iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / net / e1000e / 82571.c
blobf7e1619b974ee73e508218c0c441fce5a0d2b155
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Fiber)
32 * 82571EB Dual Port Gigabit Mezzanine Adapter
33 * 82571EB Quad Port Gigabit Mezzanine Adapter
34 * 82571PT Gigabit PT Quad Port Server ExpressModule
35 * 82572EI Gigabit Ethernet Controller (Copper)
36 * 82572EI Gigabit Ethernet Controller (Fiber)
37 * 82572EI Gigabit Ethernet Controller
38 * 82573V Gigabit Ethernet Controller (Copper)
39 * 82573E Gigabit Ethernet Controller (Copper)
40 * 82573L Gigabit Ethernet Controller
43 #include <linux/netdevice.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
47 #include "e1000.h"
49 #define ID_LED_RESERVED_F746 0xF746
50 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
51 (ID_LED_OFF1_ON2 << 8) | \
52 (ID_LED_DEF1_DEF2 << 4) | \
53 (ID_LED_DEF1_DEF2))
55 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
57 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
58 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
60 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
61 u16 words, u16 *data);
62 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
63 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
65 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
67 /**
68 * e1000_init_phy_params_82571 - Init PHY func ptrs.
69 * @hw: pointer to the HW structure
71 * This is a function pointer entry point called by the api module.
72 **/
73 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
75 struct e1000_phy_info *phy = &hw->phy;
76 s32 ret_val;
78 if (hw->phy.media_type != e1000_media_type_copper) {
79 phy->type = e1000_phy_none;
80 return 0;
83 phy->addr = 1;
84 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
85 phy->reset_delay_us = 100;
87 switch (hw->mac.type) {
88 case e1000_82571:
89 case e1000_82572:
90 phy->type = e1000_phy_igp_2;
91 break;
92 case e1000_82573:
93 phy->type = e1000_phy_m88;
94 break;
95 default:
96 return -E1000_ERR_PHY;
97 break;
100 /* This can only be done after all function pointers are setup. */
101 ret_val = e1000_get_phy_id_82571(hw);
103 /* Verify phy id */
104 switch (hw->mac.type) {
105 case e1000_82571:
106 case e1000_82572:
107 if (phy->id != IGP01E1000_I_PHY_ID)
108 return -E1000_ERR_PHY;
109 break;
110 case e1000_82573:
111 if (phy->id != M88E1111_I_PHY_ID)
112 return -E1000_ERR_PHY;
113 break;
114 default:
115 return -E1000_ERR_PHY;
116 break;
119 return 0;
123 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
124 * @hw: pointer to the HW structure
126 * This is a function pointer entry point called by the api module.
128 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
130 struct e1000_nvm_info *nvm = &hw->nvm;
131 u32 eecd = er32(EECD);
132 u16 size;
134 nvm->opcode_bits = 8;
135 nvm->delay_usec = 1;
136 switch (nvm->override) {
137 case e1000_nvm_override_spi_large:
138 nvm->page_size = 32;
139 nvm->address_bits = 16;
140 break;
141 case e1000_nvm_override_spi_small:
142 nvm->page_size = 8;
143 nvm->address_bits = 8;
144 break;
145 default:
146 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
147 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
148 break;
151 switch (hw->mac.type) {
152 case e1000_82573:
153 if (((eecd >> 15) & 0x3) == 0x3) {
154 nvm->type = e1000_nvm_flash_hw;
155 nvm->word_size = 2048;
157 * Autonomous Flash update bit must be cleared due
158 * to Flash update issue.
160 eecd &= ~E1000_EECD_AUPDEN;
161 ew32(EECD, eecd);
162 break;
164 /* Fall Through */
165 default:
166 nvm->type = e1000_nvm_eeprom_spi;
167 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
168 E1000_EECD_SIZE_EX_SHIFT);
170 * Added to a constant, "size" becomes the left-shift value
171 * for setting word_size.
173 size += NVM_WORD_SIZE_BASE_SHIFT;
174 nvm->word_size = 1 << size;
175 break;
178 return 0;
182 * e1000_init_mac_params_82571 - Init MAC func ptrs.
183 * @hw: pointer to the HW structure
185 * This is a function pointer entry point called by the api module.
187 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
189 struct e1000_hw *hw = &adapter->hw;
190 struct e1000_mac_info *mac = &hw->mac;
191 struct e1000_mac_operations *func = &mac->ops;
193 /* Set media type */
194 switch (adapter->pdev->device) {
195 case E1000_DEV_ID_82571EB_FIBER:
196 case E1000_DEV_ID_82572EI_FIBER:
197 case E1000_DEV_ID_82571EB_QUAD_FIBER:
198 hw->phy.media_type = e1000_media_type_fiber;
199 break;
200 case E1000_DEV_ID_82571EB_SERDES:
201 case E1000_DEV_ID_82572EI_SERDES:
202 case E1000_DEV_ID_82571EB_SERDES_DUAL:
203 case E1000_DEV_ID_82571EB_SERDES_QUAD:
204 hw->phy.media_type = e1000_media_type_internal_serdes;
205 break;
206 default:
207 hw->phy.media_type = e1000_media_type_copper;
208 break;
211 /* Set mta register count */
212 mac->mta_reg_count = 128;
213 /* Set rar entry count */
214 mac->rar_entry_count = E1000_RAR_ENTRIES;
215 /* Set if manageability features are enabled. */
216 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
218 /* check for link */
219 switch (hw->phy.media_type) {
220 case e1000_media_type_copper:
221 func->setup_physical_interface = e1000_setup_copper_link_82571;
222 func->check_for_link = e1000e_check_for_copper_link;
223 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
224 break;
225 case e1000_media_type_fiber:
226 func->setup_physical_interface =
227 e1000_setup_fiber_serdes_link_82571;
228 func->check_for_link = e1000e_check_for_fiber_link;
229 func->get_link_up_info =
230 e1000e_get_speed_and_duplex_fiber_serdes;
231 break;
232 case e1000_media_type_internal_serdes:
233 func->setup_physical_interface =
234 e1000_setup_fiber_serdes_link_82571;
235 func->check_for_link = e1000e_check_for_serdes_link;
236 func->get_link_up_info =
237 e1000e_get_speed_and_duplex_fiber_serdes;
238 break;
239 default:
240 return -E1000_ERR_CONFIG;
241 break;
244 return 0;
247 static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
249 struct e1000_hw *hw = &adapter->hw;
250 static int global_quad_port_a; /* global port a indication */
251 struct pci_dev *pdev = adapter->pdev;
252 u16 eeprom_data = 0;
253 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
254 s32 rc;
256 rc = e1000_init_mac_params_82571(adapter);
257 if (rc)
258 return rc;
260 rc = e1000_init_nvm_params_82571(hw);
261 if (rc)
262 return rc;
264 rc = e1000_init_phy_params_82571(hw);
265 if (rc)
266 return rc;
268 /* tag quad port adapters first, it's used below */
269 switch (pdev->device) {
270 case E1000_DEV_ID_82571EB_QUAD_COPPER:
271 case E1000_DEV_ID_82571EB_QUAD_FIBER:
272 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
273 case E1000_DEV_ID_82571PT_QUAD_COPPER:
274 adapter->flags |= FLAG_IS_QUAD_PORT;
275 /* mark the first port */
276 if (global_quad_port_a == 0)
277 adapter->flags |= FLAG_IS_QUAD_PORT_A;
278 /* Reset for multiple quad port adapters */
279 global_quad_port_a++;
280 if (global_quad_port_a == 4)
281 global_quad_port_a = 0;
282 break;
283 default:
284 break;
287 switch (adapter->hw.mac.type) {
288 case e1000_82571:
289 /* these dual ports don't have WoL on port B at all */
290 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
291 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
292 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
293 (is_port_b))
294 adapter->flags &= ~FLAG_HAS_WOL;
295 /* quad ports only support WoL on port A */
296 if (adapter->flags & FLAG_IS_QUAD_PORT &&
297 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
298 adapter->flags &= ~FLAG_HAS_WOL;
299 /* Does not support WoL on any port */
300 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
301 adapter->flags &= ~FLAG_HAS_WOL;
302 break;
304 case e1000_82573:
305 if (pdev->device == E1000_DEV_ID_82573L) {
306 e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
307 &eeprom_data);
308 if (eeprom_data & NVM_WORD1A_ASPM_MASK)
309 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
311 break;
312 default:
313 break;
316 return 0;
320 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
321 * @hw: pointer to the HW structure
323 * Reads the PHY registers and stores the PHY ID and possibly the PHY
324 * revision in the hardware structure.
326 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
328 struct e1000_phy_info *phy = &hw->phy;
330 switch (hw->mac.type) {
331 case e1000_82571:
332 case e1000_82572:
334 * The 82571 firmware may still be configuring the PHY.
335 * In this case, we cannot access the PHY until the
336 * configuration is done. So we explicitly set the
337 * PHY ID.
339 phy->id = IGP01E1000_I_PHY_ID;
340 break;
341 case e1000_82573:
342 return e1000e_get_phy_id(hw);
343 break;
344 default:
345 return -E1000_ERR_PHY;
346 break;
349 return 0;
353 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
354 * @hw: pointer to the HW structure
356 * Acquire the HW semaphore to access the PHY or NVM
358 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
360 u32 swsm;
361 s32 timeout = hw->nvm.word_size + 1;
362 s32 i = 0;
364 /* Get the FW semaphore. */
365 for (i = 0; i < timeout; i++) {
366 swsm = er32(SWSM);
367 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
369 /* Semaphore acquired if bit latched */
370 if (er32(SWSM) & E1000_SWSM_SWESMBI)
371 break;
373 udelay(50);
376 if (i == timeout) {
377 /* Release semaphores */
378 e1000e_put_hw_semaphore(hw);
379 hw_dbg(hw, "Driver can't access the NVM\n");
380 return -E1000_ERR_NVM;
383 return 0;
387 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
388 * @hw: pointer to the HW structure
390 * Release hardware semaphore used to access the PHY or NVM
392 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
394 u32 swsm;
396 swsm = er32(SWSM);
398 swsm &= ~E1000_SWSM_SWESMBI;
400 ew32(SWSM, swsm);
404 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
405 * @hw: pointer to the HW structure
407 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
408 * Then for non-82573 hardware, set the EEPROM access request bit and wait
409 * for EEPROM access grant bit. If the access grant bit is not set, release
410 * hardware semaphore.
412 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
414 s32 ret_val;
416 ret_val = e1000_get_hw_semaphore_82571(hw);
417 if (ret_val)
418 return ret_val;
420 if (hw->mac.type != e1000_82573)
421 ret_val = e1000e_acquire_nvm(hw);
423 if (ret_val)
424 e1000_put_hw_semaphore_82571(hw);
426 return ret_val;
430 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
431 * @hw: pointer to the HW structure
433 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
435 static void e1000_release_nvm_82571(struct e1000_hw *hw)
437 e1000e_release_nvm(hw);
438 e1000_put_hw_semaphore_82571(hw);
442 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
443 * @hw: pointer to the HW structure
444 * @offset: offset within the EEPROM to be written to
445 * @words: number of words to write
446 * @data: 16 bit word(s) to be written to the EEPROM
448 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
450 * If e1000e_update_nvm_checksum is not called after this function, the
451 * EEPROM will most likely contain an invalid checksum.
453 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
454 u16 *data)
456 s32 ret_val;
458 switch (hw->mac.type) {
459 case e1000_82573:
460 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
461 break;
462 case e1000_82571:
463 case e1000_82572:
464 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
465 break;
466 default:
467 ret_val = -E1000_ERR_NVM;
468 break;
471 return ret_val;
475 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
476 * @hw: pointer to the HW structure
478 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
479 * up to the checksum. Then calculates the EEPROM checksum and writes the
480 * value to the EEPROM.
482 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
484 u32 eecd;
485 s32 ret_val;
486 u16 i;
488 ret_val = e1000e_update_nvm_checksum_generic(hw);
489 if (ret_val)
490 return ret_val;
493 * If our nvm is an EEPROM, then we're done
494 * otherwise, commit the checksum to the flash NVM.
496 if (hw->nvm.type != e1000_nvm_flash_hw)
497 return ret_val;
499 /* Check for pending operations. */
500 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
501 msleep(1);
502 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
503 break;
506 if (i == E1000_FLASH_UPDATES)
507 return -E1000_ERR_NVM;
509 /* Reset the firmware if using STM opcode. */
510 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
512 * The enabling of and the actual reset must be done
513 * in two write cycles.
515 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
516 e1e_flush();
517 ew32(HICR, E1000_HICR_FW_RESET);
520 /* Commit the write to flash */
521 eecd = er32(EECD) | E1000_EECD_FLUPD;
522 ew32(EECD, eecd);
524 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
525 msleep(1);
526 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
527 break;
530 if (i == E1000_FLASH_UPDATES)
531 return -E1000_ERR_NVM;
533 return 0;
537 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
538 * @hw: pointer to the HW structure
540 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
541 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
543 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
545 if (hw->nvm.type == e1000_nvm_flash_hw)
546 e1000_fix_nvm_checksum_82571(hw);
548 return e1000e_validate_nvm_checksum_generic(hw);
552 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
553 * @hw: pointer to the HW structure
554 * @offset: offset within the EEPROM to be written to
555 * @words: number of words to write
556 * @data: 16 bit word(s) to be written to the EEPROM
558 * After checking for invalid values, poll the EEPROM to ensure the previous
559 * command has completed before trying to write the next word. After write
560 * poll for completion.
562 * If e1000e_update_nvm_checksum is not called after this function, the
563 * EEPROM will most likely contain an invalid checksum.
565 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
566 u16 words, u16 *data)
568 struct e1000_nvm_info *nvm = &hw->nvm;
569 u32 i;
570 u32 eewr = 0;
571 s32 ret_val = 0;
574 * A check for invalid values: offset too large, too many words,
575 * and not enough words.
577 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
578 (words == 0)) {
579 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
580 return -E1000_ERR_NVM;
583 for (i = 0; i < words; i++) {
584 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
585 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
586 E1000_NVM_RW_REG_START;
588 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
589 if (ret_val)
590 break;
592 ew32(EEWR, eewr);
594 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
595 if (ret_val)
596 break;
599 return ret_val;
603 * e1000_get_cfg_done_82571 - Poll for configuration done
604 * @hw: pointer to the HW structure
606 * Reads the management control register for the config done bit to be set.
608 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
610 s32 timeout = PHY_CFG_TIMEOUT;
612 while (timeout) {
613 if (er32(EEMNGCTL) &
614 E1000_NVM_CFG_DONE_PORT_0)
615 break;
616 msleep(1);
617 timeout--;
619 if (!timeout) {
620 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
621 return -E1000_ERR_RESET;
624 return 0;
628 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
629 * @hw: pointer to the HW structure
630 * @active: TRUE to enable LPLU, FALSE to disable
632 * Sets the LPLU D0 state according to the active flag. When activating LPLU
633 * this function also disables smart speed and vice versa. LPLU will not be
634 * activated unless the device autonegotiation advertisement meets standards
635 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
636 * pointer entry point only called by PHY setup routines.
638 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
640 struct e1000_phy_info *phy = &hw->phy;
641 s32 ret_val;
642 u16 data;
644 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
645 if (ret_val)
646 return ret_val;
648 if (active) {
649 data |= IGP02E1000_PM_D0_LPLU;
650 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
651 if (ret_val)
652 return ret_val;
654 /* When LPLU is enabled, we should disable SmartSpeed */
655 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
656 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
657 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
658 if (ret_val)
659 return ret_val;
660 } else {
661 data &= ~IGP02E1000_PM_D0_LPLU;
662 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
664 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
665 * during Dx states where the power conservation is most
666 * important. During driver activity we should enable
667 * SmartSpeed, so performance is maintained.
669 if (phy->smart_speed == e1000_smart_speed_on) {
670 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
671 &data);
672 if (ret_val)
673 return ret_val;
675 data |= IGP01E1000_PSCFR_SMART_SPEED;
676 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
677 data);
678 if (ret_val)
679 return ret_val;
680 } else if (phy->smart_speed == e1000_smart_speed_off) {
681 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
682 &data);
683 if (ret_val)
684 return ret_val;
686 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
687 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
688 data);
689 if (ret_val)
690 return ret_val;
694 return 0;
698 * e1000_reset_hw_82571 - Reset hardware
699 * @hw: pointer to the HW structure
701 * This resets the hardware into a known state. This is a
702 * function pointer entry point called by the api module.
704 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
706 u32 ctrl;
707 u32 extcnf_ctrl;
708 u32 ctrl_ext;
709 u32 icr;
710 s32 ret_val;
711 u16 i = 0;
714 * Prevent the PCI-E bus from sticking if there is no TLP connection
715 * on the last TLP read/write transaction when MAC is reset.
717 ret_val = e1000e_disable_pcie_master(hw);
718 if (ret_val)
719 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
721 hw_dbg(hw, "Masking off all interrupts\n");
722 ew32(IMC, 0xffffffff);
724 ew32(RCTL, 0);
725 ew32(TCTL, E1000_TCTL_PSP);
726 e1e_flush();
728 msleep(10);
731 * Must acquire the MDIO ownership before MAC reset.
732 * Ownership defaults to firmware after a reset.
734 if (hw->mac.type == e1000_82573) {
735 extcnf_ctrl = er32(EXTCNF_CTRL);
736 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
738 do {
739 ew32(EXTCNF_CTRL, extcnf_ctrl);
740 extcnf_ctrl = er32(EXTCNF_CTRL);
742 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
743 break;
745 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
747 msleep(2);
748 i++;
749 } while (i < MDIO_OWNERSHIP_TIMEOUT);
752 ctrl = er32(CTRL);
754 hw_dbg(hw, "Issuing a global reset to MAC\n");
755 ew32(CTRL, ctrl | E1000_CTRL_RST);
757 if (hw->nvm.type == e1000_nvm_flash_hw) {
758 udelay(10);
759 ctrl_ext = er32(CTRL_EXT);
760 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
761 ew32(CTRL_EXT, ctrl_ext);
762 e1e_flush();
765 ret_val = e1000e_get_auto_rd_done(hw);
766 if (ret_val)
767 /* We don't want to continue accessing MAC registers. */
768 return ret_val;
771 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
772 * Need to wait for Phy configuration completion before accessing
773 * NVM and Phy.
775 if (hw->mac.type == e1000_82573)
776 msleep(25);
778 /* Clear any pending interrupt events. */
779 ew32(IMC, 0xffffffff);
780 icr = er32(ICR);
782 if (hw->mac.type == e1000_82571 &&
783 hw->dev_spec.e82571.alt_mac_addr_is_present)
784 e1000e_set_laa_state_82571(hw, true);
786 return 0;
790 * e1000_init_hw_82571 - Initialize hardware
791 * @hw: pointer to the HW structure
793 * This inits the hardware readying it for operation.
795 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
797 struct e1000_mac_info *mac = &hw->mac;
798 u32 reg_data;
799 s32 ret_val;
800 u16 i;
801 u16 rar_count = mac->rar_entry_count;
803 e1000_initialize_hw_bits_82571(hw);
805 /* Initialize identification LED */
806 ret_val = e1000e_id_led_init(hw);
807 if (ret_val) {
808 hw_dbg(hw, "Error initializing identification LED\n");
809 return ret_val;
812 /* Disabling VLAN filtering */
813 hw_dbg(hw, "Initializing the IEEE VLAN\n");
814 e1000e_clear_vfta(hw);
816 /* Setup the receive address. */
818 * If, however, a locally administered address was assigned to the
819 * 82571, we must reserve a RAR for it to work around an issue where
820 * resetting one port will reload the MAC on the other port.
822 if (e1000e_get_laa_state_82571(hw))
823 rar_count--;
824 e1000e_init_rx_addrs(hw, rar_count);
826 /* Zero out the Multicast HASH table */
827 hw_dbg(hw, "Zeroing the MTA\n");
828 for (i = 0; i < mac->mta_reg_count; i++)
829 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
831 /* Setup link and flow control */
832 ret_val = e1000_setup_link_82571(hw);
834 /* Set the transmit descriptor write-back policy */
835 reg_data = er32(TXDCTL);
836 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
837 E1000_TXDCTL_FULL_TX_DESC_WB |
838 E1000_TXDCTL_COUNT_DESC;
839 ew32(TXDCTL, reg_data);
841 /* ...for both queues. */
842 if (mac->type != e1000_82573) {
843 reg_data = er32(TXDCTL1);
844 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
845 E1000_TXDCTL_FULL_TX_DESC_WB |
846 E1000_TXDCTL_COUNT_DESC;
847 ew32(TXDCTL1, reg_data);
848 } else {
849 e1000e_enable_tx_pkt_filtering(hw);
850 reg_data = er32(GCR);
851 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
852 ew32(GCR, reg_data);
856 * Clear all of the statistics registers (clear on read). It is
857 * important that we do this after we have tried to establish link
858 * because the symbol error count will increment wildly if there
859 * is no link.
861 e1000_clear_hw_cntrs_82571(hw);
863 return ret_val;
867 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
868 * @hw: pointer to the HW structure
870 * Initializes required hardware-dependent bits needed for normal operation.
872 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
874 u32 reg;
876 /* Transmit Descriptor Control 0 */
877 reg = er32(TXDCTL);
878 reg |= (1 << 22);
879 ew32(TXDCTL, reg);
881 /* Transmit Descriptor Control 1 */
882 reg = er32(TXDCTL1);
883 reg |= (1 << 22);
884 ew32(TXDCTL1, reg);
886 /* Transmit Arbitration Control 0 */
887 reg = er32(TARC0);
888 reg &= ~(0xF << 27); /* 30:27 */
889 switch (hw->mac.type) {
890 case e1000_82571:
891 case e1000_82572:
892 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
893 break;
894 default:
895 break;
897 ew32(TARC0, reg);
899 /* Transmit Arbitration Control 1 */
900 reg = er32(TARC1);
901 switch (hw->mac.type) {
902 case e1000_82571:
903 case e1000_82572:
904 reg &= ~((1 << 29) | (1 << 30));
905 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
906 if (er32(TCTL) & E1000_TCTL_MULR)
907 reg &= ~(1 << 28);
908 else
909 reg |= (1 << 28);
910 ew32(TARC1, reg);
911 break;
912 default:
913 break;
916 /* Device Control */
917 if (hw->mac.type == e1000_82573) {
918 reg = er32(CTRL);
919 reg &= ~(1 << 29);
920 ew32(CTRL, reg);
923 /* Extended Device Control */
924 if (hw->mac.type == e1000_82573) {
925 reg = er32(CTRL_EXT);
926 reg &= ~(1 << 23);
927 reg |= (1 << 22);
928 ew32(CTRL_EXT, reg);
933 * e1000e_clear_vfta - Clear VLAN filter table
934 * @hw: pointer to the HW structure
936 * Clears the register array which contains the VLAN filter table by
937 * setting all the values to 0.
939 void e1000e_clear_vfta(struct e1000_hw *hw)
941 u32 offset;
942 u32 vfta_value = 0;
943 u32 vfta_offset = 0;
944 u32 vfta_bit_in_reg = 0;
946 if (hw->mac.type == e1000_82573) {
947 if (hw->mng_cookie.vlan_id != 0) {
949 * The VFTA is a 4096b bit-field, each identifying
950 * a single VLAN ID. The following operations
951 * determine which 32b entry (i.e. offset) into the
952 * array we want to set the VLAN ID (i.e. bit) of
953 * the manageability unit.
955 vfta_offset = (hw->mng_cookie.vlan_id >>
956 E1000_VFTA_ENTRY_SHIFT) &
957 E1000_VFTA_ENTRY_MASK;
958 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
959 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
962 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
964 * If the offset we want to clear is the same offset of the
965 * manageability VLAN ID, then clear all bits except that of
966 * the manageability unit.
968 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
969 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
970 e1e_flush();
975 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
976 * @hw: pointer to the HW structure
977 * @mc_addr_list: array of multicast addresses to program
978 * @mc_addr_count: number of multicast addresses to program
979 * @rar_used_count: the first RAR register free to program
980 * @rar_count: total number of supported Receive Address Registers
982 * Updates the Receive Address Registers and Multicast Table Array.
983 * The caller must have a packed mc_addr_list of multicast addresses.
984 * The parameter rar_count will usually be hw->mac.rar_entry_count
985 * unless there are workarounds that change this.
987 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
988 u8 *mc_addr_list,
989 u32 mc_addr_count,
990 u32 rar_used_count,
991 u32 rar_count)
993 if (e1000e_get_laa_state_82571(hw))
994 rar_count--;
996 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
997 rar_used_count, rar_count);
1001 * e1000_setup_link_82571 - Setup flow control and link settings
1002 * @hw: pointer to the HW structure
1004 * Determines which flow control settings to use, then configures flow
1005 * control. Calls the appropriate media-specific link configuration
1006 * function. Assuming the adapter has a valid link partner, a valid link
1007 * should be established. Assumes the hardware has previously been reset
1008 * and the transmitter and receiver are not enabled.
1010 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1013 * 82573 does not have a word in the NVM to determine
1014 * the default flow control setting, so we explicitly
1015 * set it to full.
1017 if (hw->mac.type == e1000_82573)
1018 hw->fc.type = e1000_fc_full;
1020 return e1000e_setup_link(hw);
1024 * e1000_setup_copper_link_82571 - Configure copper link settings
1025 * @hw: pointer to the HW structure
1027 * Configures the link for auto-neg or forced speed and duplex. Then we check
1028 * for link, once link is established calls to configure collision distance
1029 * and flow control are called.
1031 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1033 u32 ctrl;
1034 u32 led_ctrl;
1035 s32 ret_val;
1037 ctrl = er32(CTRL);
1038 ctrl |= E1000_CTRL_SLU;
1039 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1040 ew32(CTRL, ctrl);
1042 switch (hw->phy.type) {
1043 case e1000_phy_m88:
1044 ret_val = e1000e_copper_link_setup_m88(hw);
1045 break;
1046 case e1000_phy_igp_2:
1047 ret_val = e1000e_copper_link_setup_igp(hw);
1048 /* Setup activity LED */
1049 led_ctrl = er32(LEDCTL);
1050 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1051 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1052 ew32(LEDCTL, led_ctrl);
1053 break;
1054 default:
1055 return -E1000_ERR_PHY;
1056 break;
1059 if (ret_val)
1060 return ret_val;
1062 ret_val = e1000e_setup_copper_link(hw);
1064 return ret_val;
1068 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1069 * @hw: pointer to the HW structure
1071 * Configures collision distance and flow control for fiber and serdes links.
1072 * Upon successful setup, poll for link.
1074 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1076 switch (hw->mac.type) {
1077 case e1000_82571:
1078 case e1000_82572:
1080 * If SerDes loopback mode is entered, there is no form
1081 * of reset to take the adapter out of that mode. So we
1082 * have to explicitly take the adapter out of loopback
1083 * mode. This prevents drivers from twiddling their thumbs
1084 * if another tool failed to take it out of loopback mode.
1086 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1087 break;
1088 default:
1089 break;
1092 return e1000e_setup_fiber_serdes_link(hw);
1096 * e1000_valid_led_default_82571 - Verify a valid default LED config
1097 * @hw: pointer to the HW structure
1098 * @data: pointer to the NVM (EEPROM)
1100 * Read the EEPROM for the current default LED configuration. If the
1101 * LED configuration is not valid, set to a valid LED configuration.
1103 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1105 s32 ret_val;
1107 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1108 if (ret_val) {
1109 hw_dbg(hw, "NVM Read Error\n");
1110 return ret_val;
1113 if (hw->mac.type == e1000_82573 &&
1114 *data == ID_LED_RESERVED_F746)
1115 *data = ID_LED_DEFAULT_82573;
1116 else if (*data == ID_LED_RESERVED_0000 ||
1117 *data == ID_LED_RESERVED_FFFF)
1118 *data = ID_LED_DEFAULT;
1120 return 0;
1124 * e1000e_get_laa_state_82571 - Get locally administered address state
1125 * @hw: pointer to the HW structure
1127 * Retrieve and return the current locally administered address state.
1129 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1131 if (hw->mac.type != e1000_82571)
1132 return 0;
1134 return hw->dev_spec.e82571.laa_is_present;
1138 * e1000e_set_laa_state_82571 - Set locally administered address state
1139 * @hw: pointer to the HW structure
1140 * @state: enable/disable locally administered address
1142 * Enable/Disable the current locally administers address state.
1144 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1146 if (hw->mac.type != e1000_82571)
1147 return;
1149 hw->dev_spec.e82571.laa_is_present = state;
1151 /* If workaround is activated... */
1152 if (state)
1154 * Hold a copy of the LAA in RAR[14] This is done so that
1155 * between the time RAR[0] gets clobbered and the time it
1156 * gets fixed, the actual LAA is in one of the RARs and no
1157 * incoming packets directed to this port are dropped.
1158 * Eventually the LAA will be in RAR[0] and RAR[14].
1160 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1164 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1165 * @hw: pointer to the HW structure
1167 * Verifies that the EEPROM has completed the update. After updating the
1168 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1169 * the checksum fix is not implemented, we need to set the bit and update
1170 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1171 * we need to return bad checksum.
1173 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1175 struct e1000_nvm_info *nvm = &hw->nvm;
1176 s32 ret_val;
1177 u16 data;
1179 if (nvm->type != e1000_nvm_flash_hw)
1180 return 0;
1183 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1184 * 10h-12h. Checksum may need to be fixed.
1186 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1187 if (ret_val)
1188 return ret_val;
1190 if (!(data & 0x10)) {
1192 * Read 0x23 and check bit 15. This bit is a 1
1193 * when the checksum has already been fixed. If
1194 * the checksum is still wrong and this bit is a
1195 * 1, we need to return bad checksum. Otherwise,
1196 * we need to set this bit to a 1 and update the
1197 * checksum.
1199 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1200 if (ret_val)
1201 return ret_val;
1203 if (!(data & 0x8000)) {
1204 data |= 0x8000;
1205 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1206 if (ret_val)
1207 return ret_val;
1208 ret_val = e1000e_update_nvm_checksum(hw);
1212 return 0;
1216 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1217 * @hw: pointer to the HW structure
1219 * Clears the hardware counters by reading the counter registers.
1221 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1223 u32 temp;
1225 e1000e_clear_hw_cntrs_base(hw);
1227 temp = er32(PRC64);
1228 temp = er32(PRC127);
1229 temp = er32(PRC255);
1230 temp = er32(PRC511);
1231 temp = er32(PRC1023);
1232 temp = er32(PRC1522);
1233 temp = er32(PTC64);
1234 temp = er32(PTC127);
1235 temp = er32(PTC255);
1236 temp = er32(PTC511);
1237 temp = er32(PTC1023);
1238 temp = er32(PTC1522);
1240 temp = er32(ALGNERRC);
1241 temp = er32(RXERRC);
1242 temp = er32(TNCRS);
1243 temp = er32(CEXTERR);
1244 temp = er32(TSCTC);
1245 temp = er32(TSCTFC);
1247 temp = er32(MGTPRC);
1248 temp = er32(MGTPDC);
1249 temp = er32(MGTPTC);
1251 temp = er32(IAC);
1252 temp = er32(ICRXOC);
1254 temp = er32(ICRXPTC);
1255 temp = er32(ICRXATC);
1256 temp = er32(ICTXPTC);
1257 temp = er32(ICTXATC);
1258 temp = er32(ICTXQEC);
1259 temp = er32(ICTXQMTC);
1260 temp = er32(ICRXDMTC);
1263 static struct e1000_mac_operations e82571_mac_ops = {
1264 .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1265 /* .check_for_link: media type dependent */
1266 .cleanup_led = e1000e_cleanup_led_generic,
1267 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1268 .get_bus_info = e1000e_get_bus_info_pcie,
1269 /* .get_link_up_info: media type dependent */
1270 .led_on = e1000e_led_on_generic,
1271 .led_off = e1000e_led_off_generic,
1272 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
1273 .reset_hw = e1000_reset_hw_82571,
1274 .init_hw = e1000_init_hw_82571,
1275 .setup_link = e1000_setup_link_82571,
1276 /* .setup_physical_interface: media type dependent */
1279 static struct e1000_phy_operations e82_phy_ops_igp = {
1280 .acquire_phy = e1000_get_hw_semaphore_82571,
1281 .check_reset_block = e1000e_check_reset_block_generic,
1282 .commit_phy = NULL,
1283 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1284 .get_cfg_done = e1000_get_cfg_done_82571,
1285 .get_cable_length = e1000e_get_cable_length_igp_2,
1286 .get_phy_info = e1000e_get_phy_info_igp,
1287 .read_phy_reg = e1000e_read_phy_reg_igp,
1288 .release_phy = e1000_put_hw_semaphore_82571,
1289 .reset_phy = e1000e_phy_hw_reset_generic,
1290 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1291 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1292 .write_phy_reg = e1000e_write_phy_reg_igp,
1295 static struct e1000_phy_operations e82_phy_ops_m88 = {
1296 .acquire_phy = e1000_get_hw_semaphore_82571,
1297 .check_reset_block = e1000e_check_reset_block_generic,
1298 .commit_phy = e1000e_phy_sw_reset,
1299 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1300 .get_cfg_done = e1000e_get_cfg_done,
1301 .get_cable_length = e1000e_get_cable_length_m88,
1302 .get_phy_info = e1000e_get_phy_info_m88,
1303 .read_phy_reg = e1000e_read_phy_reg_m88,
1304 .release_phy = e1000_put_hw_semaphore_82571,
1305 .reset_phy = e1000e_phy_hw_reset_generic,
1306 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1307 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1308 .write_phy_reg = e1000e_write_phy_reg_m88,
1311 static struct e1000_nvm_operations e82571_nvm_ops = {
1312 .acquire_nvm = e1000_acquire_nvm_82571,
1313 .read_nvm = e1000e_read_nvm_eerd,
1314 .release_nvm = e1000_release_nvm_82571,
1315 .update_nvm = e1000_update_nvm_checksum_82571,
1316 .valid_led_default = e1000_valid_led_default_82571,
1317 .validate_nvm = e1000_validate_nvm_checksum_82571,
1318 .write_nvm = e1000_write_nvm_82571,
1321 struct e1000_info e1000_82571_info = {
1322 .mac = e1000_82571,
1323 .flags = FLAG_HAS_HW_VLAN_FILTER
1324 | FLAG_HAS_JUMBO_FRAMES
1325 | FLAG_HAS_STATS_PTC_PRC
1326 | FLAG_HAS_WOL
1327 | FLAG_APME_IN_CTRL3
1328 | FLAG_RX_CSUM_ENABLED
1329 | FLAG_HAS_CTRLEXT_ON_LOAD
1330 | FLAG_HAS_STATS_ICR_ICT
1331 | FLAG_HAS_SMART_POWER_DOWN
1332 | FLAG_RESET_OVERWRITES_LAA /* errata */
1333 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1334 | FLAG_APME_CHECK_PORT_B,
1335 .pba = 38,
1336 .get_invariants = e1000_get_invariants_82571,
1337 .mac_ops = &e82571_mac_ops,
1338 .phy_ops = &e82_phy_ops_igp,
1339 .nvm_ops = &e82571_nvm_ops,
1342 struct e1000_info e1000_82572_info = {
1343 .mac = e1000_82572,
1344 .flags = FLAG_HAS_HW_VLAN_FILTER
1345 | FLAG_HAS_JUMBO_FRAMES
1346 | FLAG_HAS_STATS_PTC_PRC
1347 | FLAG_HAS_WOL
1348 | FLAG_APME_IN_CTRL3
1349 | FLAG_RX_CSUM_ENABLED
1350 | FLAG_HAS_CTRLEXT_ON_LOAD
1351 | FLAG_HAS_STATS_ICR_ICT
1352 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1353 .pba = 38,
1354 .get_invariants = e1000_get_invariants_82571,
1355 .mac_ops = &e82571_mac_ops,
1356 .phy_ops = &e82_phy_ops_igp,
1357 .nvm_ops = &e82571_nvm_ops,
1360 struct e1000_info e1000_82573_info = {
1361 .mac = e1000_82573,
1362 .flags = FLAG_HAS_HW_VLAN_FILTER
1363 | FLAG_HAS_JUMBO_FRAMES
1364 | FLAG_HAS_STATS_PTC_PRC
1365 | FLAG_HAS_WOL
1366 | FLAG_APME_IN_CTRL3
1367 | FLAG_RX_CSUM_ENABLED
1368 | FLAG_HAS_STATS_ICR_ICT
1369 | FLAG_HAS_SMART_POWER_DOWN
1370 | FLAG_HAS_AMT
1371 | FLAG_HAS_ERT
1372 | FLAG_HAS_SWSM_ON_LOAD,
1373 .pba = 20,
1374 .get_invariants = e1000_get_invariants_82571,
1375 .mac_ops = &e82571_mac_ops,
1376 .phy_ops = &e82_phy_ops_m88,
1377 .nvm_ops = &e82571_nvm_ops,