);
3450 cache_flusharray(cachep, ac);
3453 ac_put_obj(cachep, ac, objp);
3457 * kmem_cache_alloc - Allocate an object
3458 * @cachep: The cache to allocate from.
3459 * @flags: See kmalloc().
3461 * Allocate an object from this cache. The flags are only relevant
3462 * if the cache has no available objects.
3464 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3466 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3468 trace_kmem_cache_alloc(_RET_IP_, ret,
3469 cachep->object_size, cachep->size, flags);
3471 return ret;
3473 EXPORT_SYMBOL(kmem_cache_alloc);
3475 #ifdef CONFIG_TRACING
3476 void *
3477 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3479 void *ret;
3481 ret = slab_alloc(cachep, flags, _RET_IP_);
3483 trace_kmalloc(_RET_IP_, ret,
3484 size, cachep->size, flags);
3485 return ret;
3487 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3488 #endif
3490 #ifdef CONFIG_NUMA
3492 * kmem_cache_alloc_node - Allocate an object on the specified node
3493 * @cachep: The cache to allocate from.
3494 * @flags: See kmalloc().
3495 * @nodeid: node number of the target node.
3497 * Identical to kmem_cache_alloc but it will allocate memory on the given
3498 * node, which can improve the performance for cpu bound structures.
3500 * Fallback to other node is possible if __GFP_THISNODE is not set.
3502 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3504 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3506 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3507 cachep->object_size, cachep->size,
3508 flags, nodeid);
3510 return ret;
3512 EXPORT_SYMBOL(kmem_cache_alloc_node);
3514 #ifdef CONFIG_TRACING
3515 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3516 gfp_t flags,
3517 int nodeid,
3518 size_t size)
3520 void *ret;
3522 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3524 trace_kmalloc_node(_RET_IP_, ret,
3525 size, cachep->size,
3526 flags, nodeid);
3527 return ret;
3529 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3530 #endif
3532 static __always_inline void *
3533 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3535 struct kmem_cache *cachep;
3537 cachep = kmalloc_slab(size, flags);
3538 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3539 return cachep;
3540 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3543 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3544 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3546 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3548 EXPORT_SYMBOL(__kmalloc_node);
3550 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3551 int node, unsigned long caller)
3553 return __do_kmalloc_node(size, flags, node, caller);
3555 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3556 #else
3557 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3559 return __do_kmalloc_node(size, flags, node, 0);
3561 EXPORT_SYMBOL(__kmalloc_node);
3562 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3563 #endif /* CONFIG_NUMA */
3566 * __do_kmalloc - allocate memory
3567 * @size: how many bytes of memory are required.
3568 * @flags: the type of memory to allocate (see kmalloc).
3569 * @caller: function caller for debug tracking of the caller
3571 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3572 unsigned long caller)
3574 struct kmem_cache *cachep;
3575 void *ret;
3577 /* If you want to save a few bytes .text space: replace
3578 * __ with kmem_.
3579 * Then kmalloc uses the uninlined functions instead of the inline
3580 * functions.
3582 cachep = kmalloc_slab(size, flags);
3583 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3584 return cachep;
3585 ret = slab_alloc(cachep, flags, caller);
3587 trace_kmalloc(caller, ret,
3588 size, cachep->size, flags);
3590 return ret;
3594 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3595 void *__kmalloc(size_t size, gfp_t flags)
3597 return __do_kmalloc(size, flags, _RET_IP_);
3599 EXPORT_SYMBOL(__kmalloc);
3601 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3603 return __do_kmalloc(size, flags, caller);
3605 EXPORT_SYMBOL(__kmalloc_track_caller);
3607 #else
3608 void *__kmalloc(size_t size, gfp_t flags)
3610 return __do_kmalloc(size, flags, 0);
3612 EXPORT_SYMBOL(__kmalloc);
3613 #endif
3616 * kmem_cache_free - Deallocate an object
3617 * @cachep: The cache the allocation was from.
3618 * @objp: The previously allocated object.
3620 * Free an object which was previously allocated from this
3621 * cache.
3623 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3625 unsigned long flags;
3626 cachep = cache_from_obj(cachep, objp);
3627 if (!cachep)
3628 return;
3630 local_irq_save(flags);
3631 debug_check_no_locks_freed(objp, cachep->object_size);
3632 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3633 debug_check_no_obj_freed(objp, cachep->object_size);
3634 __cache_free(cachep, objp, _RET_IP_);
3635 local_irq_restore(flags);
3637 trace_kmem_cache_free(_RET_IP_, objp);
3639 EXPORT_SYMBOL(kmem_cache_free);
3642 * kfree - free previously allocated memory
3643 * @objp: pointer returned by kmalloc.
3645 * If @objp is NULL, no operation is performed.
3647 * Don't free memory not originally allocated by kmalloc()
3648 * or you will run into trouble.
3650 void kfree(const void *objp)
3652 struct kmem_cache *c;
3653 unsigned long flags;
3655 trace_kfree(_RET_IP_, objp);
3657 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3658 return;
3659 local_irq_save(flags);
3660 kfree_debugcheck(objp);
3661 c = virt_to_cache(objp);
3662 debug_check_no_locks_freed(objp, c->object_size);
3664 debug_check_no_obj_freed(objp, c->object_size);
3665 __cache_free(c, (void *)objp, _RET_IP_);
3666 local_irq_restore(flags);
3668 EXPORT_SYMBOL(kfree);
3671 * This initializes kmem_cache_node or resizes various caches for all nodes.
3673 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3675 int node;
3676 struct kmem_cache_node *n;
3677 struct array_cache *new_shared;
3678 struct array_cache **new_alien = NULL;
3680 for_each_online_node(node) {
3682 if (use_alien_caches) {
3683 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3684 if (!new_alien)
3685 goto fail;
3688 new_shared = NULL;
3689 if (cachep->shared) {
3690 new_shared = alloc_arraycache(node,
3691 cachep->shared*cachep->batchcount,
3692 0xbaadf00d, gfp);
3693 if (!new_shared) {
3694 free_alien_cache(new_alien);
3695 goto fail;
3699 n = cachep->node[node];
3700 if (n) {
3701 struct array_cache *shared = n->shared;
3703 spin_lock_irq(&n->list_lock);
3705 if (shared)
3706 free_block(cachep, shared->entry,
3707 shared->avail, node);
3709 n->shared = new_shared;
3710 if (!n->alien) {
3711 n->alien = new_alien;
3712 new_alien = NULL;
3714 n->free_limit = (1 + nr_cpus_node(node)) *
3715 cachep->batchcount + cachep->num;
3716 spin_unlock_irq(&n->list_lock);
3717 kfree(shared);
3718 free_alien_cache(new_alien);
3719 continue;
3721 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3722 if (!n) {
3723 free_alien_cache(new_alien);
3724 kfree(new_shared);
3725 goto fail;
3728 kmem_cache_node_init(n);
3729 n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3730 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3731 n->shared = new_shared;
3732 n->alien = new_alien;
3733 n->free_limit = (1 + nr_cpus_node(node)) *
3734 cachep->batchcount + cachep->num;
3735 cachep->node[node] = n;
3737 return 0;
3739 fail:
3740 if (!cachep->list.next) {
3741 /* Cache is not active yet. Roll back what we did */
3742 node--;
3743 while (node >= 0) {
3744 if (cachep->node[node]) {
3745 n = cachep->node[node];
3747 kfree(n->shared);
3748 free_alien_cache(n->alien);
3749 kfree(n);
3750 cachep->node[node] = NULL;
3752 node--;
3755 return -ENOMEM;
3758 struct ccupdate_struct {
3759 struct kmem_cache *cachep;
3760 struct array_cache *new[0];
3763 static void do_ccupdate_local(void *info)
3765 struct ccupdate_struct *new = info;
3766 struct array_cache *old;
3768 check_irq_off();
3769 old = cpu_cache_get(new->cachep);
3771 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3772 new->new[smp_processor_id()] = old;
3775 /* Always called with the slab_mutex held */
3776 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3777 int batchcount, int shared, gfp_t gfp)
3779 struct ccupdate_struct *new;
3780 int i;
3782 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3783 gfp);
3784 if (!new)
3785 return -ENOMEM;
3787 for_each_online_cpu(i) {
3788 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3789 batchcount, gfp);
3790 if (!new->new[i]) {
3791 for (i--; i >= 0; i--)
3792 kfree(new->new[i]);
3793 kfree(new);
3794 return -ENOMEM;
3797 new->cachep = cachep;
3799 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3801 check_irq_on();
3802 cachep->batchcount = batchcount;
3803 cachep->limit = limit;
3804 cachep->shared = shared;
3806 for_each_online_cpu(i) {
3807 struct array_cache *ccold = new->new[i];
3808 if (!ccold)
3809 continue;
3810 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3811 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3812 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3813 kfree(ccold);
3815 kfree(new);
3816 return alloc_kmemlist(cachep, gfp);
3819 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3820 int batchcount, int shared, gfp_t gfp)
3822 int ret;
3823 struct kmem_cache *c = NULL;
3824 int i = 0;
3826 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3828 if (slab_state < FULL)
3829 return ret;
3831 if ((ret < 0) || !is_root_cache(cachep))
3832 return ret;
3834 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3835 for_each_memcg_cache_index(i) {
3836 c = cache_from_memcg_idx(cachep, i);
3837 if (c)
3838 /* return value determined by the parent cache only */
3839 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3842 return ret;
3845 /* Called with slab_mutex held always */
3846 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3848 int err;
3849 int limit = 0;
3850 int shared = 0;
3851 int batchcount = 0;
3853 if (!is_root_cache(cachep)) {
3854 struct kmem_cache *root = memcg_root_cache(cachep);
3855 limit = root->limit;
3856 shared = root->shared;
3857 batchcount = root->batchcount;
3860 if (limit && shared && batchcount)
3861 goto skip_setup;
3863 * The head array serves three purposes:
3864 * - create a LIFO ordering, i.e. return objects that are cache-warm
3865 * - reduce the number of spinlock operations.
3866 * - reduce the number of linked list operations on the slab and
3867 * bufctl chains: array operations are cheaper.
3868 * The numbers are guessed, we should auto-tune as described by
3869 * Bonwick.
3871 if (cachep->size > 131072)
3872 limit = 1;
3873 else if (cachep->size > PAGE_SIZE)
3874 limit = 8;
3875 else if (cachep->size > 1024)
3876 limit = 24;
3877 else if (cachep->size > 256)
3878 limit = 54;
3879 else
3880 limit = 120;
3883 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3884 * allocation behaviour: Most allocs on one cpu, most free operations
3885 * on another cpu. For these cases, an efficient object passing between
3886 * cpus is necessary. This is provided by a shared array. The array
3887 * replaces Bonwick's magazine layer.
3888 * On uniprocessor, it's functionally equivalent (but less efficient)
3889 * to a larger limit. Thus disabled by default.
3891 shared = 0;
3892 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3893 shared = 8;
3895 #if DEBUG
3897 * With debugging enabled, large batchcount lead to excessively long
3898 * periods with disabled local interrupts. Limit the batchcount
3900 if (limit > 32)
3901 limit = 32;
3902 #endif
3903 batchcount = (limit + 1) / 2;
3904 skip_setup:
3905 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906 if (err)
3907 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3908 cachep->name, -err);
3909 return err;
3913 * Drain an array if it contains any elements taking the node lock only if
3914 * necessary. Note that the node listlock also protects the array_cache
3915 * if drain_array() is used on the shared array.
3917 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3918 struct array_cache *ac, int force, int node)
3920 int tofree;
3922 if (!ac || !ac->avail)
3923 return;
3924 if (ac->touched && !force) {
3925 ac->touched = 0;
3926 } else {
3927 spin_lock_irq(&n->list_lock);
3928 if (ac->avail) {
3929 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3930 if (tofree > ac->avail)
3931 tofree = (ac->avail + 1) / 2;
3932 free_block(cachep, ac->entry, tofree, node);
3933 ac->avail -= tofree;
3934 memmove(ac->entry, &(ac->entry[tofree]),
3935 sizeof(void *) * ac->avail);
3937 spin_unlock_irq(&n->list_lock);
3942 * cache_reap - Reclaim memory from caches.
3943 * @w: work descriptor
3945 * Called from workqueue/eventd every few seconds.
3946 * Purpose:
3947 * - clear the per-cpu caches for this CPU.
3948 * - return freeable pages to the main free memory pool.
3950 * If we cannot acquire the cache chain mutex then just give up - we'll try
3951 * again on the next iteration.
3953 static void cache_reap(struct work_struct *w)
3955 struct kmem_cache *searchp;
3956 struct kmem_cache_node *n;
3957 int node = numa_mem_id();
3958 struct delayed_work *work = to_delayed_work(w);
3960 if (!mutex_trylock(&slab_mutex))
3961 /* Give up. Setup the next iteration. */
3962 goto out;
3964 list_for_each_entry(searchp, &slab_caches, list) {
3965 check_irq_on();
3968 * We only take the node lock if absolutely necessary and we
3969 * have established with reasonable certainty that
3970 * we can do some work if the lock was obtained.
3972 n = searchp->node[node];
3974 reap_alien(searchp, n);
3976 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3979 * These are racy checks but it does not matter
3980 * if we skip one check or scan twice.
3982 if (time_after(n->next_reap, jiffies))
3983 goto next;
3985 n->next_reap = jiffies + REAPTIMEOUT_LIST3;
3987 drain_array(searchp, n, n->shared, 0, node);
3989 if (n->free_touched)
3990 n->free_touched = 0;
3991 else {
3992 int freed;
3994 freed = drain_freelist(searchp, n, (n->free_limit +
3995 5 * searchp->num - 1) / (5 * searchp->num));
3996 STATS_ADD_REAPED(searchp, freed);
3998 next:
3999 cond_resched();
4001 check_irq_on();
4002 mutex_unlock(&slab_mutex);
4003 next_reap_node();
4004 out:
4005 /* Set up the next iteration */
4006 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4009 #ifdef CONFIG_SLABINFO
4010 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4012 struct page *page;
4013 unsigned long active_objs;
4014 unsigned long num_objs;
4015 unsigned long active_slabs = 0;
4016 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4017 const char *name;
4018 char *error = NULL;
4019 int node;
4020 struct kmem_cache_node *n;
4022 active_objs = 0;
4023 num_slabs = 0;
4024 for_each_online_node(node) {
4025 n = cachep->node[node];
4026 if (!n)
4027 continue;
4029 check_irq_on();
4030 spin_lock_irq(&n->list_lock);
4032 list_for_each_entry(page, &n->slabs_full, lru) {
4033 if (page->active != cachep->num && !error)
4034 error = "slabs_full accounting error";
4035 active_objs += cachep->num;
4036 active_slabs++;
4038 list_for_each_entry(page, &n->slabs_partial, lru) {
4039 if (page->active == cachep->num && !error)
4040 error = "slabs_partial accounting error";
4041 if (!page->active && !error)
4042 error = "slabs_partial accounting error";
4043 active_objs += page->active;
4044 active_slabs++;
4046 list_for_each_entry(page, &n->slabs_free, lru) {
4047 if (page->active && !error)
4048 error = "slabs_free accounting error";
4049 num_slabs++;
4051 free_objects += n->free_objects;
4052 if (n->shared)
4053 shared_avail += n->shared->avail;
4055 spin_unlock_irq(&n->list_lock);
4057 num_slabs += active_slabs;
4058 num_objs = num_slabs * cachep->num;
4059 if (num_objs - active_objs != free_objects && !error)
4060 error = "free_objects accounting error";
4062 name = cachep->name;
4063 if (error)
4064 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4066 sinfo->active_objs = active_objs;
4067 sinfo->num_objs = num_objs;
4068 sinfo->active_slabs = active_slabs;
4069 sinfo->num_slabs = num_slabs;
4070 sinfo->shared_avail = shared_avail;
4071 sinfo->limit = cachep->limit;
4072 sinfo->batchcount = cachep->batchcount;
4073 sinfo->shared = cachep->shared;
4074 sinfo->objects_per_slab = cachep->num;
4075 sinfo->cache_order = cachep->gfporder;
4078 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4080 #if STATS
4081 { /* node stats */
4082 unsigned long high = cachep->high_mark;
4083 unsigned long allocs = cachep->num_allocations;
4084 unsigned long grown = cachep->grown;
4085 unsigned long reaped = cachep->reaped;
4086 unsigned long errors = cachep->errors;
4087 unsigned long max_freeable = cachep->max_freeable;
4088 unsigned long node_allocs = cachep->node_allocs;
4089 unsigned long node_frees = cachep->node_frees;
4090 unsigned long overflows = cachep->node_overflow;
4092 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4093 "%4lu %4lu %4lu %4lu %4lu",
4094 allocs, high, grown,
4095 reaped, errors, max_freeable, node_allocs,
4096 node_frees, overflows);
4098 /* cpu stats */
4100 unsigned long allochit = atomic_read(&cachep->allochit);
4101 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4102 unsigned long freehit = atomic_read(&cachep->freehit);
4103 unsigned long freemiss = atomic_read(&cachep->freemiss);
4105 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4106 allochit, allocmiss, freehit, freemiss);
4108 #endif
4111 #define MAX_SLABINFO_WRITE 128
4113 * slabinfo_write - Tuning for the slab allocator
4114 * @file: unused
4115 * @buffer: user buffer
4116 * @count: data length
4117 * @ppos: unused
4119 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4120 size_t count, loff_t *ppos)
4122 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4123 int limit, batchcount, shared, res;
4124 struct kmem_cache *cachep;
4126 if (count > MAX_SLABINFO_WRITE)
4127 return -EINVAL;
4128 if (copy_from_user(&kbuf, buffer, count))
4129 return -EFAULT;
4130 kbuf[MAX_SLABINFO_WRITE] = '\0';
4132 tmp = strchr(kbuf, ' ');
4133 if (!tmp)
4134 return -EINVAL;
4135 *tmp = '\0';
4136 tmp++;
4137 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4138 return -EINVAL;
4140 /* Find the cache in the chain of caches. */
4141 mutex_lock(&slab_mutex);
4142 res = -EINVAL;
4143 list_for_each_entry(cachep, &slab_caches, list) {
4144 if (!strcmp(cachep->name, kbuf)) {
4145 if (limit < 1 || batchcount < 1 ||
4146 batchcount > limit || shared < 0) {
4147 res = 0;
4148 } else {
4149 res = do_tune_cpucache(cachep, limit,
4150 batchcount, shared,
4151 GFP_KERNEL);
4153 break;
4156 mutex_unlock(&slab_mutex);
4157 if (res >= 0)
4158 res = count;
4159 return res;
4162 #ifdef CONFIG_DEBUG_SLAB_LEAK
4164 static void *leaks_start(struct seq_file *m, loff_t *pos)
4166 mutex_lock(&slab_mutex);
4167 return seq_list_start(&slab_caches, *pos);
4170 static inline int add_caller(unsigned long *n, unsigned long v)
4172 unsigned long *p;
4173 int l;
4174 if (!v)
4175 return 1;
4176 l = n[1];
4177 p = n + 2;
4178 while (l) {
4179 int i = l/2;
4180 unsigned long *q = p + 2 * i;
4181 if (*q == v) {
4182 q[1]++;
4183 return 1;
4185 if (*q > v) {
4186 l = i;
4187 } else {
4188 p = q + 2;
4189 l -= i + 1;
4192 if (++n[1] == n[0])
4193 return 0;
4194 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4195 p[0] = v;
4196 p[1] = 1;
4197 return 1;
4200 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4201 struct page *page)
4203 void *p;
4204 int i, j;
4206 if (n[0] == n[1])
4207 return;
4208 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4209 bool active = true;
4211 for (j = page->active; j < c->num; j++) {
4212 /* Skip freed item */
4213 if (slab_freelist(page)[j] == i) {
4214 active = false;
4215 break;
4218 if (!active)
4219 continue;
4221 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4222 return;
4226 static void show_symbol(struct seq_file *m, unsigned long address)
4228 #ifdef CONFIG_KALLSYMS
4229 unsigned long offset, size;
4230 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4232 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4233 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4234 if (modname[0])
4235 seq_printf(m, " [%s]", modname);
4236 return;
4238 #endif
4239 seq_printf(m, "%p", (void *)address);
4242 static int leaks_show(struct seq_file *m, void *p)
4244 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4245 struct page *page;
4246 struct kmem_cache_node *n;
4247 const char *name;
4248 unsigned long *x = m->private;
4249 int node;
4250 int i;
4252 if (!(cachep->flags & SLAB_STORE_USER))
4253 return 0;
4254 if (!(cachep->flags & SLAB_RED_ZONE))
4255 return 0;
4257 /* OK, we can do it */
4259 x[1] = 0;
4261 for_each_online_node(node) {
4262 n = cachep->node[node];
4263 if (!n)
4264 continue;
4266 check_irq_on();
4267 spin_lock_irq(&n->list_lock);
4269 list_for_each_entry(page, &n->slabs_full, lru)
4270 handle_slab(x, cachep, page);
4271 list_for_each_entry(page, &n->slabs_partial, lru)
4272 handle_slab(x, cachep, page);
4273 spin_unlock_irq(&n->list_lock);
4275 name = cachep->name;
4276 if (x[0] == x[1]) {
4277 /* Increase the buffer size */
4278 mutex_unlock(&slab_mutex);
4279 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4280 if (!m->private) {
4281 /* Too bad, we are really out */
4282 m->private = x;
4283 mutex_lock(&slab_mutex);
4284 return -ENOMEM;
4286 *(unsigned long *)m->private = x[0] * 2;
4287 kfree(x);
4288 mutex_lock(&slab_mutex);
4289 /* Now make sure this entry will be retried */
4290 m->count = m->size;
4291 return 0;
4293 for (i = 0; i < x[1]; i++) {
4294 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4295 show_symbol(m, x[2*i+2]);
4296 seq_putc(m, '\n');
4299 return 0;
4302 static const struct seq_operations slabstats_op = {
4303 .start = leaks_start,
4304 .next = slab_next,
4305 .stop = slab_stop,
4306 .show = leaks_show,
4309 static int slabstats_open(struct inode *inode, struct file *file)
4311 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4312 int ret = -ENOMEM;
4313 if (n) {
4314 ret = seq_open(file, &slabstats_op);
4315 if (!ret) {
4316 struct seq_file *m = file->private_data;
4317 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4318 m->private = n;
4319 n = NULL;
4321 kfree(n);
4323 return ret;
4326 static const struct file_operations proc_slabstats_operations = {
4327 .open = slabstats_open,
4328 .read = seq_read,
4329 .llseek = seq_lseek,
4330 .release = seq_release_private,
4332 #endif
4334 static int __init slab_proc_init(void)
4336 #ifdef CONFIG_DEBUG_SLAB_LEAK
4337 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4338 #endif
4339 return 0;
4341 module_init(slab_proc_init);
4342 #endif
4345 * ksize - get the actual amount of memory allocated for a given object
4346 * @objp: Pointer to the object
4348 * kmalloc may internally round up allocations and return more memory
4349 * than requested. ksize() can be used to determine the actual amount of
4350 * memory allocated. The caller may use this additional memory, even though
4351 * a smaller amount of memory was initially specified with the kmalloc call.
4352 * The caller must guarantee that objp points to a valid object previously
4353 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4354 * must not be freed during the duration of the call.
4356 size_t ksize(const void *objp)
4358 BUG_ON(!objp);
4359 if (unlikely(objp == ZERO_SIZE_PTR))
4360 return 0;
4362 return virt_to_cache(objp)->object_size;
4364 EXPORT_SYMBOL(ksize);