2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
78 u16 heads
, u16 sectors
);
79 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
80 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
81 u8 enable
, u8 feature
);
82 static void ata_dev_xfermask(struct ata_device
*dev
);
83 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
85 unsigned int ata_print_id
= 1;
86 static struct workqueue_struct
*ata_wq
;
88 struct workqueue_struct
*ata_aux_wq
;
90 struct ata_force_param
{
94 unsigned long xfer_mask
;
95 unsigned int horkage_on
;
96 unsigned int horkage_off
;
99 struct ata_force_ent
{
102 struct ata_force_param param
;
105 static struct ata_force_ent
*ata_force_tbl
;
106 static int ata_force_tbl_size
;
108 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
109 /* param_buf is thrown away after initialization, disallow read */
110 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
111 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
113 int atapi_enabled
= 1;
114 module_param(atapi_enabled
, int, 0444);
115 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
117 static int atapi_dmadir
= 0;
118 module_param(atapi_dmadir
, int, 0444);
119 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
121 int atapi_passthru16
= 1;
122 module_param(atapi_passthru16
, int, 0444);
123 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
126 module_param_named(fua
, libata_fua
, int, 0444);
127 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
129 static int ata_ignore_hpa
;
130 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
131 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
133 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
134 module_param_named(dma
, libata_dma_mask
, int, 0444);
135 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
137 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
138 module_param(ata_probe_timeout
, int, 0444);
139 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
141 int libata_noacpi
= 0;
142 module_param_named(noacpi
, libata_noacpi
, int, 0444);
143 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
145 int libata_allow_tpm
= 0;
146 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
147 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
149 MODULE_AUTHOR("Jeff Garzik");
150 MODULE_DESCRIPTION("Library module for ATA devices");
151 MODULE_LICENSE("GPL");
152 MODULE_VERSION(DRV_VERSION
);
156 * ata_force_cbl - force cable type according to libata.force
157 * @ap: ATA port of interest
159 * Force cable type according to libata.force and whine about it.
160 * The last entry which has matching port number is used, so it
161 * can be specified as part of device force parameters. For
162 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
168 void ata_force_cbl(struct ata_port
*ap
)
172 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
173 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
175 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
178 if (fe
->param
.cbl
== ATA_CBL_NONE
)
181 ap
->cbl
= fe
->param
.cbl
;
182 ata_port_printk(ap
, KERN_NOTICE
,
183 "FORCE: cable set to %s\n", fe
->param
.name
);
189 * ata_force_spd_limit - force SATA spd limit according to libata.force
190 * @link: ATA link of interest
192 * Force SATA spd limit according to libata.force and whine about
193 * it. When only the port part is specified (e.g. 1:), the limit
194 * applies to all links connected to both the host link and all
195 * fan-out ports connected via PMP. If the device part is
196 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
197 * link not the host link. Device number 15 always points to the
198 * host link whether PMP is attached or not.
203 static void ata_force_spd_limit(struct ata_link
*link
)
207 if (ata_is_host_link(link
))
212 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
213 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
215 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
218 if (fe
->device
!= -1 && fe
->device
!= linkno
)
221 if (!fe
->param
.spd_limit
)
224 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
225 ata_link_printk(link
, KERN_NOTICE
,
226 "FORCE: PHY spd limit set to %s\n", fe
->param
.name
);
232 * ata_force_xfermask - force xfermask according to libata.force
233 * @dev: ATA device of interest
235 * Force xfer_mask according to libata.force and whine about it.
236 * For consistency with link selection, device number 15 selects
237 * the first device connected to the host link.
242 static void ata_force_xfermask(struct ata_device
*dev
)
244 int devno
= dev
->link
->pmp
+ dev
->devno
;
245 int alt_devno
= devno
;
248 /* allow n.15 for the first device attached to host port */
249 if (ata_is_host_link(dev
->link
) && devno
== 0)
252 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
253 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
254 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
256 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
259 if (fe
->device
!= -1 && fe
->device
!= devno
&&
260 fe
->device
!= alt_devno
)
263 if (!fe
->param
.xfer_mask
)
266 ata_unpack_xfermask(fe
->param
.xfer_mask
,
267 &pio_mask
, &mwdma_mask
, &udma_mask
);
269 dev
->udma_mask
= udma_mask
;
270 else if (mwdma_mask
) {
272 dev
->mwdma_mask
= mwdma_mask
;
276 dev
->pio_mask
= pio_mask
;
279 ata_dev_printk(dev
, KERN_NOTICE
,
280 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
286 * ata_force_horkage - force horkage according to libata.force
287 * @dev: ATA device of interest
289 * Force horkage according to libata.force and whine about it.
290 * For consistency with link selection, device number 15 selects
291 * the first device connected to the host link.
296 static void ata_force_horkage(struct ata_device
*dev
)
298 int devno
= dev
->link
->pmp
+ dev
->devno
;
299 int alt_devno
= devno
;
302 /* allow n.15 for the first device attached to host port */
303 if (ata_is_host_link(dev
->link
) && devno
== 0)
306 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
307 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
309 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
312 if (fe
->device
!= -1 && fe
->device
!= devno
&&
313 fe
->device
!= alt_devno
)
316 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
317 !(dev
->horkage
& fe
->param
.horkage_off
))
320 dev
->horkage
|= fe
->param
.horkage_on
;
321 dev
->horkage
&= ~fe
->param
.horkage_off
;
323 ata_dev_printk(dev
, KERN_NOTICE
,
324 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
329 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
330 * @tf: Taskfile to convert
331 * @pmp: Port multiplier port
332 * @is_cmd: This FIS is for command
333 * @fis: Buffer into which data will output
335 * Converts a standard ATA taskfile to a Serial ATA
336 * FIS structure (Register - Host to Device).
339 * Inherited from caller.
341 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
343 fis
[0] = 0x27; /* Register - Host to Device FIS */
344 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
346 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
348 fis
[2] = tf
->command
;
349 fis
[3] = tf
->feature
;
356 fis
[8] = tf
->hob_lbal
;
357 fis
[9] = tf
->hob_lbam
;
358 fis
[10] = tf
->hob_lbah
;
359 fis
[11] = tf
->hob_feature
;
362 fis
[13] = tf
->hob_nsect
;
373 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
374 * @fis: Buffer from which data will be input
375 * @tf: Taskfile to output
377 * Converts a serial ATA FIS structure to a standard ATA taskfile.
380 * Inherited from caller.
383 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
385 tf
->command
= fis
[2]; /* status */
386 tf
->feature
= fis
[3]; /* error */
393 tf
->hob_lbal
= fis
[8];
394 tf
->hob_lbam
= fis
[9];
395 tf
->hob_lbah
= fis
[10];
398 tf
->hob_nsect
= fis
[13];
401 static const u8 ata_rw_cmds
[] = {
405 ATA_CMD_READ_MULTI_EXT
,
406 ATA_CMD_WRITE_MULTI_EXT
,
410 ATA_CMD_WRITE_MULTI_FUA_EXT
,
414 ATA_CMD_PIO_READ_EXT
,
415 ATA_CMD_PIO_WRITE_EXT
,
428 ATA_CMD_WRITE_FUA_EXT
432 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
433 * @tf: command to examine and configure
434 * @dev: device tf belongs to
436 * Examine the device configuration and tf->flags to calculate
437 * the proper read/write commands and protocol to use.
442 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
446 int index
, fua
, lba48
, write
;
448 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
449 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
450 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
452 if (dev
->flags
& ATA_DFLAG_PIO
) {
453 tf
->protocol
= ATA_PROT_PIO
;
454 index
= dev
->multi_count
? 0 : 8;
455 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
456 /* Unable to use DMA due to host limitation */
457 tf
->protocol
= ATA_PROT_PIO
;
458 index
= dev
->multi_count
? 0 : 8;
460 tf
->protocol
= ATA_PROT_DMA
;
464 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
473 * ata_tf_read_block - Read block address from ATA taskfile
474 * @tf: ATA taskfile of interest
475 * @dev: ATA device @tf belongs to
480 * Read block address from @tf. This function can handle all
481 * three address formats - LBA, LBA48 and CHS. tf->protocol and
482 * flags select the address format to use.
485 * Block address read from @tf.
487 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
491 if (tf
->flags
& ATA_TFLAG_LBA
) {
492 if (tf
->flags
& ATA_TFLAG_LBA48
) {
493 block
|= (u64
)tf
->hob_lbah
<< 40;
494 block
|= (u64
)tf
->hob_lbam
<< 32;
495 block
|= tf
->hob_lbal
<< 24;
497 block
|= (tf
->device
& 0xf) << 24;
499 block
|= tf
->lbah
<< 16;
500 block
|= tf
->lbam
<< 8;
505 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
506 head
= tf
->device
& 0xf;
509 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
516 * ata_build_rw_tf - Build ATA taskfile for given read/write request
517 * @tf: Target ATA taskfile
518 * @dev: ATA device @tf belongs to
519 * @block: Block address
520 * @n_block: Number of blocks
521 * @tf_flags: RW/FUA etc...
527 * Build ATA taskfile @tf for read/write request described by
528 * @block, @n_block, @tf_flags and @tag on @dev.
532 * 0 on success, -ERANGE if the request is too large for @dev,
533 * -EINVAL if the request is invalid.
535 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
536 u64 block
, u32 n_block
, unsigned int tf_flags
,
539 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
540 tf
->flags
|= tf_flags
;
542 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
544 if (!lba_48_ok(block
, n_block
))
547 tf
->protocol
= ATA_PROT_NCQ
;
548 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
550 if (tf
->flags
& ATA_TFLAG_WRITE
)
551 tf
->command
= ATA_CMD_FPDMA_WRITE
;
553 tf
->command
= ATA_CMD_FPDMA_READ
;
555 tf
->nsect
= tag
<< 3;
556 tf
->hob_feature
= (n_block
>> 8) & 0xff;
557 tf
->feature
= n_block
& 0xff;
559 tf
->hob_lbah
= (block
>> 40) & 0xff;
560 tf
->hob_lbam
= (block
>> 32) & 0xff;
561 tf
->hob_lbal
= (block
>> 24) & 0xff;
562 tf
->lbah
= (block
>> 16) & 0xff;
563 tf
->lbam
= (block
>> 8) & 0xff;
564 tf
->lbal
= block
& 0xff;
567 if (tf
->flags
& ATA_TFLAG_FUA
)
568 tf
->device
|= 1 << 7;
569 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
570 tf
->flags
|= ATA_TFLAG_LBA
;
572 if (lba_28_ok(block
, n_block
)) {
574 tf
->device
|= (block
>> 24) & 0xf;
575 } else if (lba_48_ok(block
, n_block
)) {
576 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
580 tf
->flags
|= ATA_TFLAG_LBA48
;
582 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
584 tf
->hob_lbah
= (block
>> 40) & 0xff;
585 tf
->hob_lbam
= (block
>> 32) & 0xff;
586 tf
->hob_lbal
= (block
>> 24) & 0xff;
588 /* request too large even for LBA48 */
591 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
594 tf
->nsect
= n_block
& 0xff;
596 tf
->lbah
= (block
>> 16) & 0xff;
597 tf
->lbam
= (block
>> 8) & 0xff;
598 tf
->lbal
= block
& 0xff;
600 tf
->device
|= ATA_LBA
;
603 u32 sect
, head
, cyl
, track
;
605 /* The request -may- be too large for CHS addressing. */
606 if (!lba_28_ok(block
, n_block
))
609 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
612 /* Convert LBA to CHS */
613 track
= (u32
)block
/ dev
->sectors
;
614 cyl
= track
/ dev
->heads
;
615 head
= track
% dev
->heads
;
616 sect
= (u32
)block
% dev
->sectors
+ 1;
618 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
619 (u32
)block
, track
, cyl
, head
, sect
);
621 /* Check whether the converted CHS can fit.
625 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
628 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
639 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
640 * @pio_mask: pio_mask
641 * @mwdma_mask: mwdma_mask
642 * @udma_mask: udma_mask
644 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
645 * unsigned int xfer_mask.
653 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
654 unsigned long mwdma_mask
,
655 unsigned long udma_mask
)
657 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
658 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
659 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
663 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
664 * @xfer_mask: xfer_mask to unpack
665 * @pio_mask: resulting pio_mask
666 * @mwdma_mask: resulting mwdma_mask
667 * @udma_mask: resulting udma_mask
669 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
670 * Any NULL distination masks will be ignored.
672 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
673 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
676 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
678 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
680 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
683 static const struct ata_xfer_ent
{
687 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
688 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
689 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
694 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
695 * @xfer_mask: xfer_mask of interest
697 * Return matching XFER_* value for @xfer_mask. Only the highest
698 * bit of @xfer_mask is considered.
704 * Matching XFER_* value, 0xff if no match found.
706 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
708 int highbit
= fls(xfer_mask
) - 1;
709 const struct ata_xfer_ent
*ent
;
711 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
712 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
713 return ent
->base
+ highbit
- ent
->shift
;
718 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
719 * @xfer_mode: XFER_* of interest
721 * Return matching xfer_mask for @xfer_mode.
727 * Matching xfer_mask, 0 if no match found.
729 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
731 const struct ata_xfer_ent
*ent
;
733 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
734 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
735 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
736 & ~((1 << ent
->shift
) - 1);
741 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
742 * @xfer_mode: XFER_* of interest
744 * Return matching xfer_shift for @xfer_mode.
750 * Matching xfer_shift, -1 if no match found.
752 int ata_xfer_mode2shift(unsigned long xfer_mode
)
754 const struct ata_xfer_ent
*ent
;
756 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
757 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
763 * ata_mode_string - convert xfer_mask to string
764 * @xfer_mask: mask of bits supported; only highest bit counts.
766 * Determine string which represents the highest speed
767 * (highest bit in @modemask).
773 * Constant C string representing highest speed listed in
774 * @mode_mask, or the constant C string "<n/a>".
776 const char *ata_mode_string(unsigned long xfer_mask
)
778 static const char * const xfer_mode_str
[] = {
802 highbit
= fls(xfer_mask
) - 1;
803 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
804 return xfer_mode_str
[highbit
];
808 static const char *sata_spd_string(unsigned int spd
)
810 static const char * const spd_str
[] = {
815 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
817 return spd_str
[spd
- 1];
820 void ata_dev_disable(struct ata_device
*dev
)
822 if (ata_dev_enabled(dev
)) {
823 if (ata_msg_drv(dev
->link
->ap
))
824 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
825 ata_acpi_on_disable(dev
);
826 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
832 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
834 struct ata_link
*link
= dev
->link
;
835 struct ata_port
*ap
= link
->ap
;
837 unsigned int err_mask
;
841 * disallow DIPM for drivers which haven't set
842 * ATA_FLAG_IPM. This is because when DIPM is enabled,
843 * phy ready will be set in the interrupt status on
844 * state changes, which will cause some drivers to
845 * think there are errors - additionally drivers will
846 * need to disable hot plug.
848 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
849 ap
->pm_policy
= NOT_AVAILABLE
;
854 * For DIPM, we will only enable it for the
857 * Why? Because Disks are too stupid to know that
858 * If the host rejects a request to go to SLUMBER
859 * they should retry at PARTIAL, and instead it
860 * just would give up. So, for medium_power to
861 * work at all, we need to only allow HIPM.
863 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
869 /* no restrictions on IPM transitions */
870 scontrol
&= ~(0x3 << 8);
871 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
876 if (dev
->flags
& ATA_DFLAG_DIPM
)
877 err_mask
= ata_dev_set_feature(dev
,
878 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
881 /* allow IPM to PARTIAL */
882 scontrol
&= ~(0x1 << 8);
883 scontrol
|= (0x2 << 8);
884 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
889 * we don't have to disable DIPM since IPM flags
890 * disallow transitions to SLUMBER, which effectively
891 * disable DIPM if it does not support PARTIAL
895 case MAX_PERFORMANCE
:
896 /* disable all IPM transitions */
897 scontrol
|= (0x3 << 8);
898 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
903 * we don't have to disable DIPM since IPM flags
904 * disallow all transitions which effectively
905 * disable DIPM anyway.
910 /* FIXME: handle SET FEATURES failure */
917 * ata_dev_enable_pm - enable SATA interface power management
918 * @dev: device to enable power management
919 * @policy: the link power management policy
921 * Enable SATA Interface power management. This will enable
922 * Device Interface Power Management (DIPM) for min_power
923 * policy, and then call driver specific callbacks for
924 * enabling Host Initiated Power management.
927 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
929 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
932 struct ata_port
*ap
= dev
->link
->ap
;
934 /* set HIPM first, then DIPM */
935 if (ap
->ops
->enable_pm
)
936 rc
= ap
->ops
->enable_pm(ap
, policy
);
939 rc
= ata_dev_set_dipm(dev
, policy
);
943 ap
->pm_policy
= MAX_PERFORMANCE
;
945 ap
->pm_policy
= policy
;
946 return /* rc */; /* hopefully we can use 'rc' eventually */
951 * ata_dev_disable_pm - disable SATA interface power management
952 * @dev: device to disable power management
954 * Disable SATA Interface power management. This will disable
955 * Device Interface Power Management (DIPM) without changing
956 * policy, call driver specific callbacks for disabling Host
957 * Initiated Power management.
962 static void ata_dev_disable_pm(struct ata_device
*dev
)
964 struct ata_port
*ap
= dev
->link
->ap
;
966 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
967 if (ap
->ops
->disable_pm
)
968 ap
->ops
->disable_pm(ap
);
970 #endif /* CONFIG_PM */
972 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
974 ap
->pm_policy
= policy
;
975 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
976 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
977 ata_port_schedule_eh(ap
);
981 static void ata_lpm_enable(struct ata_host
*host
)
983 struct ata_link
*link
;
985 struct ata_device
*dev
;
988 for (i
= 0; i
< host
->n_ports
; i
++) {
990 ata_port_for_each_link(link
, ap
) {
991 ata_link_for_each_dev(dev
, link
)
992 ata_dev_disable_pm(dev
);
997 static void ata_lpm_disable(struct ata_host
*host
)
1001 for (i
= 0; i
< host
->n_ports
; i
++) {
1002 struct ata_port
*ap
= host
->ports
[i
];
1003 ata_lpm_schedule(ap
, ap
->pm_policy
);
1006 #endif /* CONFIG_PM */
1010 * ata_devchk - PATA device presence detection
1011 * @ap: ATA channel to examine
1012 * @device: Device to examine (starting at zero)
1014 * This technique was originally described in
1015 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1016 * later found its way into the ATA/ATAPI spec.
1018 * Write a pattern to the ATA shadow registers,
1019 * and if a device is present, it will respond by
1020 * correctly storing and echoing back the
1021 * ATA shadow register contents.
1027 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1029 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1032 ap
->ops
->dev_select(ap
, device
);
1034 iowrite8(0x55, ioaddr
->nsect_addr
);
1035 iowrite8(0xaa, ioaddr
->lbal_addr
);
1037 iowrite8(0xaa, ioaddr
->nsect_addr
);
1038 iowrite8(0x55, ioaddr
->lbal_addr
);
1040 iowrite8(0x55, ioaddr
->nsect_addr
);
1041 iowrite8(0xaa, ioaddr
->lbal_addr
);
1043 nsect
= ioread8(ioaddr
->nsect_addr
);
1044 lbal
= ioread8(ioaddr
->lbal_addr
);
1046 if ((nsect
== 0x55) && (lbal
== 0xaa))
1047 return 1; /* we found a device */
1049 return 0; /* nothing found */
1053 * ata_dev_classify - determine device type based on ATA-spec signature
1054 * @tf: ATA taskfile register set for device to be identified
1056 * Determine from taskfile register contents whether a device is
1057 * ATA or ATAPI, as per "Signature and persistence" section
1058 * of ATA/PI spec (volume 1, sect 5.14).
1064 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1065 * %ATA_DEV_UNKNOWN the event of failure.
1067 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1069 /* Apple's open source Darwin code hints that some devices only
1070 * put a proper signature into the LBA mid/high registers,
1071 * So, we only check those. It's sufficient for uniqueness.
1073 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1074 * signatures for ATA and ATAPI devices attached on SerialATA,
1075 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1076 * spec has never mentioned about using different signatures
1077 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1078 * Multiplier specification began to use 0x69/0x96 to identify
1079 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1080 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1081 * 0x69/0x96 shortly and described them as reserved for
1084 * We follow the current spec and consider that 0x69/0x96
1085 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1087 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1088 DPRINTK("found ATA device by sig\n");
1092 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1093 DPRINTK("found ATAPI device by sig\n");
1094 return ATA_DEV_ATAPI
;
1097 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1098 DPRINTK("found PMP device by sig\n");
1102 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1103 printk(KERN_INFO
"ata: SEMB device ignored\n");
1104 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1107 DPRINTK("unknown device\n");
1108 return ATA_DEV_UNKNOWN
;
1112 * ata_dev_try_classify - Parse returned ATA device signature
1113 * @dev: ATA device to classify (starting at zero)
1114 * @present: device seems present
1115 * @r_err: Value of error register on completion
1117 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1118 * an ATA/ATAPI-defined set of values is placed in the ATA
1119 * shadow registers, indicating the results of device detection
1122 * Select the ATA device, and read the values from the ATA shadow
1123 * registers. Then parse according to the Error register value,
1124 * and the spec-defined values examined by ata_dev_classify().
1130 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1132 unsigned int ata_dev_try_classify(struct ata_device
*dev
, int present
,
1135 struct ata_port
*ap
= dev
->link
->ap
;
1136 struct ata_taskfile tf
;
1140 ap
->ops
->dev_select(ap
, dev
->devno
);
1142 memset(&tf
, 0, sizeof(tf
));
1144 ap
->ops
->tf_read(ap
, &tf
);
1149 /* see if device passed diags: continue and warn later */
1151 /* diagnostic fail : do nothing _YET_ */
1152 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1155 else if ((dev
->devno
== 0) && (err
== 0x81))
1158 return ATA_DEV_NONE
;
1160 /* determine if device is ATA or ATAPI */
1161 class = ata_dev_classify(&tf
);
1163 if (class == ATA_DEV_UNKNOWN
) {
1164 /* If the device failed diagnostic, it's likely to
1165 * have reported incorrect device signature too.
1166 * Assume ATA device if the device seems present but
1167 * device signature is invalid with diagnostic
1170 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1171 class = ATA_DEV_ATA
;
1173 class = ATA_DEV_NONE
;
1174 } else if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
1175 class = ATA_DEV_NONE
;
1181 * ata_id_string - Convert IDENTIFY DEVICE page into string
1182 * @id: IDENTIFY DEVICE results we will examine
1183 * @s: string into which data is output
1184 * @ofs: offset into identify device page
1185 * @len: length of string to return. must be an even number.
1187 * The strings in the IDENTIFY DEVICE page are broken up into
1188 * 16-bit chunks. Run through the string, and output each
1189 * 8-bit chunk linearly, regardless of platform.
1195 void ata_id_string(const u16
*id
, unsigned char *s
,
1196 unsigned int ofs
, unsigned int len
)
1215 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1216 * @id: IDENTIFY DEVICE results we will examine
1217 * @s: string into which data is output
1218 * @ofs: offset into identify device page
1219 * @len: length of string to return. must be an odd number.
1221 * This function is identical to ata_id_string except that it
1222 * trims trailing spaces and terminates the resulting string with
1223 * null. @len must be actual maximum length (even number) + 1.
1228 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1229 unsigned int ofs
, unsigned int len
)
1233 WARN_ON(!(len
& 1));
1235 ata_id_string(id
, s
, ofs
, len
- 1);
1237 p
= s
+ strnlen(s
, len
- 1);
1238 while (p
> s
&& p
[-1] == ' ')
1243 static u64
ata_id_n_sectors(const u16
*id
)
1245 if (ata_id_has_lba(id
)) {
1246 if (ata_id_has_lba48(id
))
1247 return ata_id_u64(id
, 100);
1249 return ata_id_u32(id
, 60);
1251 if (ata_id_current_chs_valid(id
))
1252 return ata_id_u32(id
, 57);
1254 return id
[1] * id
[3] * id
[6];
1258 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
1262 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1263 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1264 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
1265 sectors
|= (tf
->lbah
& 0xff) << 16;
1266 sectors
|= (tf
->lbam
& 0xff) << 8;
1267 sectors
|= (tf
->lbal
& 0xff);
1272 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
1276 sectors
|= (tf
->device
& 0x0f) << 24;
1277 sectors
|= (tf
->lbah
& 0xff) << 16;
1278 sectors
|= (tf
->lbam
& 0xff) << 8;
1279 sectors
|= (tf
->lbal
& 0xff);
1285 * ata_read_native_max_address - Read native max address
1286 * @dev: target device
1287 * @max_sectors: out parameter for the result native max address
1289 * Perform an LBA48 or LBA28 native size query upon the device in
1293 * 0 on success, -EACCES if command is aborted by the drive.
1294 * -EIO on other errors.
1296 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1298 unsigned int err_mask
;
1299 struct ata_taskfile tf
;
1300 int lba48
= ata_id_has_lba48(dev
->id
);
1302 ata_tf_init(dev
, &tf
);
1304 /* always clear all address registers */
1305 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1308 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1309 tf
.flags
|= ATA_TFLAG_LBA48
;
1311 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1313 tf
.protocol
|= ATA_PROT_NODATA
;
1314 tf
.device
|= ATA_LBA
;
1316 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1318 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1319 "max address (err_mask=0x%x)\n", err_mask
);
1320 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1326 *max_sectors
= ata_tf_to_lba48(&tf
);
1328 *max_sectors
= ata_tf_to_lba(&tf
);
1329 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1335 * ata_set_max_sectors - Set max sectors
1336 * @dev: target device
1337 * @new_sectors: new max sectors value to set for the device
1339 * Set max sectors of @dev to @new_sectors.
1342 * 0 on success, -EACCES if command is aborted or denied (due to
1343 * previous non-volatile SET_MAX) by the drive. -EIO on other
1346 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1348 unsigned int err_mask
;
1349 struct ata_taskfile tf
;
1350 int lba48
= ata_id_has_lba48(dev
->id
);
1354 ata_tf_init(dev
, &tf
);
1356 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1359 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1360 tf
.flags
|= ATA_TFLAG_LBA48
;
1362 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1363 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1364 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1366 tf
.command
= ATA_CMD_SET_MAX
;
1368 tf
.device
|= (new_sectors
>> 24) & 0xf;
1371 tf
.protocol
|= ATA_PROT_NODATA
;
1372 tf
.device
|= ATA_LBA
;
1374 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1375 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1376 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1378 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1380 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1381 "max address (err_mask=0x%x)\n", err_mask
);
1382 if (err_mask
== AC_ERR_DEV
&&
1383 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1392 * ata_hpa_resize - Resize a device with an HPA set
1393 * @dev: Device to resize
1395 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1396 * it if required to the full size of the media. The caller must check
1397 * the drive has the HPA feature set enabled.
1400 * 0 on success, -errno on failure.
1402 static int ata_hpa_resize(struct ata_device
*dev
)
1404 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1405 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1406 u64 sectors
= ata_id_n_sectors(dev
->id
);
1410 /* do we need to do it? */
1411 if (dev
->class != ATA_DEV_ATA
||
1412 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1413 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1416 /* read native max address */
1417 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1419 /* If device aborted the command or HPA isn't going to
1420 * be unlocked, skip HPA resizing.
1422 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1423 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1424 "broken, skipping HPA handling\n");
1425 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1427 /* we can continue if device aborted the command */
1435 /* nothing to do? */
1436 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1437 if (!print_info
|| native_sectors
== sectors
)
1440 if (native_sectors
> sectors
)
1441 ata_dev_printk(dev
, KERN_INFO
,
1442 "HPA detected: current %llu, native %llu\n",
1443 (unsigned long long)sectors
,
1444 (unsigned long long)native_sectors
);
1445 else if (native_sectors
< sectors
)
1446 ata_dev_printk(dev
, KERN_WARNING
,
1447 "native sectors (%llu) is smaller than "
1449 (unsigned long long)native_sectors
,
1450 (unsigned long long)sectors
);
1454 /* let's unlock HPA */
1455 rc
= ata_set_max_sectors(dev
, native_sectors
);
1456 if (rc
== -EACCES
) {
1457 /* if device aborted the command, skip HPA resizing */
1458 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1459 "(%llu -> %llu), skipping HPA handling\n",
1460 (unsigned long long)sectors
,
1461 (unsigned long long)native_sectors
);
1462 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1467 /* re-read IDENTIFY data */
1468 rc
= ata_dev_reread_id(dev
, 0);
1470 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1471 "data after HPA resizing\n");
1476 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1477 ata_dev_printk(dev
, KERN_INFO
,
1478 "HPA unlocked: %llu -> %llu, native %llu\n",
1479 (unsigned long long)sectors
,
1480 (unsigned long long)new_sectors
,
1481 (unsigned long long)native_sectors
);
1488 * ata_noop_dev_select - Select device 0/1 on ATA bus
1489 * @ap: ATA channel to manipulate
1490 * @device: ATA device (numbered from zero) to select
1492 * This function performs no actual function.
1494 * May be used as the dev_select() entry in ata_port_operations.
1499 void ata_noop_dev_select(struct ata_port
*ap
, unsigned int device
)
1505 * ata_std_dev_select - Select device 0/1 on ATA bus
1506 * @ap: ATA channel to manipulate
1507 * @device: ATA device (numbered from zero) to select
1509 * Use the method defined in the ATA specification to
1510 * make either device 0, or device 1, active on the
1511 * ATA channel. Works with both PIO and MMIO.
1513 * May be used as the dev_select() entry in ata_port_operations.
1519 void ata_std_dev_select(struct ata_port
*ap
, unsigned int device
)
1524 tmp
= ATA_DEVICE_OBS
;
1526 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1528 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1529 ata_pause(ap
); /* needed; also flushes, for mmio */
1533 * ata_dev_select - Select device 0/1 on ATA bus
1534 * @ap: ATA channel to manipulate
1535 * @device: ATA device (numbered from zero) to select
1536 * @wait: non-zero to wait for Status register BSY bit to clear
1537 * @can_sleep: non-zero if context allows sleeping
1539 * Use the method defined in the ATA specification to
1540 * make either device 0, or device 1, active on the
1543 * This is a high-level version of ata_std_dev_select(),
1544 * which additionally provides the services of inserting
1545 * the proper pauses and status polling, where needed.
1551 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1552 unsigned int wait
, unsigned int can_sleep
)
1554 if (ata_msg_probe(ap
))
1555 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1556 "device %u, wait %u\n", device
, wait
);
1561 ap
->ops
->dev_select(ap
, device
);
1564 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
1571 * ata_dump_id - IDENTIFY DEVICE info debugging output
1572 * @id: IDENTIFY DEVICE page to dump
1574 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1581 static inline void ata_dump_id(const u16
*id
)
1583 DPRINTK("49==0x%04x "
1593 DPRINTK("80==0x%04x "
1603 DPRINTK("88==0x%04x "
1610 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1611 * @id: IDENTIFY data to compute xfer mask from
1613 * Compute the xfermask for this device. This is not as trivial
1614 * as it seems if we must consider early devices correctly.
1616 * FIXME: pre IDE drive timing (do we care ?).
1624 unsigned long ata_id_xfermask(const u16
*id
)
1626 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1628 /* Usual case. Word 53 indicates word 64 is valid */
1629 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1630 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1634 /* If word 64 isn't valid then Word 51 high byte holds
1635 * the PIO timing number for the maximum. Turn it into
1638 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1639 if (mode
< 5) /* Valid PIO range */
1640 pio_mask
= (2 << mode
) - 1;
1644 /* But wait.. there's more. Design your standards by
1645 * committee and you too can get a free iordy field to
1646 * process. However its the speeds not the modes that
1647 * are supported... Note drivers using the timing API
1648 * will get this right anyway
1652 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1654 if (ata_id_is_cfa(id
)) {
1656 * Process compact flash extended modes
1658 int pio
= id
[163] & 0x7;
1659 int dma
= (id
[163] >> 3) & 7;
1662 pio_mask
|= (1 << 5);
1664 pio_mask
|= (1 << 6);
1666 mwdma_mask
|= (1 << 3);
1668 mwdma_mask
|= (1 << 4);
1672 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1673 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1675 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1679 * ata_pio_queue_task - Queue port_task
1680 * @ap: The ata_port to queue port_task for
1681 * @fn: workqueue function to be scheduled
1682 * @data: data for @fn to use
1683 * @delay: delay time for workqueue function
1685 * Schedule @fn(@data) for execution after @delay jiffies using
1686 * port_task. There is one port_task per port and it's the
1687 * user(low level driver)'s responsibility to make sure that only
1688 * one task is active at any given time.
1690 * libata core layer takes care of synchronization between
1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1695 * Inherited from caller.
1697 static void ata_pio_queue_task(struct ata_port
*ap
, void *data
,
1698 unsigned long delay
)
1700 ap
->port_task_data
= data
;
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1714 * Kernel thread context (may sleep)
1716 void ata_port_flush_task(struct ata_port
*ap
)
1720 cancel_rearming_delayed_work(&ap
->port_task
);
1722 if (ata_msg_ctl(ap
))
1723 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1726 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1728 struct completion
*waiting
= qc
->private_data
;
1734 * ata_exec_internal_sg - execute libata internal command
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
1737 * @cdb: CDB for packet command
1738 * @dma_dir: Data tranfer direction of the command
1739 * @sgl: sg list for the data buffer of the command
1740 * @n_elem: Number of sg entries
1741 * @timeout: Timeout in msecs (0 for default)
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1750 * None. Should be called with kernel context, might sleep.
1753 * Zero on success, AC_ERR_* mask on failure
1755 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1756 struct ata_taskfile
*tf
, const u8
*cdb
,
1757 int dma_dir
, struct scatterlist
*sgl
,
1758 unsigned int n_elem
, unsigned long timeout
)
1760 struct ata_link
*link
= dev
->link
;
1761 struct ata_port
*ap
= link
->ap
;
1762 u8 command
= tf
->command
;
1763 struct ata_queued_cmd
*qc
;
1764 unsigned int tag
, preempted_tag
;
1765 u32 preempted_sactive
, preempted_qc_active
;
1766 int preempted_nr_active_links
;
1767 DECLARE_COMPLETION_ONSTACK(wait
);
1768 unsigned long flags
;
1769 unsigned int err_mask
;
1772 spin_lock_irqsave(ap
->lock
, flags
);
1774 /* no internal command while frozen */
1775 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1776 spin_unlock_irqrestore(ap
->lock
, flags
);
1777 return AC_ERR_SYSTEM
;
1780 /* initialize internal qc */
1782 /* XXX: Tag 0 is used for drivers with legacy EH as some
1783 * drivers choke if any other tag is given. This breaks
1784 * ata_tag_internal() test for those drivers. Don't use new
1785 * EH stuff without converting to it.
1787 if (ap
->ops
->error_handler
)
1788 tag
= ATA_TAG_INTERNAL
;
1792 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1794 qc
= __ata_qc_from_tag(ap
, tag
);
1802 preempted_tag
= link
->active_tag
;
1803 preempted_sactive
= link
->sactive
;
1804 preempted_qc_active
= ap
->qc_active
;
1805 preempted_nr_active_links
= ap
->nr_active_links
;
1806 link
->active_tag
= ATA_TAG_POISON
;
1809 ap
->nr_active_links
= 0;
1811 /* prepare & issue qc */
1814 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1815 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1816 qc
->dma_dir
= dma_dir
;
1817 if (dma_dir
!= DMA_NONE
) {
1818 unsigned int i
, buflen
= 0;
1819 struct scatterlist
*sg
;
1821 for_each_sg(sgl
, sg
, n_elem
, i
)
1822 buflen
+= sg
->length
;
1824 ata_sg_init(qc
, sgl
, n_elem
);
1825 qc
->nbytes
= buflen
;
1828 qc
->private_data
= &wait
;
1829 qc
->complete_fn
= ata_qc_complete_internal
;
1833 spin_unlock_irqrestore(ap
->lock
, flags
);
1836 timeout
= ata_probe_timeout
* 1000 / HZ
;
1838 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1840 ata_port_flush_task(ap
);
1843 spin_lock_irqsave(ap
->lock
, flags
);
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
1850 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1851 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1853 if (ap
->ops
->error_handler
)
1854 ata_port_freeze(ap
);
1856 ata_qc_complete(qc
);
1858 if (ata_msg_warn(ap
))
1859 ata_dev_printk(dev
, KERN_WARNING
,
1860 "qc timeout (cmd 0x%x)\n", command
);
1863 spin_unlock_irqrestore(ap
->lock
, flags
);
1866 /* do post_internal_cmd */
1867 if (ap
->ops
->post_internal_cmd
)
1868 ap
->ops
->post_internal_cmd(qc
);
1870 /* perform minimal error analysis */
1871 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1872 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1873 qc
->err_mask
|= AC_ERR_DEV
;
1876 qc
->err_mask
|= AC_ERR_OTHER
;
1878 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1879 qc
->err_mask
&= ~AC_ERR_OTHER
;
1883 spin_lock_irqsave(ap
->lock
, flags
);
1885 *tf
= qc
->result_tf
;
1886 err_mask
= qc
->err_mask
;
1889 link
->active_tag
= preempted_tag
;
1890 link
->sactive
= preempted_sactive
;
1891 ap
->qc_active
= preempted_qc_active
;
1892 ap
->nr_active_links
= preempted_nr_active_links
;
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1903 * Kill the following code as soon as those drivers are fixed.
1905 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1906 err_mask
|= AC_ERR_SYSTEM
;
1910 spin_unlock_irqrestore(ap
->lock
, flags
);
1916 * ata_exec_internal - execute libata internal command
1917 * @dev: Device to which the command is sent
1918 * @tf: Taskfile registers for the command and the result
1919 * @cdb: CDB for packet command
1920 * @dma_dir: Data tranfer direction of the command
1921 * @buf: Data buffer of the command
1922 * @buflen: Length of data buffer
1923 * @timeout: Timeout in msecs (0 for default)
1925 * Wrapper around ata_exec_internal_sg() which takes simple
1926 * buffer instead of sg list.
1929 * None. Should be called with kernel context, might sleep.
1932 * Zero on success, AC_ERR_* mask on failure
1934 unsigned ata_exec_internal(struct ata_device
*dev
,
1935 struct ata_taskfile
*tf
, const u8
*cdb
,
1936 int dma_dir
, void *buf
, unsigned int buflen
,
1937 unsigned long timeout
)
1939 struct scatterlist
*psg
= NULL
, sg
;
1940 unsigned int n_elem
= 0;
1942 if (dma_dir
!= DMA_NONE
) {
1944 sg_init_one(&sg
, buf
, buflen
);
1949 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1954 * ata_do_simple_cmd - execute simple internal command
1955 * @dev: Device to which the command is sent
1956 * @cmd: Opcode to execute
1958 * Execute a 'simple' command, that only consists of the opcode
1959 * 'cmd' itself, without filling any other registers
1962 * Kernel thread context (may sleep).
1965 * Zero on success, AC_ERR_* mask on failure
1967 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1969 struct ata_taskfile tf
;
1971 ata_tf_init(dev
, &tf
);
1974 tf
.flags
|= ATA_TFLAG_DEVICE
;
1975 tf
.protocol
= ATA_PROT_NODATA
;
1977 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1981 * ata_pio_need_iordy - check if iordy needed
1984 * Check if the current speed of the device requires IORDY. Used
1985 * by various controllers for chip configuration.
1988 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1990 /* Controller doesn't support IORDY. Probably a pointless check
1991 as the caller should know this */
1992 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1994 /* PIO3 and higher it is mandatory */
1995 if (adev
->pio_mode
> XFER_PIO_2
)
1997 /* We turn it on when possible */
1998 if (ata_id_has_iordy(adev
->id
))
2004 * ata_pio_mask_no_iordy - Return the non IORDY mask
2007 * Compute the highest mode possible if we are not using iordy. Return
2008 * -1 if no iordy mode is available.
2011 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2013 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2014 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2015 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2016 /* Is the speed faster than the drive allows non IORDY ? */
2018 /* This is cycle times not frequency - watch the logic! */
2019 if (pio
> 240) /* PIO2 is 240nS per cycle */
2020 return 3 << ATA_SHIFT_PIO
;
2021 return 7 << ATA_SHIFT_PIO
;
2024 return 3 << ATA_SHIFT_PIO
;
2028 * ata_dev_read_id - Read ID data from the specified device
2029 * @dev: target device
2030 * @p_class: pointer to class of the target device (may be changed)
2031 * @flags: ATA_READID_* flags
2032 * @id: buffer to read IDENTIFY data into
2034 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2035 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2036 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2037 * for pre-ATA4 drives.
2039 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2040 * now we abort if we hit that case.
2043 * Kernel thread context (may sleep)
2046 * 0 on success, -errno otherwise.
2048 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2049 unsigned int flags
, u16
*id
)
2051 struct ata_port
*ap
= dev
->link
->ap
;
2052 unsigned int class = *p_class
;
2053 struct ata_taskfile tf
;
2054 unsigned int err_mask
= 0;
2056 int may_fallback
= 1, tried_spinup
= 0;
2059 if (ata_msg_ctl(ap
))
2060 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2062 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
2064 ata_tf_init(dev
, &tf
);
2068 tf
.command
= ATA_CMD_ID_ATA
;
2071 tf
.command
= ATA_CMD_ID_ATAPI
;
2075 reason
= "unsupported class";
2079 tf
.protocol
= ATA_PROT_PIO
;
2081 /* Some devices choke if TF registers contain garbage. Make
2082 * sure those are properly initialized.
2084 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2086 /* Device presence detection is unreliable on some
2087 * controllers. Always poll IDENTIFY if available.
2089 tf
.flags
|= ATA_TFLAG_POLLING
;
2091 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
2092 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2094 if (err_mask
& AC_ERR_NODEV_HINT
) {
2095 ata_dev_printk(dev
, KERN_DEBUG
,
2096 "NODEV after polling detection\n");
2100 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2101 /* Device or controller might have reported
2102 * the wrong device class. Give a shot at the
2103 * other IDENTIFY if the current one is
2104 * aborted by the device.
2109 if (class == ATA_DEV_ATA
)
2110 class = ATA_DEV_ATAPI
;
2112 class = ATA_DEV_ATA
;
2116 /* Control reaches here iff the device aborted
2117 * both flavors of IDENTIFYs which happens
2118 * sometimes with phantom devices.
2120 ata_dev_printk(dev
, KERN_DEBUG
,
2121 "both IDENTIFYs aborted, assuming NODEV\n");
2126 reason
= "I/O error";
2130 /* Falling back doesn't make sense if ID data was read
2131 * successfully at least once.
2135 swap_buf_le16(id
, ATA_ID_WORDS
);
2139 reason
= "device reports invalid type";
2141 if (class == ATA_DEV_ATA
) {
2142 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2145 if (ata_id_is_ata(id
))
2149 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2152 * Drive powered-up in standby mode, and requires a specific
2153 * SET_FEATURES spin-up subcommand before it will accept
2154 * anything other than the original IDENTIFY command.
2156 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2157 if (err_mask
&& id
[2] != 0x738c) {
2159 reason
= "SPINUP failed";
2163 * If the drive initially returned incomplete IDENTIFY info,
2164 * we now must reissue the IDENTIFY command.
2166 if (id
[2] == 0x37c8)
2170 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2172 * The exact sequence expected by certain pre-ATA4 drives is:
2174 * IDENTIFY (optional in early ATA)
2175 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2177 * Some drives were very specific about that exact sequence.
2179 * Note that ATA4 says lba is mandatory so the second check
2180 * shoud never trigger.
2182 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2183 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2186 reason
= "INIT_DEV_PARAMS failed";
2190 /* current CHS translation info (id[53-58]) might be
2191 * changed. reread the identify device info.
2193 flags
&= ~ATA_READID_POSTRESET
;
2203 if (ata_msg_warn(ap
))
2204 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2205 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2209 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2211 struct ata_port
*ap
= dev
->link
->ap
;
2212 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2215 static void ata_dev_config_ncq(struct ata_device
*dev
,
2216 char *desc
, size_t desc_sz
)
2218 struct ata_port
*ap
= dev
->link
->ap
;
2219 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2221 if (!ata_id_has_ncq(dev
->id
)) {
2225 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2226 snprintf(desc
, desc_sz
, "NCQ (not used)");
2229 if (ap
->flags
& ATA_FLAG_NCQ
) {
2230 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2231 dev
->flags
|= ATA_DFLAG_NCQ
;
2234 if (hdepth
>= ddepth
)
2235 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2237 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2241 * ata_dev_configure - Configure the specified ATA/ATAPI device
2242 * @dev: Target device to configure
2244 * Configure @dev according to @dev->id. Generic and low-level
2245 * driver specific fixups are also applied.
2248 * Kernel thread context (may sleep)
2251 * 0 on success, -errno otherwise
2253 int ata_dev_configure(struct ata_device
*dev
)
2255 struct ata_port
*ap
= dev
->link
->ap
;
2256 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2257 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2258 const u16
*id
= dev
->id
;
2259 unsigned long xfer_mask
;
2260 char revbuf
[7]; /* XYZ-99\0 */
2261 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2262 char modelbuf
[ATA_ID_PROD_LEN
+1];
2265 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2266 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2271 if (ata_msg_probe(ap
))
2272 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2275 dev
->horkage
|= ata_dev_blacklisted(dev
);
2276 ata_force_horkage(dev
);
2278 /* let ACPI work its magic */
2279 rc
= ata_acpi_on_devcfg(dev
);
2283 /* massage HPA, do it early as it might change IDENTIFY data */
2284 rc
= ata_hpa_resize(dev
);
2288 /* print device capabilities */
2289 if (ata_msg_probe(ap
))
2290 ata_dev_printk(dev
, KERN_DEBUG
,
2291 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2292 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2294 id
[49], id
[82], id
[83], id
[84],
2295 id
[85], id
[86], id
[87], id
[88]);
2297 /* initialize to-be-configured parameters */
2298 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2299 dev
->max_sectors
= 0;
2307 * common ATA, ATAPI feature tests
2310 /* find max transfer mode; for printk only */
2311 xfer_mask
= ata_id_xfermask(id
);
2313 if (ata_msg_probe(ap
))
2316 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2317 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2320 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2323 /* ATA-specific feature tests */
2324 if (dev
->class == ATA_DEV_ATA
) {
2325 if (ata_id_is_cfa(id
)) {
2326 if (id
[162] & 1) /* CPRM may make this media unusable */
2327 ata_dev_printk(dev
, KERN_WARNING
,
2328 "supports DRM functions and may "
2329 "not be fully accessable.\n");
2330 snprintf(revbuf
, 7, "CFA");
2332 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2333 /* Warn the user if the device has TPM extensions */
2334 if (ata_id_has_tpm(id
))
2335 ata_dev_printk(dev
, KERN_WARNING
,
2336 "supports DRM functions and may "
2337 "not be fully accessable.\n");
2340 dev
->n_sectors
= ata_id_n_sectors(id
);
2342 if (dev
->id
[59] & 0x100)
2343 dev
->multi_count
= dev
->id
[59] & 0xff;
2345 if (ata_id_has_lba(id
)) {
2346 const char *lba_desc
;
2350 dev
->flags
|= ATA_DFLAG_LBA
;
2351 if (ata_id_has_lba48(id
)) {
2352 dev
->flags
|= ATA_DFLAG_LBA48
;
2355 if (dev
->n_sectors
>= (1UL << 28) &&
2356 ata_id_has_flush_ext(id
))
2357 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2361 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2363 /* print device info to dmesg */
2364 if (ata_msg_drv(ap
) && print_info
) {
2365 ata_dev_printk(dev
, KERN_INFO
,
2366 "%s: %s, %s, max %s\n",
2367 revbuf
, modelbuf
, fwrevbuf
,
2368 ata_mode_string(xfer_mask
));
2369 ata_dev_printk(dev
, KERN_INFO
,
2370 "%Lu sectors, multi %u: %s %s\n",
2371 (unsigned long long)dev
->n_sectors
,
2372 dev
->multi_count
, lba_desc
, ncq_desc
);
2377 /* Default translation */
2378 dev
->cylinders
= id
[1];
2380 dev
->sectors
= id
[6];
2382 if (ata_id_current_chs_valid(id
)) {
2383 /* Current CHS translation is valid. */
2384 dev
->cylinders
= id
[54];
2385 dev
->heads
= id
[55];
2386 dev
->sectors
= id
[56];
2389 /* print device info to dmesg */
2390 if (ata_msg_drv(ap
) && print_info
) {
2391 ata_dev_printk(dev
, KERN_INFO
,
2392 "%s: %s, %s, max %s\n",
2393 revbuf
, modelbuf
, fwrevbuf
,
2394 ata_mode_string(xfer_mask
));
2395 ata_dev_printk(dev
, KERN_INFO
,
2396 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2397 (unsigned long long)dev
->n_sectors
,
2398 dev
->multi_count
, dev
->cylinders
,
2399 dev
->heads
, dev
->sectors
);
2406 /* ATAPI-specific feature tests */
2407 else if (dev
->class == ATA_DEV_ATAPI
) {
2408 const char *cdb_intr_string
= "";
2409 const char *atapi_an_string
= "";
2410 const char *dma_dir_string
= "";
2413 rc
= atapi_cdb_len(id
);
2414 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2415 if (ata_msg_warn(ap
))
2416 ata_dev_printk(dev
, KERN_WARNING
,
2417 "unsupported CDB len\n");
2421 dev
->cdb_len
= (unsigned int) rc
;
2423 /* Enable ATAPI AN if both the host and device have
2424 * the support. If PMP is attached, SNTF is required
2425 * to enable ATAPI AN to discern between PHY status
2426 * changed notifications and ATAPI ANs.
2428 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2429 (!ap
->nr_pmp_links
||
2430 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2431 unsigned int err_mask
;
2433 /* issue SET feature command to turn this on */
2434 err_mask
= ata_dev_set_feature(dev
,
2435 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2437 ata_dev_printk(dev
, KERN_ERR
,
2438 "failed to enable ATAPI AN "
2439 "(err_mask=0x%x)\n", err_mask
);
2441 dev
->flags
|= ATA_DFLAG_AN
;
2442 atapi_an_string
= ", ATAPI AN";
2446 if (ata_id_cdb_intr(dev
->id
)) {
2447 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2448 cdb_intr_string
= ", CDB intr";
2451 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2452 dev
->flags
|= ATA_DFLAG_DMADIR
;
2453 dma_dir_string
= ", DMADIR";
2456 /* print device info to dmesg */
2457 if (ata_msg_drv(ap
) && print_info
)
2458 ata_dev_printk(dev
, KERN_INFO
,
2459 "ATAPI: %s, %s, max %s%s%s%s\n",
2461 ata_mode_string(xfer_mask
),
2462 cdb_intr_string
, atapi_an_string
,
2466 /* determine max_sectors */
2467 dev
->max_sectors
= ATA_MAX_SECTORS
;
2468 if (dev
->flags
& ATA_DFLAG_LBA48
)
2469 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2471 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2472 if (ata_id_has_hipm(dev
->id
))
2473 dev
->flags
|= ATA_DFLAG_HIPM
;
2474 if (ata_id_has_dipm(dev
->id
))
2475 dev
->flags
|= ATA_DFLAG_DIPM
;
2478 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2480 if (ata_dev_knobble(dev
)) {
2481 if (ata_msg_drv(ap
) && print_info
)
2482 ata_dev_printk(dev
, KERN_INFO
,
2483 "applying bridge limits\n");
2484 dev
->udma_mask
&= ATA_UDMA5
;
2485 dev
->max_sectors
= ATA_MAX_SECTORS
;
2488 if ((dev
->class == ATA_DEV_ATAPI
) &&
2489 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2490 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2491 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2494 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2495 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2498 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2499 dev
->horkage
|= ATA_HORKAGE_IPM
;
2501 /* reset link pm_policy for this port to no pm */
2502 ap
->pm_policy
= MAX_PERFORMANCE
;
2505 if (ap
->ops
->dev_config
)
2506 ap
->ops
->dev_config(dev
);
2508 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2509 /* Let the user know. We don't want to disallow opens for
2510 rescue purposes, or in case the vendor is just a blithering
2511 idiot. Do this after the dev_config call as some controllers
2512 with buggy firmware may want to avoid reporting false device
2516 ata_dev_printk(dev
, KERN_WARNING
,
2517 "Drive reports diagnostics failure. This may indicate a drive\n");
2518 ata_dev_printk(dev
, KERN_WARNING
,
2519 "fault or invalid emulation. Contact drive vendor for information.\n");
2523 if (ata_msg_probe(ap
))
2524 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2525 __func__
, ata_chk_status(ap
));
2529 if (ata_msg_probe(ap
))
2530 ata_dev_printk(dev
, KERN_DEBUG
,
2531 "%s: EXIT, err\n", __func__
);
2536 * ata_cable_40wire - return 40 wire cable type
2539 * Helper method for drivers which want to hardwire 40 wire cable
2543 int ata_cable_40wire(struct ata_port
*ap
)
2545 return ATA_CBL_PATA40
;
2549 * ata_cable_80wire - return 80 wire cable type
2552 * Helper method for drivers which want to hardwire 80 wire cable
2556 int ata_cable_80wire(struct ata_port
*ap
)
2558 return ATA_CBL_PATA80
;
2562 * ata_cable_unknown - return unknown PATA cable.
2565 * Helper method for drivers which have no PATA cable detection.
2568 int ata_cable_unknown(struct ata_port
*ap
)
2570 return ATA_CBL_PATA_UNK
;
2574 * ata_cable_ignore - return ignored PATA cable.
2577 * Helper method for drivers which don't use cable type to limit
2580 int ata_cable_ignore(struct ata_port
*ap
)
2582 return ATA_CBL_PATA_IGN
;
2586 * ata_cable_sata - return SATA cable type
2589 * Helper method for drivers which have SATA cables
2592 int ata_cable_sata(struct ata_port
*ap
)
2594 return ATA_CBL_SATA
;
2598 * ata_bus_probe - Reset and probe ATA bus
2601 * Master ATA bus probing function. Initiates a hardware-dependent
2602 * bus reset, then attempts to identify any devices found on
2606 * PCI/etc. bus probe sem.
2609 * Zero on success, negative errno otherwise.
2612 int ata_bus_probe(struct ata_port
*ap
)
2614 unsigned int classes
[ATA_MAX_DEVICES
];
2615 int tries
[ATA_MAX_DEVICES
];
2617 struct ata_device
*dev
;
2621 ata_link_for_each_dev(dev
, &ap
->link
)
2622 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2625 ata_link_for_each_dev(dev
, &ap
->link
) {
2626 /* If we issue an SRST then an ATA drive (not ATAPI)
2627 * may change configuration and be in PIO0 timing. If
2628 * we do a hard reset (or are coming from power on)
2629 * this is true for ATA or ATAPI. Until we've set a
2630 * suitable controller mode we should not touch the
2631 * bus as we may be talking too fast.
2633 dev
->pio_mode
= XFER_PIO_0
;
2635 /* If the controller has a pio mode setup function
2636 * then use it to set the chipset to rights. Don't
2637 * touch the DMA setup as that will be dealt with when
2638 * configuring devices.
2640 if (ap
->ops
->set_piomode
)
2641 ap
->ops
->set_piomode(ap
, dev
);
2644 /* reset and determine device classes */
2645 ap
->ops
->phy_reset(ap
);
2647 ata_link_for_each_dev(dev
, &ap
->link
) {
2648 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2649 dev
->class != ATA_DEV_UNKNOWN
)
2650 classes
[dev
->devno
] = dev
->class;
2652 classes
[dev
->devno
] = ATA_DEV_NONE
;
2654 dev
->class = ATA_DEV_UNKNOWN
;
2659 /* read IDENTIFY page and configure devices. We have to do the identify
2660 specific sequence bass-ackwards so that PDIAG- is released by
2663 ata_link_for_each_dev(dev
, &ap
->link
) {
2664 if (tries
[dev
->devno
])
2665 dev
->class = classes
[dev
->devno
];
2667 if (!ata_dev_enabled(dev
))
2670 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2676 /* Now ask for the cable type as PDIAG- should have been released */
2677 if (ap
->ops
->cable_detect
)
2678 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2680 /* We may have SATA bridge glue hiding here irrespective of the
2681 reported cable types and sensed types */
2682 ata_link_for_each_dev(dev
, &ap
->link
) {
2683 if (!ata_dev_enabled(dev
))
2685 /* SATA drives indicate we have a bridge. We don't know which
2686 end of the link the bridge is which is a problem */
2687 if (ata_id_is_sata(dev
->id
))
2688 ap
->cbl
= ATA_CBL_SATA
;
2691 /* After the identify sequence we can now set up the devices. We do
2692 this in the normal order so that the user doesn't get confused */
2694 ata_link_for_each_dev(dev
, &ap
->link
) {
2695 if (!ata_dev_enabled(dev
))
2698 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2699 rc
= ata_dev_configure(dev
);
2700 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2705 /* configure transfer mode */
2706 rc
= ata_set_mode(&ap
->link
, &dev
);
2710 ata_link_for_each_dev(dev
, &ap
->link
)
2711 if (ata_dev_enabled(dev
))
2714 /* no device present, disable port */
2715 ata_port_disable(ap
);
2719 tries
[dev
->devno
]--;
2723 /* eeek, something went very wrong, give up */
2724 tries
[dev
->devno
] = 0;
2728 /* give it just one more chance */
2729 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2731 if (tries
[dev
->devno
] == 1) {
2732 /* This is the last chance, better to slow
2733 * down than lose it.
2735 sata_down_spd_limit(&ap
->link
);
2736 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2740 if (!tries
[dev
->devno
])
2741 ata_dev_disable(dev
);
2747 * ata_port_probe - Mark port as enabled
2748 * @ap: Port for which we indicate enablement
2750 * Modify @ap data structure such that the system
2751 * thinks that the entire port is enabled.
2753 * LOCKING: host lock, or some other form of
2757 void ata_port_probe(struct ata_port
*ap
)
2759 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2763 * sata_print_link_status - Print SATA link status
2764 * @link: SATA link to printk link status about
2766 * This function prints link speed and status of a SATA link.
2771 void sata_print_link_status(struct ata_link
*link
)
2773 u32 sstatus
, scontrol
, tmp
;
2775 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2777 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2779 if (ata_link_online(link
)) {
2780 tmp
= (sstatus
>> 4) & 0xf;
2781 ata_link_printk(link
, KERN_INFO
,
2782 "SATA link up %s (SStatus %X SControl %X)\n",
2783 sata_spd_string(tmp
), sstatus
, scontrol
);
2785 ata_link_printk(link
, KERN_INFO
,
2786 "SATA link down (SStatus %X SControl %X)\n",
2792 * ata_dev_pair - return other device on cable
2795 * Obtain the other device on the same cable, or if none is
2796 * present NULL is returned
2799 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2801 struct ata_link
*link
= adev
->link
;
2802 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2803 if (!ata_dev_enabled(pair
))
2809 * ata_port_disable - Disable port.
2810 * @ap: Port to be disabled.
2812 * Modify @ap data structure such that the system
2813 * thinks that the entire port is disabled, and should
2814 * never attempt to probe or communicate with devices
2817 * LOCKING: host lock, or some other form of
2821 void ata_port_disable(struct ata_port
*ap
)
2823 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2824 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2825 ap
->flags
|= ATA_FLAG_DISABLED
;
2829 * sata_down_spd_limit - adjust SATA spd limit downward
2830 * @link: Link to adjust SATA spd limit for
2832 * Adjust SATA spd limit of @link downward. Note that this
2833 * function only adjusts the limit. The change must be applied
2834 * using sata_set_spd().
2837 * Inherited from caller.
2840 * 0 on success, negative errno on failure
2842 int sata_down_spd_limit(struct ata_link
*link
)
2844 u32 sstatus
, spd
, mask
;
2847 if (!sata_scr_valid(link
))
2850 /* If SCR can be read, use it to determine the current SPD.
2851 * If not, use cached value in link->sata_spd.
2853 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2855 spd
= (sstatus
>> 4) & 0xf;
2857 spd
= link
->sata_spd
;
2859 mask
= link
->sata_spd_limit
;
2863 /* unconditionally mask off the highest bit */
2864 highbit
= fls(mask
) - 1;
2865 mask
&= ~(1 << highbit
);
2867 /* Mask off all speeds higher than or equal to the current
2868 * one. Force 1.5Gbps if current SPD is not available.
2871 mask
&= (1 << (spd
- 1)) - 1;
2875 /* were we already at the bottom? */
2879 link
->sata_spd_limit
= mask
;
2881 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2882 sata_spd_string(fls(mask
)));
2887 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2889 struct ata_link
*host_link
= &link
->ap
->link
;
2890 u32 limit
, target
, spd
;
2892 limit
= link
->sata_spd_limit
;
2894 /* Don't configure downstream link faster than upstream link.
2895 * It doesn't speed up anything and some PMPs choke on such
2898 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2899 limit
&= (1 << host_link
->sata_spd
) - 1;
2901 if (limit
== UINT_MAX
)
2904 target
= fls(limit
);
2906 spd
= (*scontrol
>> 4) & 0xf;
2907 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2909 return spd
!= target
;
2913 * sata_set_spd_needed - is SATA spd configuration needed
2914 * @link: Link in question
2916 * Test whether the spd limit in SControl matches
2917 * @link->sata_spd_limit. This function is used to determine
2918 * whether hardreset is necessary to apply SATA spd
2922 * Inherited from caller.
2925 * 1 if SATA spd configuration is needed, 0 otherwise.
2927 int sata_set_spd_needed(struct ata_link
*link
)
2931 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2934 return __sata_set_spd_needed(link
, &scontrol
);
2938 * sata_set_spd - set SATA spd according to spd limit
2939 * @link: Link to set SATA spd for
2941 * Set SATA spd of @link according to sata_spd_limit.
2944 * Inherited from caller.
2947 * 0 if spd doesn't need to be changed, 1 if spd has been
2948 * changed. Negative errno if SCR registers are inaccessible.
2950 int sata_set_spd(struct ata_link
*link
)
2955 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2958 if (!__sata_set_spd_needed(link
, &scontrol
))
2961 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2968 * This mode timing computation functionality is ported over from
2969 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2972 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2973 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2974 * for UDMA6, which is currently supported only by Maxtor drives.
2976 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2979 static const struct ata_timing ata_timing
[] = {
2980 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2981 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2982 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2983 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2984 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2985 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2986 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2987 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2989 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2990 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2991 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2993 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2994 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2995 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2996 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2997 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2999 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3000 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
3001 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
3002 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
3003 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
3004 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
3005 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
3006 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
3011 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3012 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3014 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3016 q
->setup
= EZ(t
->setup
* 1000, T
);
3017 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3018 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3019 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3020 q
->active
= EZ(t
->active
* 1000, T
);
3021 q
->recover
= EZ(t
->recover
* 1000, T
);
3022 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3023 q
->udma
= EZ(t
->udma
* 1000, UT
);
3026 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3027 struct ata_timing
*m
, unsigned int what
)
3029 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3030 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3031 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3032 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3033 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3034 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3035 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3036 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3039 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3041 const struct ata_timing
*t
= ata_timing
;
3043 while (xfer_mode
> t
->mode
)
3046 if (xfer_mode
== t
->mode
)
3051 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3052 struct ata_timing
*t
, int T
, int UT
)
3054 const struct ata_timing
*s
;
3055 struct ata_timing p
;
3061 if (!(s
= ata_timing_find_mode(speed
)))
3064 memcpy(t
, s
, sizeof(*s
));
3067 * If the drive is an EIDE drive, it can tell us it needs extended
3068 * PIO/MW_DMA cycle timing.
3071 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3072 memset(&p
, 0, sizeof(p
));
3073 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3074 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3075 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3076 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3077 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3079 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3083 * Convert the timing to bus clock counts.
3086 ata_timing_quantize(t
, t
, T
, UT
);
3089 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3090 * S.M.A.R.T * and some other commands. We have to ensure that the
3091 * DMA cycle timing is slower/equal than the fastest PIO timing.
3094 if (speed
> XFER_PIO_6
) {
3095 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3096 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3100 * Lengthen active & recovery time so that cycle time is correct.
3103 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3104 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3105 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3108 if (t
->active
+ t
->recover
< t
->cycle
) {
3109 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3110 t
->recover
= t
->cycle
- t
->active
;
3113 /* In a few cases quantisation may produce enough errors to
3114 leave t->cycle too low for the sum of active and recovery
3115 if so we must correct this */
3116 if (t
->active
+ t
->recover
> t
->cycle
)
3117 t
->cycle
= t
->active
+ t
->recover
;
3123 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3124 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3125 * @cycle: cycle duration in ns
3127 * Return matching xfer mode for @cycle. The returned mode is of
3128 * the transfer type specified by @xfer_shift. If @cycle is too
3129 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3130 * than the fastest known mode, the fasted mode is returned.
3136 * Matching xfer_mode, 0xff if no match found.
3138 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3140 u8 base_mode
= 0xff, last_mode
= 0xff;
3141 const struct ata_xfer_ent
*ent
;
3142 const struct ata_timing
*t
;
3144 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3145 if (ent
->shift
== xfer_shift
)
3146 base_mode
= ent
->base
;
3148 for (t
= ata_timing_find_mode(base_mode
);
3149 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3150 unsigned short this_cycle
;
3152 switch (xfer_shift
) {
3154 case ATA_SHIFT_MWDMA
:
3155 this_cycle
= t
->cycle
;
3157 case ATA_SHIFT_UDMA
:
3158 this_cycle
= t
->udma
;
3164 if (cycle
> this_cycle
)
3167 last_mode
= t
->mode
;
3174 * ata_down_xfermask_limit - adjust dev xfer masks downward
3175 * @dev: Device to adjust xfer masks
3176 * @sel: ATA_DNXFER_* selector
3178 * Adjust xfer masks of @dev downward. Note that this function
3179 * does not apply the change. Invoking ata_set_mode() afterwards
3180 * will apply the limit.
3183 * Inherited from caller.
3186 * 0 on success, negative errno on failure
3188 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3191 unsigned long orig_mask
, xfer_mask
;
3192 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3195 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3196 sel
&= ~ATA_DNXFER_QUIET
;
3198 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3201 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3204 case ATA_DNXFER_PIO
:
3205 highbit
= fls(pio_mask
) - 1;
3206 pio_mask
&= ~(1 << highbit
);
3209 case ATA_DNXFER_DMA
:
3211 highbit
= fls(udma_mask
) - 1;
3212 udma_mask
&= ~(1 << highbit
);
3215 } else if (mwdma_mask
) {
3216 highbit
= fls(mwdma_mask
) - 1;
3217 mwdma_mask
&= ~(1 << highbit
);
3223 case ATA_DNXFER_40C
:
3224 udma_mask
&= ATA_UDMA_MASK_40C
;
3227 case ATA_DNXFER_FORCE_PIO0
:
3229 case ATA_DNXFER_FORCE_PIO
:
3238 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3240 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3244 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3245 snprintf(buf
, sizeof(buf
), "%s:%s",
3246 ata_mode_string(xfer_mask
),
3247 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3249 snprintf(buf
, sizeof(buf
), "%s",
3250 ata_mode_string(xfer_mask
));
3252 ata_dev_printk(dev
, KERN_WARNING
,
3253 "limiting speed to %s\n", buf
);
3256 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3262 static int ata_dev_set_mode(struct ata_device
*dev
)
3264 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3265 const char *dev_err_whine
= "";
3266 int ign_dev_err
= 0;
3267 unsigned int err_mask
;
3270 dev
->flags
&= ~ATA_DFLAG_PIO
;
3271 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3272 dev
->flags
|= ATA_DFLAG_PIO
;
3274 err_mask
= ata_dev_set_xfermode(dev
);
3276 if (err_mask
& ~AC_ERR_DEV
)
3280 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3281 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3282 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3286 /* Old CFA may refuse this command, which is just fine */
3287 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
3290 /* Some very old devices and some bad newer ones fail any kind of
3291 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3292 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& !ata_id_has_iordy(dev
->id
) &&
3293 dev
->pio_mode
<= XFER_PIO_2
)
3296 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3297 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3298 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3299 dev
->dma_mode
== XFER_MW_DMA_0
&&
3300 (dev
->id
[63] >> 8) & 1)
3303 /* if the device is actually configured correctly, ignore dev err */
3304 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3307 if (err_mask
& AC_ERR_DEV
) {
3311 dev_err_whine
= " (device error ignored)";
3314 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3315 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3317 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3318 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3324 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3325 "(err_mask=0x%x)\n", err_mask
);
3330 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3331 * @link: link on which timings will be programmed
3332 * @r_failed_dev: out parameter for failed device
3334 * Standard implementation of the function used to tune and set
3335 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3336 * ata_dev_set_mode() fails, pointer to the failing device is
3337 * returned in @r_failed_dev.
3340 * PCI/etc. bus probe sem.
3343 * 0 on success, negative errno otherwise
3346 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3348 struct ata_port
*ap
= link
->ap
;
3349 struct ata_device
*dev
;
3350 int rc
= 0, used_dma
= 0, found
= 0;
3352 /* step 1: calculate xfer_mask */
3353 ata_link_for_each_dev(dev
, link
) {
3354 unsigned long pio_mask
, dma_mask
;
3355 unsigned int mode_mask
;
3357 if (!ata_dev_enabled(dev
))
3360 mode_mask
= ATA_DMA_MASK_ATA
;
3361 if (dev
->class == ATA_DEV_ATAPI
)
3362 mode_mask
= ATA_DMA_MASK_ATAPI
;
3363 else if (ata_id_is_cfa(dev
->id
))
3364 mode_mask
= ATA_DMA_MASK_CFA
;
3366 ata_dev_xfermask(dev
);
3367 ata_force_xfermask(dev
);
3369 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3370 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3372 if (libata_dma_mask
& mode_mask
)
3373 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3377 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3378 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3381 if (dev
->dma_mode
!= 0xff)
3387 /* step 2: always set host PIO timings */
3388 ata_link_for_each_dev(dev
, link
) {
3389 if (!ata_dev_enabled(dev
))
3392 if (dev
->pio_mode
== 0xff) {
3393 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3398 dev
->xfer_mode
= dev
->pio_mode
;
3399 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3400 if (ap
->ops
->set_piomode
)
3401 ap
->ops
->set_piomode(ap
, dev
);
3404 /* step 3: set host DMA timings */
3405 ata_link_for_each_dev(dev
, link
) {
3406 if (!ata_dev_enabled(dev
) || dev
->dma_mode
== 0xff)
3409 dev
->xfer_mode
= dev
->dma_mode
;
3410 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3411 if (ap
->ops
->set_dmamode
)
3412 ap
->ops
->set_dmamode(ap
, dev
);
3415 /* step 4: update devices' xfer mode */
3416 ata_link_for_each_dev(dev
, link
) {
3417 /* don't update suspended devices' xfer mode */
3418 if (!ata_dev_enabled(dev
))
3421 rc
= ata_dev_set_mode(dev
);
3426 /* Record simplex status. If we selected DMA then the other
3427 * host channels are not permitted to do so.
3429 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3430 ap
->host
->simplex_claimed
= ap
;
3434 *r_failed_dev
= dev
;
3439 * ata_tf_to_host - issue ATA taskfile to host controller
3440 * @ap: port to which command is being issued
3441 * @tf: ATA taskfile register set
3443 * Issues ATA taskfile register set to ATA host controller,
3444 * with proper synchronization with interrupt handler and
3448 * spin_lock_irqsave(host lock)
3451 static inline void ata_tf_to_host(struct ata_port
*ap
,
3452 const struct ata_taskfile
*tf
)
3454 ap
->ops
->tf_load(ap
, tf
);
3455 ap
->ops
->exec_command(ap
, tf
);
3459 * ata_busy_sleep - sleep until BSY clears, or timeout
3460 * @ap: port containing status register to be polled
3461 * @tmout_pat: impatience timeout
3462 * @tmout: overall timeout
3464 * Sleep until ATA Status register bit BSY clears,
3465 * or a timeout occurs.
3468 * Kernel thread context (may sleep).
3471 * 0 on success, -errno otherwise.
3473 int ata_busy_sleep(struct ata_port
*ap
,
3474 unsigned long tmout_pat
, unsigned long tmout
)
3476 unsigned long timer_start
, timeout
;
3479 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
3480 timer_start
= jiffies
;
3481 timeout
= timer_start
+ tmout_pat
;
3482 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3483 time_before(jiffies
, timeout
)) {
3485 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
3488 if (status
!= 0xff && (status
& ATA_BUSY
))
3489 ata_port_printk(ap
, KERN_WARNING
,
3490 "port is slow to respond, please be patient "
3491 "(Status 0x%x)\n", status
);
3493 timeout
= timer_start
+ tmout
;
3494 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3495 time_before(jiffies
, timeout
)) {
3497 status
= ata_chk_status(ap
);
3503 if (status
& ATA_BUSY
) {
3504 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
3505 "(%lu secs, Status 0x%x)\n",
3506 tmout
/ HZ
, status
);
3514 * ata_wait_after_reset - wait before checking status after reset
3515 * @ap: port containing status register to be polled
3516 * @deadline: deadline jiffies for the operation
3518 * After reset, we need to pause a while before reading status.
3519 * Also, certain combination of controller and device report 0xff
3520 * for some duration (e.g. until SATA PHY is up and running)
3521 * which is interpreted as empty port in ATA world. This
3522 * function also waits for such devices to get out of 0xff
3526 * Kernel thread context (may sleep).
3528 void ata_wait_after_reset(struct ata_port
*ap
, unsigned long deadline
)
3530 unsigned long until
= jiffies
+ ATA_TMOUT_FF_WAIT
;
3532 if (time_before(until
, deadline
))
3535 /* Spec mandates ">= 2ms" before checking status. We wait
3536 * 150ms, because that was the magic delay used for ATAPI
3537 * devices in Hale Landis's ATADRVR, for the period of time
3538 * between when the ATA command register is written, and then
3539 * status is checked. Because waiting for "a while" before
3540 * checking status is fine, post SRST, we perform this magic
3541 * delay here as well.
3543 * Old drivers/ide uses the 2mS rule and then waits for ready.
3547 /* Wait for 0xff to clear. Some SATA devices take a long time
3548 * to clear 0xff after reset. For example, HHD424020F7SV00
3549 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3552 * Note that some PATA controllers (pata_ali) explode if
3553 * status register is read more than once when there's no
3556 if (ap
->flags
& ATA_FLAG_SATA
) {
3558 u8 status
= ata_chk_status(ap
);
3560 if (status
!= 0xff || time_after(jiffies
, deadline
))
3569 * ata_wait_ready - sleep until BSY clears, or timeout
3570 * @ap: port containing status register to be polled
3571 * @deadline: deadline jiffies for the operation
3573 * Sleep until ATA Status register bit BSY clears, or timeout
3577 * Kernel thread context (may sleep).
3580 * 0 on success, -errno otherwise.
3582 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
3584 unsigned long start
= jiffies
;
3588 u8 status
= ata_chk_status(ap
);
3589 unsigned long now
= jiffies
;
3591 if (!(status
& ATA_BUSY
))
3593 if (!ata_link_online(&ap
->link
) && status
== 0xff)
3595 if (time_after(now
, deadline
))
3598 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3599 (deadline
- now
> 3 * HZ
)) {
3600 ata_port_printk(ap
, KERN_WARNING
,
3601 "port is slow to respond, please be patient "
3602 "(Status 0x%x)\n", status
);
3610 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3611 unsigned long deadline
)
3613 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3614 unsigned int dev0
= devmask
& (1 << 0);
3615 unsigned int dev1
= devmask
& (1 << 1);
3618 /* if device 0 was found in ata_devchk, wait for its
3622 rc
= ata_wait_ready(ap
, deadline
);
3630 /* if device 1 was found in ata_devchk, wait for register
3631 * access briefly, then wait for BSY to clear.
3636 ap
->ops
->dev_select(ap
, 1);
3638 /* Wait for register access. Some ATAPI devices fail
3639 * to set nsect/lbal after reset, so don't waste too
3640 * much time on it. We're gonna wait for !BSY anyway.
3642 for (i
= 0; i
< 2; i
++) {
3645 nsect
= ioread8(ioaddr
->nsect_addr
);
3646 lbal
= ioread8(ioaddr
->lbal_addr
);
3647 if ((nsect
== 1) && (lbal
== 1))
3649 msleep(50); /* give drive a breather */
3652 rc
= ata_wait_ready(ap
, deadline
);
3660 /* is all this really necessary? */
3661 ap
->ops
->dev_select(ap
, 0);
3663 ap
->ops
->dev_select(ap
, 1);
3665 ap
->ops
->dev_select(ap
, 0);
3670 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3671 unsigned long deadline
)
3673 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3675 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3677 /* software reset. causes dev0 to be selected */
3678 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3679 udelay(20); /* FIXME: flush */
3680 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3681 udelay(20); /* FIXME: flush */
3682 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3684 /* wait a while before checking status */
3685 ata_wait_after_reset(ap
, deadline
);
3687 /* Before we perform post reset processing we want to see if
3688 * the bus shows 0xFF because the odd clown forgets the D7
3689 * pulldown resistor.
3691 if (ata_chk_status(ap
) == 0xFF)
3694 return ata_bus_post_reset(ap
, devmask
, deadline
);
3698 * ata_bus_reset - reset host port and associated ATA channel
3699 * @ap: port to reset
3701 * This is typically the first time we actually start issuing
3702 * commands to the ATA channel. We wait for BSY to clear, then
3703 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3704 * result. Determine what devices, if any, are on the channel
3705 * by looking at the device 0/1 error register. Look at the signature
3706 * stored in each device's taskfile registers, to determine if
3707 * the device is ATA or ATAPI.
3710 * PCI/etc. bus probe sem.
3711 * Obtains host lock.
3714 * Sets ATA_FLAG_DISABLED if bus reset fails.
3717 void ata_bus_reset(struct ata_port
*ap
)
3719 struct ata_device
*device
= ap
->link
.device
;
3720 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3721 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3723 unsigned int dev0
, dev1
= 0, devmask
= 0;
3726 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3728 /* determine if device 0/1 are present */
3729 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3732 dev0
= ata_devchk(ap
, 0);
3734 dev1
= ata_devchk(ap
, 1);
3738 devmask
|= (1 << 0);
3740 devmask
|= (1 << 1);
3742 /* select device 0 again */
3743 ap
->ops
->dev_select(ap
, 0);
3745 /* issue bus reset */
3746 if (ap
->flags
& ATA_FLAG_SRST
) {
3747 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3748 if (rc
&& rc
!= -ENODEV
)
3753 * determine by signature whether we have ATA or ATAPI devices
3755 device
[0].class = ata_dev_try_classify(&device
[0], dev0
, &err
);
3756 if ((slave_possible
) && (err
!= 0x81))
3757 device
[1].class = ata_dev_try_classify(&device
[1], dev1
, &err
);
3759 /* is double-select really necessary? */
3760 if (device
[1].class != ATA_DEV_NONE
)
3761 ap
->ops
->dev_select(ap
, 1);
3762 if (device
[0].class != ATA_DEV_NONE
)
3763 ap
->ops
->dev_select(ap
, 0);
3765 /* if no devices were detected, disable this port */
3766 if ((device
[0].class == ATA_DEV_NONE
) &&
3767 (device
[1].class == ATA_DEV_NONE
))
3770 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3771 /* set up device control for ATA_FLAG_SATA_RESET */
3772 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3779 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3780 ata_port_disable(ap
);
3786 * sata_link_debounce - debounce SATA phy status
3787 * @link: ATA link to debounce SATA phy status for
3788 * @params: timing parameters { interval, duratinon, timeout } in msec
3789 * @deadline: deadline jiffies for the operation
3791 * Make sure SStatus of @link reaches stable state, determined by
3792 * holding the same value where DET is not 1 for @duration polled
3793 * every @interval, before @timeout. Timeout constraints the
3794 * beginning of the stable state. Because DET gets stuck at 1 on
3795 * some controllers after hot unplugging, this functions waits
3796 * until timeout then returns 0 if DET is stable at 1.
3798 * @timeout is further limited by @deadline. The sooner of the
3802 * Kernel thread context (may sleep)
3805 * 0 on success, -errno on failure.
3807 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3808 unsigned long deadline
)
3810 unsigned long interval_msec
= params
[0];
3811 unsigned long duration
= msecs_to_jiffies(params
[1]);
3812 unsigned long last_jiffies
, t
;
3816 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3817 if (time_before(t
, deadline
))
3820 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3825 last_jiffies
= jiffies
;
3828 msleep(interval_msec
);
3829 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3835 if (cur
== 1 && time_before(jiffies
, deadline
))
3837 if (time_after(jiffies
, last_jiffies
+ duration
))
3842 /* unstable, start over */
3844 last_jiffies
= jiffies
;
3846 /* Check deadline. If debouncing failed, return
3847 * -EPIPE to tell upper layer to lower link speed.
3849 if (time_after(jiffies
, deadline
))
3855 * sata_link_resume - resume SATA link
3856 * @link: ATA link to resume SATA
3857 * @params: timing parameters { interval, duratinon, timeout } in msec
3858 * @deadline: deadline jiffies for the operation
3860 * Resume SATA phy @link and debounce it.
3863 * Kernel thread context (may sleep)
3866 * 0 on success, -errno on failure.
3868 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3869 unsigned long deadline
)
3874 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3877 scontrol
= (scontrol
& 0x0f0) | 0x300;
3879 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3882 /* Some PHYs react badly if SStatus is pounded immediately
3883 * after resuming. Delay 200ms before debouncing.
3887 return sata_link_debounce(link
, params
, deadline
);
3891 * ata_std_prereset - prepare for reset
3892 * @link: ATA link to be reset
3893 * @deadline: deadline jiffies for the operation
3895 * @link is about to be reset. Initialize it. Failure from
3896 * prereset makes libata abort whole reset sequence and give up
3897 * that port, so prereset should be best-effort. It does its
3898 * best to prepare for reset sequence but if things go wrong, it
3899 * should just whine, not fail.
3902 * Kernel thread context (may sleep)
3905 * 0 on success, -errno otherwise.
3907 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3909 struct ata_port
*ap
= link
->ap
;
3910 struct ata_eh_context
*ehc
= &link
->eh_context
;
3911 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3914 /* handle link resume */
3915 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3916 (link
->flags
& ATA_LFLAG_HRST_TO_RESUME
))
3917 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3919 /* Some PMPs don't work with only SRST, force hardreset if PMP
3922 if (ap
->flags
& ATA_FLAG_PMP
)
3923 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3925 /* if we're about to do hardreset, nothing more to do */
3926 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3929 /* if SATA, resume link */
3930 if (ap
->flags
& ATA_FLAG_SATA
) {
3931 rc
= sata_link_resume(link
, timing
, deadline
);
3932 /* whine about phy resume failure but proceed */
3933 if (rc
&& rc
!= -EOPNOTSUPP
)
3934 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3935 "link for reset (errno=%d)\n", rc
);
3938 /* Wait for !BSY if the controller can wait for the first D2H
3939 * Reg FIS and we don't know that no device is attached.
3941 if (!(link
->flags
& ATA_LFLAG_SKIP_D2H_BSY
) && !ata_link_offline(link
)) {
3942 rc
= ata_wait_ready(ap
, deadline
);
3943 if (rc
&& rc
!= -ENODEV
) {
3944 ata_link_printk(link
, KERN_WARNING
, "device not ready "
3945 "(errno=%d), forcing hardreset\n", rc
);
3946 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3954 * ata_std_softreset - reset host port via ATA SRST
3955 * @link: ATA link to reset
3956 * @classes: resulting classes of attached devices
3957 * @deadline: deadline jiffies for the operation
3959 * Reset host port using ATA SRST.
3962 * Kernel thread context (may sleep)
3965 * 0 on success, -errno otherwise.
3967 int ata_std_softreset(struct ata_link
*link
, unsigned int *classes
,
3968 unsigned long deadline
)
3970 struct ata_port
*ap
= link
->ap
;
3971 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3972 unsigned int devmask
= 0;
3978 if (ata_link_offline(link
)) {
3979 classes
[0] = ATA_DEV_NONE
;
3983 /* determine if device 0/1 are present */
3984 if (ata_devchk(ap
, 0))
3985 devmask
|= (1 << 0);
3986 if (slave_possible
&& ata_devchk(ap
, 1))
3987 devmask
|= (1 << 1);
3989 /* select device 0 again */
3990 ap
->ops
->dev_select(ap
, 0);
3992 /* issue bus reset */
3993 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3994 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
3995 /* if link is occupied, -ENODEV too is an error */
3996 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
3997 ata_link_printk(link
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
4001 /* determine by signature whether we have ATA or ATAPI devices */
4002 classes
[0] = ata_dev_try_classify(&link
->device
[0],
4003 devmask
& (1 << 0), &err
);
4004 if (slave_possible
&& err
!= 0x81)
4005 classes
[1] = ata_dev_try_classify(&link
->device
[1],
4006 devmask
& (1 << 1), &err
);
4009 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
4014 * sata_link_hardreset - reset link via SATA phy reset
4015 * @link: link to reset
4016 * @timing: timing parameters { interval, duratinon, timeout } in msec
4017 * @deadline: deadline jiffies for the operation
4019 * SATA phy-reset @link using DET bits of SControl register.
4022 * Kernel thread context (may sleep)
4025 * 0 on success, -errno otherwise.
4027 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
4028 unsigned long deadline
)
4035 if (sata_set_spd_needed(link
)) {
4036 /* SATA spec says nothing about how to reconfigure
4037 * spd. To be on the safe side, turn off phy during
4038 * reconfiguration. This works for at least ICH7 AHCI
4041 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4044 scontrol
= (scontrol
& 0x0f0) | 0x304;
4046 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
4052 /* issue phy wake/reset */
4053 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4056 scontrol
= (scontrol
& 0x0f0) | 0x301;
4058 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
4061 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4062 * 10.4.2 says at least 1 ms.
4066 /* bring link back */
4067 rc
= sata_link_resume(link
, timing
, deadline
);
4069 DPRINTK("EXIT, rc=%d\n", rc
);
4074 * sata_std_hardreset - reset host port via SATA phy reset
4075 * @link: link to reset
4076 * @class: resulting class of attached device
4077 * @deadline: deadline jiffies for the operation
4079 * SATA phy-reset host port using DET bits of SControl register,
4080 * wait for !BSY and classify the attached device.
4083 * Kernel thread context (may sleep)
4086 * 0 on success, -errno otherwise.
4088 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
4089 unsigned long deadline
)
4091 struct ata_port
*ap
= link
->ap
;
4092 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
4098 rc
= sata_link_hardreset(link
, timing
, deadline
);
4100 ata_link_printk(link
, KERN_ERR
,
4101 "COMRESET failed (errno=%d)\n", rc
);
4105 /* TODO: phy layer with polling, timeouts, etc. */
4106 if (ata_link_offline(link
)) {
4107 *class = ATA_DEV_NONE
;
4108 DPRINTK("EXIT, link offline\n");
4112 /* wait a while before checking status */
4113 ata_wait_after_reset(ap
, deadline
);
4115 /* If PMP is supported, we have to do follow-up SRST. Note
4116 * that some PMPs don't send D2H Reg FIS after hardreset at
4117 * all if the first port is empty. Wait for it just for a
4118 * second and request follow-up SRST.
4120 if (ap
->flags
& ATA_FLAG_PMP
) {
4121 ata_wait_ready(ap
, jiffies
+ HZ
);
4125 rc
= ata_wait_ready(ap
, deadline
);
4126 /* link occupied, -ENODEV too is an error */
4128 ata_link_printk(link
, KERN_ERR
,
4129 "COMRESET failed (errno=%d)\n", rc
);
4133 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
4135 *class = ata_dev_try_classify(link
->device
, 1, NULL
);
4137 DPRINTK("EXIT, class=%u\n", *class);
4142 * ata_std_postreset - standard postreset callback
4143 * @link: the target ata_link
4144 * @classes: classes of attached devices
4146 * This function is invoked after a successful reset. Note that
4147 * the device might have been reset more than once using
4148 * different reset methods before postreset is invoked.
4151 * Kernel thread context (may sleep)
4153 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
4155 struct ata_port
*ap
= link
->ap
;
4160 /* print link status */
4161 sata_print_link_status(link
);
4164 if (sata_scr_read(link
, SCR_ERROR
, &serror
) == 0)
4165 sata_scr_write(link
, SCR_ERROR
, serror
);
4166 link
->eh_info
.serror
= 0;
4168 /* is double-select really necessary? */
4169 if (classes
[0] != ATA_DEV_NONE
)
4170 ap
->ops
->dev_select(ap
, 1);
4171 if (classes
[1] != ATA_DEV_NONE
)
4172 ap
->ops
->dev_select(ap
, 0);
4174 /* bail out if no device is present */
4175 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
4176 DPRINTK("EXIT, no device\n");
4180 /* set up device control */
4181 if (ap
->ioaddr
.ctl_addr
)
4182 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
4188 * ata_dev_same_device - Determine whether new ID matches configured device
4189 * @dev: device to compare against
4190 * @new_class: class of the new device
4191 * @new_id: IDENTIFY page of the new device
4193 * Compare @new_class and @new_id against @dev and determine
4194 * whether @dev is the device indicated by @new_class and
4201 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4203 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4206 const u16
*old_id
= dev
->id
;
4207 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4208 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4210 if (dev
->class != new_class
) {
4211 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
4212 dev
->class, new_class
);
4216 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4217 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4218 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4219 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4221 if (strcmp(model
[0], model
[1])) {
4222 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4223 "'%s' != '%s'\n", model
[0], model
[1]);
4227 if (strcmp(serial
[0], serial
[1])) {
4228 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4229 "'%s' != '%s'\n", serial
[0], serial
[1]);
4237 * ata_dev_reread_id - Re-read IDENTIFY data
4238 * @dev: target ATA device
4239 * @readid_flags: read ID flags
4241 * Re-read IDENTIFY page and make sure @dev is still attached to
4245 * Kernel thread context (may sleep)
4248 * 0 on success, negative errno otherwise
4250 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4252 unsigned int class = dev
->class;
4253 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4257 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4261 /* is the device still there? */
4262 if (!ata_dev_same_device(dev
, class, id
))
4265 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4270 * ata_dev_revalidate - Revalidate ATA device
4271 * @dev: device to revalidate
4272 * @new_class: new class code
4273 * @readid_flags: read ID flags
4275 * Re-read IDENTIFY page, make sure @dev is still attached to the
4276 * port and reconfigure it according to the new IDENTIFY page.
4279 * Kernel thread context (may sleep)
4282 * 0 on success, negative errno otherwise
4284 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4285 unsigned int readid_flags
)
4287 u64 n_sectors
= dev
->n_sectors
;
4290 if (!ata_dev_enabled(dev
))
4293 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4294 if (ata_class_enabled(new_class
) &&
4295 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
4296 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4297 dev
->class, new_class
);
4303 rc
= ata_dev_reread_id(dev
, readid_flags
);
4307 /* configure device according to the new ID */
4308 rc
= ata_dev_configure(dev
);
4312 /* verify n_sectors hasn't changed */
4313 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4314 dev
->n_sectors
!= n_sectors
) {
4315 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
4317 (unsigned long long)n_sectors
,
4318 (unsigned long long)dev
->n_sectors
);
4320 /* restore original n_sectors */
4321 dev
->n_sectors
= n_sectors
;
4330 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4334 struct ata_blacklist_entry
{
4335 const char *model_num
;
4336 const char *model_rev
;
4337 unsigned long horkage
;
4340 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4341 /* Devices with DMA related problems under Linux */
4342 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4343 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4344 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4345 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4346 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4347 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4348 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4349 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4350 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4351 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4352 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4353 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4354 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4355 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4356 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4357 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4358 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4359 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4360 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4361 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4362 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4363 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4364 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4365 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4366 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4367 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4368 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4369 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4370 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4371 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4372 /* Odd clown on sil3726/4726 PMPs */
4373 { "Config Disk", NULL
, ATA_HORKAGE_NODMA
|
4374 ATA_HORKAGE_SKIP_PM
},
4376 /* Weird ATAPI devices */
4377 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4379 /* Devices we expect to fail diagnostics */
4381 /* Devices where NCQ should be avoided */
4383 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4384 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4385 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4386 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4388 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4389 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4390 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4391 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4393 /* Blacklist entries taken from Silicon Image 3124/3132
4394 Windows driver .inf file - also several Linux problem reports */
4395 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4396 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4397 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4399 /* devices which puke on READ_NATIVE_MAX */
4400 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4401 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4402 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4403 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4405 /* Devices which report 1 sector over size HPA */
4406 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4407 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4408 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4410 /* Devices which get the IVB wrong */
4411 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4412 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4413 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4414 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4415 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4421 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4427 * check for trailing wildcard: *\0
4429 p
= strchr(patt
, wildchar
);
4430 if (p
&& ((*(p
+ 1)) == 0))
4441 return strncmp(patt
, name
, len
);
4444 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4446 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4447 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4448 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4450 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4451 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4453 while (ad
->model_num
) {
4454 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4455 if (ad
->model_rev
== NULL
)
4457 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4465 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4467 /* We don't support polling DMA.
4468 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4469 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4471 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4472 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4474 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4478 * ata_is_40wire - check drive side detection
4481 * Perform drive side detection decoding, allowing for device vendors
4482 * who can't follow the documentation.
4485 static int ata_is_40wire(struct ata_device
*dev
)
4487 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4488 return ata_drive_40wire_relaxed(dev
->id
);
4489 return ata_drive_40wire(dev
->id
);
4493 * ata_dev_xfermask - Compute supported xfermask of the given device
4494 * @dev: Device to compute xfermask for
4496 * Compute supported xfermask of @dev and store it in
4497 * dev->*_mask. This function is responsible for applying all
4498 * known limits including host controller limits, device
4504 static void ata_dev_xfermask(struct ata_device
*dev
)
4506 struct ata_link
*link
= dev
->link
;
4507 struct ata_port
*ap
= link
->ap
;
4508 struct ata_host
*host
= ap
->host
;
4509 unsigned long xfer_mask
;
4511 /* controller modes available */
4512 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4513 ap
->mwdma_mask
, ap
->udma_mask
);
4515 /* drive modes available */
4516 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4517 dev
->mwdma_mask
, dev
->udma_mask
);
4518 xfer_mask
&= ata_id_xfermask(dev
->id
);
4521 * CFA Advanced TrueIDE timings are not allowed on a shared
4524 if (ata_dev_pair(dev
)) {
4525 /* No PIO5 or PIO6 */
4526 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4527 /* No MWDMA3 or MWDMA 4 */
4528 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4531 if (ata_dma_blacklisted(dev
)) {
4532 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4533 ata_dev_printk(dev
, KERN_WARNING
,
4534 "device is on DMA blacklist, disabling DMA\n");
4537 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4538 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4539 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4540 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4541 "other device, disabling DMA\n");
4544 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4545 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4547 if (ap
->ops
->mode_filter
)
4548 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4550 /* Apply cable rule here. Don't apply it early because when
4551 * we handle hot plug the cable type can itself change.
4552 * Check this last so that we know if the transfer rate was
4553 * solely limited by the cable.
4554 * Unknown or 80 wire cables reported host side are checked
4555 * drive side as well. Cases where we know a 40wire cable
4556 * is used safely for 80 are not checked here.
4558 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4559 /* UDMA/44 or higher would be available */
4560 if ((ap
->cbl
== ATA_CBL_PATA40
) ||
4561 (ata_is_40wire(dev
) &&
4562 (ap
->cbl
== ATA_CBL_PATA_UNK
||
4563 ap
->cbl
== ATA_CBL_PATA80
))) {
4564 ata_dev_printk(dev
, KERN_WARNING
,
4565 "limited to UDMA/33 due to 40-wire cable\n");
4566 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4569 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4570 &dev
->mwdma_mask
, &dev
->udma_mask
);
4574 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4575 * @dev: Device to which command will be sent
4577 * Issue SET FEATURES - XFER MODE command to device @dev
4581 * PCI/etc. bus probe sem.
4584 * 0 on success, AC_ERR_* mask otherwise.
4587 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4589 struct ata_taskfile tf
;
4590 unsigned int err_mask
;
4592 /* set up set-features taskfile */
4593 DPRINTK("set features - xfer mode\n");
4595 /* Some controllers and ATAPI devices show flaky interrupt
4596 * behavior after setting xfer mode. Use polling instead.
4598 ata_tf_init(dev
, &tf
);
4599 tf
.command
= ATA_CMD_SET_FEATURES
;
4600 tf
.feature
= SETFEATURES_XFER
;
4601 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4602 tf
.protocol
= ATA_PROT_NODATA
;
4603 /* If we are using IORDY we must send the mode setting command */
4604 if (ata_pio_need_iordy(dev
))
4605 tf
.nsect
= dev
->xfer_mode
;
4606 /* If the device has IORDY and the controller does not - turn it off */
4607 else if (ata_id_has_iordy(dev
->id
))
4609 else /* In the ancient relic department - skip all of this */
4612 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4614 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4618 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4619 * @dev: Device to which command will be sent
4620 * @enable: Whether to enable or disable the feature
4621 * @feature: The sector count represents the feature to set
4623 * Issue SET FEATURES - SATA FEATURES command to device @dev
4624 * on port @ap with sector count
4627 * PCI/etc. bus probe sem.
4630 * 0 on success, AC_ERR_* mask otherwise.
4632 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4635 struct ata_taskfile tf
;
4636 unsigned int err_mask
;
4638 /* set up set-features taskfile */
4639 DPRINTK("set features - SATA features\n");
4641 ata_tf_init(dev
, &tf
);
4642 tf
.command
= ATA_CMD_SET_FEATURES
;
4643 tf
.feature
= enable
;
4644 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4645 tf
.protocol
= ATA_PROT_NODATA
;
4648 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4650 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4655 * ata_dev_init_params - Issue INIT DEV PARAMS command
4656 * @dev: Device to which command will be sent
4657 * @heads: Number of heads (taskfile parameter)
4658 * @sectors: Number of sectors (taskfile parameter)
4661 * Kernel thread context (may sleep)
4664 * 0 on success, AC_ERR_* mask otherwise.
4666 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4667 u16 heads
, u16 sectors
)
4669 struct ata_taskfile tf
;
4670 unsigned int err_mask
;
4672 /* Number of sectors per track 1-255. Number of heads 1-16 */
4673 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4674 return AC_ERR_INVALID
;
4676 /* set up init dev params taskfile */
4677 DPRINTK("init dev params \n");
4679 ata_tf_init(dev
, &tf
);
4680 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4681 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4682 tf
.protocol
= ATA_PROT_NODATA
;
4684 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4686 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4687 /* A clean abort indicates an original or just out of spec drive
4688 and we should continue as we issue the setup based on the
4689 drive reported working geometry */
4690 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4693 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4698 * ata_sg_clean - Unmap DMA memory associated with command
4699 * @qc: Command containing DMA memory to be released
4701 * Unmap all mapped DMA memory associated with this command.
4704 * spin_lock_irqsave(host lock)
4706 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4708 struct ata_port
*ap
= qc
->ap
;
4709 struct scatterlist
*sg
= qc
->sg
;
4710 int dir
= qc
->dma_dir
;
4712 WARN_ON(sg
== NULL
);
4714 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4717 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4719 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4724 * ata_fill_sg - Fill PCI IDE PRD table
4725 * @qc: Metadata associated with taskfile to be transferred
4727 * Fill PCI IDE PRD (scatter-gather) table with segments
4728 * associated with the current disk command.
4731 * spin_lock_irqsave(host lock)
4734 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4736 struct ata_port
*ap
= qc
->ap
;
4737 struct scatterlist
*sg
;
4738 unsigned int si
, pi
;
4741 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4745 /* determine if physical DMA addr spans 64K boundary.
4746 * Note h/w doesn't support 64-bit, so we unconditionally
4747 * truncate dma_addr_t to u32.
4749 addr
= (u32
) sg_dma_address(sg
);
4750 sg_len
= sg_dma_len(sg
);
4753 offset
= addr
& 0xffff;
4755 if ((offset
+ sg_len
) > 0x10000)
4756 len
= 0x10000 - offset
;
4758 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4759 ap
->prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
4760 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4768 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4772 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4773 * @qc: Metadata associated with taskfile to be transferred
4775 * Fill PCI IDE PRD (scatter-gather) table with segments
4776 * associated with the current disk command. Perform the fill
4777 * so that we avoid writing any length 64K records for
4778 * controllers that don't follow the spec.
4781 * spin_lock_irqsave(host lock)
4784 static void ata_fill_sg_dumb(struct ata_queued_cmd
*qc
)
4786 struct ata_port
*ap
= qc
->ap
;
4787 struct scatterlist
*sg
;
4788 unsigned int si
, pi
;
4791 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4793 u32 sg_len
, len
, blen
;
4795 /* determine if physical DMA addr spans 64K boundary.
4796 * Note h/w doesn't support 64-bit, so we unconditionally
4797 * truncate dma_addr_t to u32.
4799 addr
= (u32
) sg_dma_address(sg
);
4800 sg_len
= sg_dma_len(sg
);
4803 offset
= addr
& 0xffff;
4805 if ((offset
+ sg_len
) > 0x10000)
4806 len
= 0x10000 - offset
;
4808 blen
= len
& 0xffff;
4809 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4811 /* Some PATA chipsets like the CS5530 can't
4812 cope with 0x0000 meaning 64K as the spec says */
4813 ap
->prd
[pi
].flags_len
= cpu_to_le32(0x8000);
4815 ap
->prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
4817 ap
->prd
[pi
].flags_len
= cpu_to_le32(blen
);
4818 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4826 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4830 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4831 * @qc: Metadata associated with taskfile to check
4833 * Allow low-level driver to filter ATA PACKET commands, returning
4834 * a status indicating whether or not it is OK to use DMA for the
4835 * supplied PACKET command.
4838 * spin_lock_irqsave(host lock)
4840 * RETURNS: 0 when ATAPI DMA can be used
4843 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4845 struct ata_port
*ap
= qc
->ap
;
4847 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4848 * few ATAPI devices choke on such DMA requests.
4850 if (unlikely(qc
->nbytes
& 15))
4853 if (ap
->ops
->check_atapi_dma
)
4854 return ap
->ops
->check_atapi_dma(qc
);
4860 * ata_std_qc_defer - Check whether a qc needs to be deferred
4861 * @qc: ATA command in question
4863 * Non-NCQ commands cannot run with any other command, NCQ or
4864 * not. As upper layer only knows the queue depth, we are
4865 * responsible for maintaining exclusion. This function checks
4866 * whether a new command @qc can be issued.
4869 * spin_lock_irqsave(host lock)
4872 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4874 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4876 struct ata_link
*link
= qc
->dev
->link
;
4878 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4879 if (!ata_tag_valid(link
->active_tag
))
4882 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4886 return ATA_DEFER_LINK
;
4890 * ata_qc_prep - Prepare taskfile for submission
4891 * @qc: Metadata associated with taskfile to be prepared
4893 * Prepare ATA taskfile for submission.
4896 * spin_lock_irqsave(host lock)
4898 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4900 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4907 * ata_dumb_qc_prep - Prepare taskfile for submission
4908 * @qc: Metadata associated with taskfile to be prepared
4910 * Prepare ATA taskfile for submission.
4913 * spin_lock_irqsave(host lock)
4915 void ata_dumb_qc_prep(struct ata_queued_cmd
*qc
)
4917 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4920 ata_fill_sg_dumb(qc
);
4923 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4926 * ata_sg_init - Associate command with scatter-gather table.
4927 * @qc: Command to be associated
4928 * @sg: Scatter-gather table.
4929 * @n_elem: Number of elements in s/g table.
4931 * Initialize the data-related elements of queued_cmd @qc
4932 * to point to a scatter-gather table @sg, containing @n_elem
4936 * spin_lock_irqsave(host lock)
4938 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4939 unsigned int n_elem
)
4942 qc
->n_elem
= n_elem
;
4947 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4948 * @qc: Command with scatter-gather table to be mapped.
4950 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4953 * spin_lock_irqsave(host lock)
4956 * Zero on success, negative on error.
4959 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4961 struct ata_port
*ap
= qc
->ap
;
4962 unsigned int n_elem
;
4964 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4966 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4970 DPRINTK("%d sg elements mapped\n", n_elem
);
4972 qc
->n_elem
= n_elem
;
4973 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4979 * swap_buf_le16 - swap halves of 16-bit words in place
4980 * @buf: Buffer to swap
4981 * @buf_words: Number of 16-bit words in buffer.
4983 * Swap halves of 16-bit words if needed to convert from
4984 * little-endian byte order to native cpu byte order, or
4988 * Inherited from caller.
4990 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4995 for (i
= 0; i
< buf_words
; i
++)
4996 buf
[i
] = le16_to_cpu(buf
[i
]);
4997 #endif /* __BIG_ENDIAN */
5001 * ata_data_xfer - Transfer data by PIO
5002 * @dev: device to target
5004 * @buflen: buffer length
5007 * Transfer data from/to the device data register by PIO.
5010 * Inherited from caller.
5015 unsigned int ata_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
5016 unsigned int buflen
, int rw
)
5018 struct ata_port
*ap
= dev
->link
->ap
;
5019 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
5020 unsigned int words
= buflen
>> 1;
5022 /* Transfer multiple of 2 bytes */
5024 ioread16_rep(data_addr
, buf
, words
);
5026 iowrite16_rep(data_addr
, buf
, words
);
5028 /* Transfer trailing 1 byte, if any. */
5029 if (unlikely(buflen
& 0x01)) {
5030 __le16 align_buf
[1] = { 0 };
5031 unsigned char *trailing_buf
= buf
+ buflen
- 1;
5034 align_buf
[0] = cpu_to_le16(ioread16(data_addr
));
5035 memcpy(trailing_buf
, align_buf
, 1);
5037 memcpy(align_buf
, trailing_buf
, 1);
5038 iowrite16(le16_to_cpu(align_buf
[0]), data_addr
);
5047 * ata_data_xfer_noirq - Transfer data by PIO
5048 * @dev: device to target
5050 * @buflen: buffer length
5053 * Transfer data from/to the device data register by PIO. Do the
5054 * transfer with interrupts disabled.
5057 * Inherited from caller.
5062 unsigned int ata_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
5063 unsigned int buflen
, int rw
)
5065 unsigned long flags
;
5066 unsigned int consumed
;
5068 local_irq_save(flags
);
5069 consumed
= ata_data_xfer(dev
, buf
, buflen
, rw
);
5070 local_irq_restore(flags
);
5077 * ata_pio_sector - Transfer a sector of data.
5078 * @qc: Command on going
5080 * Transfer qc->sect_size bytes of data from/to the ATA device.
5083 * Inherited from caller.
5086 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
5088 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
5089 struct ata_port
*ap
= qc
->ap
;
5091 unsigned int offset
;
5094 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
5095 ap
->hsm_task_state
= HSM_ST_LAST
;
5097 page
= sg_page(qc
->cursg
);
5098 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
5100 /* get the current page and offset */
5101 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5102 offset
%= PAGE_SIZE
;
5104 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5106 if (PageHighMem(page
)) {
5107 unsigned long flags
;
5109 /* FIXME: use a bounce buffer */
5110 local_irq_save(flags
);
5111 buf
= kmap_atomic(page
, KM_IRQ0
);
5113 /* do the actual data transfer */
5114 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5116 kunmap_atomic(buf
, KM_IRQ0
);
5117 local_irq_restore(flags
);
5119 buf
= page_address(page
);
5120 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5123 qc
->curbytes
+= qc
->sect_size
;
5124 qc
->cursg_ofs
+= qc
->sect_size
;
5126 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
5127 qc
->cursg
= sg_next(qc
->cursg
);
5133 * ata_pio_sectors - Transfer one or many sectors.
5134 * @qc: Command on going
5136 * Transfer one or many sectors of data from/to the
5137 * ATA device for the DRQ request.
5140 * Inherited from caller.
5143 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
5145 if (is_multi_taskfile(&qc
->tf
)) {
5146 /* READ/WRITE MULTIPLE */
5149 WARN_ON(qc
->dev
->multi_count
== 0);
5151 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
5152 qc
->dev
->multi_count
);
5158 ata_altstatus(qc
->ap
); /* flush */
5162 * atapi_send_cdb - Write CDB bytes to hardware
5163 * @ap: Port to which ATAPI device is attached.
5164 * @qc: Taskfile currently active
5166 * When device has indicated its readiness to accept
5167 * a CDB, this function is called. Send the CDB.
5173 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5176 DPRINTK("send cdb\n");
5177 WARN_ON(qc
->dev
->cdb_len
< 12);
5179 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
5180 ata_altstatus(ap
); /* flush */
5182 switch (qc
->tf
.protocol
) {
5183 case ATAPI_PROT_PIO
:
5184 ap
->hsm_task_state
= HSM_ST
;
5186 case ATAPI_PROT_NODATA
:
5187 ap
->hsm_task_state
= HSM_ST_LAST
;
5189 case ATAPI_PROT_DMA
:
5190 ap
->hsm_task_state
= HSM_ST_LAST
;
5191 /* initiate bmdma */
5192 ap
->ops
->bmdma_start(qc
);
5198 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5199 * @qc: Command on going
5200 * @bytes: number of bytes
5202 * Transfer Transfer data from/to the ATAPI device.
5205 * Inherited from caller.
5208 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
5210 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
5211 struct ata_port
*ap
= qc
->ap
;
5212 struct ata_device
*dev
= qc
->dev
;
5213 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5214 struct scatterlist
*sg
;
5217 unsigned int offset
, count
, consumed
;
5221 if (unlikely(!sg
)) {
5222 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
5223 "buf=%u cur=%u bytes=%u",
5224 qc
->nbytes
, qc
->curbytes
, bytes
);
5229 offset
= sg
->offset
+ qc
->cursg_ofs
;
5231 /* get the current page and offset */
5232 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5233 offset
%= PAGE_SIZE
;
5235 /* don't overrun current sg */
5236 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
5238 /* don't cross page boundaries */
5239 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
5241 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5243 if (PageHighMem(page
)) {
5244 unsigned long flags
;
5246 /* FIXME: use bounce buffer */
5247 local_irq_save(flags
);
5248 buf
= kmap_atomic(page
, KM_IRQ0
);
5250 /* do the actual data transfer */
5251 consumed
= ap
->ops
->data_xfer(dev
, buf
+ offset
, count
, rw
);
5253 kunmap_atomic(buf
, KM_IRQ0
);
5254 local_irq_restore(flags
);
5256 buf
= page_address(page
);
5257 consumed
= ap
->ops
->data_xfer(dev
, buf
+ offset
, count
, rw
);
5260 bytes
-= min(bytes
, consumed
);
5261 qc
->curbytes
+= count
;
5262 qc
->cursg_ofs
+= count
;
5264 if (qc
->cursg_ofs
== sg
->length
) {
5265 qc
->cursg
= sg_next(qc
->cursg
);
5269 /* consumed can be larger than count only for the last transfer */
5270 WARN_ON(qc
->cursg
&& count
!= consumed
);
5278 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5279 * @qc: Command on going
5281 * Transfer Transfer data from/to the ATAPI device.
5284 * Inherited from caller.
5287 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
5289 struct ata_port
*ap
= qc
->ap
;
5290 struct ata_device
*dev
= qc
->dev
;
5291 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5292 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
5293 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
5295 /* Abuse qc->result_tf for temp storage of intermediate TF
5296 * here to save some kernel stack usage.
5297 * For normal completion, qc->result_tf is not relevant. For
5298 * error, qc->result_tf is later overwritten by ata_qc_complete().
5299 * So, the correctness of qc->result_tf is not affected.
5301 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5302 ireason
= qc
->result_tf
.nsect
;
5303 bc_lo
= qc
->result_tf
.lbam
;
5304 bc_hi
= qc
->result_tf
.lbah
;
5305 bytes
= (bc_hi
<< 8) | bc_lo
;
5307 /* shall be cleared to zero, indicating xfer of data */
5308 if (unlikely(ireason
& (1 << 0)))
5311 /* make sure transfer direction matches expected */
5312 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
5313 if (unlikely(do_write
!= i_write
))
5316 if (unlikely(!bytes
))
5319 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
5321 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
5323 ata_altstatus(ap
); /* flush */
5328 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
5331 qc
->err_mask
|= AC_ERR_HSM
;
5332 ap
->hsm_task_state
= HSM_ST_ERR
;
5336 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5337 * @ap: the target ata_port
5341 * 1 if ok in workqueue, 0 otherwise.
5344 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5346 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5349 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
5350 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
5351 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
5354 if (ata_is_atapi(qc
->tf
.protocol
) &&
5355 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5363 * ata_hsm_qc_complete - finish a qc running on standard HSM
5364 * @qc: Command to complete
5365 * @in_wq: 1 if called from workqueue, 0 otherwise
5367 * Finish @qc which is running on standard HSM.
5370 * If @in_wq is zero, spin_lock_irqsave(host lock).
5371 * Otherwise, none on entry and grabs host lock.
5373 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
5375 struct ata_port
*ap
= qc
->ap
;
5376 unsigned long flags
;
5378 if (ap
->ops
->error_handler
) {
5380 spin_lock_irqsave(ap
->lock
, flags
);
5382 /* EH might have kicked in while host lock is
5385 qc
= ata_qc_from_tag(ap
, qc
->tag
);
5387 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
5388 ap
->ops
->irq_on(ap
);
5389 ata_qc_complete(qc
);
5391 ata_port_freeze(ap
);
5394 spin_unlock_irqrestore(ap
->lock
, flags
);
5396 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
5397 ata_qc_complete(qc
);
5399 ata_port_freeze(ap
);
5403 spin_lock_irqsave(ap
->lock
, flags
);
5404 ap
->ops
->irq_on(ap
);
5405 ata_qc_complete(qc
);
5406 spin_unlock_irqrestore(ap
->lock
, flags
);
5408 ata_qc_complete(qc
);
5413 * ata_hsm_move - move the HSM to the next state.
5414 * @ap: the target ata_port
5416 * @status: current device status
5417 * @in_wq: 1 if called from workqueue, 0 otherwise
5420 * 1 when poll next status needed, 0 otherwise.
5422 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
5423 u8 status
, int in_wq
)
5425 unsigned long flags
= 0;
5428 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
5430 /* Make sure ata_qc_issue_prot() does not throw things
5431 * like DMA polling into the workqueue. Notice that
5432 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5434 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
5437 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5438 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
5440 switch (ap
->hsm_task_state
) {
5442 /* Send first data block or PACKET CDB */
5444 /* If polling, we will stay in the work queue after
5445 * sending the data. Otherwise, interrupt handler
5446 * takes over after sending the data.
5448 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5450 /* check device status */
5451 if (unlikely((status
& ATA_DRQ
) == 0)) {
5452 /* handle BSY=0, DRQ=0 as error */
5453 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5454 /* device stops HSM for abort/error */
5455 qc
->err_mask
|= AC_ERR_DEV
;
5457 /* HSM violation. Let EH handle this */
5458 qc
->err_mask
|= AC_ERR_HSM
;
5460 ap
->hsm_task_state
= HSM_ST_ERR
;
5464 /* Device should not ask for data transfer (DRQ=1)
5465 * when it finds something wrong.
5466 * We ignore DRQ here and stop the HSM by
5467 * changing hsm_task_state to HSM_ST_ERR and
5468 * let the EH abort the command or reset the device.
5470 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5471 /* Some ATAPI tape drives forget to clear the ERR bit
5472 * when doing the next command (mostly request sense).
5473 * We ignore ERR here to workaround and proceed sending
5476 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
5477 ata_port_printk(ap
, KERN_WARNING
,
5478 "DRQ=1 with device error, "
5479 "dev_stat 0x%X\n", status
);
5480 qc
->err_mask
|= AC_ERR_HSM
;
5481 ap
->hsm_task_state
= HSM_ST_ERR
;
5486 /* Send the CDB (atapi) or the first data block (ata pio out).
5487 * During the state transition, interrupt handler shouldn't
5488 * be invoked before the data transfer is complete and
5489 * hsm_task_state is changed. Hence, the following locking.
5492 spin_lock_irqsave(ap
->lock
, flags
);
5494 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
5495 /* PIO data out protocol.
5496 * send first data block.
5499 /* ata_pio_sectors() might change the state
5500 * to HSM_ST_LAST. so, the state is changed here
5501 * before ata_pio_sectors().
5503 ap
->hsm_task_state
= HSM_ST
;
5504 ata_pio_sectors(qc
);
5507 atapi_send_cdb(ap
, qc
);
5510 spin_unlock_irqrestore(ap
->lock
, flags
);
5512 /* if polling, ata_pio_task() handles the rest.
5513 * otherwise, interrupt handler takes over from here.
5518 /* complete command or read/write the data register */
5519 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
5520 /* ATAPI PIO protocol */
5521 if ((status
& ATA_DRQ
) == 0) {
5522 /* No more data to transfer or device error.
5523 * Device error will be tagged in HSM_ST_LAST.
5525 ap
->hsm_task_state
= HSM_ST_LAST
;
5529 /* Device should not ask for data transfer (DRQ=1)
5530 * when it finds something wrong.
5531 * We ignore DRQ here and stop the HSM by
5532 * changing hsm_task_state to HSM_ST_ERR and
5533 * let the EH abort the command or reset the device.
5535 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5536 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
5537 "device error, dev_stat 0x%X\n",
5539 qc
->err_mask
|= AC_ERR_HSM
;
5540 ap
->hsm_task_state
= HSM_ST_ERR
;
5544 atapi_pio_bytes(qc
);
5546 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
5547 /* bad ireason reported by device */
5551 /* ATA PIO protocol */
5552 if (unlikely((status
& ATA_DRQ
) == 0)) {
5553 /* handle BSY=0, DRQ=0 as error */
5554 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5555 /* device stops HSM for abort/error */
5556 qc
->err_mask
|= AC_ERR_DEV
;
5558 /* HSM violation. Let EH handle this.
5559 * Phantom devices also trigger this
5560 * condition. Mark hint.
5562 qc
->err_mask
|= AC_ERR_HSM
|
5565 ap
->hsm_task_state
= HSM_ST_ERR
;
5569 /* For PIO reads, some devices may ask for
5570 * data transfer (DRQ=1) alone with ERR=1.
5571 * We respect DRQ here and transfer one
5572 * block of junk data before changing the
5573 * hsm_task_state to HSM_ST_ERR.
5575 * For PIO writes, ERR=1 DRQ=1 doesn't make
5576 * sense since the data block has been
5577 * transferred to the device.
5579 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5580 /* data might be corrputed */
5581 qc
->err_mask
|= AC_ERR_DEV
;
5583 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
5584 ata_pio_sectors(qc
);
5585 status
= ata_wait_idle(ap
);
5588 if (status
& (ATA_BUSY
| ATA_DRQ
))
5589 qc
->err_mask
|= AC_ERR_HSM
;
5591 /* ata_pio_sectors() might change the
5592 * state to HSM_ST_LAST. so, the state
5593 * is changed after ata_pio_sectors().
5595 ap
->hsm_task_state
= HSM_ST_ERR
;
5599 ata_pio_sectors(qc
);
5601 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
5602 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
5604 status
= ata_wait_idle(ap
);
5613 if (unlikely(!ata_ok(status
))) {
5614 qc
->err_mask
|= __ac_err_mask(status
);
5615 ap
->hsm_task_state
= HSM_ST_ERR
;
5619 /* no more data to transfer */
5620 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5621 ap
->print_id
, qc
->dev
->devno
, status
);
5623 WARN_ON(qc
->err_mask
);
5625 ap
->hsm_task_state
= HSM_ST_IDLE
;
5627 /* complete taskfile transaction */
5628 ata_hsm_qc_complete(qc
, in_wq
);
5634 /* make sure qc->err_mask is available to
5635 * know what's wrong and recover
5637 WARN_ON(qc
->err_mask
== 0);
5639 ap
->hsm_task_state
= HSM_ST_IDLE
;
5641 /* complete taskfile transaction */
5642 ata_hsm_qc_complete(qc
, in_wq
);
5654 static void ata_pio_task(struct work_struct
*work
)
5656 struct ata_port
*ap
=
5657 container_of(work
, struct ata_port
, port_task
.work
);
5658 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
5663 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5666 * This is purely heuristic. This is a fast path.
5667 * Sometimes when we enter, BSY will be cleared in
5668 * a chk-status or two. If not, the drive is probably seeking
5669 * or something. Snooze for a couple msecs, then
5670 * chk-status again. If still busy, queue delayed work.
5672 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
5673 if (status
& ATA_BUSY
) {
5675 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
5676 if (status
& ATA_BUSY
) {
5677 ata_pio_queue_task(ap
, qc
, ATA_SHORT_PAUSE
);
5683 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
5685 /* another command or interrupt handler
5686 * may be running at this point.
5693 * ata_qc_new - Request an available ATA command, for queueing
5694 * @ap: Port associated with device @dev
5695 * @dev: Device from whom we request an available command structure
5701 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
5703 struct ata_queued_cmd
*qc
= NULL
;
5706 /* no command while frozen */
5707 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5710 /* the last tag is reserved for internal command. */
5711 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
5712 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
5713 qc
= __ata_qc_from_tag(ap
, i
);
5724 * ata_qc_new_init - Request an available ATA command, and initialize it
5725 * @dev: Device from whom we request an available command structure
5731 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5733 struct ata_port
*ap
= dev
->link
->ap
;
5734 struct ata_queued_cmd
*qc
;
5736 qc
= ata_qc_new(ap
);
5749 * ata_qc_free - free unused ata_queued_cmd
5750 * @qc: Command to complete
5752 * Designed to free unused ata_queued_cmd object
5753 * in case something prevents using it.
5756 * spin_lock_irqsave(host lock)
5758 void ata_qc_free(struct ata_queued_cmd
*qc
)
5760 struct ata_port
*ap
= qc
->ap
;
5763 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5767 if (likely(ata_tag_valid(tag
))) {
5768 qc
->tag
= ATA_TAG_POISON
;
5769 clear_bit(tag
, &ap
->qc_allocated
);
5773 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5775 struct ata_port
*ap
= qc
->ap
;
5776 struct ata_link
*link
= qc
->dev
->link
;
5778 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5779 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5781 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5784 /* command should be marked inactive atomically with qc completion */
5785 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5786 link
->sactive
&= ~(1 << qc
->tag
);
5788 ap
->nr_active_links
--;
5790 link
->active_tag
= ATA_TAG_POISON
;
5791 ap
->nr_active_links
--;
5794 /* clear exclusive status */
5795 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
5796 ap
->excl_link
== link
))
5797 ap
->excl_link
= NULL
;
5799 /* atapi: mark qc as inactive to prevent the interrupt handler
5800 * from completing the command twice later, before the error handler
5801 * is called. (when rc != 0 and atapi request sense is needed)
5803 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5804 ap
->qc_active
&= ~(1 << qc
->tag
);
5806 /* call completion callback */
5807 qc
->complete_fn(qc
);
5810 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5812 struct ata_port
*ap
= qc
->ap
;
5814 qc
->result_tf
.flags
= qc
->tf
.flags
;
5815 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5818 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
5820 struct ata_device
*dev
= qc
->dev
;
5822 if (ata_tag_internal(qc
->tag
))
5825 if (ata_is_nodata(qc
->tf
.protocol
))
5828 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
5831 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
5835 * ata_qc_complete - Complete an active ATA command
5836 * @qc: Command to complete
5837 * @err_mask: ATA Status register contents
5839 * Indicate to the mid and upper layers that an ATA
5840 * command has completed, with either an ok or not-ok status.
5843 * spin_lock_irqsave(host lock)
5845 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5847 struct ata_port
*ap
= qc
->ap
;
5849 /* XXX: New EH and old EH use different mechanisms to
5850 * synchronize EH with regular execution path.
5852 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5853 * Normal execution path is responsible for not accessing a
5854 * failed qc. libata core enforces the rule by returning NULL
5855 * from ata_qc_from_tag() for failed qcs.
5857 * Old EH depends on ata_qc_complete() nullifying completion
5858 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5859 * not synchronize with interrupt handler. Only PIO task is
5862 if (ap
->ops
->error_handler
) {
5863 struct ata_device
*dev
= qc
->dev
;
5864 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5866 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5868 if (unlikely(qc
->err_mask
))
5869 qc
->flags
|= ATA_QCFLAG_FAILED
;
5871 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5872 if (!ata_tag_internal(qc
->tag
)) {
5873 /* always fill result TF for failed qc */
5875 ata_qc_schedule_eh(qc
);
5880 /* read result TF if requested */
5881 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5884 /* Some commands need post-processing after successful
5887 switch (qc
->tf
.command
) {
5888 case ATA_CMD_SET_FEATURES
:
5889 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5890 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5893 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5894 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5895 /* revalidate device */
5896 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5897 ata_port_schedule_eh(ap
);
5901 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5905 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5906 ata_verify_xfer(qc
);
5908 __ata_qc_complete(qc
);
5910 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5913 /* read result TF if failed or requested */
5914 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5917 __ata_qc_complete(qc
);
5922 * ata_qc_complete_multiple - Complete multiple qcs successfully
5923 * @ap: port in question
5924 * @qc_active: new qc_active mask
5925 * @finish_qc: LLDD callback invoked before completing a qc
5927 * Complete in-flight commands. This functions is meant to be
5928 * called from low-level driver's interrupt routine to complete
5929 * requests normally. ap->qc_active and @qc_active is compared
5930 * and commands are completed accordingly.
5933 * spin_lock_irqsave(host lock)
5936 * Number of completed commands on success, -errno otherwise.
5938 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5939 void (*finish_qc
)(struct ata_queued_cmd
*))
5945 done_mask
= ap
->qc_active
^ qc_active
;
5947 if (unlikely(done_mask
& qc_active
)) {
5948 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5949 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5953 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5954 struct ata_queued_cmd
*qc
;
5956 if (!(done_mask
& (1 << i
)))
5959 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5962 ata_qc_complete(qc
);
5971 * ata_qc_issue - issue taskfile to device
5972 * @qc: command to issue to device
5974 * Prepare an ATA command to submission to device.
5975 * This includes mapping the data into a DMA-able
5976 * area, filling in the S/G table, and finally
5977 * writing the taskfile to hardware, starting the command.
5980 * spin_lock_irqsave(host lock)
5982 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5984 struct ata_port
*ap
= qc
->ap
;
5985 struct ata_link
*link
= qc
->dev
->link
;
5986 u8 prot
= qc
->tf
.protocol
;
5988 /* Make sure only one non-NCQ command is outstanding. The
5989 * check is skipped for old EH because it reuses active qc to
5990 * request ATAPI sense.
5992 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5994 if (ata_is_ncq(prot
)) {
5995 WARN_ON(link
->sactive
& (1 << qc
->tag
));
5998 ap
->nr_active_links
++;
5999 link
->sactive
|= 1 << qc
->tag
;
6001 WARN_ON(link
->sactive
);
6003 ap
->nr_active_links
++;
6004 link
->active_tag
= qc
->tag
;
6007 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
6008 ap
->qc_active
|= 1 << qc
->tag
;
6010 /* We guarantee to LLDs that they will have at least one
6011 * non-zero sg if the command is a data command.
6013 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
6015 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
6016 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
6017 if (ata_sg_setup(qc
))
6020 /* if device is sleeping, schedule softreset and abort the link */
6021 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
6022 link
->eh_info
.action
|= ATA_EH_SOFTRESET
;
6023 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
6024 ata_link_abort(link
);
6028 ap
->ops
->qc_prep(qc
);
6030 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
6031 if (unlikely(qc
->err_mask
))
6036 qc
->err_mask
|= AC_ERR_SYSTEM
;
6038 ata_qc_complete(qc
);
6042 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6043 * @qc: command to issue to device
6045 * Using various libata functions and hooks, this function
6046 * starts an ATA command. ATA commands are grouped into
6047 * classes called "protocols", and issuing each type of protocol
6048 * is slightly different.
6050 * May be used as the qc_issue() entry in ata_port_operations.
6053 * spin_lock_irqsave(host lock)
6056 * Zero on success, AC_ERR_* mask on failure
6059 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
6061 struct ata_port
*ap
= qc
->ap
;
6063 /* Use polling pio if the LLD doesn't handle
6064 * interrupt driven pio and atapi CDB interrupt.
6066 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
6067 switch (qc
->tf
.protocol
) {
6069 case ATA_PROT_NODATA
:
6070 case ATAPI_PROT_PIO
:
6071 case ATAPI_PROT_NODATA
:
6072 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
6074 case ATAPI_PROT_DMA
:
6075 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
6076 /* see ata_dma_blacklisted() */
6084 /* select the device */
6085 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
6087 /* start the command */
6088 switch (qc
->tf
.protocol
) {
6089 case ATA_PROT_NODATA
:
6090 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6091 ata_qc_set_polling(qc
);
6093 ata_tf_to_host(ap
, &qc
->tf
);
6094 ap
->hsm_task_state
= HSM_ST_LAST
;
6096 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6097 ata_pio_queue_task(ap
, qc
, 0);
6102 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6104 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6105 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6106 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
6107 ap
->hsm_task_state
= HSM_ST_LAST
;
6111 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6112 ata_qc_set_polling(qc
);
6114 ata_tf_to_host(ap
, &qc
->tf
);
6116 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
6117 /* PIO data out protocol */
6118 ap
->hsm_task_state
= HSM_ST_FIRST
;
6119 ata_pio_queue_task(ap
, qc
, 0);
6121 /* always send first data block using
6122 * the ata_pio_task() codepath.
6125 /* PIO data in protocol */
6126 ap
->hsm_task_state
= HSM_ST
;
6128 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6129 ata_pio_queue_task(ap
, qc
, 0);
6131 /* if polling, ata_pio_task() handles the rest.
6132 * otherwise, interrupt handler takes over from here.
6138 case ATAPI_PROT_PIO
:
6139 case ATAPI_PROT_NODATA
:
6140 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6141 ata_qc_set_polling(qc
);
6143 ata_tf_to_host(ap
, &qc
->tf
);
6145 ap
->hsm_task_state
= HSM_ST_FIRST
;
6147 /* send cdb by polling if no cdb interrupt */
6148 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
6149 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
6150 ata_pio_queue_task(ap
, qc
, 0);
6153 case ATAPI_PROT_DMA
:
6154 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6156 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6157 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6158 ap
->hsm_task_state
= HSM_ST_FIRST
;
6160 /* send cdb by polling if no cdb interrupt */
6161 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6162 ata_pio_queue_task(ap
, qc
, 0);
6167 return AC_ERR_SYSTEM
;
6174 * ata_host_intr - Handle host interrupt for given (port, task)
6175 * @ap: Port on which interrupt arrived (possibly...)
6176 * @qc: Taskfile currently active in engine
6178 * Handle host interrupt for given queued command. Currently,
6179 * only DMA interrupts are handled. All other commands are
6180 * handled via polling with interrupts disabled (nIEN bit).
6183 * spin_lock_irqsave(host lock)
6186 * One if interrupt was handled, zero if not (shared irq).
6189 inline unsigned int ata_host_intr(struct ata_port
*ap
,
6190 struct ata_queued_cmd
*qc
)
6192 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6193 u8 status
, host_stat
= 0;
6195 VPRINTK("ata%u: protocol %d task_state %d\n",
6196 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
6198 /* Check whether we are expecting interrupt in this state */
6199 switch (ap
->hsm_task_state
) {
6201 /* Some pre-ATAPI-4 devices assert INTRQ
6202 * at this state when ready to receive CDB.
6205 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6206 * The flag was turned on only for atapi devices. No
6207 * need to check ata_is_atapi(qc->tf.protocol) again.
6209 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6213 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
6214 qc
->tf
.protocol
== ATAPI_PROT_DMA
) {
6215 /* check status of DMA engine */
6216 host_stat
= ap
->ops
->bmdma_status(ap
);
6217 VPRINTK("ata%u: host_stat 0x%X\n",
6218 ap
->print_id
, host_stat
);
6220 /* if it's not our irq... */
6221 if (!(host_stat
& ATA_DMA_INTR
))
6224 /* before we do anything else, clear DMA-Start bit */
6225 ap
->ops
->bmdma_stop(qc
);
6227 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
6228 /* error when transfering data to/from memory */
6229 qc
->err_mask
|= AC_ERR_HOST_BUS
;
6230 ap
->hsm_task_state
= HSM_ST_ERR
;
6240 /* check altstatus */
6241 status
= ata_altstatus(ap
);
6242 if (status
& ATA_BUSY
)
6245 /* check main status, clearing INTRQ */
6246 status
= ata_chk_status(ap
);
6247 if (unlikely(status
& ATA_BUSY
))
6250 /* ack bmdma irq events */
6251 ap
->ops
->irq_clear(ap
);
6253 ata_hsm_move(ap
, qc
, status
, 0);
6255 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
6256 qc
->tf
.protocol
== ATAPI_PROT_DMA
))
6257 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
6259 return 1; /* irq handled */
6262 ap
->stats
.idle_irq
++;
6265 if ((ap
->stats
.idle_irq
% 1000) == 0) {
6267 ap
->ops
->irq_clear(ap
);
6268 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
6272 return 0; /* irq not handled */
6276 * ata_interrupt - Default ATA host interrupt handler
6277 * @irq: irq line (unused)
6278 * @dev_instance: pointer to our ata_host information structure
6280 * Default interrupt handler for PCI IDE devices. Calls
6281 * ata_host_intr() for each port that is not disabled.
6284 * Obtains host lock during operation.
6287 * IRQ_NONE or IRQ_HANDLED.
6290 irqreturn_t
ata_interrupt(int irq
, void *dev_instance
)
6292 struct ata_host
*host
= dev_instance
;
6294 unsigned int handled
= 0;
6295 unsigned long flags
;
6297 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6298 spin_lock_irqsave(&host
->lock
, flags
);
6300 for (i
= 0; i
< host
->n_ports
; i
++) {
6301 struct ata_port
*ap
;
6303 ap
= host
->ports
[i
];
6305 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
6306 struct ata_queued_cmd
*qc
;
6308 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
6309 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
6310 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
6311 handled
|= ata_host_intr(ap
, qc
);
6315 spin_unlock_irqrestore(&host
->lock
, flags
);
6317 return IRQ_RETVAL(handled
);
6321 * sata_scr_valid - test whether SCRs are accessible
6322 * @link: ATA link to test SCR accessibility for
6324 * Test whether SCRs are accessible for @link.
6330 * 1 if SCRs are accessible, 0 otherwise.
6332 int sata_scr_valid(struct ata_link
*link
)
6334 struct ata_port
*ap
= link
->ap
;
6336 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
6340 * sata_scr_read - read SCR register of the specified port
6341 * @link: ATA link to read SCR for
6343 * @val: Place to store read value
6345 * Read SCR register @reg of @link into *@val. This function is
6346 * guaranteed to succeed if @link is ap->link, the cable type of
6347 * the port is SATA and the port implements ->scr_read.
6350 * None if @link is ap->link. Kernel thread context otherwise.
6353 * 0 on success, negative errno on failure.
6355 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
6357 if (ata_is_host_link(link
)) {
6358 struct ata_port
*ap
= link
->ap
;
6360 if (sata_scr_valid(link
))
6361 return ap
->ops
->scr_read(ap
, reg
, val
);
6365 return sata_pmp_scr_read(link
, reg
, val
);
6369 * sata_scr_write - write SCR register of the specified port
6370 * @link: ATA link to write SCR for
6371 * @reg: SCR to write
6372 * @val: value to write
6374 * Write @val to SCR register @reg of @link. This function is
6375 * guaranteed to succeed if @link is ap->link, the cable type of
6376 * the port is SATA and the port implements ->scr_read.
6379 * None if @link is ap->link. Kernel thread context otherwise.
6382 * 0 on success, negative errno on failure.
6384 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
6386 if (ata_is_host_link(link
)) {
6387 struct ata_port
*ap
= link
->ap
;
6389 if (sata_scr_valid(link
))
6390 return ap
->ops
->scr_write(ap
, reg
, val
);
6394 return sata_pmp_scr_write(link
, reg
, val
);
6398 * sata_scr_write_flush - write SCR register of the specified port and flush
6399 * @link: ATA link to write SCR for
6400 * @reg: SCR to write
6401 * @val: value to write
6403 * This function is identical to sata_scr_write() except that this
6404 * function performs flush after writing to the register.
6407 * None if @link is ap->link. Kernel thread context otherwise.
6410 * 0 on success, negative errno on failure.
6412 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
6414 if (ata_is_host_link(link
)) {
6415 struct ata_port
*ap
= link
->ap
;
6418 if (sata_scr_valid(link
)) {
6419 rc
= ap
->ops
->scr_write(ap
, reg
, val
);
6421 rc
= ap
->ops
->scr_read(ap
, reg
, &val
);
6427 return sata_pmp_scr_write(link
, reg
, val
);
6431 * ata_link_online - test whether the given link is online
6432 * @link: ATA link to test
6434 * Test whether @link is online. Note that this function returns
6435 * 0 if online status of @link cannot be obtained, so
6436 * ata_link_online(link) != !ata_link_offline(link).
6442 * 1 if the port online status is available and online.
6444 int ata_link_online(struct ata_link
*link
)
6448 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6449 (sstatus
& 0xf) == 0x3)
6455 * ata_link_offline - test whether the given link is offline
6456 * @link: ATA link to test
6458 * Test whether @link is offline. Note that this function
6459 * returns 0 if offline status of @link cannot be obtained, so
6460 * ata_link_online(link) != !ata_link_offline(link).
6466 * 1 if the port offline status is available and offline.
6468 int ata_link_offline(struct ata_link
*link
)
6472 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6473 (sstatus
& 0xf) != 0x3)
6478 int ata_flush_cache(struct ata_device
*dev
)
6480 unsigned int err_mask
;
6483 if (!ata_try_flush_cache(dev
))
6486 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
6487 cmd
= ATA_CMD_FLUSH_EXT
;
6489 cmd
= ATA_CMD_FLUSH
;
6491 /* This is wrong. On a failed flush we get back the LBA of the lost
6492 sector and we should (assuming it wasn't aborted as unknown) issue
6493 a further flush command to continue the writeback until it
6495 err_mask
= ata_do_simple_cmd(dev
, cmd
);
6497 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
6505 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
6506 unsigned int action
, unsigned int ehi_flags
,
6509 unsigned long flags
;
6512 for (i
= 0; i
< host
->n_ports
; i
++) {
6513 struct ata_port
*ap
= host
->ports
[i
];
6514 struct ata_link
*link
;
6516 /* Previous resume operation might still be in
6517 * progress. Wait for PM_PENDING to clear.
6519 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
6520 ata_port_wait_eh(ap
);
6521 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6524 /* request PM ops to EH */
6525 spin_lock_irqsave(ap
->lock
, flags
);
6530 ap
->pm_result
= &rc
;
6533 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
6534 __ata_port_for_each_link(link
, ap
) {
6535 link
->eh_info
.action
|= action
;
6536 link
->eh_info
.flags
|= ehi_flags
;
6539 ata_port_schedule_eh(ap
);
6541 spin_unlock_irqrestore(ap
->lock
, flags
);
6543 /* wait and check result */
6545 ata_port_wait_eh(ap
);
6546 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6556 * ata_host_suspend - suspend host
6557 * @host: host to suspend
6560 * Suspend @host. Actual operation is performed by EH. This
6561 * function requests EH to perform PM operations and waits for EH
6565 * Kernel thread context (may sleep).
6568 * 0 on success, -errno on failure.
6570 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
6575 * disable link pm on all ports before requesting
6578 ata_lpm_enable(host
);
6580 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
6582 host
->dev
->power
.power_state
= mesg
;
6587 * ata_host_resume - resume host
6588 * @host: host to resume
6590 * Resume @host. Actual operation is performed by EH. This
6591 * function requests EH to perform PM operations and returns.
6592 * Note that all resume operations are performed parallely.
6595 * Kernel thread context (may sleep).
6597 void ata_host_resume(struct ata_host
*host
)
6599 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
6600 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
6601 host
->dev
->power
.power_state
= PMSG_ON
;
6603 /* reenable link pm */
6604 ata_lpm_disable(host
);
6609 * ata_port_start - Set port up for dma.
6610 * @ap: Port to initialize
6612 * Called just after data structures for each port are
6613 * initialized. Allocates space for PRD table.
6615 * May be used as the port_start() entry in ata_port_operations.
6618 * Inherited from caller.
6620 int ata_port_start(struct ata_port
*ap
)
6622 struct device
*dev
= ap
->dev
;
6624 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
6633 * ata_dev_init - Initialize an ata_device structure
6634 * @dev: Device structure to initialize
6636 * Initialize @dev in preparation for probing.
6639 * Inherited from caller.
6641 void ata_dev_init(struct ata_device
*dev
)
6643 struct ata_link
*link
= dev
->link
;
6644 struct ata_port
*ap
= link
->ap
;
6645 unsigned long flags
;
6647 /* SATA spd limit is bound to the first device */
6648 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6651 /* High bits of dev->flags are used to record warm plug
6652 * requests which occur asynchronously. Synchronize using
6655 spin_lock_irqsave(ap
->lock
, flags
);
6656 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
6658 spin_unlock_irqrestore(ap
->lock
, flags
);
6660 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
6661 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
6662 dev
->pio_mask
= UINT_MAX
;
6663 dev
->mwdma_mask
= UINT_MAX
;
6664 dev
->udma_mask
= UINT_MAX
;
6668 * ata_link_init - Initialize an ata_link structure
6669 * @ap: ATA port link is attached to
6670 * @link: Link structure to initialize
6671 * @pmp: Port multiplier port number
6676 * Kernel thread context (may sleep)
6678 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
6682 /* clear everything except for devices */
6683 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
6687 link
->active_tag
= ATA_TAG_POISON
;
6688 link
->hw_sata_spd_limit
= UINT_MAX
;
6690 /* can't use iterator, ap isn't initialized yet */
6691 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
6692 struct ata_device
*dev
= &link
->device
[i
];
6695 dev
->devno
= dev
- link
->device
;
6701 * sata_link_init_spd - Initialize link->sata_spd_limit
6702 * @link: Link to configure sata_spd_limit for
6704 * Initialize @link->[hw_]sata_spd_limit to the currently
6708 * Kernel thread context (may sleep).
6711 * 0 on success, -errno on failure.
6713 int sata_link_init_spd(struct ata_link
*link
)
6719 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
6723 spd
= (scontrol
>> 4) & 0xf;
6725 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6727 ata_force_spd_limit(link
);
6729 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6735 * ata_port_alloc - allocate and initialize basic ATA port resources
6736 * @host: ATA host this allocated port belongs to
6738 * Allocate and initialize basic ATA port resources.
6741 * Allocate ATA port on success, NULL on failure.
6744 * Inherited from calling layer (may sleep).
6746 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
6748 struct ata_port
*ap
;
6752 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
6756 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
6757 ap
->lock
= &host
->lock
;
6758 ap
->flags
= ATA_FLAG_DISABLED
;
6760 ap
->ctl
= ATA_DEVCTL_OBS
;
6762 ap
->dev
= host
->dev
;
6763 ap
->last_ctl
= 0xFF;
6765 #if defined(ATA_VERBOSE_DEBUG)
6766 /* turn on all debugging levels */
6767 ap
->msg_enable
= 0x00FF;
6768 #elif defined(ATA_DEBUG)
6769 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6771 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6774 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
6775 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6776 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6777 INIT_LIST_HEAD(&ap
->eh_done_q
);
6778 init_waitqueue_head(&ap
->eh_wait_q
);
6779 init_timer_deferrable(&ap
->fastdrain_timer
);
6780 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
6781 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
6783 ap
->cbl
= ATA_CBL_NONE
;
6785 ata_link_init(ap
, &ap
->link
, 0);
6788 ap
->stats
.unhandled_irq
= 1;
6789 ap
->stats
.idle_irq
= 1;
6794 static void ata_host_release(struct device
*gendev
, void *res
)
6796 struct ata_host
*host
= dev_get_drvdata(gendev
);
6799 for (i
= 0; i
< host
->n_ports
; i
++) {
6800 struct ata_port
*ap
= host
->ports
[i
];
6806 scsi_host_put(ap
->scsi_host
);
6808 kfree(ap
->pmp_link
);
6810 host
->ports
[i
] = NULL
;
6813 dev_set_drvdata(gendev
, NULL
);
6817 * ata_host_alloc - allocate and init basic ATA host resources
6818 * @dev: generic device this host is associated with
6819 * @max_ports: maximum number of ATA ports associated with this host
6821 * Allocate and initialize basic ATA host resources. LLD calls
6822 * this function to allocate a host, initializes it fully and
6823 * attaches it using ata_host_register().
6825 * @max_ports ports are allocated and host->n_ports is
6826 * initialized to @max_ports. The caller is allowed to decrease
6827 * host->n_ports before calling ata_host_register(). The unused
6828 * ports will be automatically freed on registration.
6831 * Allocate ATA host on success, NULL on failure.
6834 * Inherited from calling layer (may sleep).
6836 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6838 struct ata_host
*host
;
6844 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6847 /* alloc a container for our list of ATA ports (buses) */
6848 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6849 /* alloc a container for our list of ATA ports (buses) */
6850 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6854 devres_add(dev
, host
);
6855 dev_set_drvdata(dev
, host
);
6857 spin_lock_init(&host
->lock
);
6859 host
->n_ports
= max_ports
;
6861 /* allocate ports bound to this host */
6862 for (i
= 0; i
< max_ports
; i
++) {
6863 struct ata_port
*ap
;
6865 ap
= ata_port_alloc(host
);
6870 host
->ports
[i
] = ap
;
6873 devres_remove_group(dev
, NULL
);
6877 devres_release_group(dev
, NULL
);
6882 * ata_host_alloc_pinfo - alloc host and init with port_info array
6883 * @dev: generic device this host is associated with
6884 * @ppi: array of ATA port_info to initialize host with
6885 * @n_ports: number of ATA ports attached to this host
6887 * Allocate ATA host and initialize with info from @ppi. If NULL
6888 * terminated, @ppi may contain fewer entries than @n_ports. The
6889 * last entry will be used for the remaining ports.
6892 * Allocate ATA host on success, NULL on failure.
6895 * Inherited from calling layer (may sleep).
6897 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6898 const struct ata_port_info
* const * ppi
,
6901 const struct ata_port_info
*pi
;
6902 struct ata_host
*host
;
6905 host
= ata_host_alloc(dev
, n_ports
);
6909 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6910 struct ata_port
*ap
= host
->ports
[i
];
6915 ap
->pio_mask
= pi
->pio_mask
;
6916 ap
->mwdma_mask
= pi
->mwdma_mask
;
6917 ap
->udma_mask
= pi
->udma_mask
;
6918 ap
->flags
|= pi
->flags
;
6919 ap
->link
.flags
|= pi
->link_flags
;
6920 ap
->ops
= pi
->port_ops
;
6922 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6923 host
->ops
= pi
->port_ops
;
6924 if (!host
->private_data
&& pi
->private_data
)
6925 host
->private_data
= pi
->private_data
;
6931 static void ata_host_stop(struct device
*gendev
, void *res
)
6933 struct ata_host
*host
= dev_get_drvdata(gendev
);
6936 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
6938 for (i
= 0; i
< host
->n_ports
; i
++) {
6939 struct ata_port
*ap
= host
->ports
[i
];
6941 if (ap
->ops
->port_stop
)
6942 ap
->ops
->port_stop(ap
);
6945 if (host
->ops
->host_stop
)
6946 host
->ops
->host_stop(host
);
6950 * ata_host_start - start and freeze ports of an ATA host
6951 * @host: ATA host to start ports for
6953 * Start and then freeze ports of @host. Started status is
6954 * recorded in host->flags, so this function can be called
6955 * multiple times. Ports are guaranteed to get started only
6956 * once. If host->ops isn't initialized yet, its set to the
6957 * first non-dummy port ops.
6960 * Inherited from calling layer (may sleep).
6963 * 0 if all ports are started successfully, -errno otherwise.
6965 int ata_host_start(struct ata_host
*host
)
6968 void *start_dr
= NULL
;
6971 if (host
->flags
& ATA_HOST_STARTED
)
6974 for (i
= 0; i
< host
->n_ports
; i
++) {
6975 struct ata_port
*ap
= host
->ports
[i
];
6977 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6978 host
->ops
= ap
->ops
;
6980 if (ap
->ops
->port_stop
)
6984 if (host
->ops
->host_stop
)
6988 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6993 for (i
= 0; i
< host
->n_ports
; i
++) {
6994 struct ata_port
*ap
= host
->ports
[i
];
6996 if (ap
->ops
->port_start
) {
6997 rc
= ap
->ops
->port_start(ap
);
7000 dev_printk(KERN_ERR
, host
->dev
,
7001 "failed to start port %d "
7002 "(errno=%d)\n", i
, rc
);
7006 ata_eh_freeze_port(ap
);
7010 devres_add(host
->dev
, start_dr
);
7011 host
->flags
|= ATA_HOST_STARTED
;
7016 struct ata_port
*ap
= host
->ports
[i
];
7018 if (ap
->ops
->port_stop
)
7019 ap
->ops
->port_stop(ap
);
7021 devres_free(start_dr
);
7026 * ata_sas_host_init - Initialize a host struct
7027 * @host: host to initialize
7028 * @dev: device host is attached to
7029 * @flags: host flags
7033 * PCI/etc. bus probe sem.
7036 /* KILLME - the only user left is ipr */
7037 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
7038 unsigned long flags
, const struct ata_port_operations
*ops
)
7040 spin_lock_init(&host
->lock
);
7042 host
->flags
= flags
;
7047 * ata_host_register - register initialized ATA host
7048 * @host: ATA host to register
7049 * @sht: template for SCSI host
7051 * Register initialized ATA host. @host is allocated using
7052 * ata_host_alloc() and fully initialized by LLD. This function
7053 * starts ports, registers @host with ATA and SCSI layers and
7054 * probe registered devices.
7057 * Inherited from calling layer (may sleep).
7060 * 0 on success, -errno otherwise.
7062 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
7066 /* host must have been started */
7067 if (!(host
->flags
& ATA_HOST_STARTED
)) {
7068 dev_printk(KERN_ERR
, host
->dev
,
7069 "BUG: trying to register unstarted host\n");
7074 /* Blow away unused ports. This happens when LLD can't
7075 * determine the exact number of ports to allocate at
7078 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
7079 kfree(host
->ports
[i
]);
7081 /* give ports names and add SCSI hosts */
7082 for (i
= 0; i
< host
->n_ports
; i
++)
7083 host
->ports
[i
]->print_id
= ata_print_id
++;
7085 rc
= ata_scsi_add_hosts(host
, sht
);
7089 /* associate with ACPI nodes */
7090 ata_acpi_associate(host
);
7092 /* set cable, sata_spd_limit and report */
7093 for (i
= 0; i
< host
->n_ports
; i
++) {
7094 struct ata_port
*ap
= host
->ports
[i
];
7095 unsigned long xfer_mask
;
7097 /* set SATA cable type if still unset */
7098 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
7099 ap
->cbl
= ATA_CBL_SATA
;
7101 /* init sata_spd_limit to the current value */
7102 sata_link_init_spd(&ap
->link
);
7104 /* print per-port info to dmesg */
7105 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
7108 if (!ata_port_is_dummy(ap
)) {
7109 ata_port_printk(ap
, KERN_INFO
,
7110 "%cATA max %s %s\n",
7111 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
7112 ata_mode_string(xfer_mask
),
7113 ap
->link
.eh_info
.desc
);
7114 ata_ehi_clear_desc(&ap
->link
.eh_info
);
7116 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
7119 /* perform each probe synchronously */
7120 DPRINTK("probe begin\n");
7121 for (i
= 0; i
< host
->n_ports
; i
++) {
7122 struct ata_port
*ap
= host
->ports
[i
];
7125 if (ap
->ops
->error_handler
) {
7126 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
7127 unsigned long flags
;
7131 /* kick EH for boot probing */
7132 spin_lock_irqsave(ap
->lock
, flags
);
7135 (1 << ata_link_max_devices(&ap
->link
)) - 1;
7136 ehi
->action
|= ATA_EH_SOFTRESET
;
7137 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
7139 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
7140 ap
->pflags
|= ATA_PFLAG_LOADING
;
7141 ata_port_schedule_eh(ap
);
7143 spin_unlock_irqrestore(ap
->lock
, flags
);
7145 /* wait for EH to finish */
7146 ata_port_wait_eh(ap
);
7148 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
7149 rc
= ata_bus_probe(ap
);
7150 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
7153 /* FIXME: do something useful here?
7154 * Current libata behavior will
7155 * tear down everything when
7156 * the module is removed
7157 * or the h/w is unplugged.
7163 /* probes are done, now scan each port's disk(s) */
7164 DPRINTK("host probe begin\n");
7165 for (i
= 0; i
< host
->n_ports
; i
++) {
7166 struct ata_port
*ap
= host
->ports
[i
];
7168 ata_scsi_scan_host(ap
, 1);
7169 ata_lpm_schedule(ap
, ap
->pm_policy
);
7176 * ata_host_activate - start host, request IRQ and register it
7177 * @host: target ATA host
7178 * @irq: IRQ to request
7179 * @irq_handler: irq_handler used when requesting IRQ
7180 * @irq_flags: irq_flags used when requesting IRQ
7181 * @sht: scsi_host_template to use when registering the host
7183 * After allocating an ATA host and initializing it, most libata
7184 * LLDs perform three steps to activate the host - start host,
7185 * request IRQ and register it. This helper takes necessasry
7186 * arguments and performs the three steps in one go.
7188 * An invalid IRQ skips the IRQ registration and expects the host to
7189 * have set polling mode on the port. In this case, @irq_handler
7193 * Inherited from calling layer (may sleep).
7196 * 0 on success, -errno otherwise.
7198 int ata_host_activate(struct ata_host
*host
, int irq
,
7199 irq_handler_t irq_handler
, unsigned long irq_flags
,
7200 struct scsi_host_template
*sht
)
7204 rc
= ata_host_start(host
);
7208 /* Special case for polling mode */
7210 WARN_ON(irq_handler
);
7211 return ata_host_register(host
, sht
);
7214 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
7215 dev_driver_string(host
->dev
), host
);
7219 for (i
= 0; i
< host
->n_ports
; i
++)
7220 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
7222 rc
= ata_host_register(host
, sht
);
7223 /* if failed, just free the IRQ and leave ports alone */
7225 devm_free_irq(host
->dev
, irq
, host
);
7231 * ata_port_detach - Detach ATA port in prepration of device removal
7232 * @ap: ATA port to be detached
7234 * Detach all ATA devices and the associated SCSI devices of @ap;
7235 * then, remove the associated SCSI host. @ap is guaranteed to
7236 * be quiescent on return from this function.
7239 * Kernel thread context (may sleep).
7241 static void ata_port_detach(struct ata_port
*ap
)
7243 unsigned long flags
;
7244 struct ata_link
*link
;
7245 struct ata_device
*dev
;
7247 if (!ap
->ops
->error_handler
)
7250 /* tell EH we're leaving & flush EH */
7251 spin_lock_irqsave(ap
->lock
, flags
);
7252 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
7253 spin_unlock_irqrestore(ap
->lock
, flags
);
7255 ata_port_wait_eh(ap
);
7257 /* EH is now guaranteed to see UNLOADING - EH context belongs
7258 * to us. Disable all existing devices.
7260 ata_port_for_each_link(link
, ap
) {
7261 ata_link_for_each_dev(dev
, link
)
7262 ata_dev_disable(dev
);
7265 /* Final freeze & EH. All in-flight commands are aborted. EH
7266 * will be skipped and retrials will be terminated with bad
7269 spin_lock_irqsave(ap
->lock
, flags
);
7270 ata_port_freeze(ap
); /* won't be thawed */
7271 spin_unlock_irqrestore(ap
->lock
, flags
);
7273 ata_port_wait_eh(ap
);
7274 cancel_rearming_delayed_work(&ap
->hotplug_task
);
7277 /* remove the associated SCSI host */
7278 scsi_remove_host(ap
->scsi_host
);
7282 * ata_host_detach - Detach all ports of an ATA host
7283 * @host: Host to detach
7285 * Detach all ports of @host.
7288 * Kernel thread context (may sleep).
7290 void ata_host_detach(struct ata_host
*host
)
7294 for (i
= 0; i
< host
->n_ports
; i
++)
7295 ata_port_detach(host
->ports
[i
]);
7297 /* the host is dead now, dissociate ACPI */
7298 ata_acpi_dissociate(host
);
7302 * ata_std_ports - initialize ioaddr with standard port offsets.
7303 * @ioaddr: IO address structure to be initialized
7305 * Utility function which initializes data_addr, error_addr,
7306 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7307 * device_addr, status_addr, and command_addr to standard offsets
7308 * relative to cmd_addr.
7310 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7313 void ata_std_ports(struct ata_ioports
*ioaddr
)
7315 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
7316 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
7317 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
7318 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
7319 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
7320 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
7321 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
7322 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
7323 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
7324 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
7331 * ata_pci_remove_one - PCI layer callback for device removal
7332 * @pdev: PCI device that was removed
7334 * PCI layer indicates to libata via this hook that hot-unplug or
7335 * module unload event has occurred. Detach all ports. Resource
7336 * release is handled via devres.
7339 * Inherited from PCI layer (may sleep).
7341 void ata_pci_remove_one(struct pci_dev
*pdev
)
7343 struct device
*dev
= &pdev
->dev
;
7344 struct ata_host
*host
= dev_get_drvdata(dev
);
7346 ata_host_detach(host
);
7349 /* move to PCI subsystem */
7350 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
7352 unsigned long tmp
= 0;
7354 switch (bits
->width
) {
7357 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
7363 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
7369 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
7380 return (tmp
== bits
->val
) ? 1 : 0;
7384 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7386 pci_save_state(pdev
);
7387 pci_disable_device(pdev
);
7389 if (mesg
.event
& PM_EVENT_SLEEP
)
7390 pci_set_power_state(pdev
, PCI_D3hot
);
7393 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
7397 pci_set_power_state(pdev
, PCI_D0
);
7398 pci_restore_state(pdev
);
7400 rc
= pcim_enable_device(pdev
);
7402 dev_printk(KERN_ERR
, &pdev
->dev
,
7403 "failed to enable device after resume (%d)\n", rc
);
7407 pci_set_master(pdev
);
7411 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7413 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7416 rc
= ata_host_suspend(host
, mesg
);
7420 ata_pci_device_do_suspend(pdev
, mesg
);
7425 int ata_pci_device_resume(struct pci_dev
*pdev
)
7427 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7430 rc
= ata_pci_device_do_resume(pdev
);
7432 ata_host_resume(host
);
7435 #endif /* CONFIG_PM */
7437 #endif /* CONFIG_PCI */
7439 static int __init
ata_parse_force_one(char **cur
,
7440 struct ata_force_ent
*force_ent
,
7441 const char **reason
)
7443 /* FIXME: Currently, there's no way to tag init const data and
7444 * using __initdata causes build failure on some versions of
7445 * gcc. Once __initdataconst is implemented, add const to the
7446 * following structure.
7448 static struct ata_force_param force_tbl
[] __initdata
= {
7449 { "40c", .cbl
= ATA_CBL_PATA40
},
7450 { "80c", .cbl
= ATA_CBL_PATA80
},
7451 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
7452 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
7453 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
7454 { "sata", .cbl
= ATA_CBL_SATA
},
7455 { "1.5Gbps", .spd_limit
= 1 },
7456 { "3.0Gbps", .spd_limit
= 2 },
7457 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
7458 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
7459 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
7460 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
7461 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
7462 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
7463 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
7464 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
7465 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
7466 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
7467 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
7468 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
7469 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
7470 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
7471 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7472 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7473 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7474 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7475 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7476 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7477 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7478 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7479 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7480 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7481 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7482 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7483 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7484 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7485 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7486 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7487 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7488 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7489 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7490 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7491 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7492 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
7494 char *start
= *cur
, *p
= *cur
;
7495 char *id
, *val
, *endp
;
7496 const struct ata_force_param
*match_fp
= NULL
;
7497 int nr_matches
= 0, i
;
7499 /* find where this param ends and update *cur */
7500 while (*p
!= '\0' && *p
!= ',')
7511 p
= strchr(start
, ':');
7513 val
= strstrip(start
);
7518 id
= strstrip(start
);
7519 val
= strstrip(p
+ 1);
7522 p
= strchr(id
, '.');
7525 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
7526 if (p
== endp
|| *endp
!= '\0') {
7527 *reason
= "invalid device";
7532 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
7533 if (p
== endp
|| *endp
!= '\0') {
7534 *reason
= "invalid port/link";
7539 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7540 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
7541 const struct ata_force_param
*fp
= &force_tbl
[i
];
7543 if (strncasecmp(val
, fp
->name
, strlen(val
)))
7549 if (strcasecmp(val
, fp
->name
) == 0) {
7556 *reason
= "unknown value";
7559 if (nr_matches
> 1) {
7560 *reason
= "ambigious value";
7564 force_ent
->param
= *match_fp
;
7569 static void __init
ata_parse_force_param(void)
7571 int idx
= 0, size
= 1;
7572 int last_port
= -1, last_device
= -1;
7573 char *p
, *cur
, *next
;
7575 /* calculate maximum number of params and allocate force_tbl */
7576 for (p
= ata_force_param_buf
; *p
; p
++)
7580 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
7581 if (!ata_force_tbl
) {
7582 printk(KERN_WARNING
"ata: failed to extend force table, "
7583 "libata.force ignored\n");
7587 /* parse and populate the table */
7588 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
7589 const char *reason
= "";
7590 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
7593 if (ata_parse_force_one(&next
, &te
, &reason
)) {
7594 printk(KERN_WARNING
"ata: failed to parse force "
7595 "parameter \"%s\" (%s)\n",
7600 if (te
.port
== -1) {
7601 te
.port
= last_port
;
7602 te
.device
= last_device
;
7605 ata_force_tbl
[idx
++] = te
;
7607 last_port
= te
.port
;
7608 last_device
= te
.device
;
7611 ata_force_tbl_size
= idx
;
7614 static int __init
ata_init(void)
7616 ata_probe_timeout
*= HZ
;
7618 ata_parse_force_param();
7620 ata_wq
= create_workqueue("ata");
7624 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
7626 destroy_workqueue(ata_wq
);
7630 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
7634 static void __exit
ata_exit(void)
7636 kfree(ata_force_tbl
);
7637 destroy_workqueue(ata_wq
);
7638 destroy_workqueue(ata_aux_wq
);
7641 subsys_initcall(ata_init
);
7642 module_exit(ata_exit
);
7644 static unsigned long ratelimit_time
;
7645 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
7647 int ata_ratelimit(void)
7650 unsigned long flags
;
7652 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
7654 if (time_after(jiffies
, ratelimit_time
)) {
7656 ratelimit_time
= jiffies
+ (HZ
/5);
7660 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
7666 * ata_wait_register - wait until register value changes
7667 * @reg: IO-mapped register
7668 * @mask: Mask to apply to read register value
7669 * @val: Wait condition
7670 * @interval_msec: polling interval in milliseconds
7671 * @timeout_msec: timeout in milliseconds
7673 * Waiting for some bits of register to change is a common
7674 * operation for ATA controllers. This function reads 32bit LE
7675 * IO-mapped register @reg and tests for the following condition.
7677 * (*@reg & mask) != val
7679 * If the condition is met, it returns; otherwise, the process is
7680 * repeated after @interval_msec until timeout.
7683 * Kernel thread context (may sleep)
7686 * The final register value.
7688 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
7689 unsigned long interval_msec
,
7690 unsigned long timeout_msec
)
7692 unsigned long timeout
;
7695 tmp
= ioread32(reg
);
7697 /* Calculate timeout _after_ the first read to make sure
7698 * preceding writes reach the controller before starting to
7699 * eat away the timeout.
7701 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
7703 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
7704 msleep(interval_msec
);
7705 tmp
= ioread32(reg
);
7714 static void ata_dummy_noret(struct ata_port
*ap
) { }
7715 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
7716 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
7718 static u8
ata_dummy_check_status(struct ata_port
*ap
)
7723 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
7725 return AC_ERR_SYSTEM
;
7728 const struct ata_port_operations ata_dummy_port_ops
= {
7729 .check_status
= ata_dummy_check_status
,
7730 .check_altstatus
= ata_dummy_check_status
,
7731 .dev_select
= ata_noop_dev_select
,
7732 .qc_prep
= ata_noop_qc_prep
,
7733 .qc_issue
= ata_dummy_qc_issue
,
7734 .freeze
= ata_dummy_noret
,
7735 .thaw
= ata_dummy_noret
,
7736 .error_handler
= ata_dummy_noret
,
7737 .post_internal_cmd
= ata_dummy_qc_noret
,
7738 .irq_clear
= ata_dummy_noret
,
7739 .port_start
= ata_dummy_ret0
,
7740 .port_stop
= ata_dummy_noret
,
7743 const struct ata_port_info ata_dummy_port_info
= {
7744 .port_ops
= &ata_dummy_port_ops
,
7748 * libata is essentially a library of internal helper functions for
7749 * low-level ATA host controller drivers. As such, the API/ABI is
7750 * likely to change as new drivers are added and updated.
7751 * Do not depend on ABI/API stability.
7753 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
7754 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
7755 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
7756 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
7757 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
7758 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
7759 EXPORT_SYMBOL_GPL(ata_std_ports
);
7760 EXPORT_SYMBOL_GPL(ata_host_init
);
7761 EXPORT_SYMBOL_GPL(ata_host_alloc
);
7762 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
7763 EXPORT_SYMBOL_GPL(ata_host_start
);
7764 EXPORT_SYMBOL_GPL(ata_host_register
);
7765 EXPORT_SYMBOL_GPL(ata_host_activate
);
7766 EXPORT_SYMBOL_GPL(ata_host_detach
);
7767 EXPORT_SYMBOL_GPL(ata_sg_init
);
7768 EXPORT_SYMBOL_GPL(ata_hsm_move
);
7769 EXPORT_SYMBOL_GPL(ata_qc_complete
);
7770 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
7771 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
7772 EXPORT_SYMBOL_GPL(ata_tf_load
);
7773 EXPORT_SYMBOL_GPL(ata_tf_read
);
7774 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
7775 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
7776 EXPORT_SYMBOL_GPL(sata_print_link_status
);
7777 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
7778 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
7779 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
7780 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
7781 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
7782 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
7783 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
7784 EXPORT_SYMBOL_GPL(ata_mode_string
);
7785 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
7786 EXPORT_SYMBOL_GPL(ata_check_status
);
7787 EXPORT_SYMBOL_GPL(ata_altstatus
);
7788 EXPORT_SYMBOL_GPL(ata_exec_command
);
7789 EXPORT_SYMBOL_GPL(ata_port_start
);
7790 EXPORT_SYMBOL_GPL(ata_sff_port_start
);
7791 EXPORT_SYMBOL_GPL(ata_interrupt
);
7792 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
7793 EXPORT_SYMBOL_GPL(ata_data_xfer
);
7794 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
7795 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
7796 EXPORT_SYMBOL_GPL(ata_qc_prep
);
7797 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep
);
7798 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
7799 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
7800 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
7801 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
7802 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
7803 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
7804 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
7805 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
7806 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
7807 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
7808 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
7809 EXPORT_SYMBOL_GPL(ata_port_probe
);
7810 EXPORT_SYMBOL_GPL(ata_dev_disable
);
7811 EXPORT_SYMBOL_GPL(sata_set_spd
);
7812 EXPORT_SYMBOL_GPL(sata_link_debounce
);
7813 EXPORT_SYMBOL_GPL(sata_link_resume
);
7814 EXPORT_SYMBOL_GPL(ata_bus_reset
);
7815 EXPORT_SYMBOL_GPL(ata_std_prereset
);
7816 EXPORT_SYMBOL_GPL(ata_std_softreset
);
7817 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
7818 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
7819 EXPORT_SYMBOL_GPL(ata_std_postreset
);
7820 EXPORT_SYMBOL_GPL(ata_dev_classify
);
7821 EXPORT_SYMBOL_GPL(ata_dev_pair
);
7822 EXPORT_SYMBOL_GPL(ata_port_disable
);
7823 EXPORT_SYMBOL_GPL(ata_ratelimit
);
7824 EXPORT_SYMBOL_GPL(ata_wait_register
);
7825 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
7826 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
7827 EXPORT_SYMBOL_GPL(ata_wait_ready
);
7828 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
7829 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
7830 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
7831 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
7832 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
7833 EXPORT_SYMBOL_GPL(ata_host_intr
);
7834 EXPORT_SYMBOL_GPL(sata_scr_valid
);
7835 EXPORT_SYMBOL_GPL(sata_scr_read
);
7836 EXPORT_SYMBOL_GPL(sata_scr_write
);
7837 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
7838 EXPORT_SYMBOL_GPL(ata_link_online
);
7839 EXPORT_SYMBOL_GPL(ata_link_offline
);
7841 EXPORT_SYMBOL_GPL(ata_host_suspend
);
7842 EXPORT_SYMBOL_GPL(ata_host_resume
);
7843 #endif /* CONFIG_PM */
7844 EXPORT_SYMBOL_GPL(ata_id_string
);
7845 EXPORT_SYMBOL_GPL(ata_id_c_string
);
7846 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
7848 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
7849 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
7850 EXPORT_SYMBOL_GPL(ata_timing_compute
);
7851 EXPORT_SYMBOL_GPL(ata_timing_merge
);
7852 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
7855 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
7856 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host
);
7857 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma
);
7858 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host
);
7859 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host
);
7860 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
7861 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
7863 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
7864 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
7865 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
7866 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
7867 #endif /* CONFIG_PM */
7868 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
7869 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
7870 #endif /* CONFIG_PCI */
7872 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch
);
7873 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset
);
7874 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset
);
7875 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset
);
7876 EXPORT_SYMBOL_GPL(sata_pmp_do_eh
);
7878 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
7879 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
7880 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
7881 EXPORT_SYMBOL_GPL(ata_port_desc
);
7883 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
7884 #endif /* CONFIG_PCI */
7885 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
7886 EXPORT_SYMBOL_GPL(ata_link_abort
);
7887 EXPORT_SYMBOL_GPL(ata_port_abort
);
7888 EXPORT_SYMBOL_GPL(ata_port_freeze
);
7889 EXPORT_SYMBOL_GPL(sata_async_notification
);
7890 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
7891 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
7892 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
7893 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
7894 EXPORT_SYMBOL_GPL(ata_do_eh
);
7895 EXPORT_SYMBOL_GPL(ata_irq_on
);
7896 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
7898 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
7899 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
7900 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
7901 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
7902 EXPORT_SYMBOL_GPL(ata_cable_sata
);