1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Fiber)
32 * 82571EB Dual Port Gigabit Mezzanine Adapter
33 * 82571EB Quad Port Gigabit Mezzanine Adapter
34 * 82571PT Gigabit PT Quad Port Server ExpressModule
35 * 82572EI Gigabit Ethernet Controller (Copper)
36 * 82572EI Gigabit Ethernet Controller (Fiber)
37 * 82572EI Gigabit Ethernet Controller
38 * 82573V Gigabit Ethernet Controller (Copper)
39 * 82573E Gigabit Ethernet Controller (Copper)
40 * 82573L Gigabit Ethernet Controller
43 #include <linux/netdevice.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
49 #define ID_LED_RESERVED_F746 0xF746
50 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
51 (ID_LED_OFF1_ON2 << 8) | \
52 (ID_LED_DEF1_DEF2 << 4) | \
55 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
57 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
58 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
59 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
60 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
61 u16 words
, u16
*data
);
62 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
63 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
64 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
);
65 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
68 * e1000_init_phy_params_82571 - Init PHY func ptrs.
69 * @hw: pointer to the HW structure
71 * This is a function pointer entry point called by the api module.
73 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
75 struct e1000_phy_info
*phy
= &hw
->phy
;
78 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
79 phy
->type
= e1000_phy_none
;
84 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
85 phy
->reset_delay_us
= 100;
87 switch (hw
->mac
.type
) {
90 phy
->type
= e1000_phy_igp_2
;
93 phy
->type
= e1000_phy_m88
;
96 return -E1000_ERR_PHY
;
100 /* This can only be done after all function pointers are setup. */
101 ret_val
= e1000_get_phy_id_82571(hw
);
104 switch (hw
->mac
.type
) {
107 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
108 return -E1000_ERR_PHY
;
111 if (phy
->id
!= M88E1111_I_PHY_ID
)
112 return -E1000_ERR_PHY
;
115 return -E1000_ERR_PHY
;
123 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
124 * @hw: pointer to the HW structure
126 * This is a function pointer entry point called by the api module.
128 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
130 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
131 u32 eecd
= er32(EECD
);
134 nvm
->opcode_bits
= 8;
136 switch (nvm
->override
) {
137 case e1000_nvm_override_spi_large
:
139 nvm
->address_bits
= 16;
141 case e1000_nvm_override_spi_small
:
143 nvm
->address_bits
= 8;
146 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
147 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
151 switch (hw
->mac
.type
) {
153 if (((eecd
>> 15) & 0x3) == 0x3) {
154 nvm
->type
= e1000_nvm_flash_hw
;
155 nvm
->word_size
= 2048;
157 * Autonomous Flash update bit must be cleared due
158 * to Flash update issue.
160 eecd
&= ~E1000_EECD_AUPDEN
;
166 nvm
->type
= e1000_nvm_eeprom_spi
;
167 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
168 E1000_EECD_SIZE_EX_SHIFT
);
170 * Added to a constant, "size" becomes the left-shift value
171 * for setting word_size.
173 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
174 nvm
->word_size
= 1 << size
;
182 * e1000_init_mac_params_82571 - Init MAC func ptrs.
183 * @hw: pointer to the HW structure
185 * This is a function pointer entry point called by the api module.
187 static s32
e1000_init_mac_params_82571(struct e1000_adapter
*adapter
)
189 struct e1000_hw
*hw
= &adapter
->hw
;
190 struct e1000_mac_info
*mac
= &hw
->mac
;
191 struct e1000_mac_operations
*func
= &mac
->ops
;
194 switch (adapter
->pdev
->device
) {
195 case E1000_DEV_ID_82571EB_FIBER
:
196 case E1000_DEV_ID_82572EI_FIBER
:
197 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
198 hw
->phy
.media_type
= e1000_media_type_fiber
;
200 case E1000_DEV_ID_82571EB_SERDES
:
201 case E1000_DEV_ID_82572EI_SERDES
:
202 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
203 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
204 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
207 hw
->phy
.media_type
= e1000_media_type_copper
;
211 /* Set mta register count */
212 mac
->mta_reg_count
= 128;
213 /* Set rar entry count */
214 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
215 /* Set if manageability features are enabled. */
216 mac
->arc_subsystem_valid
= (er32(FWSM
) & E1000_FWSM_MODE_MASK
) ? 1 : 0;
219 switch (hw
->phy
.media_type
) {
220 case e1000_media_type_copper
:
221 func
->setup_physical_interface
= e1000_setup_copper_link_82571
;
222 func
->check_for_link
= e1000e_check_for_copper_link
;
223 func
->get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
225 case e1000_media_type_fiber
:
226 func
->setup_physical_interface
=
227 e1000_setup_fiber_serdes_link_82571
;
228 func
->check_for_link
= e1000e_check_for_fiber_link
;
229 func
->get_link_up_info
=
230 e1000e_get_speed_and_duplex_fiber_serdes
;
232 case e1000_media_type_internal_serdes
:
233 func
->setup_physical_interface
=
234 e1000_setup_fiber_serdes_link_82571
;
235 func
->check_for_link
= e1000e_check_for_serdes_link
;
236 func
->get_link_up_info
=
237 e1000e_get_speed_and_duplex_fiber_serdes
;
240 return -E1000_ERR_CONFIG
;
247 static s32
e1000_get_invariants_82571(struct e1000_adapter
*adapter
)
249 struct e1000_hw
*hw
= &adapter
->hw
;
250 static int global_quad_port_a
; /* global port a indication */
251 struct pci_dev
*pdev
= adapter
->pdev
;
253 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
256 rc
= e1000_init_mac_params_82571(adapter
);
260 rc
= e1000_init_nvm_params_82571(hw
);
264 rc
= e1000_init_phy_params_82571(hw
);
268 /* tag quad port adapters first, it's used below */
269 switch (pdev
->device
) {
270 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
271 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
272 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
273 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
274 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
275 /* mark the first port */
276 if (global_quad_port_a
== 0)
277 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
278 /* Reset for multiple quad port adapters */
279 global_quad_port_a
++;
280 if (global_quad_port_a
== 4)
281 global_quad_port_a
= 0;
287 switch (adapter
->hw
.mac
.type
) {
289 /* these dual ports don't have WoL on port B at all */
290 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
291 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
292 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
294 adapter
->flags
&= ~FLAG_HAS_WOL
;
295 /* quad ports only support WoL on port A */
296 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
297 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
298 adapter
->flags
&= ~FLAG_HAS_WOL
;
299 /* Does not support WoL on any port */
300 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
301 adapter
->flags
&= ~FLAG_HAS_WOL
;
305 if (pdev
->device
== E1000_DEV_ID_82573L
) {
306 e1000_read_nvm(&adapter
->hw
, NVM_INIT_3GIO_3
, 1,
308 if (eeprom_data
& NVM_WORD1A_ASPM_MASK
)
309 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
320 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
321 * @hw: pointer to the HW structure
323 * Reads the PHY registers and stores the PHY ID and possibly the PHY
324 * revision in the hardware structure.
326 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
328 struct e1000_phy_info
*phy
= &hw
->phy
;
330 switch (hw
->mac
.type
) {
334 * The 82571 firmware may still be configuring the PHY.
335 * In this case, we cannot access the PHY until the
336 * configuration is done. So we explicitly set the
339 phy
->id
= IGP01E1000_I_PHY_ID
;
342 return e1000e_get_phy_id(hw
);
345 return -E1000_ERR_PHY
;
353 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
354 * @hw: pointer to the HW structure
356 * Acquire the HW semaphore to access the PHY or NVM
358 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
361 s32 timeout
= hw
->nvm
.word_size
+ 1;
364 /* Get the FW semaphore. */
365 for (i
= 0; i
< timeout
; i
++) {
367 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
369 /* Semaphore acquired if bit latched */
370 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
377 /* Release semaphores */
378 e1000e_put_hw_semaphore(hw
);
379 hw_dbg(hw
, "Driver can't access the NVM\n");
380 return -E1000_ERR_NVM
;
387 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
388 * @hw: pointer to the HW structure
390 * Release hardware semaphore used to access the PHY or NVM
392 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
398 swsm
&= ~E1000_SWSM_SWESMBI
;
404 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
405 * @hw: pointer to the HW structure
407 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
408 * Then for non-82573 hardware, set the EEPROM access request bit and wait
409 * for EEPROM access grant bit. If the access grant bit is not set, release
410 * hardware semaphore.
412 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
416 ret_val
= e1000_get_hw_semaphore_82571(hw
);
420 if (hw
->mac
.type
!= e1000_82573
)
421 ret_val
= e1000e_acquire_nvm(hw
);
424 e1000_put_hw_semaphore_82571(hw
);
430 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
431 * @hw: pointer to the HW structure
433 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
435 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
437 e1000e_release_nvm(hw
);
438 e1000_put_hw_semaphore_82571(hw
);
442 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
443 * @hw: pointer to the HW structure
444 * @offset: offset within the EEPROM to be written to
445 * @words: number of words to write
446 * @data: 16 bit word(s) to be written to the EEPROM
448 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
450 * If e1000e_update_nvm_checksum is not called after this function, the
451 * EEPROM will most likely contain an invalid checksum.
453 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
458 switch (hw
->mac
.type
) {
460 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
464 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
467 ret_val
= -E1000_ERR_NVM
;
475 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
476 * @hw: pointer to the HW structure
478 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
479 * up to the checksum. Then calculates the EEPROM checksum and writes the
480 * value to the EEPROM.
482 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
488 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
493 * If our nvm is an EEPROM, then we're done
494 * otherwise, commit the checksum to the flash NVM.
496 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
499 /* Check for pending operations. */
500 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
502 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
506 if (i
== E1000_FLASH_UPDATES
)
507 return -E1000_ERR_NVM
;
509 /* Reset the firmware if using STM opcode. */
510 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
512 * The enabling of and the actual reset must be done
513 * in two write cycles.
515 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
517 ew32(HICR
, E1000_HICR_FW_RESET
);
520 /* Commit the write to flash */
521 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
524 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
526 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
530 if (i
== E1000_FLASH_UPDATES
)
531 return -E1000_ERR_NVM
;
537 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
538 * @hw: pointer to the HW structure
540 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
541 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
543 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
545 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
546 e1000_fix_nvm_checksum_82571(hw
);
548 return e1000e_validate_nvm_checksum_generic(hw
);
552 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
553 * @hw: pointer to the HW structure
554 * @offset: offset within the EEPROM to be written to
555 * @words: number of words to write
556 * @data: 16 bit word(s) to be written to the EEPROM
558 * After checking for invalid values, poll the EEPROM to ensure the previous
559 * command has completed before trying to write the next word. After write
560 * poll for completion.
562 * If e1000e_update_nvm_checksum is not called after this function, the
563 * EEPROM will most likely contain an invalid checksum.
565 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
566 u16 words
, u16
*data
)
568 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
574 * A check for invalid values: offset too large, too many words,
575 * and not enough words.
577 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
579 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
580 return -E1000_ERR_NVM
;
583 for (i
= 0; i
< words
; i
++) {
584 eewr
= (data
[i
] << E1000_NVM_RW_REG_DATA
) |
585 ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
586 E1000_NVM_RW_REG_START
;
588 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
594 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
603 * e1000_get_cfg_done_82571 - Poll for configuration done
604 * @hw: pointer to the HW structure
606 * Reads the management control register for the config done bit to be set.
608 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
610 s32 timeout
= PHY_CFG_TIMEOUT
;
614 E1000_NVM_CFG_DONE_PORT_0
)
620 hw_dbg(hw
, "MNG configuration cycle has not completed.\n");
621 return -E1000_ERR_RESET
;
628 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
629 * @hw: pointer to the HW structure
630 * @active: TRUE to enable LPLU, FALSE to disable
632 * Sets the LPLU D0 state according to the active flag. When activating LPLU
633 * this function also disables smart speed and vice versa. LPLU will not be
634 * activated unless the device autonegotiation advertisement meets standards
635 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
636 * pointer entry point only called by PHY setup routines.
638 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
640 struct e1000_phy_info
*phy
= &hw
->phy
;
644 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
649 data
|= IGP02E1000_PM_D0_LPLU
;
650 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
654 /* When LPLU is enabled, we should disable SmartSpeed */
655 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
656 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
657 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
661 data
&= ~IGP02E1000_PM_D0_LPLU
;
662 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
664 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
665 * during Dx states where the power conservation is most
666 * important. During driver activity we should enable
667 * SmartSpeed, so performance is maintained.
669 if (phy
->smart_speed
== e1000_smart_speed_on
) {
670 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
675 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
676 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
680 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
681 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
686 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
687 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
698 * e1000_reset_hw_82571 - Reset hardware
699 * @hw: pointer to the HW structure
701 * This resets the hardware into a known state. This is a
702 * function pointer entry point called by the api module.
704 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
714 * Prevent the PCI-E bus from sticking if there is no TLP connection
715 * on the last TLP read/write transaction when MAC is reset.
717 ret_val
= e1000e_disable_pcie_master(hw
);
719 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
721 hw_dbg(hw
, "Masking off all interrupts\n");
722 ew32(IMC
, 0xffffffff);
725 ew32(TCTL
, E1000_TCTL_PSP
);
731 * Must acquire the MDIO ownership before MAC reset.
732 * Ownership defaults to firmware after a reset.
734 if (hw
->mac
.type
== e1000_82573
) {
735 extcnf_ctrl
= er32(EXTCNF_CTRL
);
736 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
739 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
740 extcnf_ctrl
= er32(EXTCNF_CTRL
);
742 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
745 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
749 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
754 hw_dbg(hw
, "Issuing a global reset to MAC\n");
755 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
757 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
759 ctrl_ext
= er32(CTRL_EXT
);
760 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
761 ew32(CTRL_EXT
, ctrl_ext
);
765 ret_val
= e1000e_get_auto_rd_done(hw
);
767 /* We don't want to continue accessing MAC registers. */
771 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
772 * Need to wait for Phy configuration completion before accessing
775 if (hw
->mac
.type
== e1000_82573
)
778 /* Clear any pending interrupt events. */
779 ew32(IMC
, 0xffffffff);
782 if (hw
->mac
.type
== e1000_82571
&&
783 hw
->dev_spec
.e82571
.alt_mac_addr_is_present
)
784 e1000e_set_laa_state_82571(hw
, true);
790 * e1000_init_hw_82571 - Initialize hardware
791 * @hw: pointer to the HW structure
793 * This inits the hardware readying it for operation.
795 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
797 struct e1000_mac_info
*mac
= &hw
->mac
;
801 u16 rar_count
= mac
->rar_entry_count
;
803 e1000_initialize_hw_bits_82571(hw
);
805 /* Initialize identification LED */
806 ret_val
= e1000e_id_led_init(hw
);
808 hw_dbg(hw
, "Error initializing identification LED\n");
812 /* Disabling VLAN filtering */
813 hw_dbg(hw
, "Initializing the IEEE VLAN\n");
814 e1000e_clear_vfta(hw
);
816 /* Setup the receive address. */
818 * If, however, a locally administered address was assigned to the
819 * 82571, we must reserve a RAR for it to work around an issue where
820 * resetting one port will reload the MAC on the other port.
822 if (e1000e_get_laa_state_82571(hw
))
824 e1000e_init_rx_addrs(hw
, rar_count
);
826 /* Zero out the Multicast HASH table */
827 hw_dbg(hw
, "Zeroing the MTA\n");
828 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
829 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
831 /* Setup link and flow control */
832 ret_val
= e1000_setup_link_82571(hw
);
834 /* Set the transmit descriptor write-back policy */
835 reg_data
= er32(TXDCTL
);
836 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
837 E1000_TXDCTL_FULL_TX_DESC_WB
|
838 E1000_TXDCTL_COUNT_DESC
;
839 ew32(TXDCTL
, reg_data
);
841 /* ...for both queues. */
842 if (mac
->type
!= e1000_82573
) {
843 reg_data
= er32(TXDCTL1
);
844 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
845 E1000_TXDCTL_FULL_TX_DESC_WB
|
846 E1000_TXDCTL_COUNT_DESC
;
847 ew32(TXDCTL1
, reg_data
);
849 e1000e_enable_tx_pkt_filtering(hw
);
850 reg_data
= er32(GCR
);
851 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
856 * Clear all of the statistics registers (clear on read). It is
857 * important that we do this after we have tried to establish link
858 * because the symbol error count will increment wildly if there
861 e1000_clear_hw_cntrs_82571(hw
);
867 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
868 * @hw: pointer to the HW structure
870 * Initializes required hardware-dependent bits needed for normal operation.
872 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
876 /* Transmit Descriptor Control 0 */
881 /* Transmit Descriptor Control 1 */
886 /* Transmit Arbitration Control 0 */
888 reg
&= ~(0xF << 27); /* 30:27 */
889 switch (hw
->mac
.type
) {
892 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
899 /* Transmit Arbitration Control 1 */
901 switch (hw
->mac
.type
) {
904 reg
&= ~((1 << 29) | (1 << 30));
905 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
906 if (er32(TCTL
) & E1000_TCTL_MULR
)
917 if (hw
->mac
.type
== e1000_82573
) {
923 /* Extended Device Control */
924 if (hw
->mac
.type
== e1000_82573
) {
925 reg
= er32(CTRL_EXT
);
933 * e1000e_clear_vfta - Clear VLAN filter table
934 * @hw: pointer to the HW structure
936 * Clears the register array which contains the VLAN filter table by
937 * setting all the values to 0.
939 void e1000e_clear_vfta(struct e1000_hw
*hw
)
944 u32 vfta_bit_in_reg
= 0;
946 if (hw
->mac
.type
== e1000_82573
) {
947 if (hw
->mng_cookie
.vlan_id
!= 0) {
949 * The VFTA is a 4096b bit-field, each identifying
950 * a single VLAN ID. The following operations
951 * determine which 32b entry (i.e. offset) into the
952 * array we want to set the VLAN ID (i.e. bit) of
953 * the manageability unit.
955 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
956 E1000_VFTA_ENTRY_SHIFT
) &
957 E1000_VFTA_ENTRY_MASK
;
958 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
959 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
962 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
964 * If the offset we want to clear is the same offset of the
965 * manageability VLAN ID, then clear all bits except that of
966 * the manageability unit.
968 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
969 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
975 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
976 * @hw: pointer to the HW structure
977 * @mc_addr_list: array of multicast addresses to program
978 * @mc_addr_count: number of multicast addresses to program
979 * @rar_used_count: the first RAR register free to program
980 * @rar_count: total number of supported Receive Address Registers
982 * Updates the Receive Address Registers and Multicast Table Array.
983 * The caller must have a packed mc_addr_list of multicast addresses.
984 * The parameter rar_count will usually be hw->mac.rar_entry_count
985 * unless there are workarounds that change this.
987 static void e1000_update_mc_addr_list_82571(struct e1000_hw
*hw
,
993 if (e1000e_get_laa_state_82571(hw
))
996 e1000e_update_mc_addr_list_generic(hw
, mc_addr_list
, mc_addr_count
,
997 rar_used_count
, rar_count
);
1001 * e1000_setup_link_82571 - Setup flow control and link settings
1002 * @hw: pointer to the HW structure
1004 * Determines which flow control settings to use, then configures flow
1005 * control. Calls the appropriate media-specific link configuration
1006 * function. Assuming the adapter has a valid link partner, a valid link
1007 * should be established. Assumes the hardware has previously been reset
1008 * and the transmitter and receiver are not enabled.
1010 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1013 * 82573 does not have a word in the NVM to determine
1014 * the default flow control setting, so we explicitly
1017 if (hw
->mac
.type
== e1000_82573
)
1018 hw
->fc
.type
= e1000_fc_full
;
1020 return e1000e_setup_link(hw
);
1024 * e1000_setup_copper_link_82571 - Configure copper link settings
1025 * @hw: pointer to the HW structure
1027 * Configures the link for auto-neg or forced speed and duplex. Then we check
1028 * for link, once link is established calls to configure collision distance
1029 * and flow control are called.
1031 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1038 ctrl
|= E1000_CTRL_SLU
;
1039 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1042 switch (hw
->phy
.type
) {
1044 ret_val
= e1000e_copper_link_setup_m88(hw
);
1046 case e1000_phy_igp_2
:
1047 ret_val
= e1000e_copper_link_setup_igp(hw
);
1048 /* Setup activity LED */
1049 led_ctrl
= er32(LEDCTL
);
1050 led_ctrl
&= IGP_ACTIVITY_LED_MASK
;
1051 led_ctrl
|= (IGP_ACTIVITY_LED_ENABLE
| IGP_LED3_MODE
);
1052 ew32(LEDCTL
, led_ctrl
);
1055 return -E1000_ERR_PHY
;
1062 ret_val
= e1000e_setup_copper_link(hw
);
1068 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1069 * @hw: pointer to the HW structure
1071 * Configures collision distance and flow control for fiber and serdes links.
1072 * Upon successful setup, poll for link.
1074 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1076 switch (hw
->mac
.type
) {
1080 * If SerDes loopback mode is entered, there is no form
1081 * of reset to take the adapter out of that mode. So we
1082 * have to explicitly take the adapter out of loopback
1083 * mode. This prevents drivers from twiddling their thumbs
1084 * if another tool failed to take it out of loopback mode.
1086 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1092 return e1000e_setup_fiber_serdes_link(hw
);
1096 * e1000_valid_led_default_82571 - Verify a valid default LED config
1097 * @hw: pointer to the HW structure
1098 * @data: pointer to the NVM (EEPROM)
1100 * Read the EEPROM for the current default LED configuration. If the
1101 * LED configuration is not valid, set to a valid LED configuration.
1103 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1107 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1109 hw_dbg(hw
, "NVM Read Error\n");
1113 if (hw
->mac
.type
== e1000_82573
&&
1114 *data
== ID_LED_RESERVED_F746
)
1115 *data
= ID_LED_DEFAULT_82573
;
1116 else if (*data
== ID_LED_RESERVED_0000
||
1117 *data
== ID_LED_RESERVED_FFFF
)
1118 *data
= ID_LED_DEFAULT
;
1124 * e1000e_get_laa_state_82571 - Get locally administered address state
1125 * @hw: pointer to the HW structure
1127 * Retrieve and return the current locally administered address state.
1129 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1131 if (hw
->mac
.type
!= e1000_82571
)
1134 return hw
->dev_spec
.e82571
.laa_is_present
;
1138 * e1000e_set_laa_state_82571 - Set locally administered address state
1139 * @hw: pointer to the HW structure
1140 * @state: enable/disable locally administered address
1142 * Enable/Disable the current locally administers address state.
1144 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1146 if (hw
->mac
.type
!= e1000_82571
)
1149 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1151 /* If workaround is activated... */
1154 * Hold a copy of the LAA in RAR[14] This is done so that
1155 * between the time RAR[0] gets clobbered and the time it
1156 * gets fixed, the actual LAA is in one of the RARs and no
1157 * incoming packets directed to this port are dropped.
1158 * Eventually the LAA will be in RAR[0] and RAR[14].
1160 e1000e_rar_set(hw
, hw
->mac
.addr
, hw
->mac
.rar_entry_count
- 1);
1164 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1165 * @hw: pointer to the HW structure
1167 * Verifies that the EEPROM has completed the update. After updating the
1168 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1169 * the checksum fix is not implemented, we need to set the bit and update
1170 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1171 * we need to return bad checksum.
1173 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1175 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1179 if (nvm
->type
!= e1000_nvm_flash_hw
)
1183 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1184 * 10h-12h. Checksum may need to be fixed.
1186 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1190 if (!(data
& 0x10)) {
1192 * Read 0x23 and check bit 15. This bit is a 1
1193 * when the checksum has already been fixed. If
1194 * the checksum is still wrong and this bit is a
1195 * 1, we need to return bad checksum. Otherwise,
1196 * we need to set this bit to a 1 and update the
1199 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1203 if (!(data
& 0x8000)) {
1205 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1208 ret_val
= e1000e_update_nvm_checksum(hw
);
1216 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1217 * @hw: pointer to the HW structure
1219 * Clears the hardware counters by reading the counter registers.
1221 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1225 e1000e_clear_hw_cntrs_base(hw
);
1228 temp
= er32(PRC127
);
1229 temp
= er32(PRC255
);
1230 temp
= er32(PRC511
);
1231 temp
= er32(PRC1023
);
1232 temp
= er32(PRC1522
);
1234 temp
= er32(PTC127
);
1235 temp
= er32(PTC255
);
1236 temp
= er32(PTC511
);
1237 temp
= er32(PTC1023
);
1238 temp
= er32(PTC1522
);
1240 temp
= er32(ALGNERRC
);
1241 temp
= er32(RXERRC
);
1243 temp
= er32(CEXTERR
);
1245 temp
= er32(TSCTFC
);
1247 temp
= er32(MGTPRC
);
1248 temp
= er32(MGTPDC
);
1249 temp
= er32(MGTPTC
);
1252 temp
= er32(ICRXOC
);
1254 temp
= er32(ICRXPTC
);
1255 temp
= er32(ICRXATC
);
1256 temp
= er32(ICTXPTC
);
1257 temp
= er32(ICTXATC
);
1258 temp
= er32(ICTXQEC
);
1259 temp
= er32(ICTXQMTC
);
1260 temp
= er32(ICRXDMTC
);
1263 static struct e1000_mac_operations e82571_mac_ops
= {
1264 .mng_mode_enab
= E1000_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
,
1265 /* .check_for_link: media type dependent */
1266 .cleanup_led
= e1000e_cleanup_led_generic
,
1267 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1268 .get_bus_info
= e1000e_get_bus_info_pcie
,
1269 /* .get_link_up_info: media type dependent */
1270 .led_on
= e1000e_led_on_generic
,
1271 .led_off
= e1000e_led_off_generic
,
1272 .update_mc_addr_list
= e1000_update_mc_addr_list_82571
,
1273 .reset_hw
= e1000_reset_hw_82571
,
1274 .init_hw
= e1000_init_hw_82571
,
1275 .setup_link
= e1000_setup_link_82571
,
1276 /* .setup_physical_interface: media type dependent */
1279 static struct e1000_phy_operations e82_phy_ops_igp
= {
1280 .acquire_phy
= e1000_get_hw_semaphore_82571
,
1281 .check_reset_block
= e1000e_check_reset_block_generic
,
1283 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1284 .get_cfg_done
= e1000_get_cfg_done_82571
,
1285 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1286 .get_phy_info
= e1000e_get_phy_info_igp
,
1287 .read_phy_reg
= e1000e_read_phy_reg_igp
,
1288 .release_phy
= e1000_put_hw_semaphore_82571
,
1289 .reset_phy
= e1000e_phy_hw_reset_generic
,
1290 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1291 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1292 .write_phy_reg
= e1000e_write_phy_reg_igp
,
1295 static struct e1000_phy_operations e82_phy_ops_m88
= {
1296 .acquire_phy
= e1000_get_hw_semaphore_82571
,
1297 .check_reset_block
= e1000e_check_reset_block_generic
,
1298 .commit_phy
= e1000e_phy_sw_reset
,
1299 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1300 .get_cfg_done
= e1000e_get_cfg_done
,
1301 .get_cable_length
= e1000e_get_cable_length_m88
,
1302 .get_phy_info
= e1000e_get_phy_info_m88
,
1303 .read_phy_reg
= e1000e_read_phy_reg_m88
,
1304 .release_phy
= e1000_put_hw_semaphore_82571
,
1305 .reset_phy
= e1000e_phy_hw_reset_generic
,
1306 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1307 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1308 .write_phy_reg
= e1000e_write_phy_reg_m88
,
1311 static struct e1000_nvm_operations e82571_nvm_ops
= {
1312 .acquire_nvm
= e1000_acquire_nvm_82571
,
1313 .read_nvm
= e1000e_read_nvm_eerd
,
1314 .release_nvm
= e1000_release_nvm_82571
,
1315 .update_nvm
= e1000_update_nvm_checksum_82571
,
1316 .valid_led_default
= e1000_valid_led_default_82571
,
1317 .validate_nvm
= e1000_validate_nvm_checksum_82571
,
1318 .write_nvm
= e1000_write_nvm_82571
,
1321 struct e1000_info e1000_82571_info
= {
1323 .flags
= FLAG_HAS_HW_VLAN_FILTER
1324 | FLAG_HAS_JUMBO_FRAMES
1325 | FLAG_HAS_STATS_PTC_PRC
1327 | FLAG_APME_IN_CTRL3
1328 | FLAG_RX_CSUM_ENABLED
1329 | FLAG_HAS_CTRLEXT_ON_LOAD
1330 | FLAG_HAS_STATS_ICR_ICT
1331 | FLAG_HAS_SMART_POWER_DOWN
1332 | FLAG_RESET_OVERWRITES_LAA
/* errata */
1333 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
1334 | FLAG_APME_CHECK_PORT_B
,
1336 .get_invariants
= e1000_get_invariants_82571
,
1337 .mac_ops
= &e82571_mac_ops
,
1338 .phy_ops
= &e82_phy_ops_igp
,
1339 .nvm_ops
= &e82571_nvm_ops
,
1342 struct e1000_info e1000_82572_info
= {
1344 .flags
= FLAG_HAS_HW_VLAN_FILTER
1345 | FLAG_HAS_JUMBO_FRAMES
1346 | FLAG_HAS_STATS_PTC_PRC
1348 | FLAG_APME_IN_CTRL3
1349 | FLAG_RX_CSUM_ENABLED
1350 | FLAG_HAS_CTRLEXT_ON_LOAD
1351 | FLAG_HAS_STATS_ICR_ICT
1352 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
1354 .get_invariants
= e1000_get_invariants_82571
,
1355 .mac_ops
= &e82571_mac_ops
,
1356 .phy_ops
= &e82_phy_ops_igp
,
1357 .nvm_ops
= &e82571_nvm_ops
,
1360 struct e1000_info e1000_82573_info
= {
1362 .flags
= FLAG_HAS_HW_VLAN_FILTER
1363 | FLAG_HAS_JUMBO_FRAMES
1364 | FLAG_HAS_STATS_PTC_PRC
1366 | FLAG_APME_IN_CTRL3
1367 | FLAG_RX_CSUM_ENABLED
1368 | FLAG_HAS_STATS_ICR_ICT
1369 | FLAG_HAS_SMART_POWER_DOWN
1372 | FLAG_HAS_SWSM_ON_LOAD
,
1374 .get_invariants
= e1000_get_invariants_82571
,
1375 .mac_ops
= &e82571_mac_ops
,
1376 .phy_ops
= &e82_phy_ops_m88
,
1377 .nvm_ops
= &e82571_nvm_ops
,