iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / mtd / nand / cafe_nand.c
blobda6ceaa80ba137c1c4114a199d59efb09bcf08ed
1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
6 */
8 #define DEBUG
10 #include <linux/device.h>
11 #undef DEBUG
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/rslib.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/dma-mapping.h>
20 #include <asm/io.h>
22 #define CAFE_NAND_CTRL1 0x00
23 #define CAFE_NAND_CTRL2 0x04
24 #define CAFE_NAND_CTRL3 0x08
25 #define CAFE_NAND_STATUS 0x0c
26 #define CAFE_NAND_IRQ 0x10
27 #define CAFE_NAND_IRQ_MASK 0x14
28 #define CAFE_NAND_DATA_LEN 0x18
29 #define CAFE_NAND_ADDR1 0x1c
30 #define CAFE_NAND_ADDR2 0x20
31 #define CAFE_NAND_TIMING1 0x24
32 #define CAFE_NAND_TIMING2 0x28
33 #define CAFE_NAND_TIMING3 0x2c
34 #define CAFE_NAND_NONMEM 0x30
35 #define CAFE_NAND_ECC_RESULT 0x3C
36 #define CAFE_NAND_DMA_CTRL 0x40
37 #define CAFE_NAND_DMA_ADDR0 0x44
38 #define CAFE_NAND_DMA_ADDR1 0x48
39 #define CAFE_NAND_ECC_SYN01 0x50
40 #define CAFE_NAND_ECC_SYN23 0x54
41 #define CAFE_NAND_ECC_SYN45 0x58
42 #define CAFE_NAND_ECC_SYN67 0x5c
43 #define CAFE_NAND_READ_DATA 0x1000
44 #define CAFE_NAND_WRITE_DATA 0x2000
46 #define CAFE_GLOBAL_CTRL 0x3004
47 #define CAFE_GLOBAL_IRQ 0x3008
48 #define CAFE_GLOBAL_IRQ_MASK 0x300c
49 #define CAFE_NAND_RESET 0x3034
51 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
52 #define CTRL1_CHIPSELECT (1<<19)
54 struct cafe_priv {
55 struct nand_chip nand;
56 struct mtd_partition *parts;
57 struct pci_dev *pdev;
58 void __iomem *mmio;
59 struct rs_control *rs;
60 uint32_t ctl1;
61 uint32_t ctl2;
62 int datalen;
63 int nr_data;
64 int data_pos;
65 int page_addr;
66 dma_addr_t dmaaddr;
67 unsigned char *dmabuf;
70 static int usedma = 1;
71 module_param(usedma, int, 0644);
73 static int skipbbt = 0;
74 module_param(skipbbt, int, 0644);
76 static int debug = 0;
77 module_param(debug, int, 0644);
79 static int regdebug = 0;
80 module_param(regdebug, int, 0644);
82 static int checkecc = 1;
83 module_param(checkecc, int, 0644);
85 static unsigned int numtimings;
86 static int timing[3];
87 module_param_array(timing, int, &numtimings, 0644);
89 #ifdef CONFIG_MTD_PARTITIONS
90 static const char *part_probes[] = { "RedBoot", NULL };
91 #endif
93 /* Hrm. Why isn't this already conditional on something in the struct device? */
94 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
96 /* Make it easier to switch to PIO if we need to */
97 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
98 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
100 static int cafe_device_ready(struct mtd_info *mtd)
102 struct cafe_priv *cafe = mtd->priv;
103 int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
104 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
106 cafe_writel(cafe, irqs, NAND_IRQ);
108 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
109 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
110 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
112 return result;
116 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
118 struct cafe_priv *cafe = mtd->priv;
120 if (usedma)
121 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
122 else
123 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
125 cafe->datalen += len;
127 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
128 len, cafe->datalen);
131 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
133 struct cafe_priv *cafe = mtd->priv;
135 if (usedma)
136 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
137 else
138 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
140 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
141 len, cafe->datalen);
142 cafe->datalen += len;
145 static uint8_t cafe_read_byte(struct mtd_info *mtd)
147 struct cafe_priv *cafe = mtd->priv;
148 uint8_t d;
150 cafe_read_buf(mtd, &d, 1);
151 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
153 return d;
156 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
157 int column, int page_addr)
159 struct cafe_priv *cafe = mtd->priv;
160 int adrbytes = 0;
161 uint32_t ctl1;
162 uint32_t doneint = 0x80000000;
164 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
165 command, column, page_addr);
167 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
168 /* Second half of a command we already calculated */
169 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
170 ctl1 = cafe->ctl1;
171 cafe->ctl2 &= ~(1<<30);
172 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
173 cafe->ctl1, cafe->nr_data);
174 goto do_command;
176 /* Reset ECC engine */
177 cafe_writel(cafe, 0, NAND_CTRL2);
179 /* Emulate NAND_CMD_READOOB on large-page chips */
180 if (mtd->writesize > 512 &&
181 command == NAND_CMD_READOOB) {
182 column += mtd->writesize;
183 command = NAND_CMD_READ0;
186 /* FIXME: Do we need to send read command before sending data
187 for small-page chips, to position the buffer correctly? */
189 if (column != -1) {
190 cafe_writel(cafe, column, NAND_ADDR1);
191 adrbytes = 2;
192 if (page_addr != -1)
193 goto write_adr2;
194 } else if (page_addr != -1) {
195 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
196 page_addr >>= 16;
197 write_adr2:
198 cafe_writel(cafe, page_addr, NAND_ADDR2);
199 adrbytes += 2;
200 if (mtd->size > mtd->writesize << 16)
201 adrbytes++;
204 cafe->data_pos = cafe->datalen = 0;
206 /* Set command valid bit, mask in the chip select bit */
207 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
209 /* Set RD or WR bits as appropriate */
210 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
211 ctl1 |= (1<<26); /* rd */
212 /* Always 5 bytes, for now */
213 cafe->datalen = 4;
214 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
215 adrbytes = 1;
216 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
217 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
218 ctl1 |= 1<<26; /* rd */
219 /* For now, assume just read to end of page */
220 cafe->datalen = mtd->writesize + mtd->oobsize - column;
221 } else if (command == NAND_CMD_SEQIN)
222 ctl1 |= 1<<25; /* wr */
224 /* Set number of address bytes */
225 if (adrbytes)
226 ctl1 |= ((adrbytes-1)|8) << 27;
228 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
229 /* Ignore the first command of a pair; the hardware
230 deals with them both at once, later */
231 cafe->ctl1 = ctl1;
232 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
233 cafe->ctl1, cafe->datalen);
234 return;
236 /* RNDOUT and READ0 commands need a following byte */
237 if (command == NAND_CMD_RNDOUT)
238 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
239 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
240 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
242 do_command:
243 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
244 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
246 /* NB: The datasheet lies -- we really should be subtracting 1 here */
247 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
248 cafe_writel(cafe, 0x90000000, NAND_IRQ);
249 if (usedma && (ctl1 & (3<<25))) {
250 uint32_t dmactl = 0xc0000000 + cafe->datalen;
251 /* If WR or RD bits set, set up DMA */
252 if (ctl1 & (1<<26)) {
253 /* It's a read */
254 dmactl |= (1<<29);
255 /* ... so it's done when the DMA is done, not just
256 the command. */
257 doneint = 0x10000000;
259 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
261 cafe->datalen = 0;
263 if (unlikely(regdebug)) {
264 int i;
265 printk("About to write command %08x to register 0\n", ctl1);
266 for (i=4; i< 0x5c; i+=4)
267 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
270 cafe_writel(cafe, ctl1, NAND_CTRL1);
271 /* Apply this short delay always to ensure that we do wait tWB in
272 * any case on any machine. */
273 ndelay(100);
275 if (1) {
276 int c;
277 uint32_t irqs;
279 for (c = 500000; c != 0; c--) {
280 irqs = cafe_readl(cafe, NAND_IRQ);
281 if (irqs & doneint)
282 break;
283 udelay(1);
284 if (!(c % 100000))
285 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
286 cpu_relax();
288 cafe_writel(cafe, doneint, NAND_IRQ);
289 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
290 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
293 WARN_ON(cafe->ctl2 & (1<<30));
295 switch (command) {
297 case NAND_CMD_CACHEDPROG:
298 case NAND_CMD_PAGEPROG:
299 case NAND_CMD_ERASE1:
300 case NAND_CMD_ERASE2:
301 case NAND_CMD_SEQIN:
302 case NAND_CMD_RNDIN:
303 case NAND_CMD_STATUS:
304 case NAND_CMD_DEPLETE1:
305 case NAND_CMD_RNDOUT:
306 case NAND_CMD_STATUS_ERROR:
307 case NAND_CMD_STATUS_ERROR0:
308 case NAND_CMD_STATUS_ERROR1:
309 case NAND_CMD_STATUS_ERROR2:
310 case NAND_CMD_STATUS_ERROR3:
311 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
312 return;
314 nand_wait_ready(mtd);
315 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
318 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
320 struct cafe_priv *cafe = mtd->priv;
322 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
324 /* Mask the appropriate bit into the stored value of ctl1
325 which will be used by cafe_nand_cmdfunc() */
326 if (chipnr)
327 cafe->ctl1 |= CTRL1_CHIPSELECT;
328 else
329 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332 static int cafe_nand_interrupt(int irq, void *id)
334 struct mtd_info *mtd = id;
335 struct cafe_priv *cafe = mtd->priv;
336 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
337 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
338 if (!irqs)
339 return IRQ_NONE;
341 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
342 return IRQ_HANDLED;
345 static void cafe_nand_bug(struct mtd_info *mtd)
347 BUG();
350 static int cafe_nand_write_oob(struct mtd_info *mtd,
351 struct nand_chip *chip, int page)
353 int status = 0;
355 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
356 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
357 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
358 status = chip->waitfunc(mtd, chip);
360 return status & NAND_STATUS_FAIL ? -EIO : 0;
363 /* Don't use -- use nand_read_oob_std for now */
364 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
365 int page, int sndcmd)
367 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
368 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
369 return 1;
372 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
373 * @mtd: mtd info structure
374 * @chip: nand chip info structure
375 * @buf: buffer to store read data
377 * The hw generator calculates the error syndrome automatically. Therefor
378 * we need a special oob layout and handling.
380 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
381 uint8_t *buf)
383 struct cafe_priv *cafe = mtd->priv;
385 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
386 cafe_readl(cafe, NAND_ECC_RESULT),
387 cafe_readl(cafe, NAND_ECC_SYN01));
389 chip->read_buf(mtd, buf, mtd->writesize);
390 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
392 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
393 unsigned short syn[8], pat[4];
394 int pos[4];
395 u8 *oob = chip->oob_poi;
396 int i, n;
398 for (i=0; i<8; i+=2) {
399 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
400 syn[i] = cafe->rs->index_of[tmp & 0xfff];
401 syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
404 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
405 pat);
407 for (i = 0; i < n; i++) {
408 int p = pos[i];
410 /* The 12-bit symbols are mapped to bytes here */
412 if (p > 1374) {
413 /* out of range */
414 n = -1374;
415 } else if (p == 0) {
416 /* high four bits do not correspond to data */
417 if (pat[i] > 0xff)
418 n = -2048;
419 else
420 buf[0] ^= pat[i];
421 } else if (p == 1365) {
422 buf[2047] ^= pat[i] >> 4;
423 oob[0] ^= pat[i] << 4;
424 } else if (p > 1365) {
425 if ((p & 1) == 1) {
426 oob[3*p/2 - 2048] ^= pat[i] >> 4;
427 oob[3*p/2 - 2047] ^= pat[i] << 4;
428 } else {
429 oob[3*p/2 - 2049] ^= pat[i] >> 8;
430 oob[3*p/2 - 2048] ^= pat[i];
432 } else if ((p & 1) == 1) {
433 buf[3*p/2] ^= pat[i] >> 4;
434 buf[3*p/2 + 1] ^= pat[i] << 4;
435 } else {
436 buf[3*p/2 - 1] ^= pat[i] >> 8;
437 buf[3*p/2] ^= pat[i];
441 if (n < 0) {
442 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
443 cafe_readl(cafe, NAND_ADDR2) * 2048);
444 for (i = 0; i < 0x5c; i += 4)
445 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
446 mtd->ecc_stats.failed++;
447 } else {
448 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
449 mtd->ecc_stats.corrected += n;
453 return 0;
456 static struct nand_ecclayout cafe_oobinfo_2048 = {
457 .eccbytes = 14,
458 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
459 .oobfree = {{14, 50}}
462 /* Ick. The BBT code really ought to be able to work this bit out
463 for itself from the above, at least for the 2KiB case */
464 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
465 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
467 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
468 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
471 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
472 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
473 | NAND_BBT_2BIT | NAND_BBT_VERSION,
474 .offs = 14,
475 .len = 4,
476 .veroffs = 18,
477 .maxblocks = 4,
478 .pattern = cafe_bbt_pattern_2048
481 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
482 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
483 | NAND_BBT_2BIT | NAND_BBT_VERSION,
484 .offs = 14,
485 .len = 4,
486 .veroffs = 18,
487 .maxblocks = 4,
488 .pattern = cafe_mirror_pattern_2048
491 static struct nand_ecclayout cafe_oobinfo_512 = {
492 .eccbytes = 14,
493 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
494 .oobfree = {{14, 2}}
497 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
498 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
499 | NAND_BBT_2BIT | NAND_BBT_VERSION,
500 .offs = 14,
501 .len = 1,
502 .veroffs = 15,
503 .maxblocks = 4,
504 .pattern = cafe_bbt_pattern_512
507 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
508 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
509 | NAND_BBT_2BIT | NAND_BBT_VERSION,
510 .offs = 14,
511 .len = 1,
512 .veroffs = 15,
513 .maxblocks = 4,
514 .pattern = cafe_mirror_pattern_512
518 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
519 struct nand_chip *chip, const uint8_t *buf)
521 struct cafe_priv *cafe = mtd->priv;
523 chip->write_buf(mtd, buf, mtd->writesize);
524 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
526 /* Set up ECC autogeneration */
527 cafe->ctl2 |= (1<<30);
530 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
531 const uint8_t *buf, int page, int cached, int raw)
533 int status;
535 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
537 if (unlikely(raw))
538 chip->ecc.write_page_raw(mtd, chip, buf);
539 else
540 chip->ecc.write_page(mtd, chip, buf);
543 * Cached progamming disabled for now, Not sure if its worth the
544 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
546 cached = 0;
548 if (!cached || !(chip->options & NAND_CACHEPRG)) {
550 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
551 status = chip->waitfunc(mtd, chip);
553 * See if operation failed and additional status checks are
554 * available
556 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
557 status = chip->errstat(mtd, chip, FL_WRITING, status,
558 page);
560 if (status & NAND_STATUS_FAIL)
561 return -EIO;
562 } else {
563 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
564 status = chip->waitfunc(mtd, chip);
567 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
568 /* Send command to read back the data */
569 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
571 if (chip->verify_buf(mtd, buf, mtd->writesize))
572 return -EIO;
573 #endif
574 return 0;
577 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
579 return 0;
582 /* F_2[X]/(X**6+X+1) */
583 static unsigned short __devinit gf64_mul(u8 a, u8 b)
585 u8 c;
586 unsigned int i;
588 c = 0;
589 for (i = 0; i < 6; i++) {
590 if (a & 1)
591 c ^= b;
592 a >>= 1;
593 b <<= 1;
594 if ((b & 0x40) != 0)
595 b ^= 0x43;
598 return c;
601 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
602 static u16 __devinit gf4096_mul(u16 a, u16 b)
604 u8 ah, al, bh, bl, ch, cl;
606 ah = a >> 6;
607 al = a & 0x3f;
608 bh = b >> 6;
609 bl = b & 0x3f;
611 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
612 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
614 return (ch << 6) ^ cl;
617 static int __devinit cafe_mul(int x)
619 if (x == 0)
620 return 1;
621 return gf4096_mul(x, 0xe01);
624 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
625 const struct pci_device_id *ent)
627 struct mtd_info *mtd;
628 struct cafe_priv *cafe;
629 struct mtd_partition *parts;
630 uint32_t ctrl;
631 int nr_parts;
632 int err = 0;
634 /* Very old versions shared the same PCI ident for all three
635 functions on the chip. Verify the class too... */
636 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
637 return -ENODEV;
639 err = pci_enable_device(pdev);
640 if (err)
641 return err;
643 pci_set_master(pdev);
645 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
646 if (!mtd) {
647 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
648 return -ENOMEM;
650 cafe = (void *)(&mtd[1]);
652 mtd->priv = cafe;
653 mtd->owner = THIS_MODULE;
655 cafe->pdev = pdev;
656 cafe->mmio = pci_iomap(pdev, 0, 0);
657 if (!cafe->mmio) {
658 dev_warn(&pdev->dev, "failed to iomap\n");
659 err = -ENOMEM;
660 goto out_free_mtd;
662 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
663 &cafe->dmaaddr, GFP_KERNEL);
664 if (!cafe->dmabuf) {
665 err = -ENOMEM;
666 goto out_ior;
668 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
670 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
671 if (!cafe->rs) {
672 err = -ENOMEM;
673 goto out_ior;
676 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
677 cafe->nand.dev_ready = cafe_device_ready;
678 cafe->nand.read_byte = cafe_read_byte;
679 cafe->nand.read_buf = cafe_read_buf;
680 cafe->nand.write_buf = cafe_write_buf;
681 cafe->nand.select_chip = cafe_select_chip;
683 cafe->nand.chip_delay = 0;
685 /* Enable the following for a flash based bad block table */
686 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
688 if (skipbbt) {
689 cafe->nand.options |= NAND_SKIP_BBTSCAN;
690 cafe->nand.block_bad = cafe_nand_block_bad;
693 if (numtimings && numtimings != 3) {
694 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
697 if (numtimings == 3) {
698 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
699 timing[0], timing[1], timing[2]);
700 } else {
701 timing[0] = cafe_readl(cafe, NAND_TIMING1);
702 timing[1] = cafe_readl(cafe, NAND_TIMING2);
703 timing[2] = cafe_readl(cafe, NAND_TIMING3);
705 if (timing[0] | timing[1] | timing[2]) {
706 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
707 timing[0], timing[1], timing[2]);
708 } else {
709 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
710 timing[0] = timing[1] = timing[2] = 0xffffffff;
714 /* Start off by resetting the NAND controller completely */
715 cafe_writel(cafe, 1, NAND_RESET);
716 cafe_writel(cafe, 0, NAND_RESET);
718 cafe_writel(cafe, timing[0], NAND_TIMING1);
719 cafe_writel(cafe, timing[1], NAND_TIMING2);
720 cafe_writel(cafe, timing[2], NAND_TIMING3);
722 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
723 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
724 "CAFE NAND", mtd);
725 if (err) {
726 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
727 goto out_free_dma;
730 /* Disable master reset, enable NAND clock */
731 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
732 ctrl &= 0xffffeff0;
733 ctrl |= 0x00007000;
734 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
735 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
736 cafe_writel(cafe, 0, NAND_DMA_CTRL);
738 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
739 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
741 /* Set up DMA address */
742 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
743 if (sizeof(cafe->dmaaddr) > 4)
744 /* Shift in two parts to shut the compiler up */
745 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
746 else
747 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
749 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
750 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
752 /* Enable NAND IRQ in global IRQ mask register */
753 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
754 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
755 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
757 /* Scan to find existence of the device */
758 if (nand_scan_ident(mtd, 2)) {
759 err = -ENXIO;
760 goto out_irq;
763 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
764 if (mtd->writesize == 2048)
765 cafe->ctl2 |= 1<<29; /* 2KiB page size */
767 /* Set up ECC according to the type of chip we found */
768 if (mtd->writesize == 2048) {
769 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
770 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
771 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
772 } else if (mtd->writesize == 512) {
773 cafe->nand.ecc.layout = &cafe_oobinfo_512;
774 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
775 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
776 } else {
777 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
778 mtd->writesize);
779 goto out_irq;
781 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
782 cafe->nand.ecc.size = mtd->writesize;
783 cafe->nand.ecc.bytes = 14;
784 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
785 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
786 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
787 cafe->nand.write_page = cafe_nand_write_page;
788 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
789 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
790 cafe->nand.ecc.read_page = cafe_nand_read_page;
791 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
793 err = nand_scan_tail(mtd);
794 if (err)
795 goto out_irq;
797 pci_set_drvdata(pdev, mtd);
799 /* We register the whole device first, separate from the partitions */
800 add_mtd_device(mtd);
802 #ifdef CONFIG_MTD_PARTITIONS
803 nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
804 if (nr_parts > 0) {
805 cafe->parts = parts;
806 dev_info(&cafe->pdev->dev, "%d RedBoot partitions found\n", nr_parts);
807 add_mtd_partitions(mtd, parts, nr_parts);
809 #endif
810 goto out;
812 out_irq:
813 /* Disable NAND IRQ in global IRQ mask register */
814 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
815 free_irq(pdev->irq, mtd);
816 out_free_dma:
817 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
818 out_ior:
819 pci_iounmap(pdev, cafe->mmio);
820 out_free_mtd:
821 kfree(mtd);
822 out:
823 return err;
826 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
828 struct mtd_info *mtd = pci_get_drvdata(pdev);
829 struct cafe_priv *cafe = mtd->priv;
831 del_mtd_device(mtd);
832 /* Disable NAND IRQ in global IRQ mask register */
833 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
834 free_irq(pdev->irq, mtd);
835 nand_release(mtd);
836 free_rs(cafe->rs);
837 pci_iounmap(pdev, cafe->mmio);
838 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
839 kfree(mtd);
842 static struct pci_device_id cafe_nand_tbl[] = {
843 { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID },
847 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
849 static int cafe_nand_resume(struct pci_dev *pdev)
851 uint32_t ctrl;
852 struct mtd_info *mtd = pci_get_drvdata(pdev);
853 struct cafe_priv *cafe = mtd->priv;
855 /* Start off by resetting the NAND controller completely */
856 cafe_writel(cafe, 1, NAND_RESET);
857 cafe_writel(cafe, 0, NAND_RESET);
858 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
860 /* Restore timing configuration */
861 cafe_writel(cafe, timing[0], NAND_TIMING1);
862 cafe_writel(cafe, timing[1], NAND_TIMING2);
863 cafe_writel(cafe, timing[2], NAND_TIMING3);
865 /* Disable master reset, enable NAND clock */
866 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
867 ctrl &= 0xffffeff0;
868 ctrl |= 0x00007000;
869 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
870 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
871 cafe_writel(cafe, 0, NAND_DMA_CTRL);
872 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
873 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
875 /* Set up DMA address */
876 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
877 if (sizeof(cafe->dmaaddr) > 4)
878 /* Shift in two parts to shut the compiler up */
879 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
880 else
881 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
883 /* Enable NAND IRQ in global IRQ mask register */
884 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
885 return 0;
888 static struct pci_driver cafe_nand_pci_driver = {
889 .name = "CAFÉ NAND",
890 .id_table = cafe_nand_tbl,
891 .probe = cafe_nand_probe,
892 .remove = __devexit_p(cafe_nand_remove),
893 .resume = cafe_nand_resume,
896 static int cafe_nand_init(void)
898 return pci_register_driver(&cafe_nand_pci_driver);
901 static void cafe_nand_exit(void)
903 pci_unregister_driver(&cafe_nand_pci_driver);
905 module_init(cafe_nand_init);
906 module_exit(cafe_nand_exit);
908 MODULE_LICENSE("GPL");
909 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
910 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");