iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / net / e1000e / ich8lan.c
blobe358a773e67ab54d6737f4f54dc6d49658076518
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
43 #include <linux/netdevice.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/pci.h>
48 #include "e1000.h"
50 #define ICH_FLASH_GFPREG 0x0000
51 #define ICH_FLASH_HSFSTS 0x0004
52 #define ICH_FLASH_HSFCTL 0x0006
53 #define ICH_FLASH_FADDR 0x0008
54 #define ICH_FLASH_FDATA0 0x0010
56 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
57 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
58 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
59 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
60 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
62 #define ICH_CYCLE_READ 0
63 #define ICH_CYCLE_WRITE 2
64 #define ICH_CYCLE_ERASE 3
66 #define FLASH_GFPREG_BASE_MASK 0x1FFF
67 #define FLASH_SECTOR_ADDR_SHIFT 12
69 #define ICH_FLASH_SEG_SIZE_256 256
70 #define ICH_FLASH_SEG_SIZE_4K 4096
71 #define ICH_FLASH_SEG_SIZE_8K 8192
72 #define ICH_FLASH_SEG_SIZE_64K 65536
75 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
77 #define E1000_ICH_MNG_IAMT_MODE 0x2
79 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
80 (ID_LED_DEF1_OFF2 << 8) | \
81 (ID_LED_DEF1_ON2 << 4) | \
82 (ID_LED_DEF1_DEF2))
84 #define E1000_ICH_NVM_SIG_WORD 0x13
85 #define E1000_ICH_NVM_SIG_MASK 0xC000
87 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
89 #define E1000_FEXTNVM_SW_CONFIG 1
90 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
92 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
94 #define E1000_ICH_RAR_ENTRIES 7
96 #define PHY_PAGE_SHIFT 5
97 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
98 ((reg) & MAX_PHY_REG_ADDRESS))
99 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
100 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
102 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
103 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
104 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
106 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
107 /* Offset 04h HSFSTS */
108 union ich8_hws_flash_status {
109 struct ich8_hsfsts {
110 u16 flcdone :1; /* bit 0 Flash Cycle Done */
111 u16 flcerr :1; /* bit 1 Flash Cycle Error */
112 u16 dael :1; /* bit 2 Direct Access error Log */
113 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
114 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
115 u16 reserved1 :2; /* bit 13:6 Reserved */
116 u16 reserved2 :6; /* bit 13:6 Reserved */
117 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
118 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
119 } hsf_status;
120 u16 regval;
123 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
124 /* Offset 06h FLCTL */
125 union ich8_hws_flash_ctrl {
126 struct ich8_hsflctl {
127 u16 flcgo :1; /* 0 Flash Cycle Go */
128 u16 flcycle :2; /* 2:1 Flash Cycle */
129 u16 reserved :5; /* 7:3 Reserved */
130 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
131 u16 flockdn :6; /* 15:10 Reserved */
132 } hsf_ctrl;
133 u16 regval;
136 /* ICH Flash Region Access Permissions */
137 union ich8_hws_flash_regacc {
138 struct ich8_flracc {
139 u32 grra :8; /* 0:7 GbE region Read Access */
140 u32 grwa :8; /* 8:15 GbE region Write Access */
141 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
142 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
143 } hsf_flregacc;
144 u16 regval;
147 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
148 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
149 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
150 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
151 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
152 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
153 u32 offset, u8 byte);
154 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
155 u16 *data);
156 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
157 u8 size, u16 *data);
158 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
159 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
161 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
163 return readw(hw->flash_address + reg);
166 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
168 return readl(hw->flash_address + reg);
171 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
173 writew(val, hw->flash_address + reg);
176 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
178 writel(val, hw->flash_address + reg);
181 #define er16flash(reg) __er16flash(hw, (reg))
182 #define er32flash(reg) __er32flash(hw, (reg))
183 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
184 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
187 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
188 * @hw: pointer to the HW structure
190 * Initialize family-specific PHY parameters and function pointers.
192 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
194 struct e1000_phy_info *phy = &hw->phy;
195 s32 ret_val;
196 u16 i = 0;
198 phy->addr = 1;
199 phy->reset_delay_us = 100;
201 phy->id = 0;
202 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
203 (i++ < 100)) {
204 msleep(1);
205 ret_val = e1000e_get_phy_id(hw);
206 if (ret_val)
207 return ret_val;
210 /* Verify phy id */
211 switch (phy->id) {
212 case IGP03E1000_E_PHY_ID:
213 phy->type = e1000_phy_igp_3;
214 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
215 break;
216 case IFE_E_PHY_ID:
217 case IFE_PLUS_E_PHY_ID:
218 case IFE_C_E_PHY_ID:
219 phy->type = e1000_phy_ife;
220 phy->autoneg_mask = E1000_ALL_NOT_GIG;
221 break;
222 default:
223 return -E1000_ERR_PHY;
224 break;
227 return 0;
231 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
232 * @hw: pointer to the HW structure
234 * Initialize family-specific NVM parameters and function
235 * pointers.
237 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
239 struct e1000_nvm_info *nvm = &hw->nvm;
240 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
241 u32 gfpreg;
242 u32 sector_base_addr;
243 u32 sector_end_addr;
244 u16 i;
246 /* Can't read flash registers if the register set isn't mapped. */
247 if (!hw->flash_address) {
248 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
249 return -E1000_ERR_CONFIG;
252 nvm->type = e1000_nvm_flash_sw;
254 gfpreg = er32flash(ICH_FLASH_GFPREG);
257 * sector_X_addr is a "sector"-aligned address (4096 bytes)
258 * Add 1 to sector_end_addr since this sector is included in
259 * the overall size.
261 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
262 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
264 /* flash_base_addr is byte-aligned */
265 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
268 * find total size of the NVM, then cut in half since the total
269 * size represents two separate NVM banks.
271 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
272 << FLASH_SECTOR_ADDR_SHIFT;
273 nvm->flash_bank_size /= 2;
274 /* Adjust to word count */
275 nvm->flash_bank_size /= sizeof(u16);
277 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
279 /* Clear shadow ram */
280 for (i = 0; i < nvm->word_size; i++) {
281 dev_spec->shadow_ram[i].modified = 0;
282 dev_spec->shadow_ram[i].value = 0xFFFF;
285 return 0;
289 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
290 * @hw: pointer to the HW structure
292 * Initialize family-specific MAC parameters and function
293 * pointers.
295 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
297 struct e1000_hw *hw = &adapter->hw;
298 struct e1000_mac_info *mac = &hw->mac;
300 /* Set media type function pointer */
301 hw->phy.media_type = e1000_media_type_copper;
303 /* Set mta register count */
304 mac->mta_reg_count = 32;
305 /* Set rar entry count */
306 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
307 if (mac->type == e1000_ich8lan)
308 mac->rar_entry_count--;
309 /* Set if manageability features are enabled. */
310 mac->arc_subsystem_valid = 1;
312 /* Enable PCS Lock-loss workaround for ICH8 */
313 if (mac->type == e1000_ich8lan)
314 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
316 return 0;
319 static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
321 struct e1000_hw *hw = &adapter->hw;
322 s32 rc;
324 rc = e1000_init_mac_params_ich8lan(adapter);
325 if (rc)
326 return rc;
328 rc = e1000_init_nvm_params_ich8lan(hw);
329 if (rc)
330 return rc;
332 rc = e1000_init_phy_params_ich8lan(hw);
333 if (rc)
334 return rc;
336 if ((adapter->hw.mac.type == e1000_ich8lan) &&
337 (adapter->hw.phy.type == e1000_phy_igp_3))
338 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
340 return 0;
344 * e1000_acquire_swflag_ich8lan - Acquire software control flag
345 * @hw: pointer to the HW structure
347 * Acquires the software control flag for performing NVM and PHY
348 * operations. This is a function pointer entry point only called by
349 * read/write routines for the PHY and NVM parts.
351 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
353 u32 extcnf_ctrl;
354 u32 timeout = PHY_CFG_TIMEOUT;
356 while (timeout) {
357 extcnf_ctrl = er32(EXTCNF_CTRL);
358 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
359 ew32(EXTCNF_CTRL, extcnf_ctrl);
361 extcnf_ctrl = er32(EXTCNF_CTRL);
362 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
363 break;
364 mdelay(1);
365 timeout--;
368 if (!timeout) {
369 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
370 return -E1000_ERR_CONFIG;
373 return 0;
377 * e1000_release_swflag_ich8lan - Release software control flag
378 * @hw: pointer to the HW structure
380 * Releases the software control flag for performing NVM and PHY operations.
381 * This is a function pointer entry point only called by read/write
382 * routines for the PHY and NVM parts.
384 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
386 u32 extcnf_ctrl;
388 extcnf_ctrl = er32(EXTCNF_CTRL);
389 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
390 ew32(EXTCNF_CTRL, extcnf_ctrl);
394 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
395 * @hw: pointer to the HW structure
397 * Checks if firmware is blocking the reset of the PHY.
398 * This is a function pointer entry point only called by
399 * reset routines.
401 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
403 u32 fwsm;
405 fwsm = er32(FWSM);
407 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
411 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
412 * @hw: pointer to the HW structure
414 * Forces the speed and duplex settings of the PHY.
415 * This is a function pointer entry point only called by
416 * PHY setup routines.
418 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
420 struct e1000_phy_info *phy = &hw->phy;
421 s32 ret_val;
422 u16 data;
423 bool link;
425 if (phy->type != e1000_phy_ife) {
426 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
427 return ret_val;
430 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
431 if (ret_val)
432 return ret_val;
434 e1000e_phy_force_speed_duplex_setup(hw, &data);
436 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
437 if (ret_val)
438 return ret_val;
440 /* Disable MDI-X support for 10/100 */
441 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
442 if (ret_val)
443 return ret_val;
445 data &= ~IFE_PMC_AUTO_MDIX;
446 data &= ~IFE_PMC_FORCE_MDIX;
448 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
449 if (ret_val)
450 return ret_val;
452 hw_dbg(hw, "IFE PMC: %X\n", data);
454 udelay(1);
456 if (phy->autoneg_wait_to_complete) {
457 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
459 ret_val = e1000e_phy_has_link_generic(hw,
460 PHY_FORCE_LIMIT,
461 100000,
462 &link);
463 if (ret_val)
464 return ret_val;
466 if (!link)
467 hw_dbg(hw, "Link taking longer than expected.\n");
469 /* Try once more */
470 ret_val = e1000e_phy_has_link_generic(hw,
471 PHY_FORCE_LIMIT,
472 100000,
473 &link);
474 if (ret_val)
475 return ret_val;
478 return 0;
482 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
483 * @hw: pointer to the HW structure
485 * Resets the PHY
486 * This is a function pointer entry point called by drivers
487 * or other shared routines.
489 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
491 struct e1000_phy_info *phy = &hw->phy;
492 u32 i;
493 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
494 s32 ret_val;
495 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
496 u16 word_addr, reg_data, reg_addr, phy_page = 0;
498 ret_val = e1000e_phy_hw_reset_generic(hw);
499 if (ret_val)
500 return ret_val;
503 * Initialize the PHY from the NVM on ICH platforms. This
504 * is needed due to an issue where the NVM configuration is
505 * not properly autoloaded after power transitions.
506 * Therefore, after each PHY reset, we will load the
507 * configuration data out of the NVM manually.
509 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
510 struct e1000_adapter *adapter = hw->adapter;
512 /* Check if SW needs configure the PHY */
513 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
514 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
515 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
516 else
517 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
519 data = er32(FEXTNVM);
520 if (!(data & sw_cfg_mask))
521 return 0;
523 /* Wait for basic configuration completes before proceeding*/
524 do {
525 data = er32(STATUS);
526 data &= E1000_STATUS_LAN_INIT_DONE;
527 udelay(100);
528 } while ((!data) && --loop);
531 * If basic configuration is incomplete before the above loop
532 * count reaches 0, loading the configuration from NVM will
533 * leave the PHY in a bad state possibly resulting in no link.
535 if (loop == 0) {
536 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
539 /* Clear the Init Done bit for the next init event */
540 data = er32(STATUS);
541 data &= ~E1000_STATUS_LAN_INIT_DONE;
542 ew32(STATUS, data);
545 * Make sure HW does not configure LCD from PHY
546 * extended configuration before SW configuration
548 data = er32(EXTCNF_CTRL);
549 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
550 return 0;
552 cnf_size = er32(EXTCNF_SIZE);
553 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
554 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
555 if (!cnf_size)
556 return 0;
558 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
559 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
561 /* Configure LCD from extended configuration region. */
563 /* cnf_base_addr is in DWORD */
564 word_addr = (u16)(cnf_base_addr << 1);
566 for (i = 0; i < cnf_size; i++) {
567 ret_val = e1000_read_nvm(hw,
568 (word_addr + i * 2),
570 &reg_data);
571 if (ret_val)
572 return ret_val;
574 ret_val = e1000_read_nvm(hw,
575 (word_addr + i * 2 + 1),
577 &reg_addr);
578 if (ret_val)
579 return ret_val;
581 /* Save off the PHY page for future writes. */
582 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
583 phy_page = reg_data;
584 continue;
587 reg_addr |= phy_page;
589 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
590 if (ret_val)
591 return ret_val;
595 return 0;
599 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
600 * @hw: pointer to the HW structure
602 * Populates "phy" structure with various feature states.
603 * This function is only called by other family-specific
604 * routines.
606 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
608 struct e1000_phy_info *phy = &hw->phy;
609 s32 ret_val;
610 u16 data;
611 bool link;
613 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
614 if (ret_val)
615 return ret_val;
617 if (!link) {
618 hw_dbg(hw, "Phy info is only valid if link is up\n");
619 return -E1000_ERR_CONFIG;
622 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
623 if (ret_val)
624 return ret_val;
625 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
627 if (phy->polarity_correction) {
628 ret_val = e1000_check_polarity_ife_ich8lan(hw);
629 if (ret_val)
630 return ret_val;
631 } else {
632 /* Polarity is forced */
633 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
634 ? e1000_rev_polarity_reversed
635 : e1000_rev_polarity_normal;
638 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
639 if (ret_val)
640 return ret_val;
642 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
644 /* The following parameters are undefined for 10/100 operation. */
645 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
646 phy->local_rx = e1000_1000t_rx_status_undefined;
647 phy->remote_rx = e1000_1000t_rx_status_undefined;
649 return 0;
653 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
654 * @hw: pointer to the HW structure
656 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
657 * This is a function pointer entry point called by drivers
658 * or other shared routines.
660 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
662 switch (hw->phy.type) {
663 case e1000_phy_ife:
664 return e1000_get_phy_info_ife_ich8lan(hw);
665 break;
666 case e1000_phy_igp_3:
667 return e1000e_get_phy_info_igp(hw);
668 break;
669 default:
670 break;
673 return -E1000_ERR_PHY_TYPE;
677 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
678 * @hw: pointer to the HW structure
680 * Polarity is determined on the polarity reversal feature being enabled.
681 * This function is only called by other family-specific
682 * routines.
684 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
686 struct e1000_phy_info *phy = &hw->phy;
687 s32 ret_val;
688 u16 phy_data, offset, mask;
691 * Polarity is determined based on the reversal feature being enabled.
693 if (phy->polarity_correction) {
694 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
695 mask = IFE_PESC_POLARITY_REVERSED;
696 } else {
697 offset = IFE_PHY_SPECIAL_CONTROL;
698 mask = IFE_PSC_FORCE_POLARITY;
701 ret_val = e1e_rphy(hw, offset, &phy_data);
703 if (!ret_val)
704 phy->cable_polarity = (phy_data & mask)
705 ? e1000_rev_polarity_reversed
706 : e1000_rev_polarity_normal;
708 return ret_val;
712 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
713 * @hw: pointer to the HW structure
714 * @active: TRUE to enable LPLU, FALSE to disable
716 * Sets the LPLU D0 state according to the active flag. When
717 * activating LPLU this function also disables smart speed
718 * and vice versa. LPLU will not be activated unless the
719 * device autonegotiation advertisement meets standards of
720 * either 10 or 10/100 or 10/100/1000 at all duplexes.
721 * This is a function pointer entry point only called by
722 * PHY setup routines.
724 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
726 struct e1000_phy_info *phy = &hw->phy;
727 u32 phy_ctrl;
728 s32 ret_val = 0;
729 u16 data;
731 if (phy->type != e1000_phy_igp_3)
732 return ret_val;
734 phy_ctrl = er32(PHY_CTRL);
736 if (active) {
737 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
738 ew32(PHY_CTRL, phy_ctrl);
741 * Call gig speed drop workaround on LPLU before accessing
742 * any PHY registers
744 if ((hw->mac.type == e1000_ich8lan) &&
745 (hw->phy.type == e1000_phy_igp_3))
746 e1000e_gig_downshift_workaround_ich8lan(hw);
748 /* When LPLU is enabled, we should disable SmartSpeed */
749 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
750 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
751 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
752 if (ret_val)
753 return ret_val;
754 } else {
755 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
756 ew32(PHY_CTRL, phy_ctrl);
759 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
760 * during Dx states where the power conservation is most
761 * important. During driver activity we should enable
762 * SmartSpeed, so performance is maintained.
764 if (phy->smart_speed == e1000_smart_speed_on) {
765 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
766 &data);
767 if (ret_val)
768 return ret_val;
770 data |= IGP01E1000_PSCFR_SMART_SPEED;
771 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
772 data);
773 if (ret_val)
774 return ret_val;
775 } else if (phy->smart_speed == e1000_smart_speed_off) {
776 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
777 &data);
778 if (ret_val)
779 return ret_val;
781 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
782 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
783 data);
784 if (ret_val)
785 return ret_val;
789 return 0;
793 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
794 * @hw: pointer to the HW structure
795 * @active: TRUE to enable LPLU, FALSE to disable
797 * Sets the LPLU D3 state according to the active flag. When
798 * activating LPLU this function also disables smart speed
799 * and vice versa. LPLU will not be activated unless the
800 * device autonegotiation advertisement meets standards of
801 * either 10 or 10/100 or 10/100/1000 at all duplexes.
802 * This is a function pointer entry point only called by
803 * PHY setup routines.
805 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
807 struct e1000_phy_info *phy = &hw->phy;
808 u32 phy_ctrl;
809 s32 ret_val;
810 u16 data;
812 phy_ctrl = er32(PHY_CTRL);
814 if (!active) {
815 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
816 ew32(PHY_CTRL, phy_ctrl);
818 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
819 * during Dx states where the power conservation is most
820 * important. During driver activity we should enable
821 * SmartSpeed, so performance is maintained.
823 if (phy->smart_speed == e1000_smart_speed_on) {
824 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
825 &data);
826 if (ret_val)
827 return ret_val;
829 data |= IGP01E1000_PSCFR_SMART_SPEED;
830 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
831 data);
832 if (ret_val)
833 return ret_val;
834 } else if (phy->smart_speed == e1000_smart_speed_off) {
835 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
836 &data);
837 if (ret_val)
838 return ret_val;
840 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
841 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
842 data);
843 if (ret_val)
844 return ret_val;
846 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
847 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
848 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
849 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
850 ew32(PHY_CTRL, phy_ctrl);
853 * Call gig speed drop workaround on LPLU before accessing
854 * any PHY registers
856 if ((hw->mac.type == e1000_ich8lan) &&
857 (hw->phy.type == e1000_phy_igp_3))
858 e1000e_gig_downshift_workaround_ich8lan(hw);
860 /* When LPLU is enabled, we should disable SmartSpeed */
861 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
862 if (ret_val)
863 return ret_val;
865 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
866 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
869 return 0;
873 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
874 * @hw: pointer to the HW structure
875 * @offset: The offset (in bytes) of the word(s) to read.
876 * @words: Size of data to read in words
877 * @data: Pointer to the word(s) to read at offset.
879 * Reads a word(s) from the NVM using the flash access registers.
881 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
882 u16 *data)
884 struct e1000_nvm_info *nvm = &hw->nvm;
885 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
886 u32 act_offset;
887 s32 ret_val;
888 u16 i, word;
890 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
891 (words == 0)) {
892 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
893 return -E1000_ERR_NVM;
896 ret_val = e1000_acquire_swflag_ich8lan(hw);
897 if (ret_val)
898 return ret_val;
900 /* Start with the bank offset, then add the relative offset. */
901 act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
902 ? nvm->flash_bank_size
903 : 0;
904 act_offset += offset;
906 for (i = 0; i < words; i++) {
907 if ((dev_spec->shadow_ram) &&
908 (dev_spec->shadow_ram[offset+i].modified)) {
909 data[i] = dev_spec->shadow_ram[offset+i].value;
910 } else {
911 ret_val = e1000_read_flash_word_ich8lan(hw,
912 act_offset + i,
913 &word);
914 if (ret_val)
915 break;
916 data[i] = word;
920 e1000_release_swflag_ich8lan(hw);
922 return ret_val;
926 * e1000_flash_cycle_init_ich8lan - Initialize flash
927 * @hw: pointer to the HW structure
929 * This function does initial flash setup so that a new read/write/erase cycle
930 * can be started.
932 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
934 union ich8_hws_flash_status hsfsts;
935 s32 ret_val = -E1000_ERR_NVM;
936 s32 i = 0;
938 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
940 /* Check if the flash descriptor is valid */
941 if (hsfsts.hsf_status.fldesvalid == 0) {
942 hw_dbg(hw, "Flash descriptor invalid. "
943 "SW Sequencing must be used.");
944 return -E1000_ERR_NVM;
947 /* Clear FCERR and DAEL in hw status by writing 1 */
948 hsfsts.hsf_status.flcerr = 1;
949 hsfsts.hsf_status.dael = 1;
951 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
954 * Either we should have a hardware SPI cycle in progress
955 * bit to check against, in order to start a new cycle or
956 * FDONE bit should be changed in the hardware so that it
957 * is 1 after hardware reset, which can then be used as an
958 * indication whether a cycle is in progress or has been
959 * completed.
962 if (hsfsts.hsf_status.flcinprog == 0) {
964 * There is no cycle running at present,
965 * so we can start a cycle
966 * Begin by setting Flash Cycle Done.
968 hsfsts.hsf_status.flcdone = 1;
969 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
970 ret_val = 0;
971 } else {
973 * otherwise poll for sometime so the current
974 * cycle has a chance to end before giving up.
976 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
977 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
978 if (hsfsts.hsf_status.flcinprog == 0) {
979 ret_val = 0;
980 break;
982 udelay(1);
984 if (ret_val == 0) {
986 * Successful in waiting for previous cycle to timeout,
987 * now set the Flash Cycle Done.
989 hsfsts.hsf_status.flcdone = 1;
990 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
991 } else {
992 hw_dbg(hw, "Flash controller busy, cannot get access");
996 return ret_val;
1000 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1001 * @hw: pointer to the HW structure
1002 * @timeout: maximum time to wait for completion
1004 * This function starts a flash cycle and waits for its completion.
1006 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1008 union ich8_hws_flash_ctrl hsflctl;
1009 union ich8_hws_flash_status hsfsts;
1010 s32 ret_val = -E1000_ERR_NVM;
1011 u32 i = 0;
1013 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1014 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1015 hsflctl.hsf_ctrl.flcgo = 1;
1016 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1018 /* wait till FDONE bit is set to 1 */
1019 do {
1020 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1021 if (hsfsts.hsf_status.flcdone == 1)
1022 break;
1023 udelay(1);
1024 } while (i++ < timeout);
1026 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1027 return 0;
1029 return ret_val;
1033 * e1000_read_flash_word_ich8lan - Read word from flash
1034 * @hw: pointer to the HW structure
1035 * @offset: offset to data location
1036 * @data: pointer to the location for storing the data
1038 * Reads the flash word at offset into data. Offset is converted
1039 * to bytes before read.
1041 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1042 u16 *data)
1044 /* Must convert offset into bytes. */
1045 offset <<= 1;
1047 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1051 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1052 * @hw: pointer to the HW structure
1053 * @offset: The offset (in bytes) of the byte or word to read.
1054 * @size: Size of data to read, 1=byte 2=word
1055 * @data: Pointer to the word to store the value read.
1057 * Reads a byte or word from the NVM using the flash access registers.
1059 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1060 u8 size, u16 *data)
1062 union ich8_hws_flash_status hsfsts;
1063 union ich8_hws_flash_ctrl hsflctl;
1064 u32 flash_linear_addr;
1065 u32 flash_data = 0;
1066 s32 ret_val = -E1000_ERR_NVM;
1067 u8 count = 0;
1069 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1070 return -E1000_ERR_NVM;
1072 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1073 hw->nvm.flash_base_addr;
1075 do {
1076 udelay(1);
1077 /* Steps */
1078 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1079 if (ret_val != 0)
1080 break;
1082 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1083 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1084 hsflctl.hsf_ctrl.fldbcount = size - 1;
1085 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1086 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1088 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1090 ret_val = e1000_flash_cycle_ich8lan(hw,
1091 ICH_FLASH_READ_COMMAND_TIMEOUT);
1094 * Check if FCERR is set to 1, if set to 1, clear it
1095 * and try the whole sequence a few more times, else
1096 * read in (shift in) the Flash Data0, the order is
1097 * least significant byte first msb to lsb
1099 if (ret_val == 0) {
1100 flash_data = er32flash(ICH_FLASH_FDATA0);
1101 if (size == 1) {
1102 *data = (u8)(flash_data & 0x000000FF);
1103 } else if (size == 2) {
1104 *data = (u16)(flash_data & 0x0000FFFF);
1106 break;
1107 } else {
1109 * If we've gotten here, then things are probably
1110 * completely hosed, but if the error condition is
1111 * detected, it won't hurt to give it another try...
1112 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1114 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1115 if (hsfsts.hsf_status.flcerr == 1) {
1116 /* Repeat for some time before giving up. */
1117 continue;
1118 } else if (hsfsts.hsf_status.flcdone == 0) {
1119 hw_dbg(hw, "Timeout error - flash cycle "
1120 "did not complete.");
1121 break;
1124 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1126 return ret_val;
1130 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1131 * @hw: pointer to the HW structure
1132 * @offset: The offset (in bytes) of the word(s) to write.
1133 * @words: Size of data to write in words
1134 * @data: Pointer to the word(s) to write at offset.
1136 * Writes a byte or word to the NVM using the flash access registers.
1138 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1139 u16 *data)
1141 struct e1000_nvm_info *nvm = &hw->nvm;
1142 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1143 s32 ret_val;
1144 u16 i;
1146 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1147 (words == 0)) {
1148 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1149 return -E1000_ERR_NVM;
1152 ret_val = e1000_acquire_swflag_ich8lan(hw);
1153 if (ret_val)
1154 return ret_val;
1156 for (i = 0; i < words; i++) {
1157 dev_spec->shadow_ram[offset+i].modified = 1;
1158 dev_spec->shadow_ram[offset+i].value = data[i];
1161 e1000_release_swflag_ich8lan(hw);
1163 return 0;
1167 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1168 * @hw: pointer to the HW structure
1170 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1171 * which writes the checksum to the shadow ram. The changes in the shadow
1172 * ram are then committed to the EEPROM by processing each bank at a time
1173 * checking for the modified bit and writing only the pending changes.
1174 * After a successful commit, the shadow ram is cleared and is ready for
1175 * future writes.
1177 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1179 struct e1000_nvm_info *nvm = &hw->nvm;
1180 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1181 u32 i, act_offset, new_bank_offset, old_bank_offset;
1182 s32 ret_val;
1183 u16 data;
1185 ret_val = e1000e_update_nvm_checksum_generic(hw);
1186 if (ret_val)
1187 return ret_val;
1189 if (nvm->type != e1000_nvm_flash_sw)
1190 return ret_val;
1192 ret_val = e1000_acquire_swflag_ich8lan(hw);
1193 if (ret_val)
1194 return ret_val;
1197 * We're writing to the opposite bank so if we're on bank 1,
1198 * write to bank 0 etc. We also need to erase the segment that
1199 * is going to be written
1201 if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
1202 new_bank_offset = nvm->flash_bank_size;
1203 old_bank_offset = 0;
1204 e1000_erase_flash_bank_ich8lan(hw, 1);
1205 } else {
1206 old_bank_offset = nvm->flash_bank_size;
1207 new_bank_offset = 0;
1208 e1000_erase_flash_bank_ich8lan(hw, 0);
1211 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1213 * Determine whether to write the value stored
1214 * in the other NVM bank or a modified value stored
1215 * in the shadow RAM
1217 if (dev_spec->shadow_ram[i].modified) {
1218 data = dev_spec->shadow_ram[i].value;
1219 } else {
1220 e1000_read_flash_word_ich8lan(hw,
1221 i + old_bank_offset,
1222 &data);
1226 * If the word is 0x13, then make sure the signature bits
1227 * (15:14) are 11b until the commit has completed.
1228 * This will allow us to write 10b which indicates the
1229 * signature is valid. We want to do this after the write
1230 * has completed so that we don't mark the segment valid
1231 * while the write is still in progress
1233 if (i == E1000_ICH_NVM_SIG_WORD)
1234 data |= E1000_ICH_NVM_SIG_MASK;
1236 /* Convert offset to bytes. */
1237 act_offset = (i + new_bank_offset) << 1;
1239 udelay(100);
1240 /* Write the bytes to the new bank. */
1241 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1242 act_offset,
1243 (u8)data);
1244 if (ret_val)
1245 break;
1247 udelay(100);
1248 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1249 act_offset + 1,
1250 (u8)(data >> 8));
1251 if (ret_val)
1252 break;
1256 * Don't bother writing the segment valid bits if sector
1257 * programming failed.
1259 if (ret_val) {
1260 hw_dbg(hw, "Flash commit failed.\n");
1261 e1000_release_swflag_ich8lan(hw);
1262 return ret_val;
1266 * Finally validate the new segment by setting bit 15:14
1267 * to 10b in word 0x13 , this can be done without an
1268 * erase as well since these bits are 11 to start with
1269 * and we need to change bit 14 to 0b
1271 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1272 e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1273 data &= 0xBFFF;
1274 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1275 act_offset * 2 + 1,
1276 (u8)(data >> 8));
1277 if (ret_val) {
1278 e1000_release_swflag_ich8lan(hw);
1279 return ret_val;
1283 * And invalidate the previously valid segment by setting
1284 * its signature word (0x13) high_byte to 0b. This can be
1285 * done without an erase because flash erase sets all bits
1286 * to 1's. We can write 1's to 0's without an erase
1288 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1289 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1290 if (ret_val) {
1291 e1000_release_swflag_ich8lan(hw);
1292 return ret_val;
1295 /* Great! Everything worked, we can now clear the cached entries. */
1296 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1297 dev_spec->shadow_ram[i].modified = 0;
1298 dev_spec->shadow_ram[i].value = 0xFFFF;
1301 e1000_release_swflag_ich8lan(hw);
1304 * Reload the EEPROM, or else modifications will not appear
1305 * until after the next adapter reset.
1307 e1000e_reload_nvm(hw);
1308 msleep(10);
1310 return ret_val;
1314 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1315 * @hw: pointer to the HW structure
1317 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1318 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1319 * calculated, in which case we need to calculate the checksum and set bit 6.
1321 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1323 s32 ret_val;
1324 u16 data;
1327 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1328 * needs to be fixed. This bit is an indication that the NVM
1329 * was prepared by OEM software and did not calculate the
1330 * checksum...a likely scenario.
1332 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1333 if (ret_val)
1334 return ret_val;
1336 if ((data & 0x40) == 0) {
1337 data |= 0x40;
1338 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1339 if (ret_val)
1340 return ret_val;
1341 ret_val = e1000e_update_nvm_checksum(hw);
1342 if (ret_val)
1343 return ret_val;
1346 return e1000e_validate_nvm_checksum_generic(hw);
1350 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1351 * @hw: pointer to the HW structure
1352 * @offset: The offset (in bytes) of the byte/word to read.
1353 * @size: Size of data to read, 1=byte 2=word
1354 * @data: The byte(s) to write to the NVM.
1356 * Writes one/two bytes to the NVM using the flash access registers.
1358 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1359 u8 size, u16 data)
1361 union ich8_hws_flash_status hsfsts;
1362 union ich8_hws_flash_ctrl hsflctl;
1363 u32 flash_linear_addr;
1364 u32 flash_data = 0;
1365 s32 ret_val;
1366 u8 count = 0;
1368 if (size < 1 || size > 2 || data > size * 0xff ||
1369 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1370 return -E1000_ERR_NVM;
1372 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1373 hw->nvm.flash_base_addr;
1375 do {
1376 udelay(1);
1377 /* Steps */
1378 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1379 if (ret_val)
1380 break;
1382 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1383 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1384 hsflctl.hsf_ctrl.fldbcount = size -1;
1385 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1386 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1388 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1390 if (size == 1)
1391 flash_data = (u32)data & 0x00FF;
1392 else
1393 flash_data = (u32)data;
1395 ew32flash(ICH_FLASH_FDATA0, flash_data);
1398 * check if FCERR is set to 1 , if set to 1, clear it
1399 * and try the whole sequence a few more times else done
1401 ret_val = e1000_flash_cycle_ich8lan(hw,
1402 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1403 if (!ret_val)
1404 break;
1407 * If we're here, then things are most likely
1408 * completely hosed, but if the error condition
1409 * is detected, it won't hurt to give it another
1410 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1412 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1413 if (hsfsts.hsf_status.flcerr == 1)
1414 /* Repeat for some time before giving up. */
1415 continue;
1416 if (hsfsts.hsf_status.flcdone == 0) {
1417 hw_dbg(hw, "Timeout error - flash cycle "
1418 "did not complete.");
1419 break;
1421 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1423 return ret_val;
1427 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1428 * @hw: pointer to the HW structure
1429 * @offset: The index of the byte to read.
1430 * @data: The byte to write to the NVM.
1432 * Writes a single byte to the NVM using the flash access registers.
1434 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1435 u8 data)
1437 u16 word = (u16)data;
1439 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1443 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1444 * @hw: pointer to the HW structure
1445 * @offset: The offset of the byte to write.
1446 * @byte: The byte to write to the NVM.
1448 * Writes a single byte to the NVM using the flash access registers.
1449 * Goes through a retry algorithm before giving up.
1451 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1452 u32 offset, u8 byte)
1454 s32 ret_val;
1455 u16 program_retries;
1457 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1458 if (!ret_val)
1459 return ret_val;
1461 for (program_retries = 0; program_retries < 100; program_retries++) {
1462 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1463 udelay(100);
1464 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1465 if (!ret_val)
1466 break;
1468 if (program_retries == 100)
1469 return -E1000_ERR_NVM;
1471 return 0;
1475 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1476 * @hw: pointer to the HW structure
1477 * @bank: 0 for first bank, 1 for second bank, etc.
1479 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1480 * bank N is 4096 * N + flash_reg_addr.
1482 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1484 struct e1000_nvm_info *nvm = &hw->nvm;
1485 union ich8_hws_flash_status hsfsts;
1486 union ich8_hws_flash_ctrl hsflctl;
1487 u32 flash_linear_addr;
1488 /* bank size is in 16bit words - adjust to bytes */
1489 u32 flash_bank_size = nvm->flash_bank_size * 2;
1490 s32 ret_val;
1491 s32 count = 0;
1492 s32 iteration;
1493 s32 sector_size;
1494 s32 j;
1496 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1499 * Determine HW Sector size: Read BERASE bits of hw flash status
1500 * register
1501 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1502 * consecutive sectors. The start index for the nth Hw sector
1503 * can be calculated as = bank * 4096 + n * 256
1504 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1505 * The start index for the nth Hw sector can be calculated
1506 * as = bank * 4096
1507 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1508 * (ich9 only, otherwise error condition)
1509 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1511 switch (hsfsts.hsf_status.berasesz) {
1512 case 0:
1513 /* Hw sector size 256 */
1514 sector_size = ICH_FLASH_SEG_SIZE_256;
1515 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1516 break;
1517 case 1:
1518 sector_size = ICH_FLASH_SEG_SIZE_4K;
1519 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1520 break;
1521 case 2:
1522 if (hw->mac.type == e1000_ich9lan) {
1523 sector_size = ICH_FLASH_SEG_SIZE_8K;
1524 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1525 } else {
1526 return -E1000_ERR_NVM;
1528 break;
1529 case 3:
1530 sector_size = ICH_FLASH_SEG_SIZE_64K;
1531 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1532 break;
1533 default:
1534 return -E1000_ERR_NVM;
1537 /* Start with the base address, then add the sector offset. */
1538 flash_linear_addr = hw->nvm.flash_base_addr;
1539 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1541 for (j = 0; j < iteration ; j++) {
1542 do {
1543 /* Steps */
1544 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1545 if (ret_val)
1546 return ret_val;
1549 * Write a value 11 (block Erase) in Flash
1550 * Cycle field in hw flash control
1552 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1553 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1554 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1557 * Write the last 24 bits of an index within the
1558 * block into Flash Linear address field in Flash
1559 * Address.
1561 flash_linear_addr += (j * sector_size);
1562 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1564 ret_val = e1000_flash_cycle_ich8lan(hw,
1565 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1566 if (ret_val == 0)
1567 break;
1570 * Check if FCERR is set to 1. If 1,
1571 * clear it and try the whole sequence
1572 * a few more times else Done
1574 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1575 if (hsfsts.hsf_status.flcerr == 1)
1576 /* repeat for some time before giving up */
1577 continue;
1578 else if (hsfsts.hsf_status.flcdone == 0)
1579 return ret_val;
1580 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1583 return 0;
1587 * e1000_valid_led_default_ich8lan - Set the default LED settings
1588 * @hw: pointer to the HW structure
1589 * @data: Pointer to the LED settings
1591 * Reads the LED default settings from the NVM to data. If the NVM LED
1592 * settings is all 0's or F's, set the LED default to a valid LED default
1593 * setting.
1595 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1597 s32 ret_val;
1599 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1600 if (ret_val) {
1601 hw_dbg(hw, "NVM Read Error\n");
1602 return ret_val;
1605 if (*data == ID_LED_RESERVED_0000 ||
1606 *data == ID_LED_RESERVED_FFFF)
1607 *data = ID_LED_DEFAULT_ICH8LAN;
1609 return 0;
1613 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1614 * @hw: pointer to the HW structure
1616 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1617 * register, so the the bus width is hard coded.
1619 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1621 struct e1000_bus_info *bus = &hw->bus;
1622 s32 ret_val;
1624 ret_val = e1000e_get_bus_info_pcie(hw);
1627 * ICH devices are "PCI Express"-ish. They have
1628 * a configuration space, but do not contain
1629 * PCI Express Capability registers, so bus width
1630 * must be hardcoded.
1632 if (bus->width == e1000_bus_width_unknown)
1633 bus->width = e1000_bus_width_pcie_x1;
1635 return ret_val;
1639 * e1000_reset_hw_ich8lan - Reset the hardware
1640 * @hw: pointer to the HW structure
1642 * Does a full reset of the hardware which includes a reset of the PHY and
1643 * MAC.
1645 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1647 u32 ctrl, icr, kab;
1648 s32 ret_val;
1651 * Prevent the PCI-E bus from sticking if there is no TLP connection
1652 * on the last TLP read/write transaction when MAC is reset.
1654 ret_val = e1000e_disable_pcie_master(hw);
1655 if (ret_val) {
1656 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1659 hw_dbg(hw, "Masking off all interrupts\n");
1660 ew32(IMC, 0xffffffff);
1663 * Disable the Transmit and Receive units. Then delay to allow
1664 * any pending transactions to complete before we hit the MAC
1665 * with the global reset.
1667 ew32(RCTL, 0);
1668 ew32(TCTL, E1000_TCTL_PSP);
1669 e1e_flush();
1671 msleep(10);
1673 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1674 if (hw->mac.type == e1000_ich8lan) {
1675 /* Set Tx and Rx buffer allocation to 8k apiece. */
1676 ew32(PBA, E1000_PBA_8K);
1677 /* Set Packet Buffer Size to 16k. */
1678 ew32(PBS, E1000_PBS_16K);
1681 ctrl = er32(CTRL);
1683 if (!e1000_check_reset_block(hw)) {
1685 * PHY HW reset requires MAC CORE reset at the same
1686 * time to make sure the interface between MAC and the
1687 * external PHY is reset.
1689 ctrl |= E1000_CTRL_PHY_RST;
1691 ret_val = e1000_acquire_swflag_ich8lan(hw);
1692 hw_dbg(hw, "Issuing a global reset to ich8lan");
1693 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1694 msleep(20);
1696 ret_val = e1000e_get_auto_rd_done(hw);
1697 if (ret_val) {
1699 * When auto config read does not complete, do not
1700 * return with an error. This can happen in situations
1701 * where there is no eeprom and prevents getting link.
1703 hw_dbg(hw, "Auto Read Done did not complete\n");
1706 ew32(IMC, 0xffffffff);
1707 icr = er32(ICR);
1709 kab = er32(KABGTXD);
1710 kab |= E1000_KABGTXD_BGSQLBIAS;
1711 ew32(KABGTXD, kab);
1713 return ret_val;
1717 * e1000_init_hw_ich8lan - Initialize the hardware
1718 * @hw: pointer to the HW structure
1720 * Prepares the hardware for transmit and receive by doing the following:
1721 * - initialize hardware bits
1722 * - initialize LED identification
1723 * - setup receive address registers
1724 * - setup flow control
1725 * - setup transmit descriptors
1726 * - clear statistics
1728 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1730 struct e1000_mac_info *mac = &hw->mac;
1731 u32 ctrl_ext, txdctl, snoop;
1732 s32 ret_val;
1733 u16 i;
1735 e1000_initialize_hw_bits_ich8lan(hw);
1737 /* Initialize identification LED */
1738 ret_val = e1000e_id_led_init(hw);
1739 if (ret_val) {
1740 hw_dbg(hw, "Error initializing identification LED\n");
1741 return ret_val;
1744 /* Setup the receive address. */
1745 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1747 /* Zero out the Multicast HASH table */
1748 hw_dbg(hw, "Zeroing the MTA\n");
1749 for (i = 0; i < mac->mta_reg_count; i++)
1750 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1752 /* Setup link and flow control */
1753 ret_val = e1000_setup_link_ich8lan(hw);
1755 /* Set the transmit descriptor write-back policy for both queues */
1756 txdctl = er32(TXDCTL);
1757 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1758 E1000_TXDCTL_FULL_TX_DESC_WB;
1759 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1760 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1761 ew32(TXDCTL, txdctl);
1762 txdctl = er32(TXDCTL1);
1763 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1764 E1000_TXDCTL_FULL_TX_DESC_WB;
1765 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1766 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1767 ew32(TXDCTL1, txdctl);
1770 * ICH8 has opposite polarity of no_snoop bits.
1771 * By default, we should use snoop behavior.
1773 if (mac->type == e1000_ich8lan)
1774 snoop = PCIE_ICH8_SNOOP_ALL;
1775 else
1776 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1777 e1000e_set_pcie_no_snoop(hw, snoop);
1779 ctrl_ext = er32(CTRL_EXT);
1780 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1781 ew32(CTRL_EXT, ctrl_ext);
1784 * Clear all of the statistics registers (clear on read). It is
1785 * important that we do this after we have tried to establish link
1786 * because the symbol error count will increment wildly if there
1787 * is no link.
1789 e1000_clear_hw_cntrs_ich8lan(hw);
1791 return 0;
1794 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1795 * @hw: pointer to the HW structure
1797 * Sets/Clears required hardware bits necessary for correctly setting up the
1798 * hardware for transmit and receive.
1800 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
1802 u32 reg;
1804 /* Extended Device Control */
1805 reg = er32(CTRL_EXT);
1806 reg |= (1 << 22);
1807 ew32(CTRL_EXT, reg);
1809 /* Transmit Descriptor Control 0 */
1810 reg = er32(TXDCTL);
1811 reg |= (1 << 22);
1812 ew32(TXDCTL, reg);
1814 /* Transmit Descriptor Control 1 */
1815 reg = er32(TXDCTL1);
1816 reg |= (1 << 22);
1817 ew32(TXDCTL1, reg);
1819 /* Transmit Arbitration Control 0 */
1820 reg = er32(TARC0);
1821 if (hw->mac.type == e1000_ich8lan)
1822 reg |= (1 << 28) | (1 << 29);
1823 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
1824 ew32(TARC0, reg);
1826 /* Transmit Arbitration Control 1 */
1827 reg = er32(TARC1);
1828 if (er32(TCTL) & E1000_TCTL_MULR)
1829 reg &= ~(1 << 28);
1830 else
1831 reg |= (1 << 28);
1832 reg |= (1 << 24) | (1 << 26) | (1 << 30);
1833 ew32(TARC1, reg);
1835 /* Device Status */
1836 if (hw->mac.type == e1000_ich8lan) {
1837 reg = er32(STATUS);
1838 reg &= ~(1 << 31);
1839 ew32(STATUS, reg);
1844 * e1000_setup_link_ich8lan - Setup flow control and link settings
1845 * @hw: pointer to the HW structure
1847 * Determines which flow control settings to use, then configures flow
1848 * control. Calls the appropriate media-specific link configuration
1849 * function. Assuming the adapter has a valid link partner, a valid link
1850 * should be established. Assumes the hardware has previously been reset
1851 * and the transmitter and receiver are not enabled.
1853 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
1855 s32 ret_val;
1857 if (e1000_check_reset_block(hw))
1858 return 0;
1861 * ICH parts do not have a word in the NVM to determine
1862 * the default flow control setting, so we explicitly
1863 * set it to full.
1865 if (hw->fc.type == e1000_fc_default)
1866 hw->fc.type = e1000_fc_full;
1868 hw->fc.original_type = hw->fc.type;
1870 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
1872 /* Continue to configure the copper link. */
1873 ret_val = e1000_setup_copper_link_ich8lan(hw);
1874 if (ret_val)
1875 return ret_val;
1877 ew32(FCTTV, hw->fc.pause_time);
1879 return e1000e_set_fc_watermarks(hw);
1883 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
1884 * @hw: pointer to the HW structure
1886 * Configures the kumeran interface to the PHY to wait the appropriate time
1887 * when polling the PHY, then call the generic setup_copper_link to finish
1888 * configuring the copper link.
1890 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
1892 u32 ctrl;
1893 s32 ret_val;
1894 u16 reg_data;
1896 ctrl = er32(CTRL);
1897 ctrl |= E1000_CTRL_SLU;
1898 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1899 ew32(CTRL, ctrl);
1902 * Set the mac to wait the maximum time between each iteration
1903 * and increase the max iterations when polling the phy;
1904 * this fixes erroneous timeouts at 10Mbps.
1906 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1907 if (ret_val)
1908 return ret_val;
1909 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1910 if (ret_val)
1911 return ret_val;
1912 reg_data |= 0x3F;
1913 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1914 if (ret_val)
1915 return ret_val;
1917 if (hw->phy.type == e1000_phy_igp_3) {
1918 ret_val = e1000e_copper_link_setup_igp(hw);
1919 if (ret_val)
1920 return ret_val;
1923 return e1000e_setup_copper_link(hw);
1927 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
1928 * @hw: pointer to the HW structure
1929 * @speed: pointer to store current link speed
1930 * @duplex: pointer to store the current link duplex
1932 * Calls the generic get_speed_and_duplex to retrieve the current link
1933 * information and then calls the Kumeran lock loss workaround for links at
1934 * gigabit speeds.
1936 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
1937 u16 *duplex)
1939 s32 ret_val;
1941 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
1942 if (ret_val)
1943 return ret_val;
1945 if ((hw->mac.type == e1000_ich8lan) &&
1946 (hw->phy.type == e1000_phy_igp_3) &&
1947 (*speed == SPEED_1000)) {
1948 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
1951 return ret_val;
1955 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
1956 * @hw: pointer to the HW structure
1958 * Work-around for 82566 Kumeran PCS lock loss:
1959 * On link status change (i.e. PCI reset, speed change) and link is up and
1960 * speed is gigabit-
1961 * 0) if workaround is optionally disabled do nothing
1962 * 1) wait 1ms for Kumeran link to come up
1963 * 2) check Kumeran Diagnostic register PCS lock loss bit
1964 * 3) if not set the link is locked (all is good), otherwise...
1965 * 4) reset the PHY
1966 * 5) repeat up to 10 times
1967 * Note: this is only called for IGP3 copper when speed is 1gb.
1969 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
1971 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1972 u32 phy_ctrl;
1973 s32 ret_val;
1974 u16 i, data;
1975 bool link;
1977 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
1978 return 0;
1981 * Make sure link is up before proceeding. If not just return.
1982 * Attempting this while link is negotiating fouled up link
1983 * stability
1985 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1986 if (!link)
1987 return 0;
1989 for (i = 0; i < 10; i++) {
1990 /* read once to clear */
1991 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
1992 if (ret_val)
1993 return ret_val;
1994 /* and again to get new status */
1995 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
1996 if (ret_val)
1997 return ret_val;
1999 /* check for PCS lock */
2000 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2001 return 0;
2003 /* Issue PHY reset */
2004 e1000_phy_hw_reset(hw);
2005 mdelay(5);
2007 /* Disable GigE link negotiation */
2008 phy_ctrl = er32(PHY_CTRL);
2009 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2010 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2011 ew32(PHY_CTRL, phy_ctrl);
2014 * Call gig speed drop workaround on Gig disable before accessing
2015 * any PHY registers
2017 e1000e_gig_downshift_workaround_ich8lan(hw);
2019 /* unable to acquire PCS lock */
2020 return -E1000_ERR_PHY;
2024 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2025 * @hw: pointer to the HW structure
2026 * @state: boolean value used to set the current Kumeran workaround state
2028 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2029 * /disabled - FALSE).
2031 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2032 bool state)
2034 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2036 if (hw->mac.type != e1000_ich8lan) {
2037 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2038 return;
2041 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2045 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2046 * @hw: pointer to the HW structure
2048 * Workaround for 82566 power-down on D3 entry:
2049 * 1) disable gigabit link
2050 * 2) write VR power-down enable
2051 * 3) read it back
2052 * Continue if successful, else issue LCD reset and repeat
2054 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2056 u32 reg;
2057 u16 data;
2058 u8 retry = 0;
2060 if (hw->phy.type != e1000_phy_igp_3)
2061 return;
2063 /* Try the workaround twice (if needed) */
2064 do {
2065 /* Disable link */
2066 reg = er32(PHY_CTRL);
2067 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2068 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2069 ew32(PHY_CTRL, reg);
2072 * Call gig speed drop workaround on Gig disable before
2073 * accessing any PHY registers
2075 if (hw->mac.type == e1000_ich8lan)
2076 e1000e_gig_downshift_workaround_ich8lan(hw);
2078 /* Write VR power-down enable */
2079 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2080 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2081 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2083 /* Read it back and test */
2084 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2085 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2086 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2087 break;
2089 /* Issue PHY reset and repeat at most one more time */
2090 reg = er32(CTRL);
2091 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2092 retry++;
2093 } while (retry);
2097 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2098 * @hw: pointer to the HW structure
2100 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2101 * LPLU, Gig disable, MDIC PHY reset):
2102 * 1) Set Kumeran Near-end loopback
2103 * 2) Clear Kumeran Near-end loopback
2104 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2106 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2108 s32 ret_val;
2109 u16 reg_data;
2111 if ((hw->mac.type != e1000_ich8lan) ||
2112 (hw->phy.type != e1000_phy_igp_3))
2113 return;
2115 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2116 &reg_data);
2117 if (ret_val)
2118 return;
2119 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2120 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2121 reg_data);
2122 if (ret_val)
2123 return;
2124 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2125 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2126 reg_data);
2130 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2131 * @hw: pointer to the HW structure
2133 * Return the LED back to the default configuration.
2135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2137 if (hw->phy.type == e1000_phy_ife)
2138 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2140 ew32(LEDCTL, hw->mac.ledctl_default);
2141 return 0;
2145 * e1000_led_on_ich8lan - Turn LEDs on
2146 * @hw: pointer to the HW structure
2148 * Turn on the LEDs.
2150 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2152 if (hw->phy.type == e1000_phy_ife)
2153 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2154 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2156 ew32(LEDCTL, hw->mac.ledctl_mode2);
2157 return 0;
2161 * e1000_led_off_ich8lan - Turn LEDs off
2162 * @hw: pointer to the HW structure
2164 * Turn off the LEDs.
2166 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2168 if (hw->phy.type == e1000_phy_ife)
2169 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2170 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2172 ew32(LEDCTL, hw->mac.ledctl_mode1);
2173 return 0;
2177 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2178 * @hw: pointer to the HW structure
2180 * Clears hardware counters specific to the silicon family and calls
2181 * clear_hw_cntrs_generic to clear all general purpose counters.
2183 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2185 u32 temp;
2187 e1000e_clear_hw_cntrs_base(hw);
2189 temp = er32(ALGNERRC);
2190 temp = er32(RXERRC);
2191 temp = er32(TNCRS);
2192 temp = er32(CEXTERR);
2193 temp = er32(TSCTC);
2194 temp = er32(TSCTFC);
2196 temp = er32(MGTPRC);
2197 temp = er32(MGTPDC);
2198 temp = er32(MGTPTC);
2200 temp = er32(IAC);
2201 temp = er32(ICRXOC);
2205 static struct e1000_mac_operations ich8_mac_ops = {
2206 .mng_mode_enab = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
2207 .check_for_link = e1000e_check_for_copper_link,
2208 .cleanup_led = e1000_cleanup_led_ich8lan,
2209 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2210 .get_bus_info = e1000_get_bus_info_ich8lan,
2211 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2212 .led_on = e1000_led_on_ich8lan,
2213 .led_off = e1000_led_off_ich8lan,
2214 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
2215 .reset_hw = e1000_reset_hw_ich8lan,
2216 .init_hw = e1000_init_hw_ich8lan,
2217 .setup_link = e1000_setup_link_ich8lan,
2218 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2221 static struct e1000_phy_operations ich8_phy_ops = {
2222 .acquire_phy = e1000_acquire_swflag_ich8lan,
2223 .check_reset_block = e1000_check_reset_block_ich8lan,
2224 .commit_phy = NULL,
2225 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
2226 .get_cfg_done = e1000e_get_cfg_done,
2227 .get_cable_length = e1000e_get_cable_length_igp_2,
2228 .get_phy_info = e1000_get_phy_info_ich8lan,
2229 .read_phy_reg = e1000e_read_phy_reg_igp,
2230 .release_phy = e1000_release_swflag_ich8lan,
2231 .reset_phy = e1000_phy_hw_reset_ich8lan,
2232 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2233 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2234 .write_phy_reg = e1000e_write_phy_reg_igp,
2237 static struct e1000_nvm_operations ich8_nvm_ops = {
2238 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2239 .read_nvm = e1000_read_nvm_ich8lan,
2240 .release_nvm = e1000_release_swflag_ich8lan,
2241 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2242 .valid_led_default = e1000_valid_led_default_ich8lan,
2243 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2244 .write_nvm = e1000_write_nvm_ich8lan,
2247 struct e1000_info e1000_ich8_info = {
2248 .mac = e1000_ich8lan,
2249 .flags = FLAG_HAS_WOL
2250 | FLAG_RX_CSUM_ENABLED
2251 | FLAG_HAS_CTRLEXT_ON_LOAD
2252 | FLAG_HAS_AMT
2253 | FLAG_HAS_FLASH
2254 | FLAG_APME_IN_WUC,
2255 .pba = 8,
2256 .get_invariants = e1000_get_invariants_ich8lan,
2257 .mac_ops = &ich8_mac_ops,
2258 .phy_ops = &ich8_phy_ops,
2259 .nvm_ops = &ich8_nvm_ops,
2262 struct e1000_info e1000_ich9_info = {
2263 .mac = e1000_ich9lan,
2264 .flags = FLAG_HAS_JUMBO_FRAMES
2265 | FLAG_HAS_WOL
2266 | FLAG_RX_CSUM_ENABLED
2267 | FLAG_HAS_CTRLEXT_ON_LOAD
2268 | FLAG_HAS_AMT
2269 | FLAG_HAS_ERT
2270 | FLAG_HAS_FLASH
2271 | FLAG_APME_IN_WUC,
2272 .pba = 10,
2273 .get_invariants = e1000_get_invariants_ich8lan,
2274 .mac_ops = &ich8_mac_ops,
2275 .phy_ops = &ich8_phy_ops,
2276 .nvm_ops = &ich8_nvm_ops,