1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
34 #include <linux/netdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/delay.h>
37 #include <linux/pci.h>
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
45 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
47 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
49 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
50 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
67 /* 1=Reverse Auto-Negotiation */
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
88 /* Power Management Control Register (Page 193, Register 20) */
89 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
90 /* 1=Enable SERDES Electrical Idle */
92 /* In-Band Control Register (Page 194, Register 18) */
93 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
96 * A table for the GG82563 cable length where the range is defined
97 * with a lower bound at "index" and the upper bound at
100 static const u16 e1000_gg82563_cable_length_table
[] =
101 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
103 static s32
e1000_setup_copper_link_80003es2lan(struct e1000_hw
*hw
);
104 static s32
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw
*hw
, u16 mask
);
105 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw
*hw
, u16 mask
);
106 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw
*hw
);
107 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw
*hw
);
108 static s32
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw
*hw
);
109 static s32
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw
*hw
, u16 duplex
);
112 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
113 * @hw: pointer to the HW structure
115 * This is a function pointer entry point called by the api module.
117 static s32
e1000_init_phy_params_80003es2lan(struct e1000_hw
*hw
)
119 struct e1000_phy_info
*phy
= &hw
->phy
;
122 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
123 phy
->type
= e1000_phy_none
;
128 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
129 phy
->reset_delay_us
= 100;
130 phy
->type
= e1000_phy_gg82563
;
132 /* This can only be done after all function pointers are setup. */
133 ret_val
= e1000e_get_phy_id(hw
);
136 if (phy
->id
!= GG82563_E_PHY_ID
)
137 return -E1000_ERR_PHY
;
143 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
144 * @hw: pointer to the HW structure
146 * This is a function pointer entry point called by the api module.
148 static s32
e1000_init_nvm_params_80003es2lan(struct e1000_hw
*hw
)
150 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
151 u32 eecd
= er32(EECD
);
154 nvm
->opcode_bits
= 8;
156 switch (nvm
->override
) {
157 case e1000_nvm_override_spi_large
:
159 nvm
->address_bits
= 16;
161 case e1000_nvm_override_spi_small
:
163 nvm
->address_bits
= 8;
166 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
167 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
171 nvm
->type
= e1000_nvm_eeprom_spi
;
173 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
174 E1000_EECD_SIZE_EX_SHIFT
);
177 * Added to a constant, "size" becomes the left-shift value
178 * for setting word_size.
180 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
181 nvm
->word_size
= 1 << size
;
187 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
188 * @hw: pointer to the HW structure
190 * This is a function pointer entry point called by the api module.
192 static s32
e1000_init_mac_params_80003es2lan(struct e1000_adapter
*adapter
)
194 struct e1000_hw
*hw
= &adapter
->hw
;
195 struct e1000_mac_info
*mac
= &hw
->mac
;
196 struct e1000_mac_operations
*func
= &mac
->ops
;
199 switch (adapter
->pdev
->device
) {
200 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT
:
201 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
204 hw
->phy
.media_type
= e1000_media_type_copper
;
208 /* Set mta register count */
209 mac
->mta_reg_count
= 128;
210 /* Set rar entry count */
211 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
212 /* Set if manageability features are enabled. */
213 mac
->arc_subsystem_valid
= (er32(FWSM
) & E1000_FWSM_MODE_MASK
) ? 1 : 0;
216 switch (hw
->phy
.media_type
) {
217 case e1000_media_type_copper
:
218 func
->setup_physical_interface
= e1000_setup_copper_link_80003es2lan
;
219 func
->check_for_link
= e1000e_check_for_copper_link
;
221 case e1000_media_type_fiber
:
222 func
->setup_physical_interface
= e1000e_setup_fiber_serdes_link
;
223 func
->check_for_link
= e1000e_check_for_fiber_link
;
225 case e1000_media_type_internal_serdes
:
226 func
->setup_physical_interface
= e1000e_setup_fiber_serdes_link
;
227 func
->check_for_link
= e1000e_check_for_serdes_link
;
230 return -E1000_ERR_CONFIG
;
237 static s32
e1000_get_invariants_80003es2lan(struct e1000_adapter
*adapter
)
239 struct e1000_hw
*hw
= &adapter
->hw
;
242 rc
= e1000_init_mac_params_80003es2lan(adapter
);
246 rc
= e1000_init_nvm_params_80003es2lan(hw
);
250 rc
= e1000_init_phy_params_80003es2lan(hw
);
258 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
259 * @hw: pointer to the HW structure
261 * A wrapper to acquire access rights to the correct PHY. This is a
262 * function pointer entry point called by the api module.
264 static s32
e1000_acquire_phy_80003es2lan(struct e1000_hw
*hw
)
268 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
270 return e1000_acquire_swfw_sync_80003es2lan(hw
, mask
);
274 * e1000_release_phy_80003es2lan - Release rights to access PHY
275 * @hw: pointer to the HW structure
277 * A wrapper to release access rights to the correct PHY. This is a
278 * function pointer entry point called by the api module.
280 static void e1000_release_phy_80003es2lan(struct e1000_hw
*hw
)
284 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
285 e1000_release_swfw_sync_80003es2lan(hw
, mask
);
289 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
290 * @hw: pointer to the HW structure
292 * Acquire the semaphore to access the EEPROM. This is a function
293 * pointer entry point called by the api module.
295 static s32
e1000_acquire_nvm_80003es2lan(struct e1000_hw
*hw
)
299 ret_val
= e1000_acquire_swfw_sync_80003es2lan(hw
, E1000_SWFW_EEP_SM
);
303 ret_val
= e1000e_acquire_nvm(hw
);
306 e1000_release_swfw_sync_80003es2lan(hw
, E1000_SWFW_EEP_SM
);
312 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
313 * @hw: pointer to the HW structure
315 * Release the semaphore used to access the EEPROM. This is a
316 * function pointer entry point called by the api module.
318 static void e1000_release_nvm_80003es2lan(struct e1000_hw
*hw
)
320 e1000e_release_nvm(hw
);
321 e1000_release_swfw_sync_80003es2lan(hw
, E1000_SWFW_EEP_SM
);
325 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
326 * @hw: pointer to the HW structure
327 * @mask: specifies which semaphore to acquire
329 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
330 * will also specify which port we're acquiring the lock for.
332 static s32
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw
*hw
, u16 mask
)
336 u32 fwmask
= mask
<< 16;
340 while (i
< timeout
) {
341 if (e1000e_get_hw_semaphore(hw
))
342 return -E1000_ERR_SWFW_SYNC
;
344 swfw_sync
= er32(SW_FW_SYNC
);
345 if (!(swfw_sync
& (fwmask
| swmask
)))
349 * Firmware currently using resource (fwmask)
350 * or other software thread using resource (swmask)
352 e1000e_put_hw_semaphore(hw
);
359 "Driver can't access resource, SW_FW_SYNC timeout.\n");
360 return -E1000_ERR_SWFW_SYNC
;
364 ew32(SW_FW_SYNC
, swfw_sync
);
366 e1000e_put_hw_semaphore(hw
);
372 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
373 * @hw: pointer to the HW structure
374 * @mask: specifies which semaphore to acquire
376 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
377 * will also specify which port we're releasing the lock for.
379 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw
*hw
, u16 mask
)
383 while (e1000e_get_hw_semaphore(hw
) != 0);
386 swfw_sync
= er32(SW_FW_SYNC
);
388 ew32(SW_FW_SYNC
, swfw_sync
);
390 e1000e_put_hw_semaphore(hw
);
394 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
395 * @hw: pointer to the HW structure
396 * @offset: offset of the register to read
397 * @data: pointer to the data returned from the operation
399 * Read the GG82563 PHY register. This is a function pointer entry
400 * point called by the api module.
402 static s32
e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw
*hw
,
403 u32 offset
, u16
*data
)
409 /* Select Configuration Page */
410 if ((offset
& MAX_PHY_REG_ADDRESS
) < GG82563_MIN_ALT_REG
)
411 page_select
= GG82563_PHY_PAGE_SELECT
;
414 * Use Alternative Page Select register to access
415 * registers 30 and 31
417 page_select
= GG82563_PHY_PAGE_SELECT_ALT
;
419 temp
= (u16
)((u16
)offset
>> GG82563_PAGE_SHIFT
);
420 ret_val
= e1000e_write_phy_reg_m88(hw
, page_select
, temp
);
425 * The "ready" bit in the MDIC register may be incorrectly set
426 * before the device has completed the "Page Select" MDI
427 * transaction. So we wait 200us after each MDI command...
431 /* ...and verify the command was successful. */
432 ret_val
= e1000e_read_phy_reg_m88(hw
, page_select
, &temp
);
434 if (((u16
)offset
>> GG82563_PAGE_SHIFT
) != temp
) {
435 ret_val
= -E1000_ERR_PHY
;
441 ret_val
= e1000e_read_phy_reg_m88(hw
,
442 MAX_PHY_REG_ADDRESS
& offset
,
451 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
452 * @hw: pointer to the HW structure
453 * @offset: offset of the register to read
454 * @data: value to write to the register
456 * Write to the GG82563 PHY register. This is a function pointer entry
457 * point called by the api module.
459 static s32
e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw
*hw
,
460 u32 offset
, u16 data
)
466 /* Select Configuration Page */
467 if ((offset
& MAX_PHY_REG_ADDRESS
) < GG82563_MIN_ALT_REG
)
468 page_select
= GG82563_PHY_PAGE_SELECT
;
471 * Use Alternative Page Select register to access
472 * registers 30 and 31
474 page_select
= GG82563_PHY_PAGE_SELECT_ALT
;
476 temp
= (u16
)((u16
)offset
>> GG82563_PAGE_SHIFT
);
477 ret_val
= e1000e_write_phy_reg_m88(hw
, page_select
, temp
);
483 * The "ready" bit in the MDIC register may be incorrectly set
484 * before the device has completed the "Page Select" MDI
485 * transaction. So we wait 200us after each MDI command...
489 /* ...and verify the command was successful. */
490 ret_val
= e1000e_read_phy_reg_m88(hw
, page_select
, &temp
);
492 if (((u16
)offset
>> GG82563_PAGE_SHIFT
) != temp
)
493 return -E1000_ERR_PHY
;
497 ret_val
= e1000e_write_phy_reg_m88(hw
,
498 MAX_PHY_REG_ADDRESS
& offset
,
507 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
508 * @hw: pointer to the HW structure
509 * @offset: offset of the register to read
510 * @words: number of words to write
511 * @data: buffer of data to write to the NVM
513 * Write "words" of data to the ESB2 NVM. This is a function
514 * pointer entry point called by the api module.
516 static s32
e1000_write_nvm_80003es2lan(struct e1000_hw
*hw
, u16 offset
,
517 u16 words
, u16
*data
)
519 return e1000e_write_nvm_spi(hw
, offset
, words
, data
);
523 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
524 * @hw: pointer to the HW structure
526 * Wait a specific amount of time for manageability processes to complete.
527 * This is a function pointer entry point called by the phy module.
529 static s32
e1000_get_cfg_done_80003es2lan(struct e1000_hw
*hw
)
531 s32 timeout
= PHY_CFG_TIMEOUT
;
532 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
534 if (hw
->bus
.func
== 1)
535 mask
= E1000_NVM_CFG_DONE_PORT_1
;
538 if (er32(EEMNGCTL
) & mask
)
544 hw_dbg(hw
, "MNG configuration cycle has not completed.\n");
545 return -E1000_ERR_RESET
;
552 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
553 * @hw: pointer to the HW structure
555 * Force the speed and duplex settings onto the PHY. This is a
556 * function pointer entry point called by the phy module.
558 static s32
e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw
*hw
)
565 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
566 * forced whenever speed and duplex are forced.
568 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
572 phy_data
&= ~GG82563_PSCR_CROSSOVER_MODE_AUTO
;
573 ret_val
= e1e_wphy(hw
, GG82563_PHY_SPEC_CTRL
, phy_data
);
577 hw_dbg(hw
, "GG82563 PSCR: %X\n", phy_data
);
579 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
583 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
585 /* Reset the phy to commit changes. */
586 phy_data
|= MII_CR_RESET
;
588 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
594 if (hw
->phy
.autoneg_wait_to_complete
) {
595 hw_dbg(hw
, "Waiting for forced speed/duplex link "
596 "on GG82563 phy.\n");
598 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
605 * We didn't get link.
606 * Reset the DSP and cross our fingers.
608 ret_val
= e1000e_phy_reset_dsp(hw
);
614 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
620 ret_val
= e1e_rphy(hw
, GG82563_PHY_MAC_SPEC_CTRL
, &phy_data
);
625 * Resetting the phy means we need to verify the TX_CLK corresponds
626 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
628 phy_data
&= ~GG82563_MSCR_TX_CLK_MASK
;
629 if (hw
->mac
.forced_speed_duplex
& E1000_ALL_10_SPEED
)
630 phy_data
|= GG82563_MSCR_TX_CLK_10MBPS_2_5
;
632 phy_data
|= GG82563_MSCR_TX_CLK_100MBPS_25
;
635 * In addition, we must re-enable CRS on Tx for both half and full
638 phy_data
|= GG82563_MSCR_ASSERT_CRS_ON_TX
;
639 ret_val
= e1e_wphy(hw
, GG82563_PHY_MAC_SPEC_CTRL
, phy_data
);
645 * e1000_get_cable_length_80003es2lan - Set approximate cable length
646 * @hw: pointer to the HW structure
648 * Find the approximate cable length as measured by the GG82563 PHY.
649 * This is a function pointer entry point called by the phy module.
651 static s32
e1000_get_cable_length_80003es2lan(struct e1000_hw
*hw
)
653 struct e1000_phy_info
*phy
= &hw
->phy
;
658 ret_val
= e1e_rphy(hw
, GG82563_PHY_DSP_DISTANCE
, &phy_data
);
662 index
= phy_data
& GG82563_DSPD_CABLE_LENGTH
;
663 phy
->min_cable_length
= e1000_gg82563_cable_length_table
[index
];
664 phy
->max_cable_length
= e1000_gg82563_cable_length_table
[index
+5];
666 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
672 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
673 * @hw: pointer to the HW structure
674 * @speed: pointer to speed buffer
675 * @duplex: pointer to duplex buffer
677 * Retrieve the current speed and duplex configuration.
678 * This is a function pointer entry point called by the api module.
680 static s32
e1000_get_link_up_info_80003es2lan(struct e1000_hw
*hw
, u16
*speed
,
685 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
686 ret_val
= e1000e_get_speed_and_duplex_copper(hw
,
691 if (*speed
== SPEED_1000
)
692 ret_val
= e1000_cfg_kmrn_1000_80003es2lan(hw
);
694 ret_val
= e1000_cfg_kmrn_10_100_80003es2lan(hw
,
697 ret_val
= e1000e_get_speed_and_duplex_fiber_serdes(hw
,
706 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
707 * @hw: pointer to the HW structure
709 * Perform a global reset to the ESB2 controller.
710 * This is a function pointer entry point called by the api module.
712 static s32
e1000_reset_hw_80003es2lan(struct e1000_hw
*hw
)
719 * Prevent the PCI-E bus from sticking if there is no TLP connection
720 * on the last TLP read/write transaction when MAC is reset.
722 ret_val
= e1000e_disable_pcie_master(hw
);
724 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
726 hw_dbg(hw
, "Masking off all interrupts\n");
727 ew32(IMC
, 0xffffffff);
730 ew32(TCTL
, E1000_TCTL_PSP
);
737 hw_dbg(hw
, "Issuing a global reset to MAC\n");
738 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
740 ret_val
= e1000e_get_auto_rd_done(hw
);
742 /* We don't want to continue accessing MAC registers. */
745 /* Clear any pending interrupt events. */
746 ew32(IMC
, 0xffffffff);
753 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
754 * @hw: pointer to the HW structure
756 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
757 * This is a function pointer entry point called by the api module.
759 static s32
e1000_init_hw_80003es2lan(struct e1000_hw
*hw
)
761 struct e1000_mac_info
*mac
= &hw
->mac
;
766 e1000_initialize_hw_bits_80003es2lan(hw
);
768 /* Initialize identification LED */
769 ret_val
= e1000e_id_led_init(hw
);
771 hw_dbg(hw
, "Error initializing identification LED\n");
775 /* Disabling VLAN filtering */
776 hw_dbg(hw
, "Initializing the IEEE VLAN\n");
777 e1000e_clear_vfta(hw
);
779 /* Setup the receive address. */
780 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
782 /* Zero out the Multicast HASH table */
783 hw_dbg(hw
, "Zeroing the MTA\n");
784 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
785 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
787 /* Setup link and flow control */
788 ret_val
= e1000e_setup_link(hw
);
790 /* Set the transmit descriptor write-back policy */
791 reg_data
= er32(TXDCTL
);
792 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
793 E1000_TXDCTL_FULL_TX_DESC_WB
| E1000_TXDCTL_COUNT_DESC
;
794 ew32(TXDCTL
, reg_data
);
796 /* ...for both queues. */
797 reg_data
= er32(TXDCTL1
);
798 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
799 E1000_TXDCTL_FULL_TX_DESC_WB
| E1000_TXDCTL_COUNT_DESC
;
800 ew32(TXDCTL1
, reg_data
);
802 /* Enable retransmit on late collisions */
803 reg_data
= er32(TCTL
);
804 reg_data
|= E1000_TCTL_RTLC
;
805 ew32(TCTL
, reg_data
);
807 /* Configure Gigabit Carry Extend Padding */
808 reg_data
= er32(TCTL_EXT
);
809 reg_data
&= ~E1000_TCTL_EXT_GCEX_MASK
;
810 reg_data
|= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN
;
811 ew32(TCTL_EXT
, reg_data
);
813 /* Configure Transmit Inter-Packet Gap */
814 reg_data
= er32(TIPG
);
815 reg_data
&= ~E1000_TIPG_IPGT_MASK
;
816 reg_data
|= DEFAULT_TIPG_IPGT_1000_80003ES2LAN
;
817 ew32(TIPG
, reg_data
);
819 reg_data
= E1000_READ_REG_ARRAY(hw
, E1000_FFLT
, 0x0001);
820 reg_data
&= ~0x00100000;
821 E1000_WRITE_REG_ARRAY(hw
, E1000_FFLT
, 0x0001, reg_data
);
824 * Clear all of the statistics registers (clear on read). It is
825 * important that we do this after we have tried to establish link
826 * because the symbol error count will increment wildly if there
829 e1000_clear_hw_cntrs_80003es2lan(hw
);
835 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
836 * @hw: pointer to the HW structure
838 * Initializes required hardware-dependent bits needed for normal operation.
840 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw
*hw
)
844 /* Transmit Descriptor Control 0 */
849 /* Transmit Descriptor Control 1 */
854 /* Transmit Arbitration Control 0 */
856 reg
&= ~(0xF << 27); /* 30:27 */
857 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
861 /* Transmit Arbitration Control 1 */
863 if (er32(TCTL
) & E1000_TCTL_MULR
)
871 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
872 * @hw: pointer to the HW structure
874 * Setup some GG82563 PHY registers for obtaining link
876 static s32
e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw
*hw
)
878 struct e1000_phy_info
*phy
= &hw
->phy
;
883 ret_val
= e1e_rphy(hw
, GG82563_PHY_MAC_SPEC_CTRL
,
888 data
|= GG82563_MSCR_ASSERT_CRS_ON_TX
;
889 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
890 data
|= GG82563_MSCR_TX_CLK_1000MBPS_25
;
892 ret_val
= e1e_wphy(hw
, GG82563_PHY_MAC_SPEC_CTRL
,
899 * MDI/MDI-X = 0 (default)
900 * 0 - Auto for all speeds
903 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
905 ret_val
= e1e_rphy(hw
, GG82563_PHY_SPEC_CTRL
, &data
);
909 data
&= ~GG82563_PSCR_CROSSOVER_MODE_MASK
;
913 data
|= GG82563_PSCR_CROSSOVER_MODE_MDI
;
916 data
|= GG82563_PSCR_CROSSOVER_MODE_MDIX
;
920 data
|= GG82563_PSCR_CROSSOVER_MODE_AUTO
;
926 * disable_polarity_correction = 0 (default)
927 * Automatic Correction for Reversed Cable Polarity
931 data
&= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE
;
932 if (phy
->disable_polarity_correction
)
933 data
|= GG82563_PSCR_POLARITY_REVERSAL_DISABLE
;
935 ret_val
= e1e_wphy(hw
, GG82563_PHY_SPEC_CTRL
, data
);
939 /* SW Reset the PHY so all changes take effect */
940 ret_val
= e1000e_commit_phy(hw
);
942 hw_dbg(hw
, "Error Resetting the PHY\n");
946 /* Bypass Rx and Tx FIFO's */
947 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL
,
948 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS
|
949 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS
);
953 ret_val
= e1e_rphy(hw
, GG82563_PHY_SPEC_CTRL_2
, &data
);
957 data
&= ~GG82563_PSCR2_REVERSE_AUTO_NEG
;
958 ret_val
= e1e_wphy(hw
, GG82563_PHY_SPEC_CTRL_2
, data
);
962 ctrl_ext
= er32(CTRL_EXT
);
963 ctrl_ext
&= ~(E1000_CTRL_EXT_LINK_MODE_MASK
);
964 ew32(CTRL_EXT
, ctrl_ext
);
966 ret_val
= e1e_rphy(hw
, GG82563_PHY_PWR_MGMT_CTRL
, &data
);
971 * Do not init these registers when the HW is in IAMT mode, since the
972 * firmware will have already initialized them. We only initialize
973 * them if the HW is not in IAMT mode.
975 if (!e1000e_check_mng_mode(hw
)) {
976 /* Enable Electrical Idle on the PHY */
977 data
|= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE
;
978 ret_val
= e1e_wphy(hw
, GG82563_PHY_PWR_MGMT_CTRL
, data
);
982 ret_val
= e1e_rphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, &data
);
986 data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
987 ret_val
= e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, data
);
993 * Workaround: Disable padding in Kumeran interface in the MAC
994 * and in the PHY to avoid CRC errors.
996 ret_val
= e1e_rphy(hw
, GG82563_PHY_INBAND_CTRL
, &data
);
1000 data
|= GG82563_ICR_DIS_PADDING
;
1001 ret_val
= e1e_wphy(hw
, GG82563_PHY_INBAND_CTRL
, data
);
1009 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1010 * @hw: pointer to the HW structure
1012 * Essentially a wrapper for setting up all things "copper" related.
1013 * This is a function pointer entry point called by the mac module.
1015 static s32
e1000_setup_copper_link_80003es2lan(struct e1000_hw
*hw
)
1022 ctrl
|= E1000_CTRL_SLU
;
1023 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1027 * Set the mac to wait the maximum time between each
1028 * iteration and increase the max iterations when
1029 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1031 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
1034 ret_val
= e1000e_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
1038 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
1041 ret_val
= e1000e_read_kmrn_reg(hw
,
1042 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL
,
1046 reg_data
|= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING
;
1047 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL
,
1052 ret_val
= e1000_copper_link_setup_gg82563_80003es2lan(hw
);
1056 ret_val
= e1000e_setup_copper_link(hw
);
1062 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1063 * @hw: pointer to the HW structure
1064 * @duplex: current duplex setting
1066 * Configure the KMRN interface by applying last minute quirks for
1069 static s32
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw
*hw
, u16 duplex
)
1075 reg_data
= E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT
;
1076 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL
,
1081 /* Configure Transmit Inter-Packet Gap */
1083 tipg
&= ~E1000_TIPG_IPGT_MASK
;
1084 tipg
|= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN
;
1087 ret_val
= e1e_rphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, ®_data
);
1091 if (duplex
== HALF_DUPLEX
)
1092 reg_data
|= GG82563_KMCR_PASS_FALSE_CARRIER
;
1094 reg_data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
1096 ret_val
= e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, reg_data
);
1102 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1103 * @hw: pointer to the HW structure
1105 * Configure the KMRN interface by applying last minute quirks for
1106 * gigabit operation.
1108 static s32
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw
*hw
)
1114 reg_data
= E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT
;
1115 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL
,
1120 /* Configure Transmit Inter-Packet Gap */
1122 tipg
&= ~E1000_TIPG_IPGT_MASK
;
1123 tipg
|= DEFAULT_TIPG_IPGT_1000_80003ES2LAN
;
1126 ret_val
= e1e_rphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, ®_data
);
1130 reg_data
&= ~GG82563_KMCR_PASS_FALSE_CARRIER
;
1131 ret_val
= e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, reg_data
);
1137 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1138 * @hw: pointer to the HW structure
1140 * Clears the hardware counters by reading the counter registers.
1142 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw
*hw
)
1146 e1000e_clear_hw_cntrs_base(hw
);
1149 temp
= er32(PRC127
);
1150 temp
= er32(PRC255
);
1151 temp
= er32(PRC511
);
1152 temp
= er32(PRC1023
);
1153 temp
= er32(PRC1522
);
1155 temp
= er32(PTC127
);
1156 temp
= er32(PTC255
);
1157 temp
= er32(PTC511
);
1158 temp
= er32(PTC1023
);
1159 temp
= er32(PTC1522
);
1161 temp
= er32(ALGNERRC
);
1162 temp
= er32(RXERRC
);
1164 temp
= er32(CEXTERR
);
1166 temp
= er32(TSCTFC
);
1168 temp
= er32(MGTPRC
);
1169 temp
= er32(MGTPDC
);
1170 temp
= er32(MGTPTC
);
1173 temp
= er32(ICRXOC
);
1175 temp
= er32(ICRXPTC
);
1176 temp
= er32(ICRXATC
);
1177 temp
= er32(ICTXPTC
);
1178 temp
= er32(ICTXATC
);
1179 temp
= er32(ICTXQEC
);
1180 temp
= er32(ICTXQMTC
);
1181 temp
= er32(ICRXDMTC
);
1184 static struct e1000_mac_operations es2_mac_ops
= {
1185 .mng_mode_enab
= E1000_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
,
1186 /* check_for_link dependent on media type */
1187 .cleanup_led
= e1000e_cleanup_led_generic
,
1188 .clear_hw_cntrs
= e1000_clear_hw_cntrs_80003es2lan
,
1189 .get_bus_info
= e1000e_get_bus_info_pcie
,
1190 .get_link_up_info
= e1000_get_link_up_info_80003es2lan
,
1191 .led_on
= e1000e_led_on_generic
,
1192 .led_off
= e1000e_led_off_generic
,
1193 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1194 .reset_hw
= e1000_reset_hw_80003es2lan
,
1195 .init_hw
= e1000_init_hw_80003es2lan
,
1196 .setup_link
= e1000e_setup_link
,
1197 /* setup_physical_interface dependent on media type */
1200 static struct e1000_phy_operations es2_phy_ops
= {
1201 .acquire_phy
= e1000_acquire_phy_80003es2lan
,
1202 .check_reset_block
= e1000e_check_reset_block_generic
,
1203 .commit_phy
= e1000e_phy_sw_reset
,
1204 .force_speed_duplex
= e1000_phy_force_speed_duplex_80003es2lan
,
1205 .get_cfg_done
= e1000_get_cfg_done_80003es2lan
,
1206 .get_cable_length
= e1000_get_cable_length_80003es2lan
,
1207 .get_phy_info
= e1000e_get_phy_info_m88
,
1208 .read_phy_reg
= e1000_read_phy_reg_gg82563_80003es2lan
,
1209 .release_phy
= e1000_release_phy_80003es2lan
,
1210 .reset_phy
= e1000e_phy_hw_reset_generic
,
1211 .set_d0_lplu_state
= NULL
,
1212 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1213 .write_phy_reg
= e1000_write_phy_reg_gg82563_80003es2lan
,
1216 static struct e1000_nvm_operations es2_nvm_ops
= {
1217 .acquire_nvm
= e1000_acquire_nvm_80003es2lan
,
1218 .read_nvm
= e1000e_read_nvm_eerd
,
1219 .release_nvm
= e1000_release_nvm_80003es2lan
,
1220 .update_nvm
= e1000e_update_nvm_checksum_generic
,
1221 .valid_led_default
= e1000e_valid_led_default
,
1222 .validate_nvm
= e1000e_validate_nvm_checksum_generic
,
1223 .write_nvm
= e1000_write_nvm_80003es2lan
,
1226 struct e1000_info e1000_es2_info
= {
1227 .mac
= e1000_80003es2lan
,
1228 .flags
= FLAG_HAS_HW_VLAN_FILTER
1229 | FLAG_HAS_JUMBO_FRAMES
1230 | FLAG_HAS_STATS_PTC_PRC
1232 | FLAG_APME_IN_CTRL3
1233 | FLAG_RX_CSUM_ENABLED
1234 | FLAG_HAS_CTRLEXT_ON_LOAD
1235 | FLAG_HAS_STATS_ICR_ICT
1236 | FLAG_RX_NEEDS_RESTART
/* errata */
1237 | FLAG_TARC_SET_BIT_ZERO
/* errata */
1238 | FLAG_APME_CHECK_PORT_B
1239 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
1240 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN
,
1242 .get_invariants
= e1000_get_invariants_80003es2lan
,
1243 .mac_ops
= &es2_mac_ops
,
1244 .phy_ops
= &es2_phy_ops
,
1245 .nvm_ops
= &es2_nvm_ops
,