iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / net / cxgb3 / sge.c
blob98a6bbd11d4c92232df793d3475082b0db12f63a
1 /*
2 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include "common.h"
40 #include "regs.h"
41 #include "sge_defs.h"
42 #include "t3_cpl.h"
43 #include "firmware_exports.h"
45 #define USE_GTS 0
47 #define SGE_RX_SM_BUF_SIZE 1536
49 #define SGE_RX_COPY_THRES 256
50 #define SGE_RX_PULL_LEN 128
53 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
57 #define FL0_PG_CHUNK_SIZE 2048
59 #define SGE_RX_DROP_THRES 16
62 * Period of the Tx buffer reclaim timer. This timer does not need to run
63 * frequently as Tx buffers are usually reclaimed by new Tx packets.
65 #define TX_RECLAIM_PERIOD (HZ / 4)
67 /* WR size in bytes */
68 #define WR_LEN (WR_FLITS * 8)
71 * Types of Tx queues in each queue set. Order here matters, do not change.
73 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
75 /* Values for sge_txq.flags */
76 enum {
77 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
78 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
81 struct tx_desc {
82 __be64 flit[TX_DESC_FLITS];
85 struct rx_desc {
86 __be32 addr_lo;
87 __be32 len_gen;
88 __be32 gen2;
89 __be32 addr_hi;
92 struct tx_sw_desc { /* SW state per Tx descriptor */
93 struct sk_buff *skb;
94 u8 eop; /* set if last descriptor for packet */
95 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
96 u8 fragidx; /* first page fragment associated with descriptor */
97 s8 sflit; /* start flit of first SGL entry in descriptor */
100 struct rx_sw_desc { /* SW state per Rx descriptor */
101 union {
102 struct sk_buff *skb;
103 struct fl_pg_chunk pg_chunk;
105 DECLARE_PCI_UNMAP_ADDR(dma_addr);
108 struct rsp_desc { /* response queue descriptor */
109 struct rss_header rss_hdr;
110 __be32 flags;
111 __be32 len_cq;
112 u8 imm_data[47];
113 u8 intr_gen;
117 * Holds unmapping information for Tx packets that need deferred unmapping.
118 * This structure lives at skb->head and must be allocated by callers.
120 struct deferred_unmap_info {
121 struct pci_dev *pdev;
122 dma_addr_t addr[MAX_SKB_FRAGS + 1];
126 * Maps a number of flits to the number of Tx descriptors that can hold them.
127 * The formula is
129 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
131 * HW allows up to 4 descriptors to be combined into a WR.
133 static u8 flit_desc_map[] = {
135 #if SGE_NUM_GENBITS == 1
136 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
137 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
138 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
139 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
140 #elif SGE_NUM_GENBITS == 2
141 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
142 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
143 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
144 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
145 #else
146 # error "SGE_NUM_GENBITS must be 1 or 2"
147 #endif
150 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
152 return container_of(q, struct sge_qset, fl[qidx]);
155 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
157 return container_of(q, struct sge_qset, rspq);
160 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
162 return container_of(q, struct sge_qset, txq[qidx]);
166 * refill_rspq - replenish an SGE response queue
167 * @adapter: the adapter
168 * @q: the response queue to replenish
169 * @credits: how many new responses to make available
171 * Replenishes a response queue by making the supplied number of responses
172 * available to HW.
174 static inline void refill_rspq(struct adapter *adapter,
175 const struct sge_rspq *q, unsigned int credits)
177 rmb();
178 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
179 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
183 * need_skb_unmap - does the platform need unmapping of sk_buffs?
185 * Returns true if the platfrom needs sk_buff unmapping. The compiler
186 * optimizes away unecessary code if this returns true.
188 static inline int need_skb_unmap(void)
191 * This structure is used to tell if the platfrom needs buffer
192 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
194 struct dummy {
195 DECLARE_PCI_UNMAP_ADDR(addr);
198 return sizeof(struct dummy) != 0;
202 * unmap_skb - unmap a packet main body and its page fragments
203 * @skb: the packet
204 * @q: the Tx queue containing Tx descriptors for the packet
205 * @cidx: index of Tx descriptor
206 * @pdev: the PCI device
208 * Unmap the main body of an sk_buff and its page fragments, if any.
209 * Because of the fairly complicated structure of our SGLs and the desire
210 * to conserve space for metadata, the information necessary to unmap an
211 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
212 * descriptors (the physical addresses of the various data buffers), and
213 * the SW descriptor state (assorted indices). The send functions
214 * initialize the indices for the first packet descriptor so we can unmap
215 * the buffers held in the first Tx descriptor here, and we have enough
216 * information at this point to set the state for the next Tx descriptor.
218 * Note that it is possible to clean up the first descriptor of a packet
219 * before the send routines have written the next descriptors, but this
220 * race does not cause any problem. We just end up writing the unmapping
221 * info for the descriptor first.
223 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
224 unsigned int cidx, struct pci_dev *pdev)
226 const struct sg_ent *sgp;
227 struct tx_sw_desc *d = &q->sdesc[cidx];
228 int nfrags, frag_idx, curflit, j = d->addr_idx;
230 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
231 frag_idx = d->fragidx;
233 if (frag_idx == 0 && skb_headlen(skb)) {
234 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
235 skb_headlen(skb), PCI_DMA_TODEVICE);
236 j = 1;
239 curflit = d->sflit + 1 + j;
240 nfrags = skb_shinfo(skb)->nr_frags;
242 while (frag_idx < nfrags && curflit < WR_FLITS) {
243 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
244 skb_shinfo(skb)->frags[frag_idx].size,
245 PCI_DMA_TODEVICE);
246 j ^= 1;
247 if (j == 0) {
248 sgp++;
249 curflit++;
251 curflit++;
252 frag_idx++;
255 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
256 d = cidx + 1 == q->size ? q->sdesc : d + 1;
257 d->fragidx = frag_idx;
258 d->addr_idx = j;
259 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
264 * free_tx_desc - reclaims Tx descriptors and their buffers
265 * @adapter: the adapter
266 * @q: the Tx queue to reclaim descriptors from
267 * @n: the number of descriptors to reclaim
269 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
270 * Tx buffers. Called with the Tx queue lock held.
272 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
273 unsigned int n)
275 struct tx_sw_desc *d;
276 struct pci_dev *pdev = adapter->pdev;
277 unsigned int cidx = q->cidx;
279 const int need_unmap = need_skb_unmap() &&
280 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
282 d = &q->sdesc[cidx];
283 while (n--) {
284 if (d->skb) { /* an SGL is present */
285 if (need_unmap)
286 unmap_skb(d->skb, q, cidx, pdev);
287 if (d->eop)
288 kfree_skb(d->skb);
290 ++d;
291 if (++cidx == q->size) {
292 cidx = 0;
293 d = q->sdesc;
296 q->cidx = cidx;
300 * reclaim_completed_tx - reclaims completed Tx descriptors
301 * @adapter: the adapter
302 * @q: the Tx queue to reclaim completed descriptors from
304 * Reclaims Tx descriptors that the SGE has indicated it has processed,
305 * and frees the associated buffers if possible. Called with the Tx
306 * queue's lock held.
308 static inline void reclaim_completed_tx(struct adapter *adapter,
309 struct sge_txq *q)
311 unsigned int reclaim = q->processed - q->cleaned;
313 if (reclaim) {
314 free_tx_desc(adapter, q, reclaim);
315 q->cleaned += reclaim;
316 q->in_use -= reclaim;
321 * should_restart_tx - are there enough resources to restart a Tx queue?
322 * @q: the Tx queue
324 * Checks if there are enough descriptors to restart a suspended Tx queue.
326 static inline int should_restart_tx(const struct sge_txq *q)
328 unsigned int r = q->processed - q->cleaned;
330 return q->in_use - r < (q->size >> 1);
334 * free_rx_bufs - free the Rx buffers on an SGE free list
335 * @pdev: the PCI device associated with the adapter
336 * @rxq: the SGE free list to clean up
338 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
339 * this queue should be stopped before calling this function.
341 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
343 unsigned int cidx = q->cidx;
345 while (q->credits--) {
346 struct rx_sw_desc *d = &q->sdesc[cidx];
348 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
349 q->buf_size, PCI_DMA_FROMDEVICE);
350 if (q->use_pages) {
351 put_page(d->pg_chunk.page);
352 d->pg_chunk.page = NULL;
353 } else {
354 kfree_skb(d->skb);
355 d->skb = NULL;
357 if (++cidx == q->size)
358 cidx = 0;
361 if (q->pg_chunk.page) {
362 __free_page(q->pg_chunk.page);
363 q->pg_chunk.page = NULL;
368 * add_one_rx_buf - add a packet buffer to a free-buffer list
369 * @va: buffer start VA
370 * @len: the buffer length
371 * @d: the HW Rx descriptor to write
372 * @sd: the SW Rx descriptor to write
373 * @gen: the generation bit value
374 * @pdev: the PCI device associated with the adapter
376 * Add a buffer of the given length to the supplied HW and SW Rx
377 * descriptors.
379 static inline void add_one_rx_buf(void *va, unsigned int len,
380 struct rx_desc *d, struct rx_sw_desc *sd,
381 unsigned int gen, struct pci_dev *pdev)
383 dma_addr_t mapping;
385 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
386 pci_unmap_addr_set(sd, dma_addr, mapping);
388 d->addr_lo = cpu_to_be32(mapping);
389 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
390 wmb();
391 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
392 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
395 static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp)
397 if (!q->pg_chunk.page) {
398 q->pg_chunk.page = alloc_page(gfp);
399 if (unlikely(!q->pg_chunk.page))
400 return -ENOMEM;
401 q->pg_chunk.va = page_address(q->pg_chunk.page);
402 q->pg_chunk.offset = 0;
404 sd->pg_chunk = q->pg_chunk;
406 q->pg_chunk.offset += q->buf_size;
407 if (q->pg_chunk.offset == PAGE_SIZE)
408 q->pg_chunk.page = NULL;
409 else {
410 q->pg_chunk.va += q->buf_size;
411 get_page(q->pg_chunk.page);
413 return 0;
417 * refill_fl - refill an SGE free-buffer list
418 * @adapter: the adapter
419 * @q: the free-list to refill
420 * @n: the number of new buffers to allocate
421 * @gfp: the gfp flags for allocating new buffers
423 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
424 * allocated with the supplied gfp flags. The caller must assure that
425 * @n does not exceed the queue's capacity.
427 static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
429 void *buf_start;
430 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
431 struct rx_desc *d = &q->desc[q->pidx];
433 while (n--) {
434 if (q->use_pages) {
435 if (unlikely(alloc_pg_chunk(q, sd, gfp))) {
436 nomem: q->alloc_failed++;
437 break;
439 buf_start = sd->pg_chunk.va;
440 } else {
441 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
443 if (!skb)
444 goto nomem;
446 sd->skb = skb;
447 buf_start = skb->data;
450 add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
451 adap->pdev);
452 d++;
453 sd++;
454 if (++q->pidx == q->size) {
455 q->pidx = 0;
456 q->gen ^= 1;
457 sd = q->sdesc;
458 d = q->desc;
460 q->credits++;
462 wmb();
463 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
466 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
468 refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC);
472 * recycle_rx_buf - recycle a receive buffer
473 * @adapter: the adapter
474 * @q: the SGE free list
475 * @idx: index of buffer to recycle
477 * Recycles the specified buffer on the given free list by adding it at
478 * the next available slot on the list.
480 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
481 unsigned int idx)
483 struct rx_desc *from = &q->desc[idx];
484 struct rx_desc *to = &q->desc[q->pidx];
486 q->sdesc[q->pidx] = q->sdesc[idx];
487 to->addr_lo = from->addr_lo; /* already big endian */
488 to->addr_hi = from->addr_hi; /* likewise */
489 wmb();
490 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
491 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
492 q->credits++;
494 if (++q->pidx == q->size) {
495 q->pidx = 0;
496 q->gen ^= 1;
498 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
502 * alloc_ring - allocate resources for an SGE descriptor ring
503 * @pdev: the PCI device
504 * @nelem: the number of descriptors
505 * @elem_size: the size of each descriptor
506 * @sw_size: the size of the SW state associated with each ring element
507 * @phys: the physical address of the allocated ring
508 * @metadata: address of the array holding the SW state for the ring
510 * Allocates resources for an SGE descriptor ring, such as Tx queues,
511 * free buffer lists, or response queues. Each SGE ring requires
512 * space for its HW descriptors plus, optionally, space for the SW state
513 * associated with each HW entry (the metadata). The function returns
514 * three values: the virtual address for the HW ring (the return value
515 * of the function), the physical address of the HW ring, and the address
516 * of the SW ring.
518 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
519 size_t sw_size, dma_addr_t * phys, void *metadata)
521 size_t len = nelem * elem_size;
522 void *s = NULL;
523 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
525 if (!p)
526 return NULL;
527 if (sw_size) {
528 s = kcalloc(nelem, sw_size, GFP_KERNEL);
530 if (!s) {
531 dma_free_coherent(&pdev->dev, len, p, *phys);
532 return NULL;
535 if (metadata)
536 *(void **)metadata = s;
537 memset(p, 0, len);
538 return p;
542 * free_qset - free the resources of an SGE queue set
543 * @adapter: the adapter owning the queue set
544 * @q: the queue set
546 * Release the HW and SW resources associated with an SGE queue set, such
547 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
548 * queue set must be quiesced prior to calling this.
550 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
552 int i;
553 struct pci_dev *pdev = adapter->pdev;
555 if (q->tx_reclaim_timer.function)
556 del_timer_sync(&q->tx_reclaim_timer);
558 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
559 if (q->fl[i].desc) {
560 spin_lock_irq(&adapter->sge.reg_lock);
561 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
562 spin_unlock_irq(&adapter->sge.reg_lock);
563 free_rx_bufs(pdev, &q->fl[i]);
564 kfree(q->fl[i].sdesc);
565 dma_free_coherent(&pdev->dev,
566 q->fl[i].size *
567 sizeof(struct rx_desc), q->fl[i].desc,
568 q->fl[i].phys_addr);
571 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
572 if (q->txq[i].desc) {
573 spin_lock_irq(&adapter->sge.reg_lock);
574 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
575 spin_unlock_irq(&adapter->sge.reg_lock);
576 if (q->txq[i].sdesc) {
577 free_tx_desc(adapter, &q->txq[i],
578 q->txq[i].in_use);
579 kfree(q->txq[i].sdesc);
581 dma_free_coherent(&pdev->dev,
582 q->txq[i].size *
583 sizeof(struct tx_desc),
584 q->txq[i].desc, q->txq[i].phys_addr);
585 __skb_queue_purge(&q->txq[i].sendq);
588 if (q->rspq.desc) {
589 spin_lock_irq(&adapter->sge.reg_lock);
590 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
591 spin_unlock_irq(&adapter->sge.reg_lock);
592 dma_free_coherent(&pdev->dev,
593 q->rspq.size * sizeof(struct rsp_desc),
594 q->rspq.desc, q->rspq.phys_addr);
597 memset(q, 0, sizeof(*q));
601 * init_qset_cntxt - initialize an SGE queue set context info
602 * @qs: the queue set
603 * @id: the queue set id
605 * Initializes the TIDs and context ids for the queues of a queue set.
607 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
609 qs->rspq.cntxt_id = id;
610 qs->fl[0].cntxt_id = 2 * id;
611 qs->fl[1].cntxt_id = 2 * id + 1;
612 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
613 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
614 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
615 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
616 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
620 * sgl_len - calculates the size of an SGL of the given capacity
621 * @n: the number of SGL entries
623 * Calculates the number of flits needed for a scatter/gather list that
624 * can hold the given number of entries.
626 static inline unsigned int sgl_len(unsigned int n)
628 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
629 return (3 * n) / 2 + (n & 1);
633 * flits_to_desc - returns the num of Tx descriptors for the given flits
634 * @n: the number of flits
636 * Calculates the number of Tx descriptors needed for the supplied number
637 * of flits.
639 static inline unsigned int flits_to_desc(unsigned int n)
641 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
642 return flit_desc_map[n];
646 * get_packet - return the next ingress packet buffer from a free list
647 * @adap: the adapter that received the packet
648 * @fl: the SGE free list holding the packet
649 * @len: the packet length including any SGE padding
650 * @drop_thres: # of remaining buffers before we start dropping packets
652 * Get the next packet from a free list and complete setup of the
653 * sk_buff. If the packet is small we make a copy and recycle the
654 * original buffer, otherwise we use the original buffer itself. If a
655 * positive drop threshold is supplied packets are dropped and their
656 * buffers recycled if (a) the number of remaining buffers is under the
657 * threshold and the packet is too big to copy, or (b) the packet should
658 * be copied but there is no memory for the copy.
660 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
661 unsigned int len, unsigned int drop_thres)
663 struct sk_buff *skb = NULL;
664 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
666 prefetch(sd->skb->data);
667 fl->credits--;
669 if (len <= SGE_RX_COPY_THRES) {
670 skb = alloc_skb(len, GFP_ATOMIC);
671 if (likely(skb != NULL)) {
672 __skb_put(skb, len);
673 pci_dma_sync_single_for_cpu(adap->pdev,
674 pci_unmap_addr(sd, dma_addr), len,
675 PCI_DMA_FROMDEVICE);
676 memcpy(skb->data, sd->skb->data, len);
677 pci_dma_sync_single_for_device(adap->pdev,
678 pci_unmap_addr(sd, dma_addr), len,
679 PCI_DMA_FROMDEVICE);
680 } else if (!drop_thres)
681 goto use_orig_buf;
682 recycle:
683 recycle_rx_buf(adap, fl, fl->cidx);
684 return skb;
687 if (unlikely(fl->credits < drop_thres))
688 goto recycle;
690 use_orig_buf:
691 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
692 fl->buf_size, PCI_DMA_FROMDEVICE);
693 skb = sd->skb;
694 skb_put(skb, len);
695 __refill_fl(adap, fl);
696 return skb;
700 * get_packet_pg - return the next ingress packet buffer from a free list
701 * @adap: the adapter that received the packet
702 * @fl: the SGE free list holding the packet
703 * @len: the packet length including any SGE padding
704 * @drop_thres: # of remaining buffers before we start dropping packets
706 * Get the next packet from a free list populated with page chunks.
707 * If the packet is small we make a copy and recycle the original buffer,
708 * otherwise we attach the original buffer as a page fragment to a fresh
709 * sk_buff. If a positive drop threshold is supplied packets are dropped
710 * and their buffers recycled if (a) the number of remaining buffers is
711 * under the threshold and the packet is too big to copy, or (b) there's
712 * no system memory.
714 * Note: this function is similar to @get_packet but deals with Rx buffers
715 * that are page chunks rather than sk_buffs.
717 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
718 unsigned int len, unsigned int drop_thres)
720 struct sk_buff *skb = NULL;
721 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
723 if (len <= SGE_RX_COPY_THRES) {
724 skb = alloc_skb(len, GFP_ATOMIC);
725 if (likely(skb != NULL)) {
726 __skb_put(skb, len);
727 pci_dma_sync_single_for_cpu(adap->pdev,
728 pci_unmap_addr(sd, dma_addr), len,
729 PCI_DMA_FROMDEVICE);
730 memcpy(skb->data, sd->pg_chunk.va, len);
731 pci_dma_sync_single_for_device(adap->pdev,
732 pci_unmap_addr(sd, dma_addr), len,
733 PCI_DMA_FROMDEVICE);
734 } else if (!drop_thres)
735 return NULL;
736 recycle:
737 fl->credits--;
738 recycle_rx_buf(adap, fl, fl->cidx);
739 return skb;
742 if (unlikely(fl->credits <= drop_thres))
743 goto recycle;
745 skb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
746 if (unlikely(!skb)) {
747 if (!drop_thres)
748 return NULL;
749 goto recycle;
752 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
753 fl->buf_size, PCI_DMA_FROMDEVICE);
754 __skb_put(skb, SGE_RX_PULL_LEN);
755 memcpy(skb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
756 skb_fill_page_desc(skb, 0, sd->pg_chunk.page,
757 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
758 len - SGE_RX_PULL_LEN);
759 skb->len = len;
760 skb->data_len = len - SGE_RX_PULL_LEN;
761 skb->truesize += skb->data_len;
763 fl->credits--;
765 * We do not refill FLs here, we let the caller do it to overlap a
766 * prefetch.
768 return skb;
772 * get_imm_packet - return the next ingress packet buffer from a response
773 * @resp: the response descriptor containing the packet data
775 * Return a packet containing the immediate data of the given response.
777 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
779 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
781 if (skb) {
782 __skb_put(skb, IMMED_PKT_SIZE);
783 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
785 return skb;
789 * calc_tx_descs - calculate the number of Tx descriptors for a packet
790 * @skb: the packet
792 * Returns the number of Tx descriptors needed for the given Ethernet
793 * packet. Ethernet packets require addition of WR and CPL headers.
795 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
797 unsigned int flits;
799 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
800 return 1;
802 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
803 if (skb_shinfo(skb)->gso_size)
804 flits++;
805 return flits_to_desc(flits);
809 * make_sgl - populate a scatter/gather list for a packet
810 * @skb: the packet
811 * @sgp: the SGL to populate
812 * @start: start address of skb main body data to include in the SGL
813 * @len: length of skb main body data to include in the SGL
814 * @pdev: the PCI device
816 * Generates a scatter/gather list for the buffers that make up a packet
817 * and returns the SGL size in 8-byte words. The caller must size the SGL
818 * appropriately.
820 static inline unsigned int make_sgl(const struct sk_buff *skb,
821 struct sg_ent *sgp, unsigned char *start,
822 unsigned int len, struct pci_dev *pdev)
824 dma_addr_t mapping;
825 unsigned int i, j = 0, nfrags;
827 if (len) {
828 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
829 sgp->len[0] = cpu_to_be32(len);
830 sgp->addr[0] = cpu_to_be64(mapping);
831 j = 1;
834 nfrags = skb_shinfo(skb)->nr_frags;
835 for (i = 0; i < nfrags; i++) {
836 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
838 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
839 frag->size, PCI_DMA_TODEVICE);
840 sgp->len[j] = cpu_to_be32(frag->size);
841 sgp->addr[j] = cpu_to_be64(mapping);
842 j ^= 1;
843 if (j == 0)
844 ++sgp;
846 if (j)
847 sgp->len[j] = 0;
848 return ((nfrags + (len != 0)) * 3) / 2 + j;
852 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
853 * @adap: the adapter
854 * @q: the Tx queue
856 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
857 * where the HW is going to sleep just after we checked, however,
858 * then the interrupt handler will detect the outstanding TX packet
859 * and ring the doorbell for us.
861 * When GTS is disabled we unconditionally ring the doorbell.
863 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
865 #if USE_GTS
866 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
867 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
868 set_bit(TXQ_LAST_PKT_DB, &q->flags);
869 t3_write_reg(adap, A_SG_KDOORBELL,
870 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
872 #else
873 wmb(); /* write descriptors before telling HW */
874 t3_write_reg(adap, A_SG_KDOORBELL,
875 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
876 #endif
879 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
881 #if SGE_NUM_GENBITS == 2
882 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
883 #endif
887 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
888 * @ndesc: number of Tx descriptors spanned by the SGL
889 * @skb: the packet corresponding to the WR
890 * @d: first Tx descriptor to be written
891 * @pidx: index of above descriptors
892 * @q: the SGE Tx queue
893 * @sgl: the SGL
894 * @flits: number of flits to the start of the SGL in the first descriptor
895 * @sgl_flits: the SGL size in flits
896 * @gen: the Tx descriptor generation
897 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
898 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
900 * Write a work request header and an associated SGL. If the SGL is
901 * small enough to fit into one Tx descriptor it has already been written
902 * and we just need to write the WR header. Otherwise we distribute the
903 * SGL across the number of descriptors it spans.
905 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
906 struct tx_desc *d, unsigned int pidx,
907 const struct sge_txq *q,
908 const struct sg_ent *sgl,
909 unsigned int flits, unsigned int sgl_flits,
910 unsigned int gen, __be32 wr_hi,
911 __be32 wr_lo)
913 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
914 struct tx_sw_desc *sd = &q->sdesc[pidx];
916 sd->skb = skb;
917 if (need_skb_unmap()) {
918 sd->fragidx = 0;
919 sd->addr_idx = 0;
920 sd->sflit = flits;
923 if (likely(ndesc == 1)) {
924 sd->eop = 1;
925 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
926 V_WR_SGLSFLT(flits)) | wr_hi;
927 wmb();
928 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
929 V_WR_GEN(gen)) | wr_lo;
930 wr_gen2(d, gen);
931 } else {
932 unsigned int ogen = gen;
933 const u64 *fp = (const u64 *)sgl;
934 struct work_request_hdr *wp = wrp;
936 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
937 V_WR_SGLSFLT(flits)) | wr_hi;
939 while (sgl_flits) {
940 unsigned int avail = WR_FLITS - flits;
942 if (avail > sgl_flits)
943 avail = sgl_flits;
944 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
945 sgl_flits -= avail;
946 ndesc--;
947 if (!sgl_flits)
948 break;
950 fp += avail;
951 d++;
952 sd->eop = 0;
953 sd++;
954 if (++pidx == q->size) {
955 pidx = 0;
956 gen ^= 1;
957 d = q->desc;
958 sd = q->sdesc;
961 sd->skb = skb;
962 wrp = (struct work_request_hdr *)d;
963 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
964 V_WR_SGLSFLT(1)) | wr_hi;
965 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
966 sgl_flits + 1)) |
967 V_WR_GEN(gen)) | wr_lo;
968 wr_gen2(d, gen);
969 flits = 1;
971 sd->eop = 1;
972 wrp->wr_hi |= htonl(F_WR_EOP);
973 wmb();
974 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
975 wr_gen2((struct tx_desc *)wp, ogen);
976 WARN_ON(ndesc != 0);
981 * write_tx_pkt_wr - write a TX_PKT work request
982 * @adap: the adapter
983 * @skb: the packet to send
984 * @pi: the egress interface
985 * @pidx: index of the first Tx descriptor to write
986 * @gen: the generation value to use
987 * @q: the Tx queue
988 * @ndesc: number of descriptors the packet will occupy
989 * @compl: the value of the COMPL bit to use
991 * Generate a TX_PKT work request to send the supplied packet.
993 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
994 const struct port_info *pi,
995 unsigned int pidx, unsigned int gen,
996 struct sge_txq *q, unsigned int ndesc,
997 unsigned int compl)
999 unsigned int flits, sgl_flits, cntrl, tso_info;
1000 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1001 struct tx_desc *d = &q->desc[pidx];
1002 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1004 cpl->len = htonl(skb->len | 0x80000000);
1005 cntrl = V_TXPKT_INTF(pi->port_id);
1007 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1008 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1010 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1011 if (tso_info) {
1012 int eth_type;
1013 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1015 d->flit[2] = 0;
1016 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1017 hdr->cntrl = htonl(cntrl);
1018 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1019 CPL_ETH_II : CPL_ETH_II_VLAN;
1020 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1021 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1022 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1023 hdr->lso_info = htonl(tso_info);
1024 flits = 3;
1025 } else {
1026 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1027 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1028 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1029 cpl->cntrl = htonl(cntrl);
1031 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1032 q->sdesc[pidx].skb = NULL;
1033 if (!skb->data_len)
1034 skb_copy_from_linear_data(skb, &d->flit[2],
1035 skb->len);
1036 else
1037 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1039 flits = (skb->len + 7) / 8 + 2;
1040 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1041 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1042 | F_WR_SOP | F_WR_EOP | compl);
1043 wmb();
1044 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1045 V_WR_TID(q->token));
1046 wr_gen2(d, gen);
1047 kfree_skb(skb);
1048 return;
1051 flits = 2;
1054 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1055 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1057 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1058 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1059 htonl(V_WR_TID(q->token)));
1062 static inline void t3_stop_queue(struct net_device *dev, struct sge_qset *qs,
1063 struct sge_txq *q)
1065 netif_stop_queue(dev);
1066 set_bit(TXQ_ETH, &qs->txq_stopped);
1067 q->stops++;
1071 * eth_xmit - add a packet to the Ethernet Tx queue
1072 * @skb: the packet
1073 * @dev: the egress net device
1075 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1077 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1079 unsigned int ndesc, pidx, credits, gen, compl;
1080 const struct port_info *pi = netdev_priv(dev);
1081 struct adapter *adap = pi->adapter;
1082 struct sge_qset *qs = pi->qs;
1083 struct sge_txq *q = &qs->txq[TXQ_ETH];
1086 * The chip min packet length is 9 octets but play safe and reject
1087 * anything shorter than an Ethernet header.
1089 if (unlikely(skb->len < ETH_HLEN)) {
1090 dev_kfree_skb(skb);
1091 return NETDEV_TX_OK;
1094 spin_lock(&q->lock);
1095 reclaim_completed_tx(adap, q);
1097 credits = q->size - q->in_use;
1098 ndesc = calc_tx_descs(skb);
1100 if (unlikely(credits < ndesc)) {
1101 t3_stop_queue(dev, qs, q);
1102 dev_err(&adap->pdev->dev,
1103 "%s: Tx ring %u full while queue awake!\n",
1104 dev->name, q->cntxt_id & 7);
1105 spin_unlock(&q->lock);
1106 return NETDEV_TX_BUSY;
1109 q->in_use += ndesc;
1110 if (unlikely(credits - ndesc < q->stop_thres)) {
1111 t3_stop_queue(dev, qs, q);
1113 if (should_restart_tx(q) &&
1114 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1115 q->restarts++;
1116 netif_wake_queue(dev);
1120 gen = q->gen;
1121 q->unacked += ndesc;
1122 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1123 q->unacked &= 7;
1124 pidx = q->pidx;
1125 q->pidx += ndesc;
1126 if (q->pidx >= q->size) {
1127 q->pidx -= q->size;
1128 q->gen ^= 1;
1131 /* update port statistics */
1132 if (skb->ip_summed == CHECKSUM_COMPLETE)
1133 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1134 if (skb_shinfo(skb)->gso_size)
1135 qs->port_stats[SGE_PSTAT_TSO]++;
1136 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1137 qs->port_stats[SGE_PSTAT_VLANINS]++;
1139 dev->trans_start = jiffies;
1140 spin_unlock(&q->lock);
1143 * We do not use Tx completion interrupts to free DMAd Tx packets.
1144 * This is good for performamce but means that we rely on new Tx
1145 * packets arriving to run the destructors of completed packets,
1146 * which open up space in their sockets' send queues. Sometimes
1147 * we do not get such new packets causing Tx to stall. A single
1148 * UDP transmitter is a good example of this situation. We have
1149 * a clean up timer that periodically reclaims completed packets
1150 * but it doesn't run often enough (nor do we want it to) to prevent
1151 * lengthy stalls. A solution to this problem is to run the
1152 * destructor early, after the packet is queued but before it's DMAd.
1153 * A cons is that we lie to socket memory accounting, but the amount
1154 * of extra memory is reasonable (limited by the number of Tx
1155 * descriptors), the packets do actually get freed quickly by new
1156 * packets almost always, and for protocols like TCP that wait for
1157 * acks to really free up the data the extra memory is even less.
1158 * On the positive side we run the destructors on the sending CPU
1159 * rather than on a potentially different completing CPU, usually a
1160 * good thing. We also run them without holding our Tx queue lock,
1161 * unlike what reclaim_completed_tx() would otherwise do.
1163 * Run the destructor before telling the DMA engine about the packet
1164 * to make sure it doesn't complete and get freed prematurely.
1166 if (likely(!skb_shared(skb)))
1167 skb_orphan(skb);
1169 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1170 check_ring_tx_db(adap, q);
1171 return NETDEV_TX_OK;
1175 * write_imm - write a packet into a Tx descriptor as immediate data
1176 * @d: the Tx descriptor to write
1177 * @skb: the packet
1178 * @len: the length of packet data to write as immediate data
1179 * @gen: the generation bit value to write
1181 * Writes a packet as immediate data into a Tx descriptor. The packet
1182 * contains a work request at its beginning. We must write the packet
1183 * carefully so the SGE doesn't read it accidentally before it's written
1184 * in its entirety.
1186 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1187 unsigned int len, unsigned int gen)
1189 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1190 struct work_request_hdr *to = (struct work_request_hdr *)d;
1192 if (likely(!skb->data_len))
1193 memcpy(&to[1], &from[1], len - sizeof(*from));
1194 else
1195 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1197 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1198 V_WR_BCNTLFLT(len & 7));
1199 wmb();
1200 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1201 V_WR_LEN((len + 7) / 8));
1202 wr_gen2(d, gen);
1203 kfree_skb(skb);
1207 * check_desc_avail - check descriptor availability on a send queue
1208 * @adap: the adapter
1209 * @q: the send queue
1210 * @skb: the packet needing the descriptors
1211 * @ndesc: the number of Tx descriptors needed
1212 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1214 * Checks if the requested number of Tx descriptors is available on an
1215 * SGE send queue. If the queue is already suspended or not enough
1216 * descriptors are available the packet is queued for later transmission.
1217 * Must be called with the Tx queue locked.
1219 * Returns 0 if enough descriptors are available, 1 if there aren't
1220 * enough descriptors and the packet has been queued, and 2 if the caller
1221 * needs to retry because there weren't enough descriptors at the
1222 * beginning of the call but some freed up in the mean time.
1224 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1225 struct sk_buff *skb, unsigned int ndesc,
1226 unsigned int qid)
1228 if (unlikely(!skb_queue_empty(&q->sendq))) {
1229 addq_exit:__skb_queue_tail(&q->sendq, skb);
1230 return 1;
1232 if (unlikely(q->size - q->in_use < ndesc)) {
1233 struct sge_qset *qs = txq_to_qset(q, qid);
1235 set_bit(qid, &qs->txq_stopped);
1236 smp_mb__after_clear_bit();
1238 if (should_restart_tx(q) &&
1239 test_and_clear_bit(qid, &qs->txq_stopped))
1240 return 2;
1242 q->stops++;
1243 goto addq_exit;
1245 return 0;
1249 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1250 * @q: the SGE control Tx queue
1252 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1253 * that send only immediate data (presently just the control queues) and
1254 * thus do not have any sk_buffs to release.
1256 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1258 unsigned int reclaim = q->processed - q->cleaned;
1260 q->in_use -= reclaim;
1261 q->cleaned += reclaim;
1264 static inline int immediate(const struct sk_buff *skb)
1266 return skb->len <= WR_LEN;
1270 * ctrl_xmit - send a packet through an SGE control Tx queue
1271 * @adap: the adapter
1272 * @q: the control queue
1273 * @skb: the packet
1275 * Send a packet through an SGE control Tx queue. Packets sent through
1276 * a control queue must fit entirely as immediate data in a single Tx
1277 * descriptor and have no page fragments.
1279 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1280 struct sk_buff *skb)
1282 int ret;
1283 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1285 if (unlikely(!immediate(skb))) {
1286 WARN_ON(1);
1287 dev_kfree_skb(skb);
1288 return NET_XMIT_SUCCESS;
1291 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1292 wrp->wr_lo = htonl(V_WR_TID(q->token));
1294 spin_lock(&q->lock);
1295 again:reclaim_completed_tx_imm(q);
1297 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1298 if (unlikely(ret)) {
1299 if (ret == 1) {
1300 spin_unlock(&q->lock);
1301 return NET_XMIT_CN;
1303 goto again;
1306 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1308 q->in_use++;
1309 if (++q->pidx >= q->size) {
1310 q->pidx = 0;
1311 q->gen ^= 1;
1313 spin_unlock(&q->lock);
1314 wmb();
1315 t3_write_reg(adap, A_SG_KDOORBELL,
1316 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1317 return NET_XMIT_SUCCESS;
1321 * restart_ctrlq - restart a suspended control queue
1322 * @qs: the queue set cotaining the control queue
1324 * Resumes transmission on a suspended Tx control queue.
1326 static void restart_ctrlq(unsigned long data)
1328 struct sk_buff *skb;
1329 struct sge_qset *qs = (struct sge_qset *)data;
1330 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1332 spin_lock(&q->lock);
1333 again:reclaim_completed_tx_imm(q);
1335 while (q->in_use < q->size &&
1336 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1338 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1340 if (++q->pidx >= q->size) {
1341 q->pidx = 0;
1342 q->gen ^= 1;
1344 q->in_use++;
1347 if (!skb_queue_empty(&q->sendq)) {
1348 set_bit(TXQ_CTRL, &qs->txq_stopped);
1349 smp_mb__after_clear_bit();
1351 if (should_restart_tx(q) &&
1352 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1353 goto again;
1354 q->stops++;
1357 spin_unlock(&q->lock);
1358 wmb();
1359 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1360 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1364 * Send a management message through control queue 0
1366 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1368 int ret;
1369 local_bh_disable();
1370 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1371 local_bh_enable();
1373 return ret;
1377 * deferred_unmap_destructor - unmap a packet when it is freed
1378 * @skb: the packet
1380 * This is the packet destructor used for Tx packets that need to remain
1381 * mapped until they are freed rather than until their Tx descriptors are
1382 * freed.
1384 static void deferred_unmap_destructor(struct sk_buff *skb)
1386 int i;
1387 const dma_addr_t *p;
1388 const struct skb_shared_info *si;
1389 const struct deferred_unmap_info *dui;
1391 dui = (struct deferred_unmap_info *)skb->head;
1392 p = dui->addr;
1394 if (skb->tail - skb->transport_header)
1395 pci_unmap_single(dui->pdev, *p++,
1396 skb->tail - skb->transport_header,
1397 PCI_DMA_TODEVICE);
1399 si = skb_shinfo(skb);
1400 for (i = 0; i < si->nr_frags; i++)
1401 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1402 PCI_DMA_TODEVICE);
1405 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1406 const struct sg_ent *sgl, int sgl_flits)
1408 dma_addr_t *p;
1409 struct deferred_unmap_info *dui;
1411 dui = (struct deferred_unmap_info *)skb->head;
1412 dui->pdev = pdev;
1413 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1414 *p++ = be64_to_cpu(sgl->addr[0]);
1415 *p++ = be64_to_cpu(sgl->addr[1]);
1417 if (sgl_flits)
1418 *p = be64_to_cpu(sgl->addr[0]);
1422 * write_ofld_wr - write an offload work request
1423 * @adap: the adapter
1424 * @skb: the packet to send
1425 * @q: the Tx queue
1426 * @pidx: index of the first Tx descriptor to write
1427 * @gen: the generation value to use
1428 * @ndesc: number of descriptors the packet will occupy
1430 * Write an offload work request to send the supplied packet. The packet
1431 * data already carry the work request with most fields populated.
1433 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1434 struct sge_txq *q, unsigned int pidx,
1435 unsigned int gen, unsigned int ndesc)
1437 unsigned int sgl_flits, flits;
1438 struct work_request_hdr *from;
1439 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1440 struct tx_desc *d = &q->desc[pidx];
1442 if (immediate(skb)) {
1443 q->sdesc[pidx].skb = NULL;
1444 write_imm(d, skb, skb->len, gen);
1445 return;
1448 /* Only TX_DATA builds SGLs */
1450 from = (struct work_request_hdr *)skb->data;
1451 memcpy(&d->flit[1], &from[1],
1452 skb_transport_offset(skb) - sizeof(*from));
1454 flits = skb_transport_offset(skb) / 8;
1455 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1456 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1457 skb->tail - skb->transport_header,
1458 adap->pdev);
1459 if (need_skb_unmap()) {
1460 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1461 skb->destructor = deferred_unmap_destructor;
1464 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1465 gen, from->wr_hi, from->wr_lo);
1469 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1470 * @skb: the packet
1472 * Returns the number of Tx descriptors needed for the given offload
1473 * packet. These packets are already fully constructed.
1475 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1477 unsigned int flits, cnt;
1479 if (skb->len <= WR_LEN)
1480 return 1; /* packet fits as immediate data */
1482 flits = skb_transport_offset(skb) / 8; /* headers */
1483 cnt = skb_shinfo(skb)->nr_frags;
1484 if (skb->tail != skb->transport_header)
1485 cnt++;
1486 return flits_to_desc(flits + sgl_len(cnt));
1490 * ofld_xmit - send a packet through an offload queue
1491 * @adap: the adapter
1492 * @q: the Tx offload queue
1493 * @skb: the packet
1495 * Send an offload packet through an SGE offload queue.
1497 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1498 struct sk_buff *skb)
1500 int ret;
1501 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1503 spin_lock(&q->lock);
1504 again:reclaim_completed_tx(adap, q);
1506 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1507 if (unlikely(ret)) {
1508 if (ret == 1) {
1509 skb->priority = ndesc; /* save for restart */
1510 spin_unlock(&q->lock);
1511 return NET_XMIT_CN;
1513 goto again;
1516 gen = q->gen;
1517 q->in_use += ndesc;
1518 pidx = q->pidx;
1519 q->pidx += ndesc;
1520 if (q->pidx >= q->size) {
1521 q->pidx -= q->size;
1522 q->gen ^= 1;
1524 spin_unlock(&q->lock);
1526 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1527 check_ring_tx_db(adap, q);
1528 return NET_XMIT_SUCCESS;
1532 * restart_offloadq - restart a suspended offload queue
1533 * @qs: the queue set cotaining the offload queue
1535 * Resumes transmission on a suspended Tx offload queue.
1537 static void restart_offloadq(unsigned long data)
1539 struct sk_buff *skb;
1540 struct sge_qset *qs = (struct sge_qset *)data;
1541 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1542 const struct port_info *pi = netdev_priv(qs->netdev);
1543 struct adapter *adap = pi->adapter;
1545 spin_lock(&q->lock);
1546 again:reclaim_completed_tx(adap, q);
1548 while ((skb = skb_peek(&q->sendq)) != NULL) {
1549 unsigned int gen, pidx;
1550 unsigned int ndesc = skb->priority;
1552 if (unlikely(q->size - q->in_use < ndesc)) {
1553 set_bit(TXQ_OFLD, &qs->txq_stopped);
1554 smp_mb__after_clear_bit();
1556 if (should_restart_tx(q) &&
1557 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1558 goto again;
1559 q->stops++;
1560 break;
1563 gen = q->gen;
1564 q->in_use += ndesc;
1565 pidx = q->pidx;
1566 q->pidx += ndesc;
1567 if (q->pidx >= q->size) {
1568 q->pidx -= q->size;
1569 q->gen ^= 1;
1571 __skb_unlink(skb, &q->sendq);
1572 spin_unlock(&q->lock);
1574 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1575 spin_lock(&q->lock);
1577 spin_unlock(&q->lock);
1579 #if USE_GTS
1580 set_bit(TXQ_RUNNING, &q->flags);
1581 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1582 #endif
1583 wmb();
1584 t3_write_reg(adap, A_SG_KDOORBELL,
1585 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1589 * queue_set - return the queue set a packet should use
1590 * @skb: the packet
1592 * Maps a packet to the SGE queue set it should use. The desired queue
1593 * set is carried in bits 1-3 in the packet's priority.
1595 static inline int queue_set(const struct sk_buff *skb)
1597 return skb->priority >> 1;
1601 * is_ctrl_pkt - return whether an offload packet is a control packet
1602 * @skb: the packet
1604 * Determines whether an offload packet should use an OFLD or a CTRL
1605 * Tx queue. This is indicated by bit 0 in the packet's priority.
1607 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1609 return skb->priority & 1;
1613 * t3_offload_tx - send an offload packet
1614 * @tdev: the offload device to send to
1615 * @skb: the packet
1617 * Sends an offload packet. We use the packet priority to select the
1618 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1619 * should be sent as regular or control, bits 1-3 select the queue set.
1621 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1623 struct adapter *adap = tdev2adap(tdev);
1624 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1626 if (unlikely(is_ctrl_pkt(skb)))
1627 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1629 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1633 * offload_enqueue - add an offload packet to an SGE offload receive queue
1634 * @q: the SGE response queue
1635 * @skb: the packet
1637 * Add a new offload packet to an SGE response queue's offload packet
1638 * queue. If the packet is the first on the queue it schedules the RX
1639 * softirq to process the queue.
1641 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1643 skb->next = skb->prev = NULL;
1644 if (q->rx_tail)
1645 q->rx_tail->next = skb;
1646 else {
1647 struct sge_qset *qs = rspq_to_qset(q);
1649 napi_schedule(&qs->napi);
1650 q->rx_head = skb;
1652 q->rx_tail = skb;
1656 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1657 * @tdev: the offload device that will be receiving the packets
1658 * @q: the SGE response queue that assembled the bundle
1659 * @skbs: the partial bundle
1660 * @n: the number of packets in the bundle
1662 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1664 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1665 struct sge_rspq *q,
1666 struct sk_buff *skbs[], int n)
1668 if (n) {
1669 q->offload_bundles++;
1670 tdev->recv(tdev, skbs, n);
1675 * ofld_poll - NAPI handler for offload packets in interrupt mode
1676 * @dev: the network device doing the polling
1677 * @budget: polling budget
1679 * The NAPI handler for offload packets when a response queue is serviced
1680 * by the hard interrupt handler, i.e., when it's operating in non-polling
1681 * mode. Creates small packet batches and sends them through the offload
1682 * receive handler. Batches need to be of modest size as we do prefetches
1683 * on the packets in each.
1685 static int ofld_poll(struct napi_struct *napi, int budget)
1687 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1688 struct sge_rspq *q = &qs->rspq;
1689 struct adapter *adapter = qs->adap;
1690 int work_done = 0;
1692 while (work_done < budget) {
1693 struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE];
1694 int ngathered;
1696 spin_lock_irq(&q->lock);
1697 head = q->rx_head;
1698 if (!head) {
1699 napi_complete(napi);
1700 spin_unlock_irq(&q->lock);
1701 return work_done;
1704 tail = q->rx_tail;
1705 q->rx_head = q->rx_tail = NULL;
1706 spin_unlock_irq(&q->lock);
1708 for (ngathered = 0; work_done < budget && head; work_done++) {
1709 prefetch(head->data);
1710 skbs[ngathered] = head;
1711 head = head->next;
1712 skbs[ngathered]->next = NULL;
1713 if (++ngathered == RX_BUNDLE_SIZE) {
1714 q->offload_bundles++;
1715 adapter->tdev.recv(&adapter->tdev, skbs,
1716 ngathered);
1717 ngathered = 0;
1720 if (head) { /* splice remaining packets back onto Rx queue */
1721 spin_lock_irq(&q->lock);
1722 tail->next = q->rx_head;
1723 if (!q->rx_head)
1724 q->rx_tail = tail;
1725 q->rx_head = head;
1726 spin_unlock_irq(&q->lock);
1728 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1731 return work_done;
1735 * rx_offload - process a received offload packet
1736 * @tdev: the offload device receiving the packet
1737 * @rq: the response queue that received the packet
1738 * @skb: the packet
1739 * @rx_gather: a gather list of packets if we are building a bundle
1740 * @gather_idx: index of the next available slot in the bundle
1742 * Process an ingress offload pakcet and add it to the offload ingress
1743 * queue. Returns the index of the next available slot in the bundle.
1745 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1746 struct sk_buff *skb, struct sk_buff *rx_gather[],
1747 unsigned int gather_idx)
1749 skb_reset_mac_header(skb);
1750 skb_reset_network_header(skb);
1751 skb_reset_transport_header(skb);
1753 if (rq->polling) {
1754 rx_gather[gather_idx++] = skb;
1755 if (gather_idx == RX_BUNDLE_SIZE) {
1756 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1757 gather_idx = 0;
1758 rq->offload_bundles++;
1760 } else
1761 offload_enqueue(rq, skb);
1763 return gather_idx;
1767 * restart_tx - check whether to restart suspended Tx queues
1768 * @qs: the queue set to resume
1770 * Restarts suspended Tx queues of an SGE queue set if they have enough
1771 * free resources to resume operation.
1773 static void restart_tx(struct sge_qset *qs)
1775 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1776 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1777 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1778 qs->txq[TXQ_ETH].restarts++;
1779 if (netif_running(qs->netdev))
1780 netif_wake_queue(qs->netdev);
1783 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1784 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1785 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1786 qs->txq[TXQ_OFLD].restarts++;
1787 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1789 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1790 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1791 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1792 qs->txq[TXQ_CTRL].restarts++;
1793 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1798 * rx_eth - process an ingress ethernet packet
1799 * @adap: the adapter
1800 * @rq: the response queue that received the packet
1801 * @skb: the packet
1802 * @pad: amount of padding at the start of the buffer
1804 * Process an ingress ethernet pakcet and deliver it to the stack.
1805 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1806 * if it was immediate data in a response.
1808 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1809 struct sk_buff *skb, int pad)
1811 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1812 struct port_info *pi;
1814 skb_pull(skb, sizeof(*p) + pad);
1815 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
1816 skb->dev->last_rx = jiffies;
1817 pi = netdev_priv(skb->dev);
1818 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
1819 !p->fragment) {
1820 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1821 skb->ip_summed = CHECKSUM_UNNECESSARY;
1822 } else
1823 skb->ip_summed = CHECKSUM_NONE;
1825 if (unlikely(p->vlan_valid)) {
1826 struct vlan_group *grp = pi->vlan_grp;
1828 rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++;
1829 if (likely(grp))
1830 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1831 rq->polling);
1832 else
1833 dev_kfree_skb_any(skb);
1834 } else if (rq->polling)
1835 netif_receive_skb(skb);
1836 else
1837 netif_rx(skb);
1841 * handle_rsp_cntrl_info - handles control information in a response
1842 * @qs: the queue set corresponding to the response
1843 * @flags: the response control flags
1845 * Handles the control information of an SGE response, such as GTS
1846 * indications and completion credits for the queue set's Tx queues.
1847 * HW coalesces credits, we don't do any extra SW coalescing.
1849 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
1851 unsigned int credits;
1853 #if USE_GTS
1854 if (flags & F_RSPD_TXQ0_GTS)
1855 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
1856 #endif
1858 credits = G_RSPD_TXQ0_CR(flags);
1859 if (credits)
1860 qs->txq[TXQ_ETH].processed += credits;
1862 credits = G_RSPD_TXQ2_CR(flags);
1863 if (credits)
1864 qs->txq[TXQ_CTRL].processed += credits;
1866 # if USE_GTS
1867 if (flags & F_RSPD_TXQ1_GTS)
1868 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
1869 # endif
1870 credits = G_RSPD_TXQ1_CR(flags);
1871 if (credits)
1872 qs->txq[TXQ_OFLD].processed += credits;
1876 * check_ring_db - check if we need to ring any doorbells
1877 * @adapter: the adapter
1878 * @qs: the queue set whose Tx queues are to be examined
1879 * @sleeping: indicates which Tx queue sent GTS
1881 * Checks if some of a queue set's Tx queues need to ring their doorbells
1882 * to resume transmission after idling while they still have unprocessed
1883 * descriptors.
1885 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
1886 unsigned int sleeping)
1888 if (sleeping & F_RSPD_TXQ0_GTS) {
1889 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1891 if (txq->cleaned + txq->in_use != txq->processed &&
1892 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1893 set_bit(TXQ_RUNNING, &txq->flags);
1894 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1895 V_EGRCNTX(txq->cntxt_id));
1899 if (sleeping & F_RSPD_TXQ1_GTS) {
1900 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
1902 if (txq->cleaned + txq->in_use != txq->processed &&
1903 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1904 set_bit(TXQ_RUNNING, &txq->flags);
1905 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1906 V_EGRCNTX(txq->cntxt_id));
1912 * is_new_response - check if a response is newly written
1913 * @r: the response descriptor
1914 * @q: the response queue
1916 * Returns true if a response descriptor contains a yet unprocessed
1917 * response.
1919 static inline int is_new_response(const struct rsp_desc *r,
1920 const struct sge_rspq *q)
1922 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
1925 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
1926 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
1927 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
1928 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
1929 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
1931 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
1932 #define NOMEM_INTR_DELAY 2500
1935 * process_responses - process responses from an SGE response queue
1936 * @adap: the adapter
1937 * @qs: the queue set to which the response queue belongs
1938 * @budget: how many responses can be processed in this round
1940 * Process responses from an SGE response queue up to the supplied budget.
1941 * Responses include received packets as well as credits and other events
1942 * for the queues that belong to the response queue's queue set.
1943 * A negative budget is effectively unlimited.
1945 * Additionally choose the interrupt holdoff time for the next interrupt
1946 * on this queue. If the system is under memory shortage use a fairly
1947 * long delay to help recovery.
1949 static int process_responses(struct adapter *adap, struct sge_qset *qs,
1950 int budget)
1952 struct sge_rspq *q = &qs->rspq;
1953 struct rsp_desc *r = &q->desc[q->cidx];
1954 int budget_left = budget;
1955 unsigned int sleeping = 0;
1956 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
1957 int ngathered = 0;
1959 q->next_holdoff = q->holdoff_tmr;
1961 while (likely(budget_left && is_new_response(r, q))) {
1962 int eth, ethpad = 2;
1963 struct sk_buff *skb = NULL;
1964 u32 len, flags = ntohl(r->flags);
1965 __be32 rss_hi = *(const __be32 *)r, rss_lo = r->rss_hdr.rss_hash_val;
1967 eth = r->rss_hdr.opcode == CPL_RX_PKT;
1969 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
1970 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
1971 if (!skb)
1972 goto no_mem;
1974 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
1975 skb->data[0] = CPL_ASYNC_NOTIF;
1976 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
1977 q->async_notif++;
1978 } else if (flags & F_RSPD_IMM_DATA_VALID) {
1979 skb = get_imm_packet(r);
1980 if (unlikely(!skb)) {
1981 no_mem:
1982 q->next_holdoff = NOMEM_INTR_DELAY;
1983 q->nomem++;
1984 /* consume one credit since we tried */
1985 budget_left--;
1986 break;
1988 q->imm_data++;
1989 ethpad = 0;
1990 } else if ((len = ntohl(r->len_cq)) != 0) {
1991 struct sge_fl *fl;
1993 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
1994 if (fl->use_pages) {
1995 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
1997 prefetch(addr);
1998 #if L1_CACHE_BYTES < 128
1999 prefetch(addr + L1_CACHE_BYTES);
2000 #endif
2001 __refill_fl(adap, fl);
2003 skb = get_packet_pg(adap, fl, G_RSPD_LEN(len),
2004 eth ? SGE_RX_DROP_THRES : 0);
2005 } else
2006 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2007 eth ? SGE_RX_DROP_THRES : 0);
2008 if (unlikely(!skb)) {
2009 if (!eth)
2010 goto no_mem;
2011 q->rx_drops++;
2012 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2013 __skb_pull(skb, 2);
2015 if (++fl->cidx == fl->size)
2016 fl->cidx = 0;
2017 } else
2018 q->pure_rsps++;
2020 if (flags & RSPD_CTRL_MASK) {
2021 sleeping |= flags & RSPD_GTS_MASK;
2022 handle_rsp_cntrl_info(qs, flags);
2025 r++;
2026 if (unlikely(++q->cidx == q->size)) {
2027 q->cidx = 0;
2028 q->gen ^= 1;
2029 r = q->desc;
2031 prefetch(r);
2033 if (++q->credits >= (q->size / 4)) {
2034 refill_rspq(adap, q, q->credits);
2035 q->credits = 0;
2038 if (likely(skb != NULL)) {
2039 if (eth)
2040 rx_eth(adap, q, skb, ethpad);
2041 else {
2042 q->offload_pkts++;
2043 /* Preserve the RSS info in csum & priority */
2044 skb->csum = rss_hi;
2045 skb->priority = rss_lo;
2046 ngathered = rx_offload(&adap->tdev, q, skb,
2047 offload_skbs,
2048 ngathered);
2051 --budget_left;
2054 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2055 if (sleeping)
2056 check_ring_db(adap, qs, sleeping);
2058 smp_mb(); /* commit Tx queue .processed updates */
2059 if (unlikely(qs->txq_stopped != 0))
2060 restart_tx(qs);
2062 budget -= budget_left;
2063 return budget;
2066 static inline int is_pure_response(const struct rsp_desc *r)
2068 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2070 return (n | r->len_cq) == 0;
2074 * napi_rx_handler - the NAPI handler for Rx processing
2075 * @napi: the napi instance
2076 * @budget: how many packets we can process in this round
2078 * Handler for new data events when using NAPI.
2080 static int napi_rx_handler(struct napi_struct *napi, int budget)
2082 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2083 struct adapter *adap = qs->adap;
2084 int work_done = process_responses(adap, qs, budget);
2086 if (likely(work_done < budget)) {
2087 napi_complete(napi);
2090 * Because we don't atomically flush the following
2091 * write it is possible that in very rare cases it can
2092 * reach the device in a way that races with a new
2093 * response being written plus an error interrupt
2094 * causing the NAPI interrupt handler below to return
2095 * unhandled status to the OS. To protect against
2096 * this would require flushing the write and doing
2097 * both the write and the flush with interrupts off.
2098 * Way too expensive and unjustifiable given the
2099 * rarity of the race.
2101 * The race cannot happen at all with MSI-X.
2103 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2104 V_NEWTIMER(qs->rspq.next_holdoff) |
2105 V_NEWINDEX(qs->rspq.cidx));
2107 return work_done;
2111 * Returns true if the device is already scheduled for polling.
2113 static inline int napi_is_scheduled(struct napi_struct *napi)
2115 return test_bit(NAPI_STATE_SCHED, &napi->state);
2119 * process_pure_responses - process pure responses from a response queue
2120 * @adap: the adapter
2121 * @qs: the queue set owning the response queue
2122 * @r: the first pure response to process
2124 * A simpler version of process_responses() that handles only pure (i.e.,
2125 * non data-carrying) responses. Such respones are too light-weight to
2126 * justify calling a softirq under NAPI, so we handle them specially in
2127 * the interrupt handler. The function is called with a pointer to a
2128 * response, which the caller must ensure is a valid pure response.
2130 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2132 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2133 struct rsp_desc *r)
2135 struct sge_rspq *q = &qs->rspq;
2136 unsigned int sleeping = 0;
2138 do {
2139 u32 flags = ntohl(r->flags);
2141 r++;
2142 if (unlikely(++q->cidx == q->size)) {
2143 q->cidx = 0;
2144 q->gen ^= 1;
2145 r = q->desc;
2147 prefetch(r);
2149 if (flags & RSPD_CTRL_MASK) {
2150 sleeping |= flags & RSPD_GTS_MASK;
2151 handle_rsp_cntrl_info(qs, flags);
2154 q->pure_rsps++;
2155 if (++q->credits >= (q->size / 4)) {
2156 refill_rspq(adap, q, q->credits);
2157 q->credits = 0;
2159 } while (is_new_response(r, q) && is_pure_response(r));
2161 if (sleeping)
2162 check_ring_db(adap, qs, sleeping);
2164 smp_mb(); /* commit Tx queue .processed updates */
2165 if (unlikely(qs->txq_stopped != 0))
2166 restart_tx(qs);
2168 return is_new_response(r, q);
2172 * handle_responses - decide what to do with new responses in NAPI mode
2173 * @adap: the adapter
2174 * @q: the response queue
2176 * This is used by the NAPI interrupt handlers to decide what to do with
2177 * new SGE responses. If there are no new responses it returns -1. If
2178 * there are new responses and they are pure (i.e., non-data carrying)
2179 * it handles them straight in hard interrupt context as they are very
2180 * cheap and don't deliver any packets. Finally, if there are any data
2181 * signaling responses it schedules the NAPI handler. Returns 1 if it
2182 * schedules NAPI, 0 if all new responses were pure.
2184 * The caller must ascertain NAPI is not already running.
2186 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2188 struct sge_qset *qs = rspq_to_qset(q);
2189 struct rsp_desc *r = &q->desc[q->cidx];
2191 if (!is_new_response(r, q))
2192 return -1;
2193 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2194 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2195 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2196 return 0;
2198 napi_schedule(&qs->napi);
2199 return 1;
2203 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2204 * (i.e., response queue serviced in hard interrupt).
2206 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2208 struct sge_qset *qs = cookie;
2209 struct adapter *adap = qs->adap;
2210 struct sge_rspq *q = &qs->rspq;
2212 spin_lock(&q->lock);
2213 if (process_responses(adap, qs, -1) == 0)
2214 q->unhandled_irqs++;
2215 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2216 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2217 spin_unlock(&q->lock);
2218 return IRQ_HANDLED;
2222 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2223 * (i.e., response queue serviced by NAPI polling).
2225 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2227 struct sge_qset *qs = cookie;
2228 struct sge_rspq *q = &qs->rspq;
2230 spin_lock(&q->lock);
2232 if (handle_responses(qs->adap, q) < 0)
2233 q->unhandled_irqs++;
2234 spin_unlock(&q->lock);
2235 return IRQ_HANDLED;
2239 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2240 * SGE response queues as well as error and other async events as they all use
2241 * the same MSI vector. We use one SGE response queue per port in this mode
2242 * and protect all response queues with queue 0's lock.
2244 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2246 int new_packets = 0;
2247 struct adapter *adap = cookie;
2248 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2250 spin_lock(&q->lock);
2252 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2253 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2254 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2255 new_packets = 1;
2258 if (adap->params.nports == 2 &&
2259 process_responses(adap, &adap->sge.qs[1], -1)) {
2260 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2262 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2263 V_NEWTIMER(q1->next_holdoff) |
2264 V_NEWINDEX(q1->cidx));
2265 new_packets = 1;
2268 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2269 q->unhandled_irqs++;
2271 spin_unlock(&q->lock);
2272 return IRQ_HANDLED;
2275 static int rspq_check_napi(struct sge_qset *qs)
2277 struct sge_rspq *q = &qs->rspq;
2279 if (!napi_is_scheduled(&qs->napi) &&
2280 is_new_response(&q->desc[q->cidx], q)) {
2281 napi_schedule(&qs->napi);
2282 return 1;
2284 return 0;
2288 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2289 * by NAPI polling). Handles data events from SGE response queues as well as
2290 * error and other async events as they all use the same MSI vector. We use
2291 * one SGE response queue per port in this mode and protect all response
2292 * queues with queue 0's lock.
2294 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2296 int new_packets;
2297 struct adapter *adap = cookie;
2298 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2300 spin_lock(&q->lock);
2302 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2303 if (adap->params.nports == 2)
2304 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2305 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2306 q->unhandled_irqs++;
2308 spin_unlock(&q->lock);
2309 return IRQ_HANDLED;
2313 * A helper function that processes responses and issues GTS.
2315 static inline int process_responses_gts(struct adapter *adap,
2316 struct sge_rspq *rq)
2318 int work;
2320 work = process_responses(adap, rspq_to_qset(rq), -1);
2321 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2322 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2323 return work;
2327 * The legacy INTx interrupt handler. This needs to handle data events from
2328 * SGE response queues as well as error and other async events as they all use
2329 * the same interrupt pin. We use one SGE response queue per port in this mode
2330 * and protect all response queues with queue 0's lock.
2332 static irqreturn_t t3_intr(int irq, void *cookie)
2334 int work_done, w0, w1;
2335 struct adapter *adap = cookie;
2336 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2337 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2339 spin_lock(&q0->lock);
2341 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2342 w1 = adap->params.nports == 2 &&
2343 is_new_response(&q1->desc[q1->cidx], q1);
2345 if (likely(w0 | w1)) {
2346 t3_write_reg(adap, A_PL_CLI, 0);
2347 t3_read_reg(adap, A_PL_CLI); /* flush */
2349 if (likely(w0))
2350 process_responses_gts(adap, q0);
2352 if (w1)
2353 process_responses_gts(adap, q1);
2355 work_done = w0 | w1;
2356 } else
2357 work_done = t3_slow_intr_handler(adap);
2359 spin_unlock(&q0->lock);
2360 return IRQ_RETVAL(work_done != 0);
2364 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2365 * Handles data events from SGE response queues as well as error and other
2366 * async events as they all use the same interrupt pin. We use one SGE
2367 * response queue per port in this mode and protect all response queues with
2368 * queue 0's lock.
2370 static irqreturn_t t3b_intr(int irq, void *cookie)
2372 u32 map;
2373 struct adapter *adap = cookie;
2374 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2376 t3_write_reg(adap, A_PL_CLI, 0);
2377 map = t3_read_reg(adap, A_SG_DATA_INTR);
2379 if (unlikely(!map)) /* shared interrupt, most likely */
2380 return IRQ_NONE;
2382 spin_lock(&q0->lock);
2384 if (unlikely(map & F_ERRINTR))
2385 t3_slow_intr_handler(adap);
2387 if (likely(map & 1))
2388 process_responses_gts(adap, q0);
2390 if (map & 2)
2391 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2393 spin_unlock(&q0->lock);
2394 return IRQ_HANDLED;
2398 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2399 * Handles data events from SGE response queues as well as error and other
2400 * async events as they all use the same interrupt pin. We use one SGE
2401 * response queue per port in this mode and protect all response queues with
2402 * queue 0's lock.
2404 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2406 u32 map;
2407 struct adapter *adap = cookie;
2408 struct sge_qset *qs0 = &adap->sge.qs[0];
2409 struct sge_rspq *q0 = &qs0->rspq;
2411 t3_write_reg(adap, A_PL_CLI, 0);
2412 map = t3_read_reg(adap, A_SG_DATA_INTR);
2414 if (unlikely(!map)) /* shared interrupt, most likely */
2415 return IRQ_NONE;
2417 spin_lock(&q0->lock);
2419 if (unlikely(map & F_ERRINTR))
2420 t3_slow_intr_handler(adap);
2422 if (likely(map & 1))
2423 napi_schedule(&qs0->napi);
2425 if (map & 2)
2426 napi_schedule(&adap->sge.qs[1].napi);
2428 spin_unlock(&q0->lock);
2429 return IRQ_HANDLED;
2433 * t3_intr_handler - select the top-level interrupt handler
2434 * @adap: the adapter
2435 * @polling: whether using NAPI to service response queues
2437 * Selects the top-level interrupt handler based on the type of interrupts
2438 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2439 * response queues.
2441 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2443 if (adap->flags & USING_MSIX)
2444 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2445 if (adap->flags & USING_MSI)
2446 return polling ? t3_intr_msi_napi : t3_intr_msi;
2447 if (adap->params.rev > 0)
2448 return polling ? t3b_intr_napi : t3b_intr;
2449 return t3_intr;
2452 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2453 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2454 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2455 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2456 F_HIRCQPARITYERROR)
2457 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2458 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2459 F_RSPQDISABLED)
2462 * t3_sge_err_intr_handler - SGE async event interrupt handler
2463 * @adapter: the adapter
2465 * Interrupt handler for SGE asynchronous (non-data) events.
2467 void t3_sge_err_intr_handler(struct adapter *adapter)
2469 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2471 if (status & SGE_PARERR)
2472 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2473 status & SGE_PARERR);
2474 if (status & SGE_FRAMINGERR)
2475 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2476 status & SGE_FRAMINGERR);
2478 if (status & F_RSPQCREDITOVERFOW)
2479 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2481 if (status & F_RSPQDISABLED) {
2482 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2484 CH_ALERT(adapter,
2485 "packet delivered to disabled response queue "
2486 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2489 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2490 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2491 status & F_HIPIODRBDROPERR ? "high" : "lo");
2493 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2494 if (status & SGE_FATALERR)
2495 t3_fatal_err(adapter);
2499 * sge_timer_cb - perform periodic maintenance of an SGE qset
2500 * @data: the SGE queue set to maintain
2502 * Runs periodically from a timer to perform maintenance of an SGE queue
2503 * set. It performs two tasks:
2505 * a) Cleans up any completed Tx descriptors that may still be pending.
2506 * Normal descriptor cleanup happens when new packets are added to a Tx
2507 * queue so this timer is relatively infrequent and does any cleanup only
2508 * if the Tx queue has not seen any new packets in a while. We make a
2509 * best effort attempt to reclaim descriptors, in that we don't wait
2510 * around if we cannot get a queue's lock (which most likely is because
2511 * someone else is queueing new packets and so will also handle the clean
2512 * up). Since control queues use immediate data exclusively we don't
2513 * bother cleaning them up here.
2515 * b) Replenishes Rx queues that have run out due to memory shortage.
2516 * Normally new Rx buffers are added when existing ones are consumed but
2517 * when out of memory a queue can become empty. We try to add only a few
2518 * buffers here, the queue will be replenished fully as these new buffers
2519 * are used up if memory shortage has subsided.
2521 static void sge_timer_cb(unsigned long data)
2523 spinlock_t *lock;
2524 struct sge_qset *qs = (struct sge_qset *)data;
2525 struct adapter *adap = qs->adap;
2527 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2528 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2529 spin_unlock(&qs->txq[TXQ_ETH].lock);
2531 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2532 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2533 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2535 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
2536 &adap->sge.qs[0].rspq.lock;
2537 if (spin_trylock_irq(lock)) {
2538 if (!napi_is_scheduled(&qs->napi)) {
2539 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2541 if (qs->fl[0].credits < qs->fl[0].size)
2542 __refill_fl(adap, &qs->fl[0]);
2543 if (qs->fl[1].credits < qs->fl[1].size)
2544 __refill_fl(adap, &qs->fl[1]);
2546 if (status & (1 << qs->rspq.cntxt_id)) {
2547 qs->rspq.starved++;
2548 if (qs->rspq.credits) {
2549 refill_rspq(adap, &qs->rspq, 1);
2550 qs->rspq.credits--;
2551 qs->rspq.restarted++;
2552 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2553 1 << qs->rspq.cntxt_id);
2557 spin_unlock_irq(lock);
2559 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2563 * t3_update_qset_coalesce - update coalescing settings for a queue set
2564 * @qs: the SGE queue set
2565 * @p: new queue set parameters
2567 * Update the coalescing settings for an SGE queue set. Nothing is done
2568 * if the queue set is not initialized yet.
2570 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2572 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2573 qs->rspq.polling = p->polling;
2574 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2578 * t3_sge_alloc_qset - initialize an SGE queue set
2579 * @adapter: the adapter
2580 * @id: the queue set id
2581 * @nports: how many Ethernet ports will be using this queue set
2582 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2583 * @p: configuration parameters for this queue set
2584 * @ntxq: number of Tx queues for the queue set
2585 * @netdev: net device associated with this queue set
2587 * Allocate resources and initialize an SGE queue set. A queue set
2588 * comprises a response queue, two Rx free-buffer queues, and up to 3
2589 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2590 * queue, offload queue, and control queue.
2592 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2593 int irq_vec_idx, const struct qset_params *p,
2594 int ntxq, struct net_device *dev)
2596 int i, ret = -ENOMEM;
2597 struct sge_qset *q = &adapter->sge.qs[id];
2599 init_qset_cntxt(q, id);
2600 init_timer(&q->tx_reclaim_timer);
2601 q->tx_reclaim_timer.data = (unsigned long)q;
2602 q->tx_reclaim_timer.function = sge_timer_cb;
2604 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2605 sizeof(struct rx_desc),
2606 sizeof(struct rx_sw_desc),
2607 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2608 if (!q->fl[0].desc)
2609 goto err;
2611 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2612 sizeof(struct rx_desc),
2613 sizeof(struct rx_sw_desc),
2614 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2615 if (!q->fl[1].desc)
2616 goto err;
2618 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2619 sizeof(struct rsp_desc), 0,
2620 &q->rspq.phys_addr, NULL);
2621 if (!q->rspq.desc)
2622 goto err;
2624 for (i = 0; i < ntxq; ++i) {
2626 * The control queue always uses immediate data so does not
2627 * need to keep track of any sk_buffs.
2629 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2631 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2632 sizeof(struct tx_desc), sz,
2633 &q->txq[i].phys_addr,
2634 &q->txq[i].sdesc);
2635 if (!q->txq[i].desc)
2636 goto err;
2638 q->txq[i].gen = 1;
2639 q->txq[i].size = p->txq_size[i];
2640 spin_lock_init(&q->txq[i].lock);
2641 skb_queue_head_init(&q->txq[i].sendq);
2644 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2645 (unsigned long)q);
2646 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2647 (unsigned long)q);
2649 q->fl[0].gen = q->fl[1].gen = 1;
2650 q->fl[0].size = p->fl_size;
2651 q->fl[1].size = p->jumbo_size;
2653 q->rspq.gen = 1;
2654 q->rspq.size = p->rspq_size;
2655 spin_lock_init(&q->rspq.lock);
2657 q->txq[TXQ_ETH].stop_thres = nports *
2658 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2660 #if FL0_PG_CHUNK_SIZE > 0
2661 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
2662 #else
2663 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
2664 #endif
2665 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2666 q->fl[1].buf_size = is_offload(adapter) ?
2667 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2668 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
2670 spin_lock_irq(&adapter->sge.reg_lock);
2672 /* FL threshold comparison uses < */
2673 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2674 q->rspq.phys_addr, q->rspq.size,
2675 q->fl[0].buf_size, 1, 0);
2676 if (ret)
2677 goto err_unlock;
2679 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2680 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2681 q->fl[i].phys_addr, q->fl[i].size,
2682 q->fl[i].buf_size, p->cong_thres, 1,
2684 if (ret)
2685 goto err_unlock;
2688 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2689 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2690 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2691 1, 0);
2692 if (ret)
2693 goto err_unlock;
2695 if (ntxq > 1) {
2696 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2697 USE_GTS, SGE_CNTXT_OFLD, id,
2698 q->txq[TXQ_OFLD].phys_addr,
2699 q->txq[TXQ_OFLD].size, 0, 1, 0);
2700 if (ret)
2701 goto err_unlock;
2704 if (ntxq > 2) {
2705 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2706 SGE_CNTXT_CTRL, id,
2707 q->txq[TXQ_CTRL].phys_addr,
2708 q->txq[TXQ_CTRL].size,
2709 q->txq[TXQ_CTRL].token, 1, 0);
2710 if (ret)
2711 goto err_unlock;
2714 spin_unlock_irq(&adapter->sge.reg_lock);
2716 q->adap = adapter;
2717 q->netdev = dev;
2718 t3_update_qset_coalesce(q, p);
2720 refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL);
2721 refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL);
2722 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2724 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2725 V_NEWTIMER(q->rspq.holdoff_tmr));
2727 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2728 return 0;
2730 err_unlock:
2731 spin_unlock_irq(&adapter->sge.reg_lock);
2732 err:
2733 t3_free_qset(adapter, q);
2734 return ret;
2738 * t3_free_sge_resources - free SGE resources
2739 * @adap: the adapter
2741 * Frees resources used by the SGE queue sets.
2743 void t3_free_sge_resources(struct adapter *adap)
2745 int i;
2747 for (i = 0; i < SGE_QSETS; ++i)
2748 t3_free_qset(adap, &adap->sge.qs[i]);
2752 * t3_sge_start - enable SGE
2753 * @adap: the adapter
2755 * Enables the SGE for DMAs. This is the last step in starting packet
2756 * transfers.
2758 void t3_sge_start(struct adapter *adap)
2760 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2764 * t3_sge_stop - disable SGE operation
2765 * @adap: the adapter
2767 * Disables the DMA engine. This can be called in emeregencies (e.g.,
2768 * from error interrupts) or from normal process context. In the latter
2769 * case it also disables any pending queue restart tasklets. Note that
2770 * if it is called in interrupt context it cannot disable the restart
2771 * tasklets as it cannot wait, however the tasklets will have no effect
2772 * since the doorbells are disabled and the driver will call this again
2773 * later from process context, at which time the tasklets will be stopped
2774 * if they are still running.
2776 void t3_sge_stop(struct adapter *adap)
2778 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
2779 if (!in_interrupt()) {
2780 int i;
2782 for (i = 0; i < SGE_QSETS; ++i) {
2783 struct sge_qset *qs = &adap->sge.qs[i];
2785 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
2786 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
2792 * t3_sge_init - initialize SGE
2793 * @adap: the adapter
2794 * @p: the SGE parameters
2796 * Performs SGE initialization needed every time after a chip reset.
2797 * We do not initialize any of the queue sets here, instead the driver
2798 * top-level must request those individually. We also do not enable DMA
2799 * here, that should be done after the queues have been set up.
2801 void t3_sge_init(struct adapter *adap, struct sge_params *p)
2803 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
2805 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
2806 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
2807 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
2808 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
2809 #if SGE_NUM_GENBITS == 1
2810 ctrl |= F_EGRGENCTRL;
2811 #endif
2812 if (adap->params.rev > 0) {
2813 if (!(adap->flags & (USING_MSIX | USING_MSI)))
2814 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
2816 t3_write_reg(adap, A_SG_CONTROL, ctrl);
2817 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
2818 V_LORCQDRBTHRSH(512));
2819 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
2820 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
2821 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
2822 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
2823 adap->params.rev < T3_REV_C ? 1000 : 500);
2824 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
2825 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
2826 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
2827 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
2828 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
2832 * t3_sge_prep - one-time SGE initialization
2833 * @adap: the associated adapter
2834 * @p: SGE parameters
2836 * Performs one-time initialization of SGE SW state. Includes determining
2837 * defaults for the assorted SGE parameters, which admins can change until
2838 * they are used to initialize the SGE.
2840 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
2842 int i;
2844 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
2845 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2847 for (i = 0; i < SGE_QSETS; ++i) {
2848 struct qset_params *q = p->qset + i;
2850 q->polling = adap->params.rev > 0;
2851 q->coalesce_usecs = 5;
2852 q->rspq_size = 1024;
2853 q->fl_size = 1024;
2854 q->jumbo_size = 512;
2855 q->txq_size[TXQ_ETH] = 1024;
2856 q->txq_size[TXQ_OFLD] = 1024;
2857 q->txq_size[TXQ_CTRL] = 256;
2858 q->cong_thres = 0;
2861 spin_lock_init(&adap->sge.reg_lock);
2865 * t3_get_desc - dump an SGE descriptor for debugging purposes
2866 * @qs: the queue set
2867 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
2868 * @idx: the descriptor index in the queue
2869 * @data: where to dump the descriptor contents
2871 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
2872 * size of the descriptor.
2874 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
2875 unsigned char *data)
2877 if (qnum >= 6)
2878 return -EINVAL;
2880 if (qnum < 3) {
2881 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
2882 return -EINVAL;
2883 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
2884 return sizeof(struct tx_desc);
2887 if (qnum == 3) {
2888 if (!qs->rspq.desc || idx >= qs->rspq.size)
2889 return -EINVAL;
2890 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
2891 return sizeof(struct rsp_desc);
2894 qnum -= 4;
2895 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
2896 return -EINVAL;
2897 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
2898 return sizeof(struct rx_desc);