1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
33 #include <asm/uaccess.h>
35 extern int e1000_up(struct e1000_adapter
*adapter
);
36 extern void e1000_down(struct e1000_adapter
*adapter
);
37 extern void e1000_reinit_locked(struct e1000_adapter
*adapter
);
38 extern void e1000_reset(struct e1000_adapter
*adapter
);
39 extern int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
40 extern int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
41 extern int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
42 extern void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
43 extern void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
44 extern void e1000_update_stats(struct e1000_adapter
*adapter
);
48 char stat_string
[ETH_GSTRING_LEN
];
53 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
54 offsetof(struct e1000_adapter, m)
55 static const struct e1000_stats e1000_gstrings_stats
[] = {
56 { "rx_packets", E1000_STAT(stats
.gprc
) },
57 { "tx_packets", E1000_STAT(stats
.gptc
) },
58 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
59 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
60 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
61 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
62 { "rx_multicast", E1000_STAT(stats
.mprc
) },
63 { "tx_multicast", E1000_STAT(stats
.mptc
) },
64 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
65 { "tx_errors", E1000_STAT(stats
.txerrc
) },
66 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
67 { "multicast", E1000_STAT(stats
.mprc
) },
68 { "collisions", E1000_STAT(stats
.colc
) },
69 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
70 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
71 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
72 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
73 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
74 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
75 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
76 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
77 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
78 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
79 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
80 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
81 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
82 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
83 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
84 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
85 { "tx_restart_queue", E1000_STAT(restart_queue
) },
86 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
87 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
88 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
89 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
90 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
91 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
92 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
93 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
94 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
95 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
96 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
97 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
98 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
99 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
100 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
101 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
102 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
105 #define E1000_QUEUE_STATS_LEN 0
106 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
108 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
109 "Register test (offline)", "Eeprom test (offline)",
110 "Interrupt test (offline)", "Loopback test (offline)",
111 "Link test (on/offline)"
113 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
116 e1000_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
118 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
119 struct e1000_hw
*hw
= &adapter
->hw
;
121 if (hw
->media_type
== e1000_media_type_copper
) {
123 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
124 SUPPORTED_10baseT_Full
|
125 SUPPORTED_100baseT_Half
|
126 SUPPORTED_100baseT_Full
|
127 SUPPORTED_1000baseT_Full
|
130 if (hw
->phy_type
== e1000_phy_ife
)
131 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
132 ecmd
->advertising
= ADVERTISED_TP
;
134 if (hw
->autoneg
== 1) {
135 ecmd
->advertising
|= ADVERTISED_Autoneg
;
136 /* the e1000 autoneg seems to match ethtool nicely */
137 ecmd
->advertising
|= hw
->autoneg_advertised
;
140 ecmd
->port
= PORT_TP
;
141 ecmd
->phy_address
= hw
->phy_addr
;
143 if (hw
->mac_type
== e1000_82543
)
144 ecmd
->transceiver
= XCVR_EXTERNAL
;
146 ecmd
->transceiver
= XCVR_INTERNAL
;
149 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
153 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
157 ecmd
->port
= PORT_FIBRE
;
159 if (hw
->mac_type
>= e1000_82545
)
160 ecmd
->transceiver
= XCVR_INTERNAL
;
162 ecmd
->transceiver
= XCVR_EXTERNAL
;
165 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
) {
167 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
168 &adapter
->link_duplex
);
169 ecmd
->speed
= adapter
->link_speed
;
171 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
172 * and HALF_DUPLEX != DUPLEX_HALF */
174 if (adapter
->link_duplex
== FULL_DUPLEX
)
175 ecmd
->duplex
= DUPLEX_FULL
;
177 ecmd
->duplex
= DUPLEX_HALF
;
183 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
184 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
189 e1000_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
191 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
192 struct e1000_hw
*hw
= &adapter
->hw
;
194 /* When SoL/IDER sessions are active, autoneg/speed/duplex
195 * cannot be changed */
196 if (e1000_check_phy_reset_block(hw
)) {
197 DPRINTK(DRV
, ERR
, "Cannot change link characteristics "
198 "when SoL/IDER is active.\n");
202 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
205 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
207 if (hw
->media_type
== e1000_media_type_fiber
)
208 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
212 hw
->autoneg_advertised
= ecmd
->advertising
|
215 ecmd
->advertising
= hw
->autoneg_advertised
;
217 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
218 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
224 if (netif_running(adapter
->netdev
)) {
228 e1000_reset(adapter
);
230 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
235 e1000_get_pauseparam(struct net_device
*netdev
,
236 struct ethtool_pauseparam
*pause
)
238 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
239 struct e1000_hw
*hw
= &adapter
->hw
;
242 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
244 if (hw
->fc
== E1000_FC_RX_PAUSE
)
246 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
248 else if (hw
->fc
== E1000_FC_FULL
) {
255 e1000_set_pauseparam(struct net_device
*netdev
,
256 struct ethtool_pauseparam
*pause
)
258 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
259 struct e1000_hw
*hw
= &adapter
->hw
;
262 adapter
->fc_autoneg
= pause
->autoneg
;
264 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
267 if (pause
->rx_pause
&& pause
->tx_pause
)
268 hw
->fc
= E1000_FC_FULL
;
269 else if (pause
->rx_pause
&& !pause
->tx_pause
)
270 hw
->fc
= E1000_FC_RX_PAUSE
;
271 else if (!pause
->rx_pause
&& pause
->tx_pause
)
272 hw
->fc
= E1000_FC_TX_PAUSE
;
273 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
274 hw
->fc
= E1000_FC_NONE
;
276 hw
->original_fc
= hw
->fc
;
278 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
279 if (netif_running(adapter
->netdev
)) {
283 e1000_reset(adapter
);
285 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
286 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
288 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
293 e1000_get_rx_csum(struct net_device
*netdev
)
295 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
296 return adapter
->rx_csum
;
300 e1000_set_rx_csum(struct net_device
*netdev
, uint32_t data
)
302 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
303 adapter
->rx_csum
= data
;
305 if (netif_running(netdev
))
306 e1000_reinit_locked(adapter
);
308 e1000_reset(adapter
);
313 e1000_get_tx_csum(struct net_device
*netdev
)
315 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
319 e1000_set_tx_csum(struct net_device
*netdev
, uint32_t data
)
321 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
323 if (adapter
->hw
.mac_type
< e1000_82543
) {
330 netdev
->features
|= NETIF_F_HW_CSUM
;
332 netdev
->features
&= ~NETIF_F_HW_CSUM
;
338 e1000_set_tso(struct net_device
*netdev
, uint32_t data
)
340 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
341 if ((adapter
->hw
.mac_type
< e1000_82544
) ||
342 (adapter
->hw
.mac_type
== e1000_82547
))
343 return data
? -EINVAL
: 0;
346 netdev
->features
|= NETIF_F_TSO
;
348 netdev
->features
&= ~NETIF_F_TSO
;
351 netdev
->features
|= NETIF_F_TSO6
;
353 netdev
->features
&= ~NETIF_F_TSO6
;
355 DPRINTK(PROBE
, INFO
, "TSO is %s\n", data
? "Enabled" : "Disabled");
356 adapter
->tso_force
= true;
361 e1000_get_msglevel(struct net_device
*netdev
)
363 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
364 return adapter
->msg_enable
;
368 e1000_set_msglevel(struct net_device
*netdev
, uint32_t data
)
370 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
371 adapter
->msg_enable
= data
;
375 e1000_get_regs_len(struct net_device
*netdev
)
377 #define E1000_REGS_LEN 32
378 return E1000_REGS_LEN
* sizeof(uint32_t);
382 e1000_get_regs(struct net_device
*netdev
,
383 struct ethtool_regs
*regs
, void *p
)
385 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
386 struct e1000_hw
*hw
= &adapter
->hw
;
387 uint32_t *regs_buff
= p
;
390 memset(p
, 0, E1000_REGS_LEN
* sizeof(uint32_t));
392 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
394 regs_buff
[0] = E1000_READ_REG(hw
, CTRL
);
395 regs_buff
[1] = E1000_READ_REG(hw
, STATUS
);
397 regs_buff
[2] = E1000_READ_REG(hw
, RCTL
);
398 regs_buff
[3] = E1000_READ_REG(hw
, RDLEN
);
399 regs_buff
[4] = E1000_READ_REG(hw
, RDH
);
400 regs_buff
[5] = E1000_READ_REG(hw
, RDT
);
401 regs_buff
[6] = E1000_READ_REG(hw
, RDTR
);
403 regs_buff
[7] = E1000_READ_REG(hw
, TCTL
);
404 regs_buff
[8] = E1000_READ_REG(hw
, TDLEN
);
405 regs_buff
[9] = E1000_READ_REG(hw
, TDH
);
406 regs_buff
[10] = E1000_READ_REG(hw
, TDT
);
407 regs_buff
[11] = E1000_READ_REG(hw
, TIDV
);
409 regs_buff
[12] = adapter
->hw
.phy_type
; /* PHY type (IGP=1, M88=0) */
410 if (hw
->phy_type
== e1000_phy_igp
) {
411 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
412 IGP01E1000_PHY_AGC_A
);
413 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
414 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
415 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
416 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
417 IGP01E1000_PHY_AGC_B
);
418 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
419 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
420 regs_buff
[14] = (uint32_t)phy_data
; /* cable length */
421 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
422 IGP01E1000_PHY_AGC_C
);
423 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
424 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
425 regs_buff
[15] = (uint32_t)phy_data
; /* cable length */
426 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
427 IGP01E1000_PHY_AGC_D
);
428 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
429 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
430 regs_buff
[16] = (uint32_t)phy_data
; /* cable length */
431 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
432 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
433 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
434 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
435 regs_buff
[18] = (uint32_t)phy_data
; /* cable polarity */
436 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
437 IGP01E1000_PHY_PCS_INIT_REG
);
438 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
439 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
440 regs_buff
[19] = (uint32_t)phy_data
; /* cable polarity */
441 regs_buff
[20] = 0; /* polarity correction enabled (always) */
442 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
443 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
444 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
446 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
447 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
448 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
449 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
450 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
451 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
452 regs_buff
[17] = (uint32_t)phy_data
; /* extended 10bt distance */
453 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
454 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
455 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
456 /* phy receive errors */
457 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
458 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
460 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
461 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
462 regs_buff
[24] = (uint32_t)phy_data
; /* phy local receiver status */
463 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
464 if (hw
->mac_type
>= e1000_82540
&&
465 hw
->mac_type
< e1000_82571
&&
466 hw
->media_type
== e1000_media_type_copper
) {
467 regs_buff
[26] = E1000_READ_REG(hw
, MANC
);
472 e1000_get_eeprom_len(struct net_device
*netdev
)
474 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
475 return adapter
->hw
.eeprom
.word_size
* 2;
479 e1000_get_eeprom(struct net_device
*netdev
,
480 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
482 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
483 struct e1000_hw
*hw
= &adapter
->hw
;
484 uint16_t *eeprom_buff
;
485 int first_word
, last_word
;
489 if (eeprom
->len
== 0)
492 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
494 first_word
= eeprom
->offset
>> 1;
495 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
497 eeprom_buff
= kmalloc(sizeof(uint16_t) *
498 (last_word
- first_word
+ 1), GFP_KERNEL
);
502 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
503 ret_val
= e1000_read_eeprom(hw
, first_word
,
504 last_word
- first_word
+ 1,
507 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
508 if ((ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
513 /* Device's eeprom is always little-endian, word addressable */
514 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
515 le16_to_cpus(&eeprom_buff
[i
]);
517 memcpy(bytes
, (uint8_t *)eeprom_buff
+ (eeprom
->offset
& 1),
525 e1000_set_eeprom(struct net_device
*netdev
,
526 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
528 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
529 struct e1000_hw
*hw
= &adapter
->hw
;
530 uint16_t *eeprom_buff
;
532 int max_len
, first_word
, last_word
, ret_val
= 0;
535 if (eeprom
->len
== 0)
538 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
541 max_len
= hw
->eeprom
.word_size
* 2;
543 first_word
= eeprom
->offset
>> 1;
544 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
545 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
549 ptr
= (void *)eeprom_buff
;
551 if (eeprom
->offset
& 1) {
552 /* need read/modify/write of first changed EEPROM word */
553 /* only the second byte of the word is being modified */
554 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
558 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
559 /* need read/modify/write of last changed EEPROM word */
560 /* only the first byte of the word is being modified */
561 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
562 &eeprom_buff
[last_word
- first_word
]);
565 /* Device's eeprom is always little-endian, word addressable */
566 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
567 le16_to_cpus(&eeprom_buff
[i
]);
569 memcpy(ptr
, bytes
, eeprom
->len
);
571 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
572 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
574 ret_val
= e1000_write_eeprom(hw
, first_word
,
575 last_word
- first_word
+ 1, eeprom_buff
);
577 /* Update the checksum over the first part of the EEPROM if needed
578 * and flush shadow RAM for 82573 conrollers */
579 if ((ret_val
== 0) && ((first_word
<= EEPROM_CHECKSUM_REG
) ||
580 (hw
->mac_type
== e1000_82573
)))
581 e1000_update_eeprom_checksum(hw
);
588 e1000_get_drvinfo(struct net_device
*netdev
,
589 struct ethtool_drvinfo
*drvinfo
)
591 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
592 char firmware_version
[32];
593 uint16_t eeprom_data
;
595 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
596 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
598 /* EEPROM image version # is reported as firmware version # for
599 * 8257{1|2|3} controllers */
600 e1000_read_eeprom(&adapter
->hw
, 5, 1, &eeprom_data
);
601 switch (adapter
->hw
.mac_type
) {
605 case e1000_80003es2lan
:
607 sprintf(firmware_version
, "%d.%d-%d",
608 (eeprom_data
& 0xF000) >> 12,
609 (eeprom_data
& 0x0FF0) >> 4,
610 eeprom_data
& 0x000F);
613 sprintf(firmware_version
, "N/A");
616 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
617 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
618 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
619 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
623 e1000_get_ringparam(struct net_device
*netdev
,
624 struct ethtool_ringparam
*ring
)
626 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
627 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
628 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
629 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
631 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
633 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
635 ring
->rx_mini_max_pending
= 0;
636 ring
->rx_jumbo_max_pending
= 0;
637 ring
->rx_pending
= rxdr
->count
;
638 ring
->tx_pending
= txdr
->count
;
639 ring
->rx_mini_pending
= 0;
640 ring
->rx_jumbo_pending
= 0;
644 e1000_set_ringparam(struct net_device
*netdev
,
645 struct ethtool_ringparam
*ring
)
647 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
648 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
649 struct e1000_tx_ring
*txdr
, *tx_old
;
650 struct e1000_rx_ring
*rxdr
, *rx_old
;
653 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
656 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
659 if (netif_running(adapter
->netdev
))
662 tx_old
= adapter
->tx_ring
;
663 rx_old
= adapter
->rx_ring
;
666 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
670 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
674 adapter
->tx_ring
= txdr
;
675 adapter
->rx_ring
= rxdr
;
677 rxdr
->count
= max(ring
->rx_pending
,(uint32_t)E1000_MIN_RXD
);
678 rxdr
->count
= min(rxdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
679 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
680 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
682 txdr
->count
= max(ring
->tx_pending
,(uint32_t)E1000_MIN_TXD
);
683 txdr
->count
= min(txdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
684 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
685 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
687 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
688 txdr
[i
].count
= txdr
->count
;
689 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
690 rxdr
[i
].count
= rxdr
->count
;
692 if (netif_running(adapter
->netdev
)) {
693 /* Try to get new resources before deleting old */
694 if ((err
= e1000_setup_all_rx_resources(adapter
)))
696 if ((err
= e1000_setup_all_tx_resources(adapter
)))
699 /* save the new, restore the old in order to free it,
700 * then restore the new back again */
702 adapter
->rx_ring
= rx_old
;
703 adapter
->tx_ring
= tx_old
;
704 e1000_free_all_rx_resources(adapter
);
705 e1000_free_all_tx_resources(adapter
);
708 adapter
->rx_ring
= rxdr
;
709 adapter
->tx_ring
= txdr
;
710 if ((err
= e1000_up(adapter
)))
714 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
717 e1000_free_all_rx_resources(adapter
);
719 adapter
->rx_ring
= rx_old
;
720 adapter
->tx_ring
= tx_old
;
727 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
731 static bool reg_pattern_test(struct e1000_adapter
*adapter
, uint64_t *data
,
732 int reg
, uint32_t mask
, uint32_t write
)
734 static const uint32_t test
[] =
735 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
736 uint8_t __iomem
*address
= adapter
->hw
.hw_addr
+ reg
;
740 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
741 writel(write
& test
[i
], address
);
742 read
= readl(address
);
743 if (read
!= (write
& test
[i
] & mask
)) {
744 DPRINTK(DRV
, ERR
, "pattern test reg %04X failed: "
745 "got 0x%08X expected 0x%08X\n",
746 reg
, read
, (write
& test
[i
] & mask
));
754 static bool reg_set_and_check(struct e1000_adapter
*adapter
, uint64_t *data
,
755 int reg
, uint32_t mask
, uint32_t write
)
757 uint8_t __iomem
*address
= adapter
->hw
.hw_addr
+ reg
;
760 writel(write
& mask
, address
);
761 read
= readl(address
);
762 if ((read
& mask
) != (write
& mask
)) {
763 DPRINTK(DRV
, ERR
, "set/check reg %04X test failed: "
764 "got 0x%08X expected 0x%08X\n",
765 reg
, (read
& mask
), (write
& mask
));
772 #define REG_PATTERN_TEST(reg, mask, write) \
774 if (reg_pattern_test(adapter, data, \
775 (adapter->hw.mac_type >= e1000_82543) \
776 ? E1000_##reg : E1000_82542_##reg, \
781 #define REG_SET_AND_CHECK(reg, mask, write) \
783 if (reg_set_and_check(adapter, data, \
784 (adapter->hw.mac_type >= e1000_82543) \
785 ? E1000_##reg : E1000_82542_##reg, \
791 e1000_reg_test(struct e1000_adapter
*adapter
, uint64_t *data
)
793 uint32_t value
, before
, after
;
796 /* The status register is Read Only, so a write should fail.
797 * Some bits that get toggled are ignored.
799 switch (adapter
->hw
.mac_type
) {
800 /* there are several bits on newer hardware that are r/w */
803 case e1000_80003es2lan
:
815 before
= E1000_READ_REG(&adapter
->hw
, STATUS
);
816 value
= (E1000_READ_REG(&adapter
->hw
, STATUS
) & toggle
);
817 E1000_WRITE_REG(&adapter
->hw
, STATUS
, toggle
);
818 after
= E1000_READ_REG(&adapter
->hw
, STATUS
) & toggle
;
819 if (value
!= after
) {
820 DPRINTK(DRV
, ERR
, "failed STATUS register test got: "
821 "0x%08X expected: 0x%08X\n", after
, value
);
825 /* restore previous status */
826 E1000_WRITE_REG(&adapter
->hw
, STATUS
, before
);
828 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
829 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
830 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
831 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
832 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
835 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
836 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
837 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
838 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
839 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
840 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
841 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
842 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
843 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
844 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
846 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
848 before
= (adapter
->hw
.mac_type
== e1000_ich8lan
?
849 0x06C3B33E : 0x06DFB3FE);
850 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
851 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
853 if (adapter
->hw
.mac_type
>= e1000_82543
) {
855 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
856 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
857 if (adapter
->hw
.mac_type
!= e1000_ich8lan
)
858 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
859 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
860 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
861 value
= (adapter
->hw
.mac_type
== e1000_ich8lan
?
862 E1000_RAR_ENTRIES_ICH8LAN
: E1000_RAR_ENTRIES
);
863 for (i
= 0; i
< value
; i
++) {
864 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
870 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
871 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
872 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
873 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
877 value
= (adapter
->hw
.mac_type
== e1000_ich8lan
?
878 E1000_MC_TBL_SIZE_ICH8LAN
: E1000_MC_TBL_SIZE
);
879 for (i
= 0; i
< value
; i
++)
880 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
887 e1000_eeprom_test(struct e1000_adapter
*adapter
, uint64_t *data
)
890 uint16_t checksum
= 0;
894 /* Read and add up the contents of the EEPROM */
895 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
896 if ((e1000_read_eeprom(&adapter
->hw
, i
, 1, &temp
)) < 0) {
903 /* If Checksum is not Correct return error else test passed */
904 if ((checksum
!= (uint16_t) EEPROM_SUM
) && !(*data
))
911 e1000_test_intr(int irq
, void *data
)
913 struct net_device
*netdev
= (struct net_device
*) data
;
914 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
916 adapter
->test_icr
|= E1000_READ_REG(&adapter
->hw
, ICR
);
922 e1000_intr_test(struct e1000_adapter
*adapter
, uint64_t *data
)
924 struct net_device
*netdev
= adapter
->netdev
;
925 uint32_t mask
, i
= 0;
926 bool shared_int
= true;
927 uint32_t irq
= adapter
->pdev
->irq
;
931 /* NOTE: we don't test MSI interrupts here, yet */
932 /* Hook up test interrupt handler just for this test */
933 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
936 else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
937 netdev
->name
, netdev
)) {
941 DPRINTK(HW
, INFO
, "testing %s interrupt\n",
942 (shared_int
? "shared" : "unshared"));
944 /* Disable all the interrupts */
945 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
948 /* Test each interrupt */
949 for (; i
< 10; i
++) {
951 if (adapter
->hw
.mac_type
== e1000_ich8lan
&& i
== 8)
954 /* Interrupt to test */
958 /* Disable the interrupt to be reported in
959 * the cause register and then force the same
960 * interrupt and see if one gets posted. If
961 * an interrupt was posted to the bus, the
964 adapter
->test_icr
= 0;
965 E1000_WRITE_REG(&adapter
->hw
, IMC
, mask
);
966 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
969 if (adapter
->test_icr
& mask
) {
975 /* Enable the interrupt to be reported in
976 * the cause register and then force the same
977 * interrupt and see if one gets posted. If
978 * an interrupt was not posted to the bus, the
981 adapter
->test_icr
= 0;
982 E1000_WRITE_REG(&adapter
->hw
, IMS
, mask
);
983 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
986 if (!(adapter
->test_icr
& mask
)) {
992 /* Disable the other interrupts to be reported in
993 * the cause register and then force the other
994 * interrupts and see if any get posted. If
995 * an interrupt was posted to the bus, the
998 adapter
->test_icr
= 0;
999 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~mask
& 0x00007FFF);
1000 E1000_WRITE_REG(&adapter
->hw
, ICS
, ~mask
& 0x00007FFF);
1003 if (adapter
->test_icr
) {
1010 /* Disable all the interrupts */
1011 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
1014 /* Unhook test interrupt handler */
1015 free_irq(irq
, netdev
);
1021 e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1023 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1024 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1025 struct pci_dev
*pdev
= adapter
->pdev
;
1028 if (txdr
->desc
&& txdr
->buffer_info
) {
1029 for (i
= 0; i
< txdr
->count
; i
++) {
1030 if (txdr
->buffer_info
[i
].dma
)
1031 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
1032 txdr
->buffer_info
[i
].length
,
1034 if (txdr
->buffer_info
[i
].skb
)
1035 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
1039 if (rxdr
->desc
&& rxdr
->buffer_info
) {
1040 for (i
= 0; i
< rxdr
->count
; i
++) {
1041 if (rxdr
->buffer_info
[i
].dma
)
1042 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
1043 rxdr
->buffer_info
[i
].length
,
1044 PCI_DMA_FROMDEVICE
);
1045 if (rxdr
->buffer_info
[i
].skb
)
1046 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
1051 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
1055 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
1059 kfree(txdr
->buffer_info
);
1060 txdr
->buffer_info
= NULL
;
1061 kfree(rxdr
->buffer_info
);
1062 rxdr
->buffer_info
= NULL
;
1068 e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1070 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1071 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1072 struct pci_dev
*pdev
= adapter
->pdev
;
1076 /* Setup Tx descriptor ring and Tx buffers */
1079 txdr
->count
= E1000_DEFAULT_TXD
;
1081 if (!(txdr
->buffer_info
= kcalloc(txdr
->count
,
1082 sizeof(struct e1000_buffer
),
1088 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1089 txdr
->size
= ALIGN(txdr
->size
, 4096);
1090 if (!(txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
,
1095 memset(txdr
->desc
, 0, txdr
->size
);
1096 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1098 E1000_WRITE_REG(&adapter
->hw
, TDBAL
,
1099 ((uint64_t) txdr
->dma
& 0x00000000FFFFFFFF));
1100 E1000_WRITE_REG(&adapter
->hw
, TDBAH
, ((uint64_t) txdr
->dma
>> 32));
1101 E1000_WRITE_REG(&adapter
->hw
, TDLEN
,
1102 txdr
->count
* sizeof(struct e1000_tx_desc
));
1103 E1000_WRITE_REG(&adapter
->hw
, TDH
, 0);
1104 E1000_WRITE_REG(&adapter
->hw
, TDT
, 0);
1105 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
1106 E1000_TCTL_PSP
| E1000_TCTL_EN
|
1107 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1108 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1110 for (i
= 0; i
< txdr
->count
; i
++) {
1111 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1112 struct sk_buff
*skb
;
1113 unsigned int size
= 1024;
1115 if (!(skb
= alloc_skb(size
, GFP_KERNEL
))) {
1120 txdr
->buffer_info
[i
].skb
= skb
;
1121 txdr
->buffer_info
[i
].length
= skb
->len
;
1122 txdr
->buffer_info
[i
].dma
=
1123 pci_map_single(pdev
, skb
->data
, skb
->len
,
1125 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1126 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1127 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1128 E1000_TXD_CMD_IFCS
|
1130 tx_desc
->upper
.data
= 0;
1133 /* Setup Rx descriptor ring and Rx buffers */
1136 rxdr
->count
= E1000_DEFAULT_RXD
;
1138 if (!(rxdr
->buffer_info
= kcalloc(rxdr
->count
,
1139 sizeof(struct e1000_buffer
),
1145 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1146 if (!(rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
))) {
1150 memset(rxdr
->desc
, 0, rxdr
->size
);
1151 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1153 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1154 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
1155 E1000_WRITE_REG(&adapter
->hw
, RDBAL
,
1156 ((uint64_t) rxdr
->dma
& 0xFFFFFFFF));
1157 E1000_WRITE_REG(&adapter
->hw
, RDBAH
, ((uint64_t) rxdr
->dma
>> 32));
1158 E1000_WRITE_REG(&adapter
->hw
, RDLEN
, rxdr
->size
);
1159 E1000_WRITE_REG(&adapter
->hw
, RDH
, 0);
1160 E1000_WRITE_REG(&adapter
->hw
, RDT
, 0);
1161 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1162 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1163 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1164 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1166 for (i
= 0; i
< rxdr
->count
; i
++) {
1167 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1168 struct sk_buff
*skb
;
1170 if (!(skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
,
1175 skb_reserve(skb
, NET_IP_ALIGN
);
1176 rxdr
->buffer_info
[i
].skb
= skb
;
1177 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1178 rxdr
->buffer_info
[i
].dma
=
1179 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1180 PCI_DMA_FROMDEVICE
);
1181 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1182 memset(skb
->data
, 0x00, skb
->len
);
1188 e1000_free_desc_rings(adapter
);
1193 e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1195 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1196 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001F);
1197 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FFC);
1198 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001A);
1199 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FF0);
1203 e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1207 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1208 * Extended PHY Specific Control Register to 25MHz clock. This
1209 * value defaults back to a 2.5MHz clock when the PHY is reset.
1211 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1212 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1213 e1000_write_phy_reg(&adapter
->hw
,
1214 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1216 /* In addition, because of the s/w reset above, we need to enable
1217 * CRS on TX. This must be set for both full and half duplex
1220 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1221 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1222 e1000_write_phy_reg(&adapter
->hw
,
1223 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1227 e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1232 /* Setup the Device Control Register for PHY loopback test. */
1234 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1235 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1236 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1237 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1238 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1239 E1000_CTRL_FD
); /* Force Duplex to FULL */
1241 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1243 /* Read the PHY Specific Control Register (0x10) */
1244 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1246 /* Clear Auto-Crossover bits in PHY Specific Control Register
1249 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1250 e1000_write_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1252 /* Perform software reset on the PHY */
1253 e1000_phy_reset(&adapter
->hw
);
1255 /* Have to setup TX_CLK and TX_CRS after software reset */
1256 e1000_phy_reset_clk_and_crs(adapter
);
1258 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8100);
1260 /* Wait for reset to complete. */
1263 /* Have to setup TX_CLK and TX_CRS after software reset */
1264 e1000_phy_reset_clk_and_crs(adapter
);
1266 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1267 e1000_phy_disable_receiver(adapter
);
1269 /* Set the loopback bit in the PHY control register. */
1270 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1271 phy_reg
|= MII_CR_LOOPBACK
;
1272 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1274 /* Setup TX_CLK and TX_CRS one more time. */
1275 e1000_phy_reset_clk_and_crs(adapter
);
1277 /* Check Phy Configuration */
1278 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1279 if (phy_reg
!= 0x4100)
1282 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1283 if (phy_reg
!= 0x0070)
1286 e1000_read_phy_reg(&adapter
->hw
, 29, &phy_reg
);
1287 if (phy_reg
!= 0x001A)
1294 e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1296 uint32_t ctrl_reg
= 0;
1297 uint32_t stat_reg
= 0;
1299 adapter
->hw
.autoneg
= false;
1301 if (adapter
->hw
.phy_type
== e1000_phy_m88
) {
1302 /* Auto-MDI/MDIX Off */
1303 e1000_write_phy_reg(&adapter
->hw
,
1304 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1305 /* reset to update Auto-MDI/MDIX */
1306 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x9140);
1308 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8140);
1309 } else if (adapter
->hw
.phy_type
== e1000_phy_gg82563
)
1310 e1000_write_phy_reg(&adapter
->hw
,
1311 GG82563_PHY_KMRN_MODE_CTRL
,
1314 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1316 if (adapter
->hw
.phy_type
== e1000_phy_ife
) {
1317 /* force 100, set loopback */
1318 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x6100);
1320 /* Now set up the MAC to the same speed/duplex as the PHY. */
1321 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1322 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1323 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1324 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1325 E1000_CTRL_FD
); /* Force Duplex to FULL */
1327 /* force 1000, set loopback */
1328 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x4140);
1330 /* Now set up the MAC to the same speed/duplex as the PHY. */
1331 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1332 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1333 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1334 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1335 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1336 E1000_CTRL_FD
); /* Force Duplex to FULL */
1339 if (adapter
->hw
.media_type
== e1000_media_type_copper
&&
1340 adapter
->hw
.phy_type
== e1000_phy_m88
)
1341 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1343 /* Set the ILOS bit on the fiber Nic is half
1344 * duplex link is detected. */
1345 stat_reg
= E1000_READ_REG(&adapter
->hw
, STATUS
);
1346 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1347 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1350 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1352 /* Disable the receiver on the PHY so when a cable is plugged in, the
1353 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1355 if (adapter
->hw
.phy_type
== e1000_phy_m88
)
1356 e1000_phy_disable_receiver(adapter
);
1364 e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1366 uint16_t phy_reg
= 0;
1369 switch (adapter
->hw
.mac_type
) {
1371 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
1372 /* Attempt to setup Loopback mode on Non-integrated PHY.
1373 * Some PHY registers get corrupted at random, so
1374 * attempt this 10 times.
1376 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1386 case e1000_82545_rev_3
:
1388 case e1000_82546_rev_3
:
1390 case e1000_82541_rev_2
:
1392 case e1000_82547_rev_2
:
1396 case e1000_80003es2lan
:
1398 return e1000_integrated_phy_loopback(adapter
);
1402 /* Default PHY loopback work is to read the MII
1403 * control register and assert bit 14 (loopback mode).
1405 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1406 phy_reg
|= MII_CR_LOOPBACK
;
1407 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1416 e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1418 struct e1000_hw
*hw
= &adapter
->hw
;
1421 if (hw
->media_type
== e1000_media_type_fiber
||
1422 hw
->media_type
== e1000_media_type_internal_serdes
) {
1423 switch (hw
->mac_type
) {
1426 case e1000_82545_rev_3
:
1427 case e1000_82546_rev_3
:
1428 return e1000_set_phy_loopback(adapter
);
1432 #define E1000_SERDES_LB_ON 0x410
1433 e1000_set_phy_loopback(adapter
);
1434 E1000_WRITE_REG(hw
, SCTL
, E1000_SERDES_LB_ON
);
1439 rctl
= E1000_READ_REG(hw
, RCTL
);
1440 rctl
|= E1000_RCTL_LBM_TCVR
;
1441 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1444 } else if (hw
->media_type
== e1000_media_type_copper
)
1445 return e1000_set_phy_loopback(adapter
);
1451 e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1453 struct e1000_hw
*hw
= &adapter
->hw
;
1457 rctl
= E1000_READ_REG(hw
, RCTL
);
1458 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1459 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1461 switch (hw
->mac_type
) {
1464 if (hw
->media_type
== e1000_media_type_fiber
||
1465 hw
->media_type
== e1000_media_type_internal_serdes
) {
1466 #define E1000_SERDES_LB_OFF 0x400
1467 E1000_WRITE_REG(hw
, SCTL
, E1000_SERDES_LB_OFF
);
1474 case e1000_82545_rev_3
:
1475 case e1000_82546_rev_3
:
1478 if (hw
->phy_type
== e1000_phy_gg82563
)
1479 e1000_write_phy_reg(hw
,
1480 GG82563_PHY_KMRN_MODE_CTRL
,
1482 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1483 if (phy_reg
& MII_CR_LOOPBACK
) {
1484 phy_reg
&= ~MII_CR_LOOPBACK
;
1485 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1486 e1000_phy_reset(hw
);
1493 e1000_create_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1495 memset(skb
->data
, 0xFF, frame_size
);
1497 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1498 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1499 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1503 e1000_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1506 if (*(skb
->data
+ 3) == 0xFF) {
1507 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1508 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1516 e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1518 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1519 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1520 struct pci_dev
*pdev
= adapter
->pdev
;
1521 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1524 E1000_WRITE_REG(&adapter
->hw
, RDT
, rxdr
->count
- 1);
1526 /* Calculate the loop count based on the largest descriptor ring
1527 * The idea is to wrap the largest ring a number of times using 64
1528 * send/receive pairs during each loop
1531 if (rxdr
->count
<= txdr
->count
)
1532 lc
= ((txdr
->count
/ 64) * 2) + 1;
1534 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1537 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1538 for (i
= 0; i
< 64; i
++) { /* send the packets */
1539 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1541 pci_dma_sync_single_for_device(pdev
,
1542 txdr
->buffer_info
[k
].dma
,
1543 txdr
->buffer_info
[k
].length
,
1545 if (unlikely(++k
== txdr
->count
)) k
= 0;
1547 E1000_WRITE_REG(&adapter
->hw
, TDT
, k
);
1549 time
= jiffies
; /* set the start time for the receive */
1551 do { /* receive the sent packets */
1552 pci_dma_sync_single_for_cpu(pdev
,
1553 rxdr
->buffer_info
[l
].dma
,
1554 rxdr
->buffer_info
[l
].length
,
1555 PCI_DMA_FROMDEVICE
);
1557 ret_val
= e1000_check_lbtest_frame(
1558 rxdr
->buffer_info
[l
].skb
,
1562 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1563 /* time + 20 msecs (200 msecs on 2.4) is more than
1564 * enough time to complete the receives, if it's
1565 * exceeded, break and error off
1567 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1568 if (good_cnt
!= 64) {
1569 ret_val
= 13; /* ret_val is the same as mis-compare */
1572 if (jiffies
>= (time
+ 2)) {
1573 ret_val
= 14; /* error code for time out error */
1576 } /* end loop count loop */
1581 e1000_loopback_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1583 /* PHY loopback cannot be performed if SoL/IDER
1584 * sessions are active */
1585 if (e1000_check_phy_reset_block(&adapter
->hw
)) {
1586 DPRINTK(DRV
, ERR
, "Cannot do PHY loopback test "
1587 "when SoL/IDER is active.\n");
1592 if ((*data
= e1000_setup_desc_rings(adapter
)))
1594 if ((*data
= e1000_setup_loopback_test(adapter
)))
1596 *data
= e1000_run_loopback_test(adapter
);
1597 e1000_loopback_cleanup(adapter
);
1600 e1000_free_desc_rings(adapter
);
1606 e1000_link_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1609 if (adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
1611 adapter
->hw
.serdes_link_down
= true;
1613 /* On some blade server designs, link establishment
1614 * could take as long as 2-3 minutes */
1616 e1000_check_for_link(&adapter
->hw
);
1617 if (!adapter
->hw
.serdes_link_down
)
1620 } while (i
++ < 3750);
1624 e1000_check_for_link(&adapter
->hw
);
1625 if (adapter
->hw
.autoneg
) /* if auto_neg is set wait for it */
1628 if (!(E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
)) {
1636 e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1640 return E1000_TEST_LEN
;
1642 return E1000_STATS_LEN
;
1649 e1000_diag_test(struct net_device
*netdev
,
1650 struct ethtool_test
*eth_test
, uint64_t *data
)
1652 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1653 bool if_running
= netif_running(netdev
);
1655 set_bit(__E1000_TESTING
, &adapter
->flags
);
1656 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1659 /* save speed, duplex, autoneg settings */
1660 uint16_t autoneg_advertised
= adapter
->hw
.autoneg_advertised
;
1661 uint8_t forced_speed_duplex
= adapter
->hw
.forced_speed_duplex
;
1662 uint8_t autoneg
= adapter
->hw
.autoneg
;
1664 DPRINTK(HW
, INFO
, "offline testing starting\n");
1666 /* Link test performed before hardware reset so autoneg doesn't
1667 * interfere with test result */
1668 if (e1000_link_test(adapter
, &data
[4]))
1669 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1672 /* indicate we're in test mode */
1675 e1000_reset(adapter
);
1677 if (e1000_reg_test(adapter
, &data
[0]))
1678 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1680 e1000_reset(adapter
);
1681 if (e1000_eeprom_test(adapter
, &data
[1]))
1682 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1684 e1000_reset(adapter
);
1685 if (e1000_intr_test(adapter
, &data
[2]))
1686 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1688 e1000_reset(adapter
);
1689 /* make sure the phy is powered up */
1690 e1000_power_up_phy(adapter
);
1691 if (e1000_loopback_test(adapter
, &data
[3]))
1692 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1694 /* restore speed, duplex, autoneg settings */
1695 adapter
->hw
.autoneg_advertised
= autoneg_advertised
;
1696 adapter
->hw
.forced_speed_duplex
= forced_speed_duplex
;
1697 adapter
->hw
.autoneg
= autoneg
;
1699 e1000_reset(adapter
);
1700 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1704 DPRINTK(HW
, INFO
, "online testing starting\n");
1706 if (e1000_link_test(adapter
, &data
[4]))
1707 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1709 /* Online tests aren't run; pass by default */
1715 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1717 msleep_interruptible(4 * 1000);
1720 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
, struct ethtool_wolinfo
*wol
)
1722 struct e1000_hw
*hw
= &adapter
->hw
;
1723 int retval
= 1; /* fail by default */
1725 switch (hw
->device_id
) {
1726 case E1000_DEV_ID_82542
:
1727 case E1000_DEV_ID_82543GC_FIBER
:
1728 case E1000_DEV_ID_82543GC_COPPER
:
1729 case E1000_DEV_ID_82544EI_FIBER
:
1730 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1731 case E1000_DEV_ID_82545EM_FIBER
:
1732 case E1000_DEV_ID_82545EM_COPPER
:
1733 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1734 case E1000_DEV_ID_82546GB_PCIE
:
1735 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
1736 /* these don't support WoL at all */
1739 case E1000_DEV_ID_82546EB_FIBER
:
1740 case E1000_DEV_ID_82546GB_FIBER
:
1741 case E1000_DEV_ID_82571EB_FIBER
:
1742 case E1000_DEV_ID_82571EB_SERDES
:
1743 case E1000_DEV_ID_82571EB_COPPER
:
1744 /* Wake events not supported on port B */
1745 if (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
) {
1749 /* return success for non excluded adapter ports */
1752 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1753 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
1754 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1755 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
1756 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1757 /* quad port adapters only support WoL on port A */
1758 if (!adapter
->quad_port_a
) {
1762 /* return success for non excluded adapter ports */
1766 /* dual port cards only support WoL on port A from now on
1767 * unless it was enabled in the eeprom for port B
1768 * so exclude FUNC_1 ports from having WoL enabled */
1769 if (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
&&
1770 !adapter
->eeprom_wol
) {
1782 e1000_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1784 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1786 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1787 WAKE_BCAST
| WAKE_MAGIC
;
1790 /* this function will set ->supported = 0 and return 1 if wol is not
1791 * supported by this hardware */
1792 if (e1000_wol_exclusion(adapter
, wol
))
1795 /* apply any specific unsupported masks here */
1796 switch (adapter
->hw
.device_id
) {
1797 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1798 /* KSP3 does not suppport UCAST wake-ups */
1799 wol
->supported
&= ~WAKE_UCAST
;
1801 if (adapter
->wol
& E1000_WUFC_EX
)
1802 DPRINTK(DRV
, ERR
, "Interface does not support "
1803 "directed (unicast) frame wake-up packets\n");
1809 if (adapter
->wol
& E1000_WUFC_EX
)
1810 wol
->wolopts
|= WAKE_UCAST
;
1811 if (adapter
->wol
& E1000_WUFC_MC
)
1812 wol
->wolopts
|= WAKE_MCAST
;
1813 if (adapter
->wol
& E1000_WUFC_BC
)
1814 wol
->wolopts
|= WAKE_BCAST
;
1815 if (adapter
->wol
& E1000_WUFC_MAG
)
1816 wol
->wolopts
|= WAKE_MAGIC
;
1822 e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1824 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1825 struct e1000_hw
*hw
= &adapter
->hw
;
1827 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1830 if (e1000_wol_exclusion(adapter
, wol
))
1831 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1833 switch (hw
->device_id
) {
1834 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1835 if (wol
->wolopts
& WAKE_UCAST
) {
1836 DPRINTK(DRV
, ERR
, "Interface does not support "
1837 "directed (unicast) frame wake-up packets\n");
1845 /* these settings will always override what we currently have */
1848 if (wol
->wolopts
& WAKE_UCAST
)
1849 adapter
->wol
|= E1000_WUFC_EX
;
1850 if (wol
->wolopts
& WAKE_MCAST
)
1851 adapter
->wol
|= E1000_WUFC_MC
;
1852 if (wol
->wolopts
& WAKE_BCAST
)
1853 adapter
->wol
|= E1000_WUFC_BC
;
1854 if (wol
->wolopts
& WAKE_MAGIC
)
1855 adapter
->wol
|= E1000_WUFC_MAG
;
1860 /* toggle LED 4 times per second = 2 "blinks" per second */
1861 #define E1000_ID_INTERVAL (HZ/4)
1863 /* bit defines for adapter->led_status */
1864 #define E1000_LED_ON 0
1867 e1000_led_blink_callback(unsigned long data
)
1869 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1871 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1872 e1000_led_off(&adapter
->hw
);
1874 e1000_led_on(&adapter
->hw
);
1876 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1880 e1000_phys_id(struct net_device
*netdev
, uint32_t data
)
1882 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1887 if (adapter
->hw
.mac_type
< e1000_82571
) {
1888 if (!adapter
->blink_timer
.function
) {
1889 init_timer(&adapter
->blink_timer
);
1890 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1891 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1893 e1000_setup_led(&adapter
->hw
);
1894 mod_timer(&adapter
->blink_timer
, jiffies
);
1895 msleep_interruptible(data
* 1000);
1896 del_timer_sync(&adapter
->blink_timer
);
1897 } else if (adapter
->hw
.phy_type
== e1000_phy_ife
) {
1898 if (!adapter
->blink_timer
.function
) {
1899 init_timer(&adapter
->blink_timer
);
1900 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1901 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1903 mod_timer(&adapter
->blink_timer
, jiffies
);
1904 msleep_interruptible(data
* 1000);
1905 del_timer_sync(&adapter
->blink_timer
);
1906 e1000_write_phy_reg(&(adapter
->hw
), IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1908 e1000_blink_led_start(&adapter
->hw
);
1909 msleep_interruptible(data
* 1000);
1912 e1000_led_off(&adapter
->hw
);
1913 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1914 e1000_cleanup_led(&adapter
->hw
);
1920 e1000_nway_reset(struct net_device
*netdev
)
1922 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1923 if (netif_running(netdev
))
1924 e1000_reinit_locked(adapter
);
1929 e1000_get_ethtool_stats(struct net_device
*netdev
,
1930 struct ethtool_stats
*stats
, uint64_t *data
)
1932 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1935 e1000_update_stats(adapter
);
1936 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1937 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1938 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1939 sizeof(uint64_t)) ? *(uint64_t *)p
: *(uint32_t *)p
;
1941 /* BUG_ON(i != E1000_STATS_LEN); */
1945 e1000_get_strings(struct net_device
*netdev
, uint32_t stringset
, uint8_t *data
)
1950 switch (stringset
) {
1952 memcpy(data
, *e1000_gstrings_test
,
1953 sizeof(e1000_gstrings_test
));
1956 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1957 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1959 p
+= ETH_GSTRING_LEN
;
1961 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1966 static const struct ethtool_ops e1000_ethtool_ops
= {
1967 .get_settings
= e1000_get_settings
,
1968 .set_settings
= e1000_set_settings
,
1969 .get_drvinfo
= e1000_get_drvinfo
,
1970 .get_regs_len
= e1000_get_regs_len
,
1971 .get_regs
= e1000_get_regs
,
1972 .get_wol
= e1000_get_wol
,
1973 .set_wol
= e1000_set_wol
,
1974 .get_msglevel
= e1000_get_msglevel
,
1975 .set_msglevel
= e1000_set_msglevel
,
1976 .nway_reset
= e1000_nway_reset
,
1977 .get_link
= ethtool_op_get_link
,
1978 .get_eeprom_len
= e1000_get_eeprom_len
,
1979 .get_eeprom
= e1000_get_eeprom
,
1980 .set_eeprom
= e1000_set_eeprom
,
1981 .get_ringparam
= e1000_get_ringparam
,
1982 .set_ringparam
= e1000_set_ringparam
,
1983 .get_pauseparam
= e1000_get_pauseparam
,
1984 .set_pauseparam
= e1000_set_pauseparam
,
1985 .get_rx_csum
= e1000_get_rx_csum
,
1986 .set_rx_csum
= e1000_set_rx_csum
,
1987 .get_tx_csum
= e1000_get_tx_csum
,
1988 .set_tx_csum
= e1000_set_tx_csum
,
1989 .set_sg
= ethtool_op_set_sg
,
1990 .set_tso
= e1000_set_tso
,
1991 .self_test
= e1000_diag_test
,
1992 .get_strings
= e1000_get_strings
,
1993 .phys_id
= e1000_phys_id
,
1994 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1995 .get_sset_count
= e1000_get_sset_count
,
1998 void e1000_set_ethtool_ops(struct net_device
*netdev
)
2000 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);