iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / net / e1000e / ethtool.c
blob4ae00567bba69e10cfd1808939ea7f70553a3115
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
36 #include "e1000.h"
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorcl) },
50 { "tx_bytes", E1000_STAT(stats.gotcl) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
107 static int e1000_get_settings(struct net_device *netdev,
108 struct ethtool_cmd *ecmd)
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 status;
114 if (hw->phy.media_type == e1000_media_type_copper) {
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
150 status = er32(STATUS);
151 if (status & E1000_STATUS_LU) {
152 if (status & E1000_STATUS_SPEED_1000)
153 ecmd->speed = 1000;
154 else if (status & E1000_STATUS_SPEED_100)
155 ecmd->speed = 100;
156 else
157 ecmd->speed = 10;
159 if (status & E1000_STATUS_FD)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
168 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
173 static u32 e1000_get_link(struct net_device *netdev)
175 struct e1000_adapter *adapter = netdev_priv(netdev);
176 struct e1000_hw *hw = &adapter->hw;
177 u32 status;
179 status = er32(STATUS);
180 return (status & E1000_STATUS_LU);
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
185 struct e1000_mac_info *mac = &adapter->hw.mac;
187 mac->autoneg = 0;
189 /* Fiber NICs only allow 1000 gbps Full duplex */
190 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
191 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
193 "configuration\n");
194 return -EINVAL;
197 switch (spddplx) {
198 case SPEED_10 + DUPLEX_HALF:
199 mac->forced_speed_duplex = ADVERTISE_10_HALF;
200 break;
201 case SPEED_10 + DUPLEX_FULL:
202 mac->forced_speed_duplex = ADVERTISE_10_FULL;
203 break;
204 case SPEED_100 + DUPLEX_HALF:
205 mac->forced_speed_duplex = ADVERTISE_100_HALF;
206 break;
207 case SPEED_100 + DUPLEX_FULL:
208 mac->forced_speed_duplex = ADVERTISE_100_FULL;
209 break;
210 case SPEED_1000 + DUPLEX_FULL:
211 mac->autoneg = 1;
212 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
213 break;
214 case SPEED_1000 + DUPLEX_HALF: /* not supported */
215 default:
216 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
217 "configuration\n");
218 return -EINVAL;
220 return 0;
223 static int e1000_set_settings(struct net_device *netdev,
224 struct ethtool_cmd *ecmd)
226 struct e1000_adapter *adapter = netdev_priv(netdev);
227 struct e1000_hw *hw = &adapter->hw;
230 * When SoL/IDER sessions are active, autoneg/speed/duplex
231 * cannot be changed
233 if (e1000_check_reset_block(hw)) {
234 ndev_err(netdev, "Cannot change link "
235 "characteristics when SoL/IDER is active.\n");
236 return -EINVAL;
239 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
240 msleep(1);
242 if (ecmd->autoneg == AUTONEG_ENABLE) {
243 hw->mac.autoneg = 1;
244 if (hw->phy.media_type == e1000_media_type_fiber)
245 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
246 ADVERTISED_FIBRE |
247 ADVERTISED_Autoneg;
248 else
249 hw->phy.autoneg_advertised = ecmd->advertising |
250 ADVERTISED_TP |
251 ADVERTISED_Autoneg;
252 ecmd->advertising = hw->phy.autoneg_advertised;
253 if (adapter->fc_autoneg)
254 hw->fc.original_type = e1000_fc_default;
255 } else {
256 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
257 clear_bit(__E1000_RESETTING, &adapter->state);
258 return -EINVAL;
262 /* reset the link */
264 if (netif_running(adapter->netdev)) {
265 e1000e_down(adapter);
266 e1000e_up(adapter);
267 } else {
268 e1000e_reset(adapter);
271 clear_bit(__E1000_RESETTING, &adapter->state);
272 return 0;
275 static void e1000_get_pauseparam(struct net_device *netdev,
276 struct ethtool_pauseparam *pause)
278 struct e1000_adapter *adapter = netdev_priv(netdev);
279 struct e1000_hw *hw = &adapter->hw;
281 pause->autoneg =
282 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
284 if (hw->fc.type == e1000_fc_rx_pause) {
285 pause->rx_pause = 1;
286 } else if (hw->fc.type == e1000_fc_tx_pause) {
287 pause->tx_pause = 1;
288 } else if (hw->fc.type == e1000_fc_full) {
289 pause->rx_pause = 1;
290 pause->tx_pause = 1;
294 static int e1000_set_pauseparam(struct net_device *netdev,
295 struct ethtool_pauseparam *pause)
297 struct e1000_adapter *adapter = netdev_priv(netdev);
298 struct e1000_hw *hw = &adapter->hw;
299 int retval = 0;
301 adapter->fc_autoneg = pause->autoneg;
303 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
304 msleep(1);
306 if (pause->rx_pause && pause->tx_pause)
307 hw->fc.type = e1000_fc_full;
308 else if (pause->rx_pause && !pause->tx_pause)
309 hw->fc.type = e1000_fc_rx_pause;
310 else if (!pause->rx_pause && pause->tx_pause)
311 hw->fc.type = e1000_fc_tx_pause;
312 else if (!pause->rx_pause && !pause->tx_pause)
313 hw->fc.type = e1000_fc_none;
315 hw->fc.original_type = hw->fc.type;
317 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
318 hw->fc.type = e1000_fc_default;
319 if (netif_running(adapter->netdev)) {
320 e1000e_down(adapter);
321 e1000e_up(adapter);
322 } else {
323 e1000e_reset(adapter);
325 } else {
326 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
327 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
330 clear_bit(__E1000_RESETTING, &adapter->state);
331 return retval;
334 static u32 e1000_get_rx_csum(struct net_device *netdev)
336 struct e1000_adapter *adapter = netdev_priv(netdev);
337 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
340 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
342 struct e1000_adapter *adapter = netdev_priv(netdev);
344 if (data)
345 adapter->flags |= FLAG_RX_CSUM_ENABLED;
346 else
347 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
349 if (netif_running(netdev))
350 e1000e_reinit_locked(adapter);
351 else
352 e1000e_reset(adapter);
353 return 0;
356 static u32 e1000_get_tx_csum(struct net_device *netdev)
358 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
361 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
363 if (data)
364 netdev->features |= NETIF_F_HW_CSUM;
365 else
366 netdev->features &= ~NETIF_F_HW_CSUM;
368 return 0;
371 static int e1000_set_tso(struct net_device *netdev, u32 data)
373 struct e1000_adapter *adapter = netdev_priv(netdev);
375 if (data) {
376 netdev->features |= NETIF_F_TSO;
377 netdev->features |= NETIF_F_TSO6;
378 } else {
379 netdev->features &= ~NETIF_F_TSO;
380 netdev->features &= ~NETIF_F_TSO6;
383 ndev_info(netdev, "TSO is %s\n",
384 data ? "Enabled" : "Disabled");
385 adapter->flags |= FLAG_TSO_FORCE;
386 return 0;
389 static u32 e1000_get_msglevel(struct net_device *netdev)
391 struct e1000_adapter *adapter = netdev_priv(netdev);
392 return adapter->msg_enable;
395 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
397 struct e1000_adapter *adapter = netdev_priv(netdev);
398 adapter->msg_enable = data;
401 static int e1000_get_regs_len(struct net_device *netdev)
403 #define E1000_REGS_LEN 32 /* overestimate */
404 return E1000_REGS_LEN * sizeof(u32);
407 static void e1000_get_regs(struct net_device *netdev,
408 struct ethtool_regs *regs, void *p)
410 struct e1000_adapter *adapter = netdev_priv(netdev);
411 struct e1000_hw *hw = &adapter->hw;
412 u32 *regs_buff = p;
413 u16 phy_data;
414 u8 revision_id;
416 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
418 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
420 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
422 regs_buff[0] = er32(CTRL);
423 regs_buff[1] = er32(STATUS);
425 regs_buff[2] = er32(RCTL);
426 regs_buff[3] = er32(RDLEN);
427 regs_buff[4] = er32(RDH);
428 regs_buff[5] = er32(RDT);
429 regs_buff[6] = er32(RDTR);
431 regs_buff[7] = er32(TCTL);
432 regs_buff[8] = er32(TDLEN);
433 regs_buff[9] = er32(TDH);
434 regs_buff[10] = er32(TDT);
435 regs_buff[11] = er32(TIDV);
437 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
438 if (hw->phy.type == e1000_phy_m88) {
439 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
440 regs_buff[13] = (u32)phy_data; /* cable length */
441 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
442 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
443 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
444 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
445 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
446 regs_buff[18] = regs_buff[13]; /* cable polarity */
447 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
448 regs_buff[20] = regs_buff[17]; /* polarity correction */
449 /* phy receive errors */
450 regs_buff[22] = adapter->phy_stats.receive_errors;
451 regs_buff[23] = regs_buff[13]; /* mdix mode */
453 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
454 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
455 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
456 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
459 static int e1000_get_eeprom_len(struct net_device *netdev)
461 struct e1000_adapter *adapter = netdev_priv(netdev);
462 return adapter->hw.nvm.word_size * 2;
465 static int e1000_get_eeprom(struct net_device *netdev,
466 struct ethtool_eeprom *eeprom, u8 *bytes)
468 struct e1000_adapter *adapter = netdev_priv(netdev);
469 struct e1000_hw *hw = &adapter->hw;
470 u16 *eeprom_buff;
471 int first_word;
472 int last_word;
473 int ret_val = 0;
474 u16 i;
476 if (eeprom->len == 0)
477 return -EINVAL;
479 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
481 first_word = eeprom->offset >> 1;
482 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
484 eeprom_buff = kmalloc(sizeof(u16) *
485 (last_word - first_word + 1), GFP_KERNEL);
486 if (!eeprom_buff)
487 return -ENOMEM;
489 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
490 ret_val = e1000_read_nvm(hw, first_word,
491 last_word - first_word + 1,
492 eeprom_buff);
493 } else {
494 for (i = 0; i < last_word - first_word + 1; i++) {
495 ret_val = e1000_read_nvm(hw, first_word + i, 1,
496 &eeprom_buff[i]);
497 if (ret_val)
498 break;
502 /* Device's eeprom is always little-endian, word addressable */
503 for (i = 0; i < last_word - first_word + 1; i++)
504 le16_to_cpus(&eeprom_buff[i]);
506 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
507 kfree(eeprom_buff);
509 return ret_val;
512 static int e1000_set_eeprom(struct net_device *netdev,
513 struct ethtool_eeprom *eeprom, u8 *bytes)
515 struct e1000_adapter *adapter = netdev_priv(netdev);
516 struct e1000_hw *hw = &adapter->hw;
517 u16 *eeprom_buff;
518 void *ptr;
519 int max_len;
520 int first_word;
521 int last_word;
522 int ret_val = 0;
523 u16 i;
525 if (eeprom->len == 0)
526 return -EOPNOTSUPP;
528 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
529 return -EFAULT;
531 max_len = hw->nvm.word_size * 2;
533 first_word = eeprom->offset >> 1;
534 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
535 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
536 if (!eeprom_buff)
537 return -ENOMEM;
539 ptr = (void *)eeprom_buff;
541 if (eeprom->offset & 1) {
542 /* need read/modify/write of first changed EEPROM word */
543 /* only the second byte of the word is being modified */
544 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
545 ptr++;
547 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
548 /* need read/modify/write of last changed EEPROM word */
549 /* only the first byte of the word is being modified */
550 ret_val = e1000_read_nvm(hw, last_word, 1,
551 &eeprom_buff[last_word - first_word]);
553 /* Device's eeprom is always little-endian, word addressable */
554 for (i = 0; i < last_word - first_word + 1; i++)
555 le16_to_cpus(&eeprom_buff[i]);
557 memcpy(ptr, bytes, eeprom->len);
559 for (i = 0; i < last_word - first_word + 1; i++)
560 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
562 ret_val = e1000_write_nvm(hw, first_word,
563 last_word - first_word + 1, eeprom_buff);
566 * Update the checksum over the first part of the EEPROM if needed
567 * and flush shadow RAM for 82573 controllers
569 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
570 (hw->mac.type == e1000_82573)))
571 e1000e_update_nvm_checksum(hw);
573 kfree(eeprom_buff);
574 return ret_val;
577 static void e1000_get_drvinfo(struct net_device *netdev,
578 struct ethtool_drvinfo *drvinfo)
580 struct e1000_adapter *adapter = netdev_priv(netdev);
581 char firmware_version[32];
582 u16 eeprom_data;
584 strncpy(drvinfo->driver, e1000e_driver_name, 32);
585 strncpy(drvinfo->version, e1000e_driver_version, 32);
588 * EEPROM image version # is reported as firmware version # for
589 * PCI-E controllers
591 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
592 sprintf(firmware_version, "%d.%d-%d",
593 (eeprom_data & 0xF000) >> 12,
594 (eeprom_data & 0x0FF0) >> 4,
595 eeprom_data & 0x000F);
597 strncpy(drvinfo->fw_version, firmware_version, 32);
598 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
599 drvinfo->regdump_len = e1000_get_regs_len(netdev);
600 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
603 static void e1000_get_ringparam(struct net_device *netdev,
604 struct ethtool_ringparam *ring)
606 struct e1000_adapter *adapter = netdev_priv(netdev);
607 struct e1000_ring *tx_ring = adapter->tx_ring;
608 struct e1000_ring *rx_ring = adapter->rx_ring;
610 ring->rx_max_pending = E1000_MAX_RXD;
611 ring->tx_max_pending = E1000_MAX_TXD;
612 ring->rx_mini_max_pending = 0;
613 ring->rx_jumbo_max_pending = 0;
614 ring->rx_pending = rx_ring->count;
615 ring->tx_pending = tx_ring->count;
616 ring->rx_mini_pending = 0;
617 ring->rx_jumbo_pending = 0;
620 static int e1000_set_ringparam(struct net_device *netdev,
621 struct ethtool_ringparam *ring)
623 struct e1000_adapter *adapter = netdev_priv(netdev);
624 struct e1000_ring *tx_ring, *tx_old;
625 struct e1000_ring *rx_ring, *rx_old;
626 int err;
628 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
629 return -EINVAL;
631 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
632 msleep(1);
634 if (netif_running(adapter->netdev))
635 e1000e_down(adapter);
637 tx_old = adapter->tx_ring;
638 rx_old = adapter->rx_ring;
640 err = -ENOMEM;
641 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
642 if (!tx_ring)
643 goto err_alloc_tx;
645 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
646 if (!rx_ring)
647 goto err_alloc_rx;
649 adapter->tx_ring = tx_ring;
650 adapter->rx_ring = rx_ring;
652 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
653 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
654 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
656 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
657 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
658 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
660 if (netif_running(adapter->netdev)) {
661 /* Try to get new resources before deleting old */
662 err = e1000e_setup_rx_resources(adapter);
663 if (err)
664 goto err_setup_rx;
665 err = e1000e_setup_tx_resources(adapter);
666 if (err)
667 goto err_setup_tx;
670 * restore the old in order to free it,
671 * then add in the new
673 adapter->rx_ring = rx_old;
674 adapter->tx_ring = tx_old;
675 e1000e_free_rx_resources(adapter);
676 e1000e_free_tx_resources(adapter);
677 kfree(tx_old);
678 kfree(rx_old);
679 adapter->rx_ring = rx_ring;
680 adapter->tx_ring = tx_ring;
681 err = e1000e_up(adapter);
682 if (err)
683 goto err_setup;
686 clear_bit(__E1000_RESETTING, &adapter->state);
687 return 0;
688 err_setup_tx:
689 e1000e_free_rx_resources(adapter);
690 err_setup_rx:
691 adapter->rx_ring = rx_old;
692 adapter->tx_ring = tx_old;
693 kfree(rx_ring);
694 err_alloc_rx:
695 kfree(tx_ring);
696 err_alloc_tx:
697 e1000e_up(adapter);
698 err_setup:
699 clear_bit(__E1000_RESETTING, &adapter->state);
700 return err;
703 static bool reg_pattern_test_array(struct e1000_adapter *adapter, u64 *data,
704 int reg, int offset, u32 mask, u32 write)
706 int i;
707 u32 read;
708 static const u32 test[] =
709 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
710 for (i = 0; i < ARRAY_SIZE(test); i++) {
711 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
712 (test[i] & write));
713 read = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
714 if (read != (test[i] & write & mask)) {
715 ndev_err(adapter->netdev, "pattern test reg %04X "
716 "failed: got 0x%08X expected 0x%08X\n",
717 reg + offset,
718 read, (test[i] & write & mask));
719 *data = reg;
720 return true;
723 return false;
726 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
727 int reg, u32 mask, u32 write)
729 u32 read;
730 __ew32(&adapter->hw, reg, write & mask);
731 read = __er32(&adapter->hw, reg);
732 if ((write & mask) != (read & mask)) {
733 ndev_err(adapter->netdev, "set/check reg %04X test failed: "
734 "got 0x%08X expected 0x%08X\n", reg, (read & mask),
735 (write & mask));
736 *data = reg;
737 return true;
739 return false;
742 #define REG_PATTERN_TEST(R, M, W) \
743 do { \
744 if (reg_pattern_test_array(adapter, data, R, 0, M, W)) \
745 return 1; \
746 } while (0)
748 #define REG_PATTERN_TEST_ARRAY(R, offset, M, W) \
749 do { \
750 if (reg_pattern_test_array(adapter, data, R, offset, M, W)) \
751 return 1; \
752 } while (0)
754 #define REG_SET_AND_CHECK(R, M, W) \
755 do { \
756 if (reg_set_and_check(adapter, data, R, M, W)) \
757 return 1; \
758 } while (0)
760 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
762 struct e1000_hw *hw = &adapter->hw;
763 struct e1000_mac_info *mac = &adapter->hw.mac;
764 struct net_device *netdev = adapter->netdev;
765 u32 value;
766 u32 before;
767 u32 after;
768 u32 i;
769 u32 toggle;
772 * The status register is Read Only, so a write should fail.
773 * Some bits that get toggled are ignored.
775 switch (mac->type) {
776 /* there are several bits on newer hardware that are r/w */
777 case e1000_82571:
778 case e1000_82572:
779 case e1000_80003es2lan:
780 toggle = 0x7FFFF3FF;
781 break;
782 case e1000_82573:
783 case e1000_ich8lan:
784 case e1000_ich9lan:
785 toggle = 0x7FFFF033;
786 break;
787 default:
788 toggle = 0xFFFFF833;
789 break;
792 before = er32(STATUS);
793 value = (er32(STATUS) & toggle);
794 ew32(STATUS, toggle);
795 after = er32(STATUS) & toggle;
796 if (value != after) {
797 ndev_err(netdev, "failed STATUS register test got: "
798 "0x%08X expected: 0x%08X\n", after, value);
799 *data = 1;
800 return 1;
802 /* restore previous status */
803 ew32(STATUS, before);
805 if ((mac->type != e1000_ich8lan) &&
806 (mac->type != e1000_ich9lan)) {
807 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
808 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
809 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
810 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
813 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
814 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
815 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
816 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
817 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
818 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
819 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
820 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
821 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
822 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
824 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
826 before = (((mac->type == e1000_ich8lan) ||
827 (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
828 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
829 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
831 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
832 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
833 if ((mac->type != e1000_ich8lan) &&
834 (mac->type != e1000_ich9lan))
835 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
836 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
837 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
838 for (i = 0; i < mac->rar_entry_count; i++)
839 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
840 0x8003FFFF, 0xFFFFFFFF);
842 for (i = 0; i < mac->mta_reg_count; i++)
843 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
845 *data = 0;
846 return 0;
849 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
851 u16 temp;
852 u16 checksum = 0;
853 u16 i;
855 *data = 0;
856 /* Read and add up the contents of the EEPROM */
857 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
858 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
859 *data = 1;
860 break;
862 checksum += temp;
865 /* If Checksum is not Correct return error else test passed */
866 if ((checksum != (u16) NVM_SUM) && !(*data))
867 *data = 2;
869 return *data;
872 static irqreturn_t e1000_test_intr(int irq, void *data)
874 struct net_device *netdev = (struct net_device *) data;
875 struct e1000_adapter *adapter = netdev_priv(netdev);
876 struct e1000_hw *hw = &adapter->hw;
878 adapter->test_icr |= er32(ICR);
880 return IRQ_HANDLED;
883 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
885 struct net_device *netdev = adapter->netdev;
886 struct e1000_hw *hw = &adapter->hw;
887 u32 mask;
888 u32 shared_int = 1;
889 u32 irq = adapter->pdev->irq;
890 int i;
892 *data = 0;
894 /* NOTE: we don't test MSI interrupts here, yet */
895 /* Hook up test interrupt handler just for this test */
896 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
897 netdev)) {
898 shared_int = 0;
899 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
900 netdev->name, netdev)) {
901 *data = 1;
902 return -1;
904 ndev_info(netdev, "testing %s interrupt\n",
905 (shared_int ? "shared" : "unshared"));
907 /* Disable all the interrupts */
908 ew32(IMC, 0xFFFFFFFF);
909 msleep(10);
911 /* Test each interrupt */
912 for (i = 0; i < 10; i++) {
914 if (((adapter->hw.mac.type == e1000_ich8lan) ||
915 (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
916 continue;
918 /* Interrupt to test */
919 mask = 1 << i;
921 if (!shared_int) {
923 * Disable the interrupt to be reported in
924 * the cause register and then force the same
925 * interrupt and see if one gets posted. If
926 * an interrupt was posted to the bus, the
927 * test failed.
929 adapter->test_icr = 0;
930 ew32(IMC, mask);
931 ew32(ICS, mask);
932 msleep(10);
934 if (adapter->test_icr & mask) {
935 *data = 3;
936 break;
941 * Enable the interrupt to be reported in
942 * the cause register and then force the same
943 * interrupt and see if one gets posted. If
944 * an interrupt was not posted to the bus, the
945 * test failed.
947 adapter->test_icr = 0;
948 ew32(IMS, mask);
949 ew32(ICS, mask);
950 msleep(10);
952 if (!(adapter->test_icr & mask)) {
953 *data = 4;
954 break;
957 if (!shared_int) {
959 * Disable the other interrupts to be reported in
960 * the cause register and then force the other
961 * interrupts and see if any get posted. If
962 * an interrupt was posted to the bus, the
963 * test failed.
965 adapter->test_icr = 0;
966 ew32(IMC, ~mask & 0x00007FFF);
967 ew32(ICS, ~mask & 0x00007FFF);
968 msleep(10);
970 if (adapter->test_icr) {
971 *data = 5;
972 break;
977 /* Disable all the interrupts */
978 ew32(IMC, 0xFFFFFFFF);
979 msleep(10);
981 /* Unhook test interrupt handler */
982 free_irq(irq, netdev);
984 return *data;
987 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
989 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
990 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
991 struct pci_dev *pdev = adapter->pdev;
992 int i;
994 if (tx_ring->desc && tx_ring->buffer_info) {
995 for (i = 0; i < tx_ring->count; i++) {
996 if (tx_ring->buffer_info[i].dma)
997 pci_unmap_single(pdev,
998 tx_ring->buffer_info[i].dma,
999 tx_ring->buffer_info[i].length,
1000 PCI_DMA_TODEVICE);
1001 if (tx_ring->buffer_info[i].skb)
1002 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1006 if (rx_ring->desc && rx_ring->buffer_info) {
1007 for (i = 0; i < rx_ring->count; i++) {
1008 if (rx_ring->buffer_info[i].dma)
1009 pci_unmap_single(pdev,
1010 rx_ring->buffer_info[i].dma,
1011 2048, PCI_DMA_FROMDEVICE);
1012 if (rx_ring->buffer_info[i].skb)
1013 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1017 if (tx_ring->desc) {
1018 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1019 tx_ring->dma);
1020 tx_ring->desc = NULL;
1022 if (rx_ring->desc) {
1023 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1024 rx_ring->dma);
1025 rx_ring->desc = NULL;
1028 kfree(tx_ring->buffer_info);
1029 tx_ring->buffer_info = NULL;
1030 kfree(rx_ring->buffer_info);
1031 rx_ring->buffer_info = NULL;
1034 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1036 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1037 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1038 struct pci_dev *pdev = adapter->pdev;
1039 struct e1000_hw *hw = &adapter->hw;
1040 u32 rctl;
1041 int size;
1042 int i;
1043 int ret_val;
1045 /* Setup Tx descriptor ring and Tx buffers */
1047 if (!tx_ring->count)
1048 tx_ring->count = E1000_DEFAULT_TXD;
1050 size = tx_ring->count * sizeof(struct e1000_buffer);
1051 tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1052 if (!tx_ring->buffer_info) {
1053 ret_val = 1;
1054 goto err_nomem;
1056 memset(tx_ring->buffer_info, 0, size);
1058 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1059 tx_ring->size = ALIGN(tx_ring->size, 4096);
1060 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1061 &tx_ring->dma, GFP_KERNEL);
1062 if (!tx_ring->desc) {
1063 ret_val = 2;
1064 goto err_nomem;
1066 memset(tx_ring->desc, 0, tx_ring->size);
1067 tx_ring->next_to_use = 0;
1068 tx_ring->next_to_clean = 0;
1070 ew32(TDBAL,
1071 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1072 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1073 ew32(TDLEN,
1074 tx_ring->count * sizeof(struct e1000_tx_desc));
1075 ew32(TDH, 0);
1076 ew32(TDT, 0);
1077 ew32(TCTL,
1078 E1000_TCTL_PSP | E1000_TCTL_EN |
1079 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1080 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1082 for (i = 0; i < tx_ring->count; i++) {
1083 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1084 struct sk_buff *skb;
1085 unsigned int skb_size = 1024;
1087 skb = alloc_skb(skb_size, GFP_KERNEL);
1088 if (!skb) {
1089 ret_val = 3;
1090 goto err_nomem;
1092 skb_put(skb, skb_size);
1093 tx_ring->buffer_info[i].skb = skb;
1094 tx_ring->buffer_info[i].length = skb->len;
1095 tx_ring->buffer_info[i].dma =
1096 pci_map_single(pdev, skb->data, skb->len,
1097 PCI_DMA_TODEVICE);
1098 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1099 ret_val = 4;
1100 goto err_nomem;
1102 tx_desc->buffer_addr = cpu_to_le64(
1103 tx_ring->buffer_info[i].dma);
1104 tx_desc->lower.data = cpu_to_le32(skb->len);
1105 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1106 E1000_TXD_CMD_IFCS |
1107 E1000_TXD_CMD_RPS);
1108 tx_desc->upper.data = 0;
1111 /* Setup Rx descriptor ring and Rx buffers */
1113 if (!rx_ring->count)
1114 rx_ring->count = E1000_DEFAULT_RXD;
1116 size = rx_ring->count * sizeof(struct e1000_buffer);
1117 rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1118 if (!rx_ring->buffer_info) {
1119 ret_val = 5;
1120 goto err_nomem;
1122 memset(rx_ring->buffer_info, 0, size);
1124 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1125 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1126 &rx_ring->dma, GFP_KERNEL);
1127 if (!rx_ring->desc) {
1128 ret_val = 6;
1129 goto err_nomem;
1131 memset(rx_ring->desc, 0, rx_ring->size);
1132 rx_ring->next_to_use = 0;
1133 rx_ring->next_to_clean = 0;
1135 rctl = er32(RCTL);
1136 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1137 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1138 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1139 ew32(RDLEN, rx_ring->size);
1140 ew32(RDH, 0);
1141 ew32(RDT, 0);
1142 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1143 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1144 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1145 ew32(RCTL, rctl);
1147 for (i = 0; i < rx_ring->count; i++) {
1148 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1149 struct sk_buff *skb;
1151 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1152 if (!skb) {
1153 ret_val = 7;
1154 goto err_nomem;
1156 skb_reserve(skb, NET_IP_ALIGN);
1157 rx_ring->buffer_info[i].skb = skb;
1158 rx_ring->buffer_info[i].dma =
1159 pci_map_single(pdev, skb->data, 2048,
1160 PCI_DMA_FROMDEVICE);
1161 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1162 ret_val = 8;
1163 goto err_nomem;
1165 rx_desc->buffer_addr =
1166 cpu_to_le64(rx_ring->buffer_info[i].dma);
1167 memset(skb->data, 0x00, skb->len);
1170 return 0;
1172 err_nomem:
1173 e1000_free_desc_rings(adapter);
1174 return ret_val;
1177 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1179 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1180 e1e_wphy(&adapter->hw, 29, 0x001F);
1181 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1182 e1e_wphy(&adapter->hw, 29, 0x001A);
1183 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1186 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1188 struct e1000_hw *hw = &adapter->hw;
1189 u32 ctrl_reg = 0;
1190 u32 stat_reg = 0;
1192 hw->mac.autoneg = 0;
1194 if (hw->phy.type == e1000_phy_m88) {
1195 /* Auto-MDI/MDIX Off */
1196 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1197 /* reset to update Auto-MDI/MDIX */
1198 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1199 /* autoneg off */
1200 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1201 } else if (hw->phy.type == e1000_phy_gg82563)
1202 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1204 ctrl_reg = er32(CTRL);
1206 if (hw->phy.type == e1000_phy_ife) {
1207 /* force 100, set loopback */
1208 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1210 /* Now set up the MAC to the same speed/duplex as the PHY. */
1211 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1212 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1213 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1214 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1215 E1000_CTRL_FD); /* Force Duplex to FULL */
1216 } else {
1217 /* force 1000, set loopback */
1218 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1220 /* Now set up the MAC to the same speed/duplex as the PHY. */
1221 ctrl_reg = er32(CTRL);
1222 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1223 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1224 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1225 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1226 E1000_CTRL_FD); /* Force Duplex to FULL */
1229 if (hw->phy.media_type == e1000_media_type_copper &&
1230 hw->phy.type == e1000_phy_m88) {
1231 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1232 } else {
1234 * Set the ILOS bit on the fiber Nic if half duplex link is
1235 * detected.
1237 stat_reg = er32(STATUS);
1238 if ((stat_reg & E1000_STATUS_FD) == 0)
1239 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1242 ew32(CTRL, ctrl_reg);
1245 * Disable the receiver on the PHY so when a cable is plugged in, the
1246 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1248 if (hw->phy.type == e1000_phy_m88)
1249 e1000_phy_disable_receiver(adapter);
1251 udelay(500);
1253 return 0;
1256 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1258 struct e1000_hw *hw = &adapter->hw;
1259 u32 ctrl = er32(CTRL);
1260 int link = 0;
1262 /* special requirements for 82571/82572 fiber adapters */
1265 * jump through hoops to make sure link is up because serdes
1266 * link is hardwired up
1268 ctrl |= E1000_CTRL_SLU;
1269 ew32(CTRL, ctrl);
1271 /* disable autoneg */
1272 ctrl = er32(TXCW);
1273 ctrl &= ~(1 << 31);
1274 ew32(TXCW, ctrl);
1276 link = (er32(STATUS) & E1000_STATUS_LU);
1278 if (!link) {
1279 /* set invert loss of signal */
1280 ctrl = er32(CTRL);
1281 ctrl |= E1000_CTRL_ILOS;
1282 ew32(CTRL, ctrl);
1286 * special write to serdes control register to enable SerDes analog
1287 * loopback
1289 #define E1000_SERDES_LB_ON 0x410
1290 ew32(SCTL, E1000_SERDES_LB_ON);
1291 msleep(10);
1293 return 0;
1296 /* only call this for fiber/serdes connections to es2lan */
1297 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1299 struct e1000_hw *hw = &adapter->hw;
1300 u32 ctrlext = er32(CTRL_EXT);
1301 u32 ctrl = er32(CTRL);
1304 * save CTRL_EXT to restore later, reuse an empty variable (unused
1305 * on mac_type 80003es2lan)
1307 adapter->tx_fifo_head = ctrlext;
1309 /* clear the serdes mode bits, putting the device into mac loopback */
1310 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1311 ew32(CTRL_EXT, ctrlext);
1313 /* force speed to 1000/FD, link up */
1314 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1315 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1316 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1317 ew32(CTRL, ctrl);
1319 /* set mac loopback */
1320 ctrl = er32(RCTL);
1321 ctrl |= E1000_RCTL_LBM_MAC;
1322 ew32(RCTL, ctrl);
1324 /* set testing mode parameters (no need to reset later) */
1325 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1326 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1327 ew32(KMRNCTRLSTA,
1328 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1330 return 0;
1333 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1335 struct e1000_hw *hw = &adapter->hw;
1336 u32 rctl;
1338 if (hw->phy.media_type == e1000_media_type_fiber ||
1339 hw->phy.media_type == e1000_media_type_internal_serdes) {
1340 switch (hw->mac.type) {
1341 case e1000_80003es2lan:
1342 return e1000_set_es2lan_mac_loopback(adapter);
1343 break;
1344 case e1000_82571:
1345 case e1000_82572:
1346 return e1000_set_82571_fiber_loopback(adapter);
1347 break;
1348 default:
1349 rctl = er32(RCTL);
1350 rctl |= E1000_RCTL_LBM_TCVR;
1351 ew32(RCTL, rctl);
1352 return 0;
1354 } else if (hw->phy.media_type == e1000_media_type_copper) {
1355 return e1000_integrated_phy_loopback(adapter);
1358 return 7;
1361 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1363 struct e1000_hw *hw = &adapter->hw;
1364 u32 rctl;
1365 u16 phy_reg;
1367 rctl = er32(RCTL);
1368 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1369 ew32(RCTL, rctl);
1371 switch (hw->mac.type) {
1372 case e1000_80003es2lan:
1373 if (hw->phy.media_type == e1000_media_type_fiber ||
1374 hw->phy.media_type == e1000_media_type_internal_serdes) {
1375 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1376 ew32(CTRL_EXT, adapter->tx_fifo_head);
1377 adapter->tx_fifo_head = 0;
1379 /* fall through */
1380 case e1000_82571:
1381 case e1000_82572:
1382 if (hw->phy.media_type == e1000_media_type_fiber ||
1383 hw->phy.media_type == e1000_media_type_internal_serdes) {
1384 #define E1000_SERDES_LB_OFF 0x400
1385 ew32(SCTL, E1000_SERDES_LB_OFF);
1386 msleep(10);
1387 break;
1389 /* Fall Through */
1390 default:
1391 hw->mac.autoneg = 1;
1392 if (hw->phy.type == e1000_phy_gg82563)
1393 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1394 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1395 if (phy_reg & MII_CR_LOOPBACK) {
1396 phy_reg &= ~MII_CR_LOOPBACK;
1397 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1398 e1000e_commit_phy(hw);
1400 break;
1404 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1405 unsigned int frame_size)
1407 memset(skb->data, 0xFF, frame_size);
1408 frame_size &= ~1;
1409 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1410 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1411 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1414 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1415 unsigned int frame_size)
1417 frame_size &= ~1;
1418 if (*(skb->data + 3) == 0xFF)
1419 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1420 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1421 return 0;
1422 return 13;
1425 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1427 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1428 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1429 struct pci_dev *pdev = adapter->pdev;
1430 struct e1000_hw *hw = &adapter->hw;
1431 int i, j, k, l;
1432 int lc;
1433 int good_cnt;
1434 int ret_val = 0;
1435 unsigned long time;
1437 ew32(RDT, rx_ring->count - 1);
1440 * Calculate the loop count based on the largest descriptor ring
1441 * The idea is to wrap the largest ring a number of times using 64
1442 * send/receive pairs during each loop
1445 if (rx_ring->count <= tx_ring->count)
1446 lc = ((tx_ring->count / 64) * 2) + 1;
1447 else
1448 lc = ((rx_ring->count / 64) * 2) + 1;
1450 k = 0;
1451 l = 0;
1452 for (j = 0; j <= lc; j++) { /* loop count loop */
1453 for (i = 0; i < 64; i++) { /* send the packets */
1454 e1000_create_lbtest_frame(
1455 tx_ring->buffer_info[i].skb, 1024);
1456 pci_dma_sync_single_for_device(pdev,
1457 tx_ring->buffer_info[k].dma,
1458 tx_ring->buffer_info[k].length,
1459 PCI_DMA_TODEVICE);
1460 k++;
1461 if (k == tx_ring->count)
1462 k = 0;
1464 ew32(TDT, k);
1465 msleep(200);
1466 time = jiffies; /* set the start time for the receive */
1467 good_cnt = 0;
1468 do { /* receive the sent packets */
1469 pci_dma_sync_single_for_cpu(pdev,
1470 rx_ring->buffer_info[l].dma, 2048,
1471 PCI_DMA_FROMDEVICE);
1473 ret_val = e1000_check_lbtest_frame(
1474 rx_ring->buffer_info[l].skb, 1024);
1475 if (!ret_val)
1476 good_cnt++;
1477 l++;
1478 if (l == rx_ring->count)
1479 l = 0;
1481 * time + 20 msecs (200 msecs on 2.4) is more than
1482 * enough time to complete the receives, if it's
1483 * exceeded, break and error off
1485 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1486 if (good_cnt != 64) {
1487 ret_val = 13; /* ret_val is the same as mis-compare */
1488 break;
1490 if (jiffies >= (time + 2)) {
1491 ret_val = 14; /* error code for time out error */
1492 break;
1494 } /* end loop count loop */
1495 return ret_val;
1498 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1501 * PHY loopback cannot be performed if SoL/IDER
1502 * sessions are active
1504 if (e1000_check_reset_block(&adapter->hw)) {
1505 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1506 "when SoL/IDER is active.\n");
1507 *data = 0;
1508 goto out;
1511 *data = e1000_setup_desc_rings(adapter);
1512 if (*data)
1513 goto out;
1515 *data = e1000_setup_loopback_test(adapter);
1516 if (*data)
1517 goto err_loopback;
1519 *data = e1000_run_loopback_test(adapter);
1520 e1000_loopback_cleanup(adapter);
1522 err_loopback:
1523 e1000_free_desc_rings(adapter);
1524 out:
1525 return *data;
1528 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1530 struct e1000_hw *hw = &adapter->hw;
1532 *data = 0;
1533 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1534 int i = 0;
1535 hw->mac.serdes_has_link = 0;
1538 * On some blade server designs, link establishment
1539 * could take as long as 2-3 minutes
1541 do {
1542 hw->mac.ops.check_for_link(hw);
1543 if (hw->mac.serdes_has_link)
1544 return *data;
1545 msleep(20);
1546 } while (i++ < 3750);
1548 *data = 1;
1549 } else {
1550 hw->mac.ops.check_for_link(hw);
1551 if (hw->mac.autoneg)
1552 msleep(4000);
1554 if (!(er32(STATUS) &
1555 E1000_STATUS_LU))
1556 *data = 1;
1558 return *data;
1561 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1563 switch (sset) {
1564 case ETH_SS_TEST:
1565 return E1000_TEST_LEN;
1566 case ETH_SS_STATS:
1567 return E1000_STATS_LEN;
1568 default:
1569 return -EOPNOTSUPP;
1573 static void e1000_diag_test(struct net_device *netdev,
1574 struct ethtool_test *eth_test, u64 *data)
1576 struct e1000_adapter *adapter = netdev_priv(netdev);
1577 u16 autoneg_advertised;
1578 u8 forced_speed_duplex;
1579 u8 autoneg;
1580 bool if_running = netif_running(netdev);
1582 set_bit(__E1000_TESTING, &adapter->state);
1583 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1584 /* Offline tests */
1586 /* save speed, duplex, autoneg settings */
1587 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1588 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1589 autoneg = adapter->hw.mac.autoneg;
1591 ndev_info(netdev, "offline testing starting\n");
1594 * Link test performed before hardware reset so autoneg doesn't
1595 * interfere with test result
1597 if (e1000_link_test(adapter, &data[4]))
1598 eth_test->flags |= ETH_TEST_FL_FAILED;
1600 if (if_running)
1601 /* indicate we're in test mode */
1602 dev_close(netdev);
1603 else
1604 e1000e_reset(adapter);
1606 if (e1000_reg_test(adapter, &data[0]))
1607 eth_test->flags |= ETH_TEST_FL_FAILED;
1609 e1000e_reset(adapter);
1610 if (e1000_eeprom_test(adapter, &data[1]))
1611 eth_test->flags |= ETH_TEST_FL_FAILED;
1613 e1000e_reset(adapter);
1614 if (e1000_intr_test(adapter, &data[2]))
1615 eth_test->flags |= ETH_TEST_FL_FAILED;
1617 e1000e_reset(adapter);
1618 /* make sure the phy is powered up */
1619 e1000e_power_up_phy(adapter);
1620 if (e1000_loopback_test(adapter, &data[3]))
1621 eth_test->flags |= ETH_TEST_FL_FAILED;
1623 /* restore speed, duplex, autoneg settings */
1624 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1625 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1626 adapter->hw.mac.autoneg = autoneg;
1628 /* force this routine to wait until autoneg complete/timeout */
1629 adapter->hw.phy.autoneg_wait_to_complete = 1;
1630 e1000e_reset(adapter);
1631 adapter->hw.phy.autoneg_wait_to_complete = 0;
1633 clear_bit(__E1000_TESTING, &adapter->state);
1634 if (if_running)
1635 dev_open(netdev);
1636 } else {
1637 ndev_info(netdev, "online testing starting\n");
1638 /* Online tests */
1639 if (e1000_link_test(adapter, &data[4]))
1640 eth_test->flags |= ETH_TEST_FL_FAILED;
1642 /* Online tests aren't run; pass by default */
1643 data[0] = 0;
1644 data[1] = 0;
1645 data[2] = 0;
1646 data[3] = 0;
1648 clear_bit(__E1000_TESTING, &adapter->state);
1650 msleep_interruptible(4 * 1000);
1653 static void e1000_get_wol(struct net_device *netdev,
1654 struct ethtool_wolinfo *wol)
1656 struct e1000_adapter *adapter = netdev_priv(netdev);
1658 wol->supported = 0;
1659 wol->wolopts = 0;
1661 if (!(adapter->flags & FLAG_HAS_WOL))
1662 return;
1664 wol->supported = WAKE_UCAST | WAKE_MCAST |
1665 WAKE_BCAST | WAKE_MAGIC |
1666 WAKE_PHY | WAKE_ARP;
1668 /* apply any specific unsupported masks here */
1669 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1670 wol->supported &= ~WAKE_UCAST;
1672 if (adapter->wol & E1000_WUFC_EX)
1673 ndev_err(netdev, "Interface does not support "
1674 "directed (unicast) frame wake-up packets\n");
1677 if (adapter->wol & E1000_WUFC_EX)
1678 wol->wolopts |= WAKE_UCAST;
1679 if (adapter->wol & E1000_WUFC_MC)
1680 wol->wolopts |= WAKE_MCAST;
1681 if (adapter->wol & E1000_WUFC_BC)
1682 wol->wolopts |= WAKE_BCAST;
1683 if (adapter->wol & E1000_WUFC_MAG)
1684 wol->wolopts |= WAKE_MAGIC;
1685 if (adapter->wol & E1000_WUFC_LNKC)
1686 wol->wolopts |= WAKE_PHY;
1687 if (adapter->wol & E1000_WUFC_ARP)
1688 wol->wolopts |= WAKE_ARP;
1691 static int e1000_set_wol(struct net_device *netdev,
1692 struct ethtool_wolinfo *wol)
1694 struct e1000_adapter *adapter = netdev_priv(netdev);
1696 if (wol->wolopts & WAKE_MAGICSECURE)
1697 return -EOPNOTSUPP;
1699 if (!(adapter->flags & FLAG_HAS_WOL))
1700 return wol->wolopts ? -EOPNOTSUPP : 0;
1702 /* these settings will always override what we currently have */
1703 adapter->wol = 0;
1705 if (wol->wolopts & WAKE_UCAST)
1706 adapter->wol |= E1000_WUFC_EX;
1707 if (wol->wolopts & WAKE_MCAST)
1708 adapter->wol |= E1000_WUFC_MC;
1709 if (wol->wolopts & WAKE_BCAST)
1710 adapter->wol |= E1000_WUFC_BC;
1711 if (wol->wolopts & WAKE_MAGIC)
1712 adapter->wol |= E1000_WUFC_MAG;
1713 if (wol->wolopts & WAKE_PHY)
1714 adapter->wol |= E1000_WUFC_LNKC;
1715 if (wol->wolopts & WAKE_ARP)
1716 adapter->wol |= E1000_WUFC_ARP;
1718 return 0;
1721 /* toggle LED 4 times per second = 2 "blinks" per second */
1722 #define E1000_ID_INTERVAL (HZ/4)
1724 /* bit defines for adapter->led_status */
1725 #define E1000_LED_ON 0
1727 static void e1000_led_blink_callback(unsigned long data)
1729 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1731 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1732 adapter->hw.mac.ops.led_off(&adapter->hw);
1733 else
1734 adapter->hw.mac.ops.led_on(&adapter->hw);
1736 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1739 static int e1000_phys_id(struct net_device *netdev, u32 data)
1741 struct e1000_adapter *adapter = netdev_priv(netdev);
1743 if (!data)
1744 data = INT_MAX;
1746 if (adapter->hw.phy.type == e1000_phy_ife) {
1747 if (!adapter->blink_timer.function) {
1748 init_timer(&adapter->blink_timer);
1749 adapter->blink_timer.function =
1750 e1000_led_blink_callback;
1751 adapter->blink_timer.data = (unsigned long) adapter;
1753 mod_timer(&adapter->blink_timer, jiffies);
1754 msleep_interruptible(data * 1000);
1755 del_timer_sync(&adapter->blink_timer);
1756 e1e_wphy(&adapter->hw,
1757 IFE_PHY_SPECIAL_CONTROL_LED, 0);
1758 } else {
1759 e1000e_blink_led(&adapter->hw);
1760 msleep_interruptible(data * 1000);
1763 adapter->hw.mac.ops.led_off(&adapter->hw);
1764 clear_bit(E1000_LED_ON, &adapter->led_status);
1765 adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1767 return 0;
1770 static int e1000_nway_reset(struct net_device *netdev)
1772 struct e1000_adapter *adapter = netdev_priv(netdev);
1773 if (netif_running(netdev))
1774 e1000e_reinit_locked(adapter);
1775 return 0;
1778 static void e1000_get_ethtool_stats(struct net_device *netdev,
1779 struct ethtool_stats *stats,
1780 u64 *data)
1782 struct e1000_adapter *adapter = netdev_priv(netdev);
1783 int i;
1785 e1000e_update_stats(adapter);
1786 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1787 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1788 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1789 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1793 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1794 u8 *data)
1796 u8 *p = data;
1797 int i;
1799 switch (stringset) {
1800 case ETH_SS_TEST:
1801 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1802 break;
1803 case ETH_SS_STATS:
1804 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1805 memcpy(p, e1000_gstrings_stats[i].stat_string,
1806 ETH_GSTRING_LEN);
1807 p += ETH_GSTRING_LEN;
1809 break;
1813 static const struct ethtool_ops e1000_ethtool_ops = {
1814 .get_settings = e1000_get_settings,
1815 .set_settings = e1000_set_settings,
1816 .get_drvinfo = e1000_get_drvinfo,
1817 .get_regs_len = e1000_get_regs_len,
1818 .get_regs = e1000_get_regs,
1819 .get_wol = e1000_get_wol,
1820 .set_wol = e1000_set_wol,
1821 .get_msglevel = e1000_get_msglevel,
1822 .set_msglevel = e1000_set_msglevel,
1823 .nway_reset = e1000_nway_reset,
1824 .get_link = e1000_get_link,
1825 .get_eeprom_len = e1000_get_eeprom_len,
1826 .get_eeprom = e1000_get_eeprom,
1827 .set_eeprom = e1000_set_eeprom,
1828 .get_ringparam = e1000_get_ringparam,
1829 .set_ringparam = e1000_set_ringparam,
1830 .get_pauseparam = e1000_get_pauseparam,
1831 .set_pauseparam = e1000_set_pauseparam,
1832 .get_rx_csum = e1000_get_rx_csum,
1833 .set_rx_csum = e1000_set_rx_csum,
1834 .get_tx_csum = e1000_get_tx_csum,
1835 .set_tx_csum = e1000_set_tx_csum,
1836 .get_sg = ethtool_op_get_sg,
1837 .set_sg = ethtool_op_set_sg,
1838 .get_tso = ethtool_op_get_tso,
1839 .set_tso = e1000_set_tso,
1840 .self_test = e1000_diag_test,
1841 .get_strings = e1000_get_strings,
1842 .phys_id = e1000_phys_id,
1843 .get_ethtool_stats = e1000_get_ethtool_stats,
1844 .get_sset_count = e1000e_get_sset_count,
1847 void e1000e_set_ethtool_ops(struct net_device *netdev)
1849 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);