1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
43 #include <linux/netdevice.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/pci.h>
50 #define ICH_FLASH_GFPREG 0x0000
51 #define ICH_FLASH_HSFSTS 0x0004
52 #define ICH_FLASH_HSFCTL 0x0006
53 #define ICH_FLASH_FADDR 0x0008
54 #define ICH_FLASH_FDATA0 0x0010
56 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
57 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
58 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
59 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
60 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
62 #define ICH_CYCLE_READ 0
63 #define ICH_CYCLE_WRITE 2
64 #define ICH_CYCLE_ERASE 3
66 #define FLASH_GFPREG_BASE_MASK 0x1FFF
67 #define FLASH_SECTOR_ADDR_SHIFT 12
69 #define ICH_FLASH_SEG_SIZE_256 256
70 #define ICH_FLASH_SEG_SIZE_4K 4096
71 #define ICH_FLASH_SEG_SIZE_8K 8192
72 #define ICH_FLASH_SEG_SIZE_64K 65536
75 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
77 #define E1000_ICH_MNG_IAMT_MODE 0x2
79 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
80 (ID_LED_DEF1_OFF2 << 8) | \
81 (ID_LED_DEF1_ON2 << 4) | \
84 #define E1000_ICH_NVM_SIG_WORD 0x13
85 #define E1000_ICH_NVM_SIG_MASK 0xC000
87 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
89 #define E1000_FEXTNVM_SW_CONFIG 1
90 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
92 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
94 #define E1000_ICH_RAR_ENTRIES 7
96 #define PHY_PAGE_SHIFT 5
97 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
98 ((reg) & MAX_PHY_REG_ADDRESS))
99 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
100 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
102 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
103 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
104 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
106 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
107 /* Offset 04h HSFSTS */
108 union ich8_hws_flash_status
{
110 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
111 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
112 u16 dael
:1; /* bit 2 Direct Access error Log */
113 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
114 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
115 u16 reserved1
:2; /* bit 13:6 Reserved */
116 u16 reserved2
:6; /* bit 13:6 Reserved */
117 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
118 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
123 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
124 /* Offset 06h FLCTL */
125 union ich8_hws_flash_ctrl
{
126 struct ich8_hsflctl
{
127 u16 flcgo
:1; /* 0 Flash Cycle Go */
128 u16 flcycle
:2; /* 2:1 Flash Cycle */
129 u16 reserved
:5; /* 7:3 Reserved */
130 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
131 u16 flockdn
:6; /* 15:10 Reserved */
136 /* ICH Flash Region Access Permissions */
137 union ich8_hws_flash_regacc
{
139 u32 grra
:8; /* 0:7 GbE region Read Access */
140 u32 grwa
:8; /* 8:15 GbE region Write Access */
141 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
142 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
147 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
148 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
149 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
150 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
);
151 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
152 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
153 u32 offset
, u8 byte
);
154 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
156 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
158 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
159 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
161 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
163 return readw(hw
->flash_address
+ reg
);
166 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
168 return readl(hw
->flash_address
+ reg
);
171 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
173 writew(val
, hw
->flash_address
+ reg
);
176 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
178 writel(val
, hw
->flash_address
+ reg
);
181 #define er16flash(reg) __er16flash(hw, (reg))
182 #define er32flash(reg) __er32flash(hw, (reg))
183 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
184 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
187 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
188 * @hw: pointer to the HW structure
190 * Initialize family-specific PHY parameters and function pointers.
192 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
194 struct e1000_phy_info
*phy
= &hw
->phy
;
199 phy
->reset_delay_us
= 100;
202 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
205 ret_val
= e1000e_get_phy_id(hw
);
212 case IGP03E1000_E_PHY_ID
:
213 phy
->type
= e1000_phy_igp_3
;
214 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
217 case IFE_PLUS_E_PHY_ID
:
219 phy
->type
= e1000_phy_ife
;
220 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
223 return -E1000_ERR_PHY
;
231 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
232 * @hw: pointer to the HW structure
234 * Initialize family-specific NVM parameters and function
237 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
239 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
240 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
242 u32 sector_base_addr
;
246 /* Can't read flash registers if the register set isn't mapped. */
247 if (!hw
->flash_address
) {
248 hw_dbg(hw
, "ERROR: Flash registers not mapped\n");
249 return -E1000_ERR_CONFIG
;
252 nvm
->type
= e1000_nvm_flash_sw
;
254 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
257 * sector_X_addr is a "sector"-aligned address (4096 bytes)
258 * Add 1 to sector_end_addr since this sector is included in
261 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
262 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
264 /* flash_base_addr is byte-aligned */
265 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
268 * find total size of the NVM, then cut in half since the total
269 * size represents two separate NVM banks.
271 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
272 << FLASH_SECTOR_ADDR_SHIFT
;
273 nvm
->flash_bank_size
/= 2;
274 /* Adjust to word count */
275 nvm
->flash_bank_size
/= sizeof(u16
);
277 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
279 /* Clear shadow ram */
280 for (i
= 0; i
< nvm
->word_size
; i
++) {
281 dev_spec
->shadow_ram
[i
].modified
= 0;
282 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
289 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
290 * @hw: pointer to the HW structure
292 * Initialize family-specific MAC parameters and function
295 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
297 struct e1000_hw
*hw
= &adapter
->hw
;
298 struct e1000_mac_info
*mac
= &hw
->mac
;
300 /* Set media type function pointer */
301 hw
->phy
.media_type
= e1000_media_type_copper
;
303 /* Set mta register count */
304 mac
->mta_reg_count
= 32;
305 /* Set rar entry count */
306 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
307 if (mac
->type
== e1000_ich8lan
)
308 mac
->rar_entry_count
--;
309 /* Set if manageability features are enabled. */
310 mac
->arc_subsystem_valid
= 1;
312 /* Enable PCS Lock-loss workaround for ICH8 */
313 if (mac
->type
== e1000_ich8lan
)
314 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, 1);
319 static s32
e1000_get_invariants_ich8lan(struct e1000_adapter
*adapter
)
321 struct e1000_hw
*hw
= &adapter
->hw
;
324 rc
= e1000_init_mac_params_ich8lan(adapter
);
328 rc
= e1000_init_nvm_params_ich8lan(hw
);
332 rc
= e1000_init_phy_params_ich8lan(hw
);
336 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
337 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
338 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
344 * e1000_acquire_swflag_ich8lan - Acquire software control flag
345 * @hw: pointer to the HW structure
347 * Acquires the software control flag for performing NVM and PHY
348 * operations. This is a function pointer entry point only called by
349 * read/write routines for the PHY and NVM parts.
351 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
354 u32 timeout
= PHY_CFG_TIMEOUT
;
357 extcnf_ctrl
= er32(EXTCNF_CTRL
);
358 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
359 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
361 extcnf_ctrl
= er32(EXTCNF_CTRL
);
362 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
369 hw_dbg(hw
, "FW or HW has locked the resource for too long.\n");
370 return -E1000_ERR_CONFIG
;
377 * e1000_release_swflag_ich8lan - Release software control flag
378 * @hw: pointer to the HW structure
380 * Releases the software control flag for performing NVM and PHY operations.
381 * This is a function pointer entry point only called by read/write
382 * routines for the PHY and NVM parts.
384 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
388 extcnf_ctrl
= er32(EXTCNF_CTRL
);
389 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
390 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
394 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
395 * @hw: pointer to the HW structure
397 * Checks if firmware is blocking the reset of the PHY.
398 * This is a function pointer entry point only called by
401 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
407 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
411 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
412 * @hw: pointer to the HW structure
414 * Forces the speed and duplex settings of the PHY.
415 * This is a function pointer entry point only called by
416 * PHY setup routines.
418 static s32
e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw
*hw
)
420 struct e1000_phy_info
*phy
= &hw
->phy
;
425 if (phy
->type
!= e1000_phy_ife
) {
426 ret_val
= e1000e_phy_force_speed_duplex_igp(hw
);
430 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
434 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
436 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
440 /* Disable MDI-X support for 10/100 */
441 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
445 data
&= ~IFE_PMC_AUTO_MDIX
;
446 data
&= ~IFE_PMC_FORCE_MDIX
;
448 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
452 hw_dbg(hw
, "IFE PMC: %X\n", data
);
456 if (phy
->autoneg_wait_to_complete
) {
457 hw_dbg(hw
, "Waiting for forced speed/duplex link on IFE phy.\n");
459 ret_val
= e1000e_phy_has_link_generic(hw
,
467 hw_dbg(hw
, "Link taking longer than expected.\n");
470 ret_val
= e1000e_phy_has_link_generic(hw
,
482 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
483 * @hw: pointer to the HW structure
486 * This is a function pointer entry point called by drivers
487 * or other shared routines.
489 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
491 struct e1000_phy_info
*phy
= &hw
->phy
;
493 u32 data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
495 u16 loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
496 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
498 ret_val
= e1000e_phy_hw_reset_generic(hw
);
503 * Initialize the PHY from the NVM on ICH platforms. This
504 * is needed due to an issue where the NVM configuration is
505 * not properly autoloaded after power transitions.
506 * Therefore, after each PHY reset, we will load the
507 * configuration data out of the NVM manually.
509 if (hw
->mac
.type
== e1000_ich8lan
&& phy
->type
== e1000_phy_igp_3
) {
510 struct e1000_adapter
*adapter
= hw
->adapter
;
512 /* Check if SW needs configure the PHY */
513 if ((adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M_AMT
) ||
514 (adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M
))
515 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
517 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
519 data
= er32(FEXTNVM
);
520 if (!(data
& sw_cfg_mask
))
523 /* Wait for basic configuration completes before proceeding*/
526 data
&= E1000_STATUS_LAN_INIT_DONE
;
528 } while ((!data
) && --loop
);
531 * If basic configuration is incomplete before the above loop
532 * count reaches 0, loading the configuration from NVM will
533 * leave the PHY in a bad state possibly resulting in no link.
536 hw_dbg(hw
, "LAN_INIT_DONE not set, increase timeout\n");
539 /* Clear the Init Done bit for the next init event */
541 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
545 * Make sure HW does not configure LCD from PHY
546 * extended configuration before SW configuration
548 data
= er32(EXTCNF_CTRL
);
549 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
552 cnf_size
= er32(EXTCNF_SIZE
);
553 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
554 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
558 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
559 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
561 /* Configure LCD from extended configuration region. */
563 /* cnf_base_addr is in DWORD */
564 word_addr
= (u16
)(cnf_base_addr
<< 1);
566 for (i
= 0; i
< cnf_size
; i
++) {
567 ret_val
= e1000_read_nvm(hw
,
574 ret_val
= e1000_read_nvm(hw
,
575 (word_addr
+ i
* 2 + 1),
581 /* Save off the PHY page for future writes. */
582 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
587 reg_addr
|= phy_page
;
589 ret_val
= e1e_wphy(hw
, (u32
)reg_addr
, reg_data
);
599 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
600 * @hw: pointer to the HW structure
602 * Populates "phy" structure with various feature states.
603 * This function is only called by other family-specific
606 static s32
e1000_get_phy_info_ife_ich8lan(struct e1000_hw
*hw
)
608 struct e1000_phy_info
*phy
= &hw
->phy
;
613 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
618 hw_dbg(hw
, "Phy info is only valid if link is up\n");
619 return -E1000_ERR_CONFIG
;
622 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
625 phy
->polarity_correction
= (!(data
& IFE_PSC_AUTO_POLARITY_DISABLE
));
627 if (phy
->polarity_correction
) {
628 ret_val
= e1000_check_polarity_ife_ich8lan(hw
);
632 /* Polarity is forced */
633 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
634 ? e1000_rev_polarity_reversed
635 : e1000_rev_polarity_normal
;
638 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
642 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
);
644 /* The following parameters are undefined for 10/100 operation. */
645 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
646 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
647 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
653 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
654 * @hw: pointer to the HW structure
656 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
657 * This is a function pointer entry point called by drivers
658 * or other shared routines.
660 static s32
e1000_get_phy_info_ich8lan(struct e1000_hw
*hw
)
662 switch (hw
->phy
.type
) {
664 return e1000_get_phy_info_ife_ich8lan(hw
);
666 case e1000_phy_igp_3
:
667 return e1000e_get_phy_info_igp(hw
);
673 return -E1000_ERR_PHY_TYPE
;
677 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
678 * @hw: pointer to the HW structure
680 * Polarity is determined on the polarity reversal feature being enabled.
681 * This function is only called by other family-specific
684 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
)
686 struct e1000_phy_info
*phy
= &hw
->phy
;
688 u16 phy_data
, offset
, mask
;
691 * Polarity is determined based on the reversal feature being enabled.
693 if (phy
->polarity_correction
) {
694 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
695 mask
= IFE_PESC_POLARITY_REVERSED
;
697 offset
= IFE_PHY_SPECIAL_CONTROL
;
698 mask
= IFE_PSC_FORCE_POLARITY
;
701 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
704 phy
->cable_polarity
= (phy_data
& mask
)
705 ? e1000_rev_polarity_reversed
706 : e1000_rev_polarity_normal
;
712 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
713 * @hw: pointer to the HW structure
714 * @active: TRUE to enable LPLU, FALSE to disable
716 * Sets the LPLU D0 state according to the active flag. When
717 * activating LPLU this function also disables smart speed
718 * and vice versa. LPLU will not be activated unless the
719 * device autonegotiation advertisement meets standards of
720 * either 10 or 10/100 or 10/100/1000 at all duplexes.
721 * This is a function pointer entry point only called by
722 * PHY setup routines.
724 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
726 struct e1000_phy_info
*phy
= &hw
->phy
;
731 if (phy
->type
!= e1000_phy_igp_3
)
734 phy_ctrl
= er32(PHY_CTRL
);
737 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
738 ew32(PHY_CTRL
, phy_ctrl
);
741 * Call gig speed drop workaround on LPLU before accessing
744 if ((hw
->mac
.type
== e1000_ich8lan
) &&
745 (hw
->phy
.type
== e1000_phy_igp_3
))
746 e1000e_gig_downshift_workaround_ich8lan(hw
);
748 /* When LPLU is enabled, we should disable SmartSpeed */
749 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
750 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
751 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
755 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
756 ew32(PHY_CTRL
, phy_ctrl
);
759 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
760 * during Dx states where the power conservation is most
761 * important. During driver activity we should enable
762 * SmartSpeed, so performance is maintained.
764 if (phy
->smart_speed
== e1000_smart_speed_on
) {
765 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
770 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
771 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
775 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
776 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
781 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
782 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
793 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
794 * @hw: pointer to the HW structure
795 * @active: TRUE to enable LPLU, FALSE to disable
797 * Sets the LPLU D3 state according to the active flag. When
798 * activating LPLU this function also disables smart speed
799 * and vice versa. LPLU will not be activated unless the
800 * device autonegotiation advertisement meets standards of
801 * either 10 or 10/100 or 10/100/1000 at all duplexes.
802 * This is a function pointer entry point only called by
803 * PHY setup routines.
805 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
807 struct e1000_phy_info
*phy
= &hw
->phy
;
812 phy_ctrl
= er32(PHY_CTRL
);
815 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
816 ew32(PHY_CTRL
, phy_ctrl
);
818 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
819 * during Dx states where the power conservation is most
820 * important. During driver activity we should enable
821 * SmartSpeed, so performance is maintained.
823 if (phy
->smart_speed
== e1000_smart_speed_on
) {
824 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
829 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
830 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
834 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
835 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
840 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
841 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
846 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
847 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
848 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
849 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
850 ew32(PHY_CTRL
, phy_ctrl
);
853 * Call gig speed drop workaround on LPLU before accessing
856 if ((hw
->mac
.type
== e1000_ich8lan
) &&
857 (hw
->phy
.type
== e1000_phy_igp_3
))
858 e1000e_gig_downshift_workaround_ich8lan(hw
);
860 /* When LPLU is enabled, we should disable SmartSpeed */
861 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
865 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
866 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
873 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
874 * @hw: pointer to the HW structure
875 * @offset: The offset (in bytes) of the word(s) to read.
876 * @words: Size of data to read in words
877 * @data: Pointer to the word(s) to read at offset.
879 * Reads a word(s) from the NVM using the flash access registers.
881 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
884 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
885 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
890 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
892 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
893 return -E1000_ERR_NVM
;
896 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
900 /* Start with the bank offset, then add the relative offset. */
901 act_offset
= (er32(EECD
) & E1000_EECD_SEC1VAL
)
902 ? nvm
->flash_bank_size
904 act_offset
+= offset
;
906 for (i
= 0; i
< words
; i
++) {
907 if ((dev_spec
->shadow_ram
) &&
908 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
909 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
911 ret_val
= e1000_read_flash_word_ich8lan(hw
,
920 e1000_release_swflag_ich8lan(hw
);
926 * e1000_flash_cycle_init_ich8lan - Initialize flash
927 * @hw: pointer to the HW structure
929 * This function does initial flash setup so that a new read/write/erase cycle
932 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
934 union ich8_hws_flash_status hsfsts
;
935 s32 ret_val
= -E1000_ERR_NVM
;
938 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
940 /* Check if the flash descriptor is valid */
941 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
942 hw_dbg(hw
, "Flash descriptor invalid. "
943 "SW Sequencing must be used.");
944 return -E1000_ERR_NVM
;
947 /* Clear FCERR and DAEL in hw status by writing 1 */
948 hsfsts
.hsf_status
.flcerr
= 1;
949 hsfsts
.hsf_status
.dael
= 1;
951 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
954 * Either we should have a hardware SPI cycle in progress
955 * bit to check against, in order to start a new cycle or
956 * FDONE bit should be changed in the hardware so that it
957 * is 1 after hardware reset, which can then be used as an
958 * indication whether a cycle is in progress or has been
962 if (hsfsts
.hsf_status
.flcinprog
== 0) {
964 * There is no cycle running at present,
965 * so we can start a cycle
966 * Begin by setting Flash Cycle Done.
968 hsfsts
.hsf_status
.flcdone
= 1;
969 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
973 * otherwise poll for sometime so the current
974 * cycle has a chance to end before giving up.
976 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
977 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
978 if (hsfsts
.hsf_status
.flcinprog
== 0) {
986 * Successful in waiting for previous cycle to timeout,
987 * now set the Flash Cycle Done.
989 hsfsts
.hsf_status
.flcdone
= 1;
990 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
992 hw_dbg(hw
, "Flash controller busy, cannot get access");
1000 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1001 * @hw: pointer to the HW structure
1002 * @timeout: maximum time to wait for completion
1004 * This function starts a flash cycle and waits for its completion.
1006 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
1008 union ich8_hws_flash_ctrl hsflctl
;
1009 union ich8_hws_flash_status hsfsts
;
1010 s32 ret_val
= -E1000_ERR_NVM
;
1013 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1014 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1015 hsflctl
.hsf_ctrl
.flcgo
= 1;
1016 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1018 /* wait till FDONE bit is set to 1 */
1020 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1021 if (hsfsts
.hsf_status
.flcdone
== 1)
1024 } while (i
++ < timeout
);
1026 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
1033 * e1000_read_flash_word_ich8lan - Read word from flash
1034 * @hw: pointer to the HW structure
1035 * @offset: offset to data location
1036 * @data: pointer to the location for storing the data
1038 * Reads the flash word at offset into data. Offset is converted
1039 * to bytes before read.
1041 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1044 /* Must convert offset into bytes. */
1047 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
1051 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1052 * @hw: pointer to the HW structure
1053 * @offset: The offset (in bytes) of the byte or word to read.
1054 * @size: Size of data to read, 1=byte 2=word
1055 * @data: Pointer to the word to store the value read.
1057 * Reads a byte or word from the NVM using the flash access registers.
1059 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1062 union ich8_hws_flash_status hsfsts
;
1063 union ich8_hws_flash_ctrl hsflctl
;
1064 u32 flash_linear_addr
;
1066 s32 ret_val
= -E1000_ERR_NVM
;
1069 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1070 return -E1000_ERR_NVM
;
1072 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1073 hw
->nvm
.flash_base_addr
;
1078 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1082 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1083 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1084 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
1085 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
1086 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1088 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1090 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1091 ICH_FLASH_READ_COMMAND_TIMEOUT
);
1094 * Check if FCERR is set to 1, if set to 1, clear it
1095 * and try the whole sequence a few more times, else
1096 * read in (shift in) the Flash Data0, the order is
1097 * least significant byte first msb to lsb
1100 flash_data
= er32flash(ICH_FLASH_FDATA0
);
1102 *data
= (u8
)(flash_data
& 0x000000FF);
1103 } else if (size
== 2) {
1104 *data
= (u16
)(flash_data
& 0x0000FFFF);
1109 * If we've gotten here, then things are probably
1110 * completely hosed, but if the error condition is
1111 * detected, it won't hurt to give it another try...
1112 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1114 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1115 if (hsfsts
.hsf_status
.flcerr
== 1) {
1116 /* Repeat for some time before giving up. */
1118 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
1119 hw_dbg(hw
, "Timeout error - flash cycle "
1120 "did not complete.");
1124 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1130 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1131 * @hw: pointer to the HW structure
1132 * @offset: The offset (in bytes) of the word(s) to write.
1133 * @words: Size of data to write in words
1134 * @data: Pointer to the word(s) to write at offset.
1136 * Writes a byte or word to the NVM using the flash access registers.
1138 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1141 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1142 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1146 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1148 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1149 return -E1000_ERR_NVM
;
1152 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1156 for (i
= 0; i
< words
; i
++) {
1157 dev_spec
->shadow_ram
[offset
+i
].modified
= 1;
1158 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
1161 e1000_release_swflag_ich8lan(hw
);
1167 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1168 * @hw: pointer to the HW structure
1170 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1171 * which writes the checksum to the shadow ram. The changes in the shadow
1172 * ram are then committed to the EEPROM by processing each bank at a time
1173 * checking for the modified bit and writing only the pending changes.
1174 * After a successful commit, the shadow ram is cleared and is ready for
1177 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1179 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1180 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1181 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
;
1185 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
1189 if (nvm
->type
!= e1000_nvm_flash_sw
)
1192 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1197 * We're writing to the opposite bank so if we're on bank 1,
1198 * write to bank 0 etc. We also need to erase the segment that
1199 * is going to be written
1201 if (!(er32(EECD
) & E1000_EECD_SEC1VAL
)) {
1202 new_bank_offset
= nvm
->flash_bank_size
;
1203 old_bank_offset
= 0;
1204 e1000_erase_flash_bank_ich8lan(hw
, 1);
1206 old_bank_offset
= nvm
->flash_bank_size
;
1207 new_bank_offset
= 0;
1208 e1000_erase_flash_bank_ich8lan(hw
, 0);
1211 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1213 * Determine whether to write the value stored
1214 * in the other NVM bank or a modified value stored
1217 if (dev_spec
->shadow_ram
[i
].modified
) {
1218 data
= dev_spec
->shadow_ram
[i
].value
;
1220 e1000_read_flash_word_ich8lan(hw
,
1221 i
+ old_bank_offset
,
1226 * If the word is 0x13, then make sure the signature bits
1227 * (15:14) are 11b until the commit has completed.
1228 * This will allow us to write 10b which indicates the
1229 * signature is valid. We want to do this after the write
1230 * has completed so that we don't mark the segment valid
1231 * while the write is still in progress
1233 if (i
== E1000_ICH_NVM_SIG_WORD
)
1234 data
|= E1000_ICH_NVM_SIG_MASK
;
1236 /* Convert offset to bytes. */
1237 act_offset
= (i
+ new_bank_offset
) << 1;
1240 /* Write the bytes to the new bank. */
1241 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1248 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1256 * Don't bother writing the segment valid bits if sector
1257 * programming failed.
1260 hw_dbg(hw
, "Flash commit failed.\n");
1261 e1000_release_swflag_ich8lan(hw
);
1266 * Finally validate the new segment by setting bit 15:14
1267 * to 10b in word 0x13 , this can be done without an
1268 * erase as well since these bits are 11 to start with
1269 * and we need to change bit 14 to 0b
1271 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
1272 e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
1274 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1278 e1000_release_swflag_ich8lan(hw
);
1283 * And invalidate the previously valid segment by setting
1284 * its signature word (0x13) high_byte to 0b. This can be
1285 * done without an erase because flash erase sets all bits
1286 * to 1's. We can write 1's to 0's without an erase
1288 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
1289 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
1291 e1000_release_swflag_ich8lan(hw
);
1295 /* Great! Everything worked, we can now clear the cached entries. */
1296 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1297 dev_spec
->shadow_ram
[i
].modified
= 0;
1298 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
1301 e1000_release_swflag_ich8lan(hw
);
1304 * Reload the EEPROM, or else modifications will not appear
1305 * until after the next adapter reset.
1307 e1000e_reload_nvm(hw
);
1314 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1315 * @hw: pointer to the HW structure
1317 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1318 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1319 * calculated, in which case we need to calculate the checksum and set bit 6.
1321 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1327 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1328 * needs to be fixed. This bit is an indication that the NVM
1329 * was prepared by OEM software and did not calculate the
1330 * checksum...a likely scenario.
1332 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
1336 if ((data
& 0x40) == 0) {
1338 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
1341 ret_val
= e1000e_update_nvm_checksum(hw
);
1346 return e1000e_validate_nvm_checksum_generic(hw
);
1350 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1351 * @hw: pointer to the HW structure
1352 * @offset: The offset (in bytes) of the byte/word to read.
1353 * @size: Size of data to read, 1=byte 2=word
1354 * @data: The byte(s) to write to the NVM.
1356 * Writes one/two bytes to the NVM using the flash access registers.
1358 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1361 union ich8_hws_flash_status hsfsts
;
1362 union ich8_hws_flash_ctrl hsflctl
;
1363 u32 flash_linear_addr
;
1368 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
1369 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1370 return -E1000_ERR_NVM
;
1372 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1373 hw
->nvm
.flash_base_addr
;
1378 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1382 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1383 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1384 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
1385 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
1386 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1388 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1391 flash_data
= (u32
)data
& 0x00FF;
1393 flash_data
= (u32
)data
;
1395 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
1398 * check if FCERR is set to 1 , if set to 1, clear it
1399 * and try the whole sequence a few more times else done
1401 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1402 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
1407 * If we're here, then things are most likely
1408 * completely hosed, but if the error condition
1409 * is detected, it won't hurt to give it another
1410 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1412 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1413 if (hsfsts
.hsf_status
.flcerr
== 1)
1414 /* Repeat for some time before giving up. */
1416 if (hsfsts
.hsf_status
.flcdone
== 0) {
1417 hw_dbg(hw
, "Timeout error - flash cycle "
1418 "did not complete.");
1421 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1427 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1428 * @hw: pointer to the HW structure
1429 * @offset: The index of the byte to read.
1430 * @data: The byte to write to the NVM.
1432 * Writes a single byte to the NVM using the flash access registers.
1434 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1437 u16 word
= (u16
)data
;
1439 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
1443 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1444 * @hw: pointer to the HW structure
1445 * @offset: The offset of the byte to write.
1446 * @byte: The byte to write to the NVM.
1448 * Writes a single byte to the NVM using the flash access registers.
1449 * Goes through a retry algorithm before giving up.
1451 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
1452 u32 offset
, u8 byte
)
1455 u16 program_retries
;
1457 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1461 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
1462 hw_dbg(hw
, "Retrying Byte %2.2X at offset %u\n", byte
, offset
);
1464 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1468 if (program_retries
== 100)
1469 return -E1000_ERR_NVM
;
1475 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1476 * @hw: pointer to the HW structure
1477 * @bank: 0 for first bank, 1 for second bank, etc.
1479 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1480 * bank N is 4096 * N + flash_reg_addr.
1482 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
1484 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1485 union ich8_hws_flash_status hsfsts
;
1486 union ich8_hws_flash_ctrl hsflctl
;
1487 u32 flash_linear_addr
;
1488 /* bank size is in 16bit words - adjust to bytes */
1489 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
1496 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1499 * Determine HW Sector size: Read BERASE bits of hw flash status
1501 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1502 * consecutive sectors. The start index for the nth Hw sector
1503 * can be calculated as = bank * 4096 + n * 256
1504 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1505 * The start index for the nth Hw sector can be calculated
1507 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1508 * (ich9 only, otherwise error condition)
1509 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1511 switch (hsfsts
.hsf_status
.berasesz
) {
1513 /* Hw sector size 256 */
1514 sector_size
= ICH_FLASH_SEG_SIZE_256
;
1515 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
1518 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
1519 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_4K
;
1522 if (hw
->mac
.type
== e1000_ich9lan
) {
1523 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
1524 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_8K
;
1526 return -E1000_ERR_NVM
;
1530 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
1531 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_64K
;
1534 return -E1000_ERR_NVM
;
1537 /* Start with the base address, then add the sector offset. */
1538 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
1539 flash_linear_addr
+= (bank
) ? (sector_size
* iteration
) : 0;
1541 for (j
= 0; j
< iteration
; j
++) {
1544 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1549 * Write a value 11 (block Erase) in Flash
1550 * Cycle field in hw flash control
1552 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1553 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
1554 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1557 * Write the last 24 bits of an index within the
1558 * block into Flash Linear address field in Flash
1561 flash_linear_addr
+= (j
* sector_size
);
1562 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1564 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1565 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
1570 * Check if FCERR is set to 1. If 1,
1571 * clear it and try the whole sequence
1572 * a few more times else Done
1574 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1575 if (hsfsts
.hsf_status
.flcerr
== 1)
1576 /* repeat for some time before giving up */
1578 else if (hsfsts
.hsf_status
.flcdone
== 0)
1580 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
1587 * e1000_valid_led_default_ich8lan - Set the default LED settings
1588 * @hw: pointer to the HW structure
1589 * @data: Pointer to the LED settings
1591 * Reads the LED default settings from the NVM to data. If the NVM LED
1592 * settings is all 0's or F's, set the LED default to a valid LED default
1595 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
1599 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1601 hw_dbg(hw
, "NVM Read Error\n");
1605 if (*data
== ID_LED_RESERVED_0000
||
1606 *data
== ID_LED_RESERVED_FFFF
)
1607 *data
= ID_LED_DEFAULT_ICH8LAN
;
1613 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1614 * @hw: pointer to the HW structure
1616 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1617 * register, so the the bus width is hard coded.
1619 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
1621 struct e1000_bus_info
*bus
= &hw
->bus
;
1624 ret_val
= e1000e_get_bus_info_pcie(hw
);
1627 * ICH devices are "PCI Express"-ish. They have
1628 * a configuration space, but do not contain
1629 * PCI Express Capability registers, so bus width
1630 * must be hardcoded.
1632 if (bus
->width
== e1000_bus_width_unknown
)
1633 bus
->width
= e1000_bus_width_pcie_x1
;
1639 * e1000_reset_hw_ich8lan - Reset the hardware
1640 * @hw: pointer to the HW structure
1642 * Does a full reset of the hardware which includes a reset of the PHY and
1645 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
1651 * Prevent the PCI-E bus from sticking if there is no TLP connection
1652 * on the last TLP read/write transaction when MAC is reset.
1654 ret_val
= e1000e_disable_pcie_master(hw
);
1656 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
1659 hw_dbg(hw
, "Masking off all interrupts\n");
1660 ew32(IMC
, 0xffffffff);
1663 * Disable the Transmit and Receive units. Then delay to allow
1664 * any pending transactions to complete before we hit the MAC
1665 * with the global reset.
1668 ew32(TCTL
, E1000_TCTL_PSP
);
1673 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1674 if (hw
->mac
.type
== e1000_ich8lan
) {
1675 /* Set Tx and Rx buffer allocation to 8k apiece. */
1676 ew32(PBA
, E1000_PBA_8K
);
1677 /* Set Packet Buffer Size to 16k. */
1678 ew32(PBS
, E1000_PBS_16K
);
1683 if (!e1000_check_reset_block(hw
)) {
1685 * PHY HW reset requires MAC CORE reset at the same
1686 * time to make sure the interface between MAC and the
1687 * external PHY is reset.
1689 ctrl
|= E1000_CTRL_PHY_RST
;
1691 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1692 hw_dbg(hw
, "Issuing a global reset to ich8lan");
1693 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
1696 ret_val
= e1000e_get_auto_rd_done(hw
);
1699 * When auto config read does not complete, do not
1700 * return with an error. This can happen in situations
1701 * where there is no eeprom and prevents getting link.
1703 hw_dbg(hw
, "Auto Read Done did not complete\n");
1706 ew32(IMC
, 0xffffffff);
1709 kab
= er32(KABGTXD
);
1710 kab
|= E1000_KABGTXD_BGSQLBIAS
;
1717 * e1000_init_hw_ich8lan - Initialize the hardware
1718 * @hw: pointer to the HW structure
1720 * Prepares the hardware for transmit and receive by doing the following:
1721 * - initialize hardware bits
1722 * - initialize LED identification
1723 * - setup receive address registers
1724 * - setup flow control
1725 * - setup transmit descriptors
1726 * - clear statistics
1728 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
1730 struct e1000_mac_info
*mac
= &hw
->mac
;
1731 u32 ctrl_ext
, txdctl
, snoop
;
1735 e1000_initialize_hw_bits_ich8lan(hw
);
1737 /* Initialize identification LED */
1738 ret_val
= e1000e_id_led_init(hw
);
1740 hw_dbg(hw
, "Error initializing identification LED\n");
1744 /* Setup the receive address. */
1745 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
1747 /* Zero out the Multicast HASH table */
1748 hw_dbg(hw
, "Zeroing the MTA\n");
1749 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1750 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1752 /* Setup link and flow control */
1753 ret_val
= e1000_setup_link_ich8lan(hw
);
1755 /* Set the transmit descriptor write-back policy for both queues */
1756 txdctl
= er32(TXDCTL
);
1757 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
1758 E1000_TXDCTL_FULL_TX_DESC_WB
;
1759 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
1760 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
1761 ew32(TXDCTL
, txdctl
);
1762 txdctl
= er32(TXDCTL1
);
1763 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
1764 E1000_TXDCTL_FULL_TX_DESC_WB
;
1765 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
1766 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
1767 ew32(TXDCTL1
, txdctl
);
1770 * ICH8 has opposite polarity of no_snoop bits.
1771 * By default, we should use snoop behavior.
1773 if (mac
->type
== e1000_ich8lan
)
1774 snoop
= PCIE_ICH8_SNOOP_ALL
;
1776 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
1777 e1000e_set_pcie_no_snoop(hw
, snoop
);
1779 ctrl_ext
= er32(CTRL_EXT
);
1780 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
1781 ew32(CTRL_EXT
, ctrl_ext
);
1784 * Clear all of the statistics registers (clear on read). It is
1785 * important that we do this after we have tried to establish link
1786 * because the symbol error count will increment wildly if there
1789 e1000_clear_hw_cntrs_ich8lan(hw
);
1794 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1795 * @hw: pointer to the HW structure
1797 * Sets/Clears required hardware bits necessary for correctly setting up the
1798 * hardware for transmit and receive.
1800 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
1804 /* Extended Device Control */
1805 reg
= er32(CTRL_EXT
);
1807 ew32(CTRL_EXT
, reg
);
1809 /* Transmit Descriptor Control 0 */
1814 /* Transmit Descriptor Control 1 */
1815 reg
= er32(TXDCTL1
);
1819 /* Transmit Arbitration Control 0 */
1821 if (hw
->mac
.type
== e1000_ich8lan
)
1822 reg
|= (1 << 28) | (1 << 29);
1823 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
1826 /* Transmit Arbitration Control 1 */
1828 if (er32(TCTL
) & E1000_TCTL_MULR
)
1832 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
1836 if (hw
->mac
.type
== e1000_ich8lan
) {
1844 * e1000_setup_link_ich8lan - Setup flow control and link settings
1845 * @hw: pointer to the HW structure
1847 * Determines which flow control settings to use, then configures flow
1848 * control. Calls the appropriate media-specific link configuration
1849 * function. Assuming the adapter has a valid link partner, a valid link
1850 * should be established. Assumes the hardware has previously been reset
1851 * and the transmitter and receiver are not enabled.
1853 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
1857 if (e1000_check_reset_block(hw
))
1861 * ICH parts do not have a word in the NVM to determine
1862 * the default flow control setting, so we explicitly
1865 if (hw
->fc
.type
== e1000_fc_default
)
1866 hw
->fc
.type
= e1000_fc_full
;
1868 hw
->fc
.original_type
= hw
->fc
.type
;
1870 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n", hw
->fc
.type
);
1872 /* Continue to configure the copper link. */
1873 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
1877 ew32(FCTTV
, hw
->fc
.pause_time
);
1879 return e1000e_set_fc_watermarks(hw
);
1883 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
1884 * @hw: pointer to the HW structure
1886 * Configures the kumeran interface to the PHY to wait the appropriate time
1887 * when polling the PHY, then call the generic setup_copper_link to finish
1888 * configuring the copper link.
1890 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
1897 ctrl
|= E1000_CTRL_SLU
;
1898 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1902 * Set the mac to wait the maximum time between each iteration
1903 * and increase the max iterations when polling the phy;
1904 * this fixes erroneous timeouts at 10Mbps.
1906 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
1909 ret_val
= e1000e_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
1913 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
1917 if (hw
->phy
.type
== e1000_phy_igp_3
) {
1918 ret_val
= e1000e_copper_link_setup_igp(hw
);
1923 return e1000e_setup_copper_link(hw
);
1927 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
1928 * @hw: pointer to the HW structure
1929 * @speed: pointer to store current link speed
1930 * @duplex: pointer to store the current link duplex
1932 * Calls the generic get_speed_and_duplex to retrieve the current link
1933 * information and then calls the Kumeran lock loss workaround for links at
1936 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
1941 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
1945 if ((hw
->mac
.type
== e1000_ich8lan
) &&
1946 (hw
->phy
.type
== e1000_phy_igp_3
) &&
1947 (*speed
== SPEED_1000
)) {
1948 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
1955 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
1956 * @hw: pointer to the HW structure
1958 * Work-around for 82566 Kumeran PCS lock loss:
1959 * On link status change (i.e. PCI reset, speed change) and link is up and
1961 * 0) if workaround is optionally disabled do nothing
1962 * 1) wait 1ms for Kumeran link to come up
1963 * 2) check Kumeran Diagnostic register PCS lock loss bit
1964 * 3) if not set the link is locked (all is good), otherwise...
1966 * 5) repeat up to 10 times
1967 * Note: this is only called for IGP3 copper when speed is 1gb.
1969 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
1971 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1977 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
1981 * Make sure link is up before proceeding. If not just return.
1982 * Attempting this while link is negotiating fouled up link
1985 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1989 for (i
= 0; i
< 10; i
++) {
1990 /* read once to clear */
1991 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
1994 /* and again to get new status */
1995 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
1999 /* check for PCS lock */
2000 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
2003 /* Issue PHY reset */
2004 e1000_phy_hw_reset(hw
);
2007 /* Disable GigE link negotiation */
2008 phy_ctrl
= er32(PHY_CTRL
);
2009 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2010 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2011 ew32(PHY_CTRL
, phy_ctrl
);
2014 * Call gig speed drop workaround on Gig disable before accessing
2017 e1000e_gig_downshift_workaround_ich8lan(hw
);
2019 /* unable to acquire PCS lock */
2020 return -E1000_ERR_PHY
;
2024 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2025 * @hw: pointer to the HW structure
2026 * @state: boolean value used to set the current Kumeran workaround state
2028 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2029 * /disabled - FALSE).
2031 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
2034 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2036 if (hw
->mac
.type
!= e1000_ich8lan
) {
2037 hw_dbg(hw
, "Workaround applies to ICH8 only.\n");
2041 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
2045 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2046 * @hw: pointer to the HW structure
2048 * Workaround for 82566 power-down on D3 entry:
2049 * 1) disable gigabit link
2050 * 2) write VR power-down enable
2052 * Continue if successful, else issue LCD reset and repeat
2054 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
2060 if (hw
->phy
.type
!= e1000_phy_igp_3
)
2063 /* Try the workaround twice (if needed) */
2066 reg
= er32(PHY_CTRL
);
2067 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2068 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2069 ew32(PHY_CTRL
, reg
);
2072 * Call gig speed drop workaround on Gig disable before
2073 * accessing any PHY registers
2075 if (hw
->mac
.type
== e1000_ich8lan
)
2076 e1000e_gig_downshift_workaround_ich8lan(hw
);
2078 /* Write VR power-down enable */
2079 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2080 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2081 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
2083 /* Read it back and test */
2084 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2085 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2086 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
2089 /* Issue PHY reset and repeat at most one more time */
2091 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
2097 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2098 * @hw: pointer to the HW structure
2100 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2101 * LPLU, Gig disable, MDIC PHY reset):
2102 * 1) Set Kumeran Near-end loopback
2103 * 2) Clear Kumeran Near-end loopback
2104 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2106 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
2111 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
2112 (hw
->phy
.type
!= e1000_phy_igp_3
))
2115 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2119 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2120 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2124 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2125 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2130 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2131 * @hw: pointer to the HW structure
2133 * Return the LED back to the default configuration.
2135 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
2137 if (hw
->phy
.type
== e1000_phy_ife
)
2138 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
2140 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
2145 * e1000_led_on_ich8lan - Turn LEDs on
2146 * @hw: pointer to the HW structure
2150 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
2152 if (hw
->phy
.type
== e1000_phy_ife
)
2153 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2154 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
2156 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
2161 * e1000_led_off_ich8lan - Turn LEDs off
2162 * @hw: pointer to the HW structure
2164 * Turn off the LEDs.
2166 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
2168 if (hw
->phy
.type
== e1000_phy_ife
)
2169 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2170 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
2172 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
2177 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2178 * @hw: pointer to the HW structure
2180 * Clears hardware counters specific to the silicon family and calls
2181 * clear_hw_cntrs_generic to clear all general purpose counters.
2183 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
2187 e1000e_clear_hw_cntrs_base(hw
);
2189 temp
= er32(ALGNERRC
);
2190 temp
= er32(RXERRC
);
2192 temp
= er32(CEXTERR
);
2194 temp
= er32(TSCTFC
);
2196 temp
= er32(MGTPRC
);
2197 temp
= er32(MGTPDC
);
2198 temp
= er32(MGTPTC
);
2201 temp
= er32(ICRXOC
);
2205 static struct e1000_mac_operations ich8_mac_ops
= {
2206 .mng_mode_enab
= E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
,
2207 .check_for_link
= e1000e_check_for_copper_link
,
2208 .cleanup_led
= e1000_cleanup_led_ich8lan
,
2209 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
2210 .get_bus_info
= e1000_get_bus_info_ich8lan
,
2211 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
2212 .led_on
= e1000_led_on_ich8lan
,
2213 .led_off
= e1000_led_off_ich8lan
,
2214 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
2215 .reset_hw
= e1000_reset_hw_ich8lan
,
2216 .init_hw
= e1000_init_hw_ich8lan
,
2217 .setup_link
= e1000_setup_link_ich8lan
,
2218 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
2221 static struct e1000_phy_operations ich8_phy_ops
= {
2222 .acquire_phy
= e1000_acquire_swflag_ich8lan
,
2223 .check_reset_block
= e1000_check_reset_block_ich8lan
,
2225 .force_speed_duplex
= e1000_phy_force_speed_duplex_ich8lan
,
2226 .get_cfg_done
= e1000e_get_cfg_done
,
2227 .get_cable_length
= e1000e_get_cable_length_igp_2
,
2228 .get_phy_info
= e1000_get_phy_info_ich8lan
,
2229 .read_phy_reg
= e1000e_read_phy_reg_igp
,
2230 .release_phy
= e1000_release_swflag_ich8lan
,
2231 .reset_phy
= e1000_phy_hw_reset_ich8lan
,
2232 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
2233 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
2234 .write_phy_reg
= e1000e_write_phy_reg_igp
,
2237 static struct e1000_nvm_operations ich8_nvm_ops
= {
2238 .acquire_nvm
= e1000_acquire_swflag_ich8lan
,
2239 .read_nvm
= e1000_read_nvm_ich8lan
,
2240 .release_nvm
= e1000_release_swflag_ich8lan
,
2241 .update_nvm
= e1000_update_nvm_checksum_ich8lan
,
2242 .valid_led_default
= e1000_valid_led_default_ich8lan
,
2243 .validate_nvm
= e1000_validate_nvm_checksum_ich8lan
,
2244 .write_nvm
= e1000_write_nvm_ich8lan
,
2247 struct e1000_info e1000_ich8_info
= {
2248 .mac
= e1000_ich8lan
,
2249 .flags
= FLAG_HAS_WOL
2250 | FLAG_RX_CSUM_ENABLED
2251 | FLAG_HAS_CTRLEXT_ON_LOAD
2256 .get_invariants
= e1000_get_invariants_ich8lan
,
2257 .mac_ops
= &ich8_mac_ops
,
2258 .phy_ops
= &ich8_phy_ops
,
2259 .nvm_ops
= &ich8_nvm_ops
,
2262 struct e1000_info e1000_ich9_info
= {
2263 .mac
= e1000_ich9lan
,
2264 .flags
= FLAG_HAS_JUMBO_FRAMES
2266 | FLAG_RX_CSUM_ENABLED
2267 | FLAG_HAS_CTRLEXT_ON_LOAD
2273 .get_invariants
= e1000_get_invariants_ich8lan
,
2274 .mac_ops
= &ich8_mac_ops
,
2275 .phy_ops
= &ich8_phy_ops
,
2276 .nvm_ops
= &ich8_nvm_ops
,