1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/netdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/delay.h>
32 #include <linux/pci.h>
37 e1000_mng_mode_none
= 0,
41 e1000_mng_mode_host_if_only
44 #define E1000_FACTPS_MNGCG 0x20000000
46 /* Intel(R) Active Management Technology signature */
47 #define E1000_IAMT_SIGNATURE 0x544D4149
50 * e1000e_get_bus_info_pcie - Get PCIe bus information
51 * @hw: pointer to the HW structure
53 * Determines and stores the system bus information for a particular
54 * network interface. The following bus information is determined and stored:
55 * bus speed, bus width, type (PCIe), and PCIe function.
57 s32
e1000e_get_bus_info_pcie(struct e1000_hw
*hw
)
59 struct e1000_bus_info
*bus
= &hw
->bus
;
60 struct e1000_adapter
*adapter
= hw
->adapter
;
62 u16 pcie_link_status
, pci_header_type
, cap_offset
;
64 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
66 bus
->width
= e1000_bus_width_unknown
;
68 pci_read_config_word(adapter
->pdev
,
69 cap_offset
+ PCIE_LINK_STATUS
,
71 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
72 PCIE_LINK_WIDTH_MASK
) >>
73 PCIE_LINK_WIDTH_SHIFT
);
76 pci_read_config_word(adapter
->pdev
, PCI_HEADER_TYPE_REGISTER
,
78 if (pci_header_type
& PCI_HEADER_TYPE_MULTIFUNC
) {
79 status
= er32(STATUS
);
80 bus
->func
= (status
& E1000_STATUS_FUNC_MASK
)
81 >> E1000_STATUS_FUNC_SHIFT
;
90 * e1000e_write_vfta - Write value to VLAN filter table
91 * @hw: pointer to the HW structure
92 * @offset: register offset in VLAN filter table
93 * @value: register value written to VLAN filter table
95 * Writes value at the given offset in the register array which stores
96 * the VLAN filter table.
98 void e1000e_write_vfta(struct e1000_hw
*hw
, u32 offset
, u32 value
)
100 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
105 * e1000e_init_rx_addrs - Initialize receive address's
106 * @hw: pointer to the HW structure
107 * @rar_count: receive address registers
109 * Setups the receive address registers by setting the base receive address
110 * register to the devices MAC address and clearing all the other receive
111 * address registers to 0.
113 void e1000e_init_rx_addrs(struct e1000_hw
*hw
, u16 rar_count
)
117 /* Setup the receive address */
118 hw_dbg(hw
, "Programming MAC Address into RAR[0]\n");
120 e1000e_rar_set(hw
, hw
->mac
.addr
, 0);
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 hw_dbg(hw
, "Clearing RAR[1-%u]\n", rar_count
-1);
124 for (i
= 1; i
< rar_count
; i
++) {
125 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, (i
<< 1), 0);
127 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, ((i
<< 1) + 1), 0);
133 * e1000e_rar_set - Set receive address register
134 * @hw: pointer to the HW structure
135 * @addr: pointer to the receive address
136 * @index: receive address array register
138 * Sets the receive address array register at index to the address passed
141 void e1000e_rar_set(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
143 u32 rar_low
, rar_high
;
146 * HW expects these in little endian so we reverse the byte order
147 * from network order (big endian) to little endian
149 rar_low
= ((u32
) addr
[0] |
150 ((u32
) addr
[1] << 8) |
151 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
153 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
155 rar_high
|= E1000_RAH_AV
;
157 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, (index
<< 1), rar_low
);
158 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, ((index
<< 1) + 1), rar_high
);
162 * e1000_mta_set - Set multicast filter table address
163 * @hw: pointer to the HW structure
164 * @hash_value: determines the MTA register and bit to set
166 * The multicast table address is a register array of 32-bit registers.
167 * The hash_value is used to determine what register the bit is in, the
168 * current value is read, the new bit is OR'd in and the new value is
169 * written back into the register.
171 static void e1000_mta_set(struct e1000_hw
*hw
, u32 hash_value
)
173 u32 hash_bit
, hash_reg
, mta
;
176 * The MTA is a register array of 32-bit registers. It is
177 * treated like an array of (32*mta_reg_count) bits. We want to
178 * set bit BitArray[hash_value]. So we figure out what register
179 * the bit is in, read it, OR in the new bit, then write
180 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
181 * mask to bits 31:5 of the hash value which gives us the
182 * register we're modifying. The hash bit within that register
183 * is determined by the lower 5 bits of the hash value.
185 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
186 hash_bit
= hash_value
& 0x1F;
188 mta
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, hash_reg
);
190 mta
|= (1 << hash_bit
);
192 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, hash_reg
, mta
);
197 * e1000_hash_mc_addr - Generate a multicast hash value
198 * @hw: pointer to the HW structure
199 * @mc_addr: pointer to a multicast address
201 * Generates a multicast address hash value which is used to determine
202 * the multicast filter table array address and new table value. See
203 * e1000_mta_set_generic()
205 static u32
e1000_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
207 u32 hash_value
, hash_mask
;
210 /* Register count multiplied by bits per register */
211 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
214 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
215 * where 0xFF would still fall within the hash mask.
217 while (hash_mask
>> bit_shift
!= 0xFF)
221 * The portion of the address that is used for the hash table
222 * is determined by the mc_filter_type setting.
223 * The algorithm is such that there is a total of 8 bits of shifting.
224 * The bit_shift for a mc_filter_type of 0 represents the number of
225 * left-shifts where the MSB of mc_addr[5] would still fall within
226 * the hash_mask. Case 0 does this exactly. Since there are a total
227 * of 8 bits of shifting, then mc_addr[4] will shift right the
228 * remaining number of bits. Thus 8 - bit_shift. The rest of the
229 * cases are a variation of this algorithm...essentially raising the
230 * number of bits to shift mc_addr[5] left, while still keeping the
231 * 8-bit shifting total.
233 * For example, given the following Destination MAC Address and an
234 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
235 * we can see that the bit_shift for case 0 is 4. These are the hash
236 * values resulting from each mc_filter_type...
237 * [0] [1] [2] [3] [4] [5]
241 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
242 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
243 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
244 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
246 switch (hw
->mac
.mc_filter_type
) {
261 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
262 (((u16
) mc_addr
[5]) << bit_shift
)));
268 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
269 * @hw: pointer to the HW structure
270 * @mc_addr_list: array of multicast addresses to program
271 * @mc_addr_count: number of multicast addresses to program
272 * @rar_used_count: the first RAR register free to program
273 * @rar_count: total number of supported Receive Address Registers
275 * Updates the Receive Address Registers and Multicast Table Array.
276 * The caller must have a packed mc_addr_list of multicast addresses.
277 * The parameter rar_count will usually be hw->mac.rar_entry_count
278 * unless there are workarounds that change this.
280 void e1000e_update_mc_addr_list_generic(struct e1000_hw
*hw
,
281 u8
*mc_addr_list
, u32 mc_addr_count
,
282 u32 rar_used_count
, u32 rar_count
)
288 * Load the first set of multicast addresses into the exact
289 * filters (RAR). If there are not enough to fill the RAR
290 * array, clear the filters.
292 for (i
= rar_used_count
; i
< rar_count
; i
++) {
294 e1000e_rar_set(hw
, mc_addr_list
, i
);
296 mc_addr_list
+= ETH_ALEN
;
298 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, i
<< 1, 0);
300 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, (i
<< 1) + 1, 0);
305 /* Clear the old settings from the MTA */
306 hw_dbg(hw
, "Clearing MTA\n");
307 for (i
= 0; i
< hw
->mac
.mta_reg_count
; i
++) {
308 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
312 /* Load any remaining multicast addresses into the hash table. */
313 for (; mc_addr_count
> 0; mc_addr_count
--) {
314 hash_value
= e1000_hash_mc_addr(hw
, mc_addr_list
);
315 hw_dbg(hw
, "Hash value = 0x%03X\n", hash_value
);
316 e1000_mta_set(hw
, hash_value
);
317 mc_addr_list
+= ETH_ALEN
;
322 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
323 * @hw: pointer to the HW structure
325 * Clears the base hardware counters by reading the counter registers.
327 void e1000e_clear_hw_cntrs_base(struct e1000_hw
*hw
)
331 temp
= er32(CRCERRS
);
332 temp
= er32(SYMERRS
);
337 temp
= er32(LATECOL
);
344 temp
= er32(XOFFRXC
);
345 temp
= er32(XOFFTXC
);
371 * e1000e_check_for_copper_link - Check for link (Copper)
372 * @hw: pointer to the HW structure
374 * Checks to see of the link status of the hardware has changed. If a
375 * change in link status has been detected, then we read the PHY registers
376 * to get the current speed/duplex if link exists.
378 s32
e1000e_check_for_copper_link(struct e1000_hw
*hw
)
380 struct e1000_mac_info
*mac
= &hw
->mac
;
385 * We only want to go out to the PHY registers to see if Auto-Neg
386 * has completed and/or if our link status has changed. The
387 * get_link_status flag is set upon receiving a Link Status
388 * Change or Rx Sequence Error interrupt.
390 if (!mac
->get_link_status
)
394 * First we want to see if the MII Status Register reports
395 * link. If so, then we want to get the current speed/duplex
398 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
403 return ret_val
; /* No link detected */
405 mac
->get_link_status
= 0;
408 * Check if there was DownShift, must be checked
409 * immediately after link-up
411 e1000e_check_downshift(hw
);
414 * If we are forcing speed/duplex, then we simply return since
415 * we have already determined whether we have link or not.
418 ret_val
= -E1000_ERR_CONFIG
;
423 * Auto-Neg is enabled. Auto Speed Detection takes care
424 * of MAC speed/duplex configuration. So we only need to
425 * configure Collision Distance in the MAC.
427 e1000e_config_collision_dist(hw
);
430 * Configure Flow Control now that Auto-Neg has completed.
431 * First, we need to restore the desired flow control
432 * settings because we may have had to re-autoneg with a
433 * different link partner.
435 ret_val
= e1000e_config_fc_after_link_up(hw
);
437 hw_dbg(hw
, "Error configuring flow control\n");
444 * e1000e_check_for_fiber_link - Check for link (Fiber)
445 * @hw: pointer to the HW structure
447 * Checks for link up on the hardware. If link is not up and we have
448 * a signal, then we need to force link up.
450 s32
e1000e_check_for_fiber_link(struct e1000_hw
*hw
)
452 struct e1000_mac_info
*mac
= &hw
->mac
;
459 status
= er32(STATUS
);
463 * If we don't have link (auto-negotiation failed or link partner
464 * cannot auto-negotiate), the cable is plugged in (we have signal),
465 * and our link partner is not trying to auto-negotiate with us (we
466 * are receiving idles or data), we need to force link up. We also
467 * need to give auto-negotiation time to complete, in case the cable
468 * was just plugged in. The autoneg_failed flag does this.
470 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
471 if ((ctrl
& E1000_CTRL_SWDPIN1
) && (!(status
& E1000_STATUS_LU
)) &&
472 (!(rxcw
& E1000_RXCW_C
))) {
473 if (mac
->autoneg_failed
== 0) {
474 mac
->autoneg_failed
= 1;
477 hw_dbg(hw
, "NOT RXing /C/, disable AutoNeg and force link.\n");
479 /* Disable auto-negotiation in the TXCW register */
480 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
482 /* Force link-up and also force full-duplex. */
484 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
487 /* Configure Flow Control after forcing link up. */
488 ret_val
= e1000e_config_fc_after_link_up(hw
);
490 hw_dbg(hw
, "Error configuring flow control\n");
493 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
495 * If we are forcing link and we are receiving /C/ ordered
496 * sets, re-enable auto-negotiation in the TXCW register
497 * and disable forced link in the Device Control register
498 * in an attempt to auto-negotiate with our link partner.
500 hw_dbg(hw
, "RXing /C/, enable AutoNeg and stop forcing link.\n");
501 ew32(TXCW
, mac
->txcw
);
502 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
504 mac
->serdes_has_link
= 1;
511 * e1000e_check_for_serdes_link - Check for link (Serdes)
512 * @hw: pointer to the HW structure
514 * Checks for link up on the hardware. If link is not up and we have
515 * a signal, then we need to force link up.
517 s32
e1000e_check_for_serdes_link(struct e1000_hw
*hw
)
519 struct e1000_mac_info
*mac
= &hw
->mac
;
526 status
= er32(STATUS
);
530 * If we don't have link (auto-negotiation failed or link partner
531 * cannot auto-negotiate), and our link partner is not trying to
532 * auto-negotiate with us (we are receiving idles or data),
533 * we need to force link up. We also need to give auto-negotiation
536 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
537 if ((!(status
& E1000_STATUS_LU
)) && (!(rxcw
& E1000_RXCW_C
))) {
538 if (mac
->autoneg_failed
== 0) {
539 mac
->autoneg_failed
= 1;
542 hw_dbg(hw
, "NOT RXing /C/, disable AutoNeg and force link.\n");
544 /* Disable auto-negotiation in the TXCW register */
545 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
547 /* Force link-up and also force full-duplex. */
549 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
552 /* Configure Flow Control after forcing link up. */
553 ret_val
= e1000e_config_fc_after_link_up(hw
);
555 hw_dbg(hw
, "Error configuring flow control\n");
558 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
560 * If we are forcing link and we are receiving /C/ ordered
561 * sets, re-enable auto-negotiation in the TXCW register
562 * and disable forced link in the Device Control register
563 * in an attempt to auto-negotiate with our link partner.
565 hw_dbg(hw
, "RXing /C/, enable AutoNeg and stop forcing link.\n");
566 ew32(TXCW
, mac
->txcw
);
567 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
569 mac
->serdes_has_link
= 1;
570 } else if (!(E1000_TXCW_ANE
& er32(TXCW
))) {
572 * If we force link for non-auto-negotiation switch, check
573 * link status based on MAC synchronization for internal
576 /* SYNCH bit and IV bit are sticky. */
578 if (E1000_RXCW_SYNCH
& er32(RXCW
)) {
579 if (!(rxcw
& E1000_RXCW_IV
)) {
580 mac
->serdes_has_link
= 1;
581 hw_dbg(hw
, "SERDES: Link is up.\n");
584 mac
->serdes_has_link
= 0;
585 hw_dbg(hw
, "SERDES: Link is down.\n");
589 if (E1000_TXCW_ANE
& er32(TXCW
)) {
590 status
= er32(STATUS
);
591 mac
->serdes_has_link
= (status
& E1000_STATUS_LU
);
598 * e1000_set_default_fc_generic - Set flow control default values
599 * @hw: pointer to the HW structure
601 * Read the EEPROM for the default values for flow control and store the
604 static s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
610 * Read and store word 0x0F of the EEPROM. This word contains bits
611 * that determine the hardware's default PAUSE (flow control) mode,
612 * a bit that determines whether the HW defaults to enabling or
613 * disabling auto-negotiation, and the direction of the
614 * SW defined pins. If there is no SW over-ride of the flow
615 * control setting, then the variable hw->fc will
616 * be initialized based on a value in the EEPROM.
618 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
621 hw_dbg(hw
, "NVM Read Error\n");
625 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
626 hw
->fc
.type
= e1000_fc_none
;
627 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
629 hw
->fc
.type
= e1000_fc_tx_pause
;
631 hw
->fc
.type
= e1000_fc_full
;
637 * e1000e_setup_link - Setup flow control and link settings
638 * @hw: pointer to the HW structure
640 * Determines which flow control settings to use, then configures flow
641 * control. Calls the appropriate media-specific link configuration
642 * function. Assuming the adapter has a valid link partner, a valid link
643 * should be established. Assumes the hardware has previously been reset
644 * and the transmitter and receiver are not enabled.
646 s32
e1000e_setup_link(struct e1000_hw
*hw
)
648 struct e1000_mac_info
*mac
= &hw
->mac
;
652 * In the case of the phy reset being blocked, we already have a link.
653 * We do not need to set it up again.
655 if (e1000_check_reset_block(hw
))
659 * If flow control is set to default, set flow control based on
660 * the EEPROM flow control settings.
662 if (hw
->fc
.type
== e1000_fc_default
) {
663 ret_val
= e1000_set_default_fc_generic(hw
);
669 * We want to save off the original Flow Control configuration just
670 * in case we get disconnected and then reconnected into a different
671 * hub or switch with different Flow Control capabilities.
673 hw
->fc
.original_type
= hw
->fc
.type
;
675 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n", hw
->fc
.type
);
677 /* Call the necessary media_type subroutine to configure the link. */
678 ret_val
= mac
->ops
.setup_physical_interface(hw
);
683 * Initialize the flow control address, type, and PAUSE timer
684 * registers to their default values. This is done even if flow
685 * control is disabled, because it does not hurt anything to
686 * initialize these registers.
688 hw_dbg(hw
, "Initializing the Flow Control address, type and timer regs\n");
689 ew32(FCT
, FLOW_CONTROL_TYPE
);
690 ew32(FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
691 ew32(FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
693 ew32(FCTTV
, hw
->fc
.pause_time
);
695 return e1000e_set_fc_watermarks(hw
);
699 * e1000_commit_fc_settings_generic - Configure flow control
700 * @hw: pointer to the HW structure
702 * Write the flow control settings to the Transmit Config Word Register (TXCW)
703 * base on the flow control settings in e1000_mac_info.
705 static s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
707 struct e1000_mac_info
*mac
= &hw
->mac
;
711 * Check for a software override of the flow control settings, and
712 * setup the device accordingly. If auto-negotiation is enabled, then
713 * software will have to set the "PAUSE" bits to the correct value in
714 * the Transmit Config Word Register (TXCW) and re-start auto-
715 * negotiation. However, if auto-negotiation is disabled, then
716 * software will have to manually configure the two flow control enable
717 * bits in the CTRL register.
719 * The possible values of the "fc" parameter are:
720 * 0: Flow control is completely disabled
721 * 1: Rx flow control is enabled (we can receive pause frames,
722 * but not send pause frames).
723 * 2: Tx flow control is enabled (we can send pause frames but we
724 * do not support receiving pause frames).
725 * 3: Both Rx and Tx flow control (symmetric) are enabled.
727 switch (hw
->fc
.type
) {
729 /* Flow control completely disabled by a software over-ride. */
730 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
732 case e1000_fc_rx_pause
:
734 * Rx Flow control is enabled and Tx Flow control is disabled
735 * by a software over-ride. Since there really isn't a way to
736 * advertise that we are capable of Rx Pause ONLY, we will
737 * advertise that we support both symmetric and asymmetric Rx
738 * PAUSE. Later, we will disable the adapter's ability to send
741 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
743 case e1000_fc_tx_pause
:
745 * Tx Flow control is enabled, and Rx Flow control is disabled,
746 * by a software over-ride.
748 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
752 * Flow control (both Rx and Tx) is enabled by a software
755 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
758 hw_dbg(hw
, "Flow control param set incorrectly\n");
759 return -E1000_ERR_CONFIG
;
770 * e1000_poll_fiber_serdes_link_generic - Poll for link up
771 * @hw: pointer to the HW structure
773 * Polls for link up by reading the status register, if link fails to come
774 * up with auto-negotiation, then the link is forced if a signal is detected.
776 static s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
778 struct e1000_mac_info
*mac
= &hw
->mac
;
783 * If we have a signal (the cable is plugged in, or assumed true for
784 * serdes media) then poll for a "Link-Up" indication in the Device
785 * Status Register. Time-out if a link isn't seen in 500 milliseconds
786 * seconds (Auto-negotiation should complete in less than 500
787 * milliseconds even if the other end is doing it in SW).
789 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
791 status
= er32(STATUS
);
792 if (status
& E1000_STATUS_LU
)
795 if (i
== FIBER_LINK_UP_LIMIT
) {
796 hw_dbg(hw
, "Never got a valid link from auto-neg!!!\n");
797 mac
->autoneg_failed
= 1;
799 * AutoNeg failed to achieve a link, so we'll call
800 * mac->check_for_link. This routine will force the
801 * link up if we detect a signal. This will allow us to
802 * communicate with non-autonegotiating link partners.
804 ret_val
= mac
->ops
.check_for_link(hw
);
806 hw_dbg(hw
, "Error while checking for link\n");
809 mac
->autoneg_failed
= 0;
811 mac
->autoneg_failed
= 0;
812 hw_dbg(hw
, "Valid Link Found\n");
819 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
820 * @hw: pointer to the HW structure
822 * Configures collision distance and flow control for fiber and serdes
823 * links. Upon successful setup, poll for link.
825 s32
e1000e_setup_fiber_serdes_link(struct e1000_hw
*hw
)
832 /* Take the link out of reset */
833 ctrl
&= ~E1000_CTRL_LRST
;
835 e1000e_config_collision_dist(hw
);
837 ret_val
= e1000_commit_fc_settings_generic(hw
);
842 * Since auto-negotiation is enabled, take the link out of reset (the
843 * link will be in reset, because we previously reset the chip). This
844 * will restart auto-negotiation. If auto-negotiation is successful
845 * then the link-up status bit will be set and the flow control enable
846 * bits (RFCE and TFCE) will be set according to their negotiated value.
848 hw_dbg(hw
, "Auto-negotiation enabled\n");
855 * For these adapters, the SW definable pin 1 is set when the optics
856 * detect a signal. If we have a signal, then poll for a "Link-Up"
859 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
860 (er32(CTRL
) & E1000_CTRL_SWDPIN1
)) {
861 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
863 hw_dbg(hw
, "No signal detected\n");
870 * e1000e_config_collision_dist - Configure collision distance
871 * @hw: pointer to the HW structure
873 * Configures the collision distance to the default value and is used
874 * during link setup. Currently no func pointer exists and all
875 * implementations are handled in the generic version of this function.
877 void e1000e_config_collision_dist(struct e1000_hw
*hw
)
883 tctl
&= ~E1000_TCTL_COLD
;
884 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
891 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
892 * @hw: pointer to the HW structure
894 * Sets the flow control high/low threshold (watermark) registers. If
895 * flow control XON frame transmission is enabled, then set XON frame
896 * transmission as well.
898 s32
e1000e_set_fc_watermarks(struct e1000_hw
*hw
)
900 u32 fcrtl
= 0, fcrth
= 0;
903 * Set the flow control receive threshold registers. Normally,
904 * these registers will be set to a default threshold that may be
905 * adjusted later by the driver's runtime code. However, if the
906 * ability to transmit pause frames is not enabled, then these
907 * registers will be set to 0.
909 if (hw
->fc
.type
& e1000_fc_tx_pause
) {
911 * We need to set up the Receive Threshold high and low water
912 * marks as well as (optionally) enabling the transmission of
915 fcrtl
= hw
->fc
.low_water
;
916 fcrtl
|= E1000_FCRTL_XONE
;
917 fcrth
= hw
->fc
.high_water
;
926 * e1000e_force_mac_fc - Force the MAC's flow control settings
927 * @hw: pointer to the HW structure
929 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
930 * device control register to reflect the adapter settings. TFCE and RFCE
931 * need to be explicitly set by software when a copper PHY is used because
932 * autonegotiation is managed by the PHY rather than the MAC. Software must
933 * also configure these bits when link is forced on a fiber connection.
935 s32
e1000e_force_mac_fc(struct e1000_hw
*hw
)
942 * Because we didn't get link via the internal auto-negotiation
943 * mechanism (we either forced link or we got link via PHY
944 * auto-neg), we have to manually enable/disable transmit an
945 * receive flow control.
947 * The "Case" statement below enables/disable flow control
948 * according to the "hw->fc.type" parameter.
950 * The possible values of the "fc" parameter are:
951 * 0: Flow control is completely disabled
952 * 1: Rx flow control is enabled (we can receive pause
953 * frames but not send pause frames).
954 * 2: Tx flow control is enabled (we can send pause frames
955 * frames but we do not receive pause frames).
956 * 3: Both Rx and Tx flow control (symmetric) is enabled.
957 * other: No other values should be possible at this point.
959 hw_dbg(hw
, "hw->fc.type = %u\n", hw
->fc
.type
);
961 switch (hw
->fc
.type
) {
963 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
965 case e1000_fc_rx_pause
:
966 ctrl
&= (~E1000_CTRL_TFCE
);
967 ctrl
|= E1000_CTRL_RFCE
;
969 case e1000_fc_tx_pause
:
970 ctrl
&= (~E1000_CTRL_RFCE
);
971 ctrl
|= E1000_CTRL_TFCE
;
974 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
977 hw_dbg(hw
, "Flow control param set incorrectly\n");
978 return -E1000_ERR_CONFIG
;
987 * e1000e_config_fc_after_link_up - Configures flow control after link
988 * @hw: pointer to the HW structure
990 * Checks the status of auto-negotiation after link up to ensure that the
991 * speed and duplex were not forced. If the link needed to be forced, then
992 * flow control needs to be forced also. If auto-negotiation is enabled
993 * and did not fail, then we configure flow control based on our link
996 s32
e1000e_config_fc_after_link_up(struct e1000_hw
*hw
)
998 struct e1000_mac_info
*mac
= &hw
->mac
;
1000 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1004 * Check for the case where we have fiber media and auto-neg failed
1005 * so we had to force link. In this case, we need to force the
1006 * configuration of the MAC to match the "fc" parameter.
1008 if (mac
->autoneg_failed
) {
1009 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1010 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1011 ret_val
= e1000e_force_mac_fc(hw
);
1013 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1014 ret_val
= e1000e_force_mac_fc(hw
);
1018 hw_dbg(hw
, "Error forcing flow control settings\n");
1023 * Check for the case where we have copper media and auto-neg is
1024 * enabled. In this case, we need to check and see if Auto-Neg
1025 * has completed, and if so, how the PHY and link partner has
1026 * flow control configured.
1028 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1030 * Read the MII Status Register and check to see if AutoNeg
1031 * has completed. We read this twice because this reg has
1032 * some "sticky" (latched) bits.
1034 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1037 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1041 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
1042 hw_dbg(hw
, "Copper PHY and Auto Neg "
1043 "has not completed.\n");
1048 * The AutoNeg process has completed, so we now need to
1049 * read both the Auto Negotiation Advertisement
1050 * Register (Address 4) and the Auto_Negotiation Base
1051 * Page Ability Register (Address 5) to determine how
1052 * flow control was negotiated.
1054 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_nway_adv_reg
);
1057 ret_val
= e1e_rphy(hw
, PHY_LP_ABILITY
, &mii_nway_lp_ability_reg
);
1062 * Two bits in the Auto Negotiation Advertisement Register
1063 * (Address 4) and two bits in the Auto Negotiation Base
1064 * Page Ability Register (Address 5) determine flow control
1065 * for both the PHY and the link partner. The following
1066 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1067 * 1999, describes these PAUSE resolution bits and how flow
1068 * control is determined based upon these settings.
1069 * NOTE: DC = Don't Care
1071 * LOCAL DEVICE | LINK PARTNER
1072 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1073 *-------|---------|-------|---------|--------------------
1074 * 0 | 0 | DC | DC | e1000_fc_none
1075 * 0 | 1 | 0 | DC | e1000_fc_none
1076 * 0 | 1 | 1 | 0 | e1000_fc_none
1077 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1078 * 1 | 0 | 0 | DC | e1000_fc_none
1079 * 1 | DC | 1 | DC | e1000_fc_full
1080 * 1 | 1 | 0 | 0 | e1000_fc_none
1081 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1084 * Are both PAUSE bits set to 1? If so, this implies
1085 * Symmetric Flow Control is enabled at both ends. The
1086 * ASM_DIR bits are irrelevant per the spec.
1088 * For Symmetric Flow Control:
1090 * LOCAL DEVICE | LINK PARTNER
1091 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1092 *-------|---------|-------|---------|--------------------
1093 * 1 | DC | 1 | DC | E1000_fc_full
1096 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1097 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
1099 * Now we need to check if the user selected Rx ONLY
1100 * of pause frames. In this case, we had to advertise
1101 * FULL flow control because we could not advertise Rx
1102 * ONLY. Hence, we must now check to see if we need to
1103 * turn OFF the TRANSMISSION of PAUSE frames.
1105 if (hw
->fc
.original_type
== e1000_fc_full
) {
1106 hw
->fc
.type
= e1000_fc_full
;
1107 hw_dbg(hw
, "Flow Control = FULL.\r\n");
1109 hw
->fc
.type
= e1000_fc_rx_pause
;
1110 hw_dbg(hw
, "Flow Control = "
1111 "RX PAUSE frames only.\r\n");
1115 * For receiving PAUSE frames ONLY.
1117 * LOCAL DEVICE | LINK PARTNER
1118 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1119 *-------|---------|-------|---------|--------------------
1120 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1123 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1124 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1125 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1126 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1127 hw
->fc
.type
= e1000_fc_tx_pause
;
1128 hw_dbg(hw
, "Flow Control = Tx PAUSE frames only.\r\n");
1131 * For transmitting PAUSE frames ONLY.
1133 * LOCAL DEVICE | LINK PARTNER
1134 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1135 *-------|---------|-------|---------|--------------------
1136 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1139 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1140 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1141 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1142 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1143 hw
->fc
.type
= e1000_fc_rx_pause
;
1144 hw_dbg(hw
, "Flow Control = Rx PAUSE frames only.\r\n");
1147 * Per the IEEE spec, at this point flow control
1148 * should be disabled.
1150 hw
->fc
.type
= e1000_fc_none
;
1151 hw_dbg(hw
, "Flow Control = NONE.\r\n");
1155 * Now we need to do one last check... If we auto-
1156 * negotiated to HALF DUPLEX, flow control should not be
1157 * enabled per IEEE 802.3 spec.
1159 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1161 hw_dbg(hw
, "Error getting link speed and duplex\n");
1165 if (duplex
== HALF_DUPLEX
)
1166 hw
->fc
.type
= e1000_fc_none
;
1169 * Now we call a subroutine to actually force the MAC
1170 * controller to use the correct flow control settings.
1172 ret_val
= e1000e_force_mac_fc(hw
);
1174 hw_dbg(hw
, "Error forcing flow control settings\n");
1183 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1184 * @hw: pointer to the HW structure
1185 * @speed: stores the current speed
1186 * @duplex: stores the current duplex
1188 * Read the status register for the current speed/duplex and store the current
1189 * speed and duplex for copper connections.
1191 s32
e1000e_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
, u16
*duplex
)
1195 status
= er32(STATUS
);
1196 if (status
& E1000_STATUS_SPEED_1000
) {
1197 *speed
= SPEED_1000
;
1198 hw_dbg(hw
, "1000 Mbs, ");
1199 } else if (status
& E1000_STATUS_SPEED_100
) {
1201 hw_dbg(hw
, "100 Mbs, ");
1204 hw_dbg(hw
, "10 Mbs, ");
1207 if (status
& E1000_STATUS_FD
) {
1208 *duplex
= FULL_DUPLEX
;
1209 hw_dbg(hw
, "Full Duplex\n");
1211 *duplex
= HALF_DUPLEX
;
1212 hw_dbg(hw
, "Half Duplex\n");
1219 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1220 * @hw: pointer to the HW structure
1221 * @speed: stores the current speed
1222 * @duplex: stores the current duplex
1224 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1225 * for fiber/serdes links.
1227 s32
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw
*hw
, u16
*speed
, u16
*duplex
)
1229 *speed
= SPEED_1000
;
1230 *duplex
= FULL_DUPLEX
;
1236 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1237 * @hw: pointer to the HW structure
1239 * Acquire the HW semaphore to access the PHY or NVM
1241 s32
e1000e_get_hw_semaphore(struct e1000_hw
*hw
)
1244 s32 timeout
= hw
->nvm
.word_size
+ 1;
1247 /* Get the SW semaphore */
1248 while (i
< timeout
) {
1250 if (!(swsm
& E1000_SWSM_SMBI
))
1258 hw_dbg(hw
, "Driver can't access device - SMBI bit is set.\n");
1259 return -E1000_ERR_NVM
;
1262 /* Get the FW semaphore. */
1263 for (i
= 0; i
< timeout
; i
++) {
1265 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1267 /* Semaphore acquired if bit latched */
1268 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
1275 /* Release semaphores */
1276 e1000e_put_hw_semaphore(hw
);
1277 hw_dbg(hw
, "Driver can't access the NVM\n");
1278 return -E1000_ERR_NVM
;
1285 * e1000e_put_hw_semaphore - Release hardware semaphore
1286 * @hw: pointer to the HW structure
1288 * Release hardware semaphore used to access the PHY or NVM
1290 void e1000e_put_hw_semaphore(struct e1000_hw
*hw
)
1295 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1300 * e1000e_get_auto_rd_done - Check for auto read completion
1301 * @hw: pointer to the HW structure
1303 * Check EEPROM for Auto Read done bit.
1305 s32
e1000e_get_auto_rd_done(struct e1000_hw
*hw
)
1309 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1310 if (er32(EECD
) & E1000_EECD_AUTO_RD
)
1316 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1317 hw_dbg(hw
, "Auto read by HW from NVM has not completed.\n");
1318 return -E1000_ERR_RESET
;
1325 * e1000e_valid_led_default - Verify a valid default LED config
1326 * @hw: pointer to the HW structure
1327 * @data: pointer to the NVM (EEPROM)
1329 * Read the EEPROM for the current default LED configuration. If the
1330 * LED configuration is not valid, set to a valid LED configuration.
1332 s32
e1000e_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1336 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1338 hw_dbg(hw
, "NVM Read Error\n");
1342 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1343 *data
= ID_LED_DEFAULT
;
1349 * e1000e_id_led_init -
1350 * @hw: pointer to the HW structure
1353 s32
e1000e_id_led_init(struct e1000_hw
*hw
)
1355 struct e1000_mac_info
*mac
= &hw
->mac
;
1357 const u32 ledctl_mask
= 0x000000FF;
1358 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1359 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1361 const u16 led_mask
= 0x0F;
1363 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1367 mac
->ledctl_default
= er32(LEDCTL
);
1368 mac
->ledctl_mode1
= mac
->ledctl_default
;
1369 mac
->ledctl_mode2
= mac
->ledctl_default
;
1371 for (i
= 0; i
< 4; i
++) {
1372 temp
= (data
>> (i
<< 2)) & led_mask
;
1374 case ID_LED_ON1_DEF2
:
1375 case ID_LED_ON1_ON2
:
1376 case ID_LED_ON1_OFF2
:
1377 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1378 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1380 case ID_LED_OFF1_DEF2
:
1381 case ID_LED_OFF1_ON2
:
1382 case ID_LED_OFF1_OFF2
:
1383 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1384 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1391 case ID_LED_DEF1_ON2
:
1392 case ID_LED_ON1_ON2
:
1393 case ID_LED_OFF1_ON2
:
1394 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1395 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1397 case ID_LED_DEF1_OFF2
:
1398 case ID_LED_ON1_OFF2
:
1399 case ID_LED_OFF1_OFF2
:
1400 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1401 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1413 * e1000e_cleanup_led_generic - Set LED config to default operation
1414 * @hw: pointer to the HW structure
1416 * Remove the current LED configuration and set the LED configuration
1417 * to the default value, saved from the EEPROM.
1419 s32
e1000e_cleanup_led_generic(struct e1000_hw
*hw
)
1421 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
1426 * e1000e_blink_led - Blink LED
1427 * @hw: pointer to the HW structure
1429 * Blink the LEDs which are set to be on.
1431 s32
e1000e_blink_led(struct e1000_hw
*hw
)
1433 u32 ledctl_blink
= 0;
1436 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1437 /* always blink LED0 for PCI-E fiber */
1438 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1439 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1442 * set the blink bit for each LED that's "on" (0x0E)
1445 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1446 for (i
= 0; i
< 4; i
++)
1447 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1448 E1000_LEDCTL_MODE_LED_ON
)
1449 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1453 ew32(LEDCTL
, ledctl_blink
);
1459 * e1000e_led_on_generic - Turn LED on
1460 * @hw: pointer to the HW structure
1464 s32
e1000e_led_on_generic(struct e1000_hw
*hw
)
1468 switch (hw
->phy
.media_type
) {
1469 case e1000_media_type_fiber
:
1471 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1472 ctrl
|= E1000_CTRL_SWDPIO0
;
1475 case e1000_media_type_copper
:
1476 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
1486 * e1000e_led_off_generic - Turn LED off
1487 * @hw: pointer to the HW structure
1491 s32
e1000e_led_off_generic(struct e1000_hw
*hw
)
1495 switch (hw
->phy
.media_type
) {
1496 case e1000_media_type_fiber
:
1498 ctrl
|= E1000_CTRL_SWDPIN0
;
1499 ctrl
|= E1000_CTRL_SWDPIO0
;
1502 case e1000_media_type_copper
:
1503 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1513 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1514 * @hw: pointer to the HW structure
1515 * @no_snoop: bitmap of snoop events
1517 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1519 void e1000e_set_pcie_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
)
1525 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
1532 * e1000e_disable_pcie_master - Disables PCI-express master access
1533 * @hw: pointer to the HW structure
1535 * Returns 0 if successful, else returns -10
1536 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1537 * the master requests to be disabled.
1539 * Disables PCI-Express master access and verifies there are no pending
1542 s32
e1000e_disable_pcie_master(struct e1000_hw
*hw
)
1545 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1548 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1552 if (!(er32(STATUS
) &
1553 E1000_STATUS_GIO_MASTER_ENABLE
))
1560 hw_dbg(hw
, "Master requests are pending.\n");
1561 return -E1000_ERR_MASTER_REQUESTS_PENDING
;
1568 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1569 * @hw: pointer to the HW structure
1571 * Reset the Adaptive Interframe Spacing throttle to default values.
1573 void e1000e_reset_adaptive(struct e1000_hw
*hw
)
1575 struct e1000_mac_info
*mac
= &hw
->mac
;
1577 mac
->current_ifs_val
= 0;
1578 mac
->ifs_min_val
= IFS_MIN
;
1579 mac
->ifs_max_val
= IFS_MAX
;
1580 mac
->ifs_step_size
= IFS_STEP
;
1581 mac
->ifs_ratio
= IFS_RATIO
;
1583 mac
->in_ifs_mode
= 0;
1588 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1589 * @hw: pointer to the HW structure
1591 * Update the Adaptive Interframe Spacing Throttle value based on the
1592 * time between transmitted packets and time between collisions.
1594 void e1000e_update_adaptive(struct e1000_hw
*hw
)
1596 struct e1000_mac_info
*mac
= &hw
->mac
;
1598 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1599 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1600 mac
->in_ifs_mode
= 1;
1601 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1602 if (!mac
->current_ifs_val
)
1603 mac
->current_ifs_val
= mac
->ifs_min_val
;
1605 mac
->current_ifs_val
+=
1607 ew32(AIT
, mac
->current_ifs_val
);
1611 if (mac
->in_ifs_mode
&&
1612 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1613 mac
->current_ifs_val
= 0;
1614 mac
->in_ifs_mode
= 0;
1621 * e1000_raise_eec_clk - Raise EEPROM clock
1622 * @hw: pointer to the HW structure
1623 * @eecd: pointer to the EEPROM
1625 * Enable/Raise the EEPROM clock bit.
1627 static void e1000_raise_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
1629 *eecd
= *eecd
| E1000_EECD_SK
;
1632 udelay(hw
->nvm
.delay_usec
);
1636 * e1000_lower_eec_clk - Lower EEPROM clock
1637 * @hw: pointer to the HW structure
1638 * @eecd: pointer to the EEPROM
1640 * Clear/Lower the EEPROM clock bit.
1642 static void e1000_lower_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
1644 *eecd
= *eecd
& ~E1000_EECD_SK
;
1647 udelay(hw
->nvm
.delay_usec
);
1651 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1652 * @hw: pointer to the HW structure
1653 * @data: data to send to the EEPROM
1654 * @count: number of bits to shift out
1656 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1657 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1658 * In order to do this, "data" must be broken down into bits.
1660 static void e1000_shift_out_eec_bits(struct e1000_hw
*hw
, u16 data
, u16 count
)
1662 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1663 u32 eecd
= er32(EECD
);
1666 mask
= 0x01 << (count
- 1);
1667 if (nvm
->type
== e1000_nvm_eeprom_spi
)
1668 eecd
|= E1000_EECD_DO
;
1671 eecd
&= ~E1000_EECD_DI
;
1674 eecd
|= E1000_EECD_DI
;
1679 udelay(nvm
->delay_usec
);
1681 e1000_raise_eec_clk(hw
, &eecd
);
1682 e1000_lower_eec_clk(hw
, &eecd
);
1687 eecd
&= ~E1000_EECD_DI
;
1692 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1693 * @hw: pointer to the HW structure
1694 * @count: number of bits to shift in
1696 * In order to read a register from the EEPROM, we need to shift 'count' bits
1697 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1698 * the EEPROM (setting the SK bit), and then reading the value of the data out
1699 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1702 static u16
e1000_shift_in_eec_bits(struct e1000_hw
*hw
, u16 count
)
1710 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
1713 for (i
= 0; i
< count
; i
++) {
1715 e1000_raise_eec_clk(hw
, &eecd
);
1719 eecd
&= ~E1000_EECD_DI
;
1720 if (eecd
& E1000_EECD_DO
)
1723 e1000_lower_eec_clk(hw
, &eecd
);
1730 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1731 * @hw: pointer to the HW structure
1732 * @ee_reg: EEPROM flag for polling
1734 * Polls the EEPROM status bit for either read or write completion based
1735 * upon the value of 'ee_reg'.
1737 s32
e1000e_poll_eerd_eewr_done(struct e1000_hw
*hw
, int ee_reg
)
1739 u32 attempts
= 100000;
1742 for (i
= 0; i
< attempts
; i
++) {
1743 if (ee_reg
== E1000_NVM_POLL_READ
)
1748 if (reg
& E1000_NVM_RW_REG_DONE
)
1754 return -E1000_ERR_NVM
;
1758 * e1000e_acquire_nvm - Generic request for access to EEPROM
1759 * @hw: pointer to the HW structure
1761 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1762 * Return successful if access grant bit set, else clear the request for
1763 * EEPROM access and return -E1000_ERR_NVM (-1).
1765 s32
e1000e_acquire_nvm(struct e1000_hw
*hw
)
1767 u32 eecd
= er32(EECD
);
1768 s32 timeout
= E1000_NVM_GRANT_ATTEMPTS
;
1770 ew32(EECD
, eecd
| E1000_EECD_REQ
);
1774 if (eecd
& E1000_EECD_GNT
)
1782 eecd
&= ~E1000_EECD_REQ
;
1784 hw_dbg(hw
, "Could not acquire NVM grant\n");
1785 return -E1000_ERR_NVM
;
1792 * e1000_standby_nvm - Return EEPROM to standby state
1793 * @hw: pointer to the HW structure
1795 * Return the EEPROM to a standby state.
1797 static void e1000_standby_nvm(struct e1000_hw
*hw
)
1799 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1800 u32 eecd
= er32(EECD
);
1802 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
1803 /* Toggle CS to flush commands */
1804 eecd
|= E1000_EECD_CS
;
1807 udelay(nvm
->delay_usec
);
1808 eecd
&= ~E1000_EECD_CS
;
1811 udelay(nvm
->delay_usec
);
1816 * e1000_stop_nvm - Terminate EEPROM command
1817 * @hw: pointer to the HW structure
1819 * Terminates the current command by inverting the EEPROM's chip select pin.
1821 static void e1000_stop_nvm(struct e1000_hw
*hw
)
1826 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
1828 eecd
|= E1000_EECD_CS
;
1829 e1000_lower_eec_clk(hw
, &eecd
);
1834 * e1000e_release_nvm - Release exclusive access to EEPROM
1835 * @hw: pointer to the HW structure
1837 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1839 void e1000e_release_nvm(struct e1000_hw
*hw
)
1846 eecd
&= ~E1000_EECD_REQ
;
1851 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1852 * @hw: pointer to the HW structure
1854 * Setups the EEPROM for reading and writing.
1856 static s32
e1000_ready_nvm_eeprom(struct e1000_hw
*hw
)
1858 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1859 u32 eecd
= er32(EECD
);
1863 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
1864 /* Clear SK and CS */
1865 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
1868 timeout
= NVM_MAX_RETRY_SPI
;
1871 * Read "Status Register" repeatedly until the LSB is cleared.
1872 * The EEPROM will signal that the command has been completed
1873 * by clearing bit 0 of the internal status register. If it's
1874 * not cleared within 'timeout', then error out.
1877 e1000_shift_out_eec_bits(hw
, NVM_RDSR_OPCODE_SPI
,
1878 hw
->nvm
.opcode_bits
);
1879 spi_stat_reg
= (u8
)e1000_shift_in_eec_bits(hw
, 8);
1880 if (!(spi_stat_reg
& NVM_STATUS_RDY_SPI
))
1884 e1000_standby_nvm(hw
);
1889 hw_dbg(hw
, "SPI NVM Status error\n");
1890 return -E1000_ERR_NVM
;
1898 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
1899 * @hw: pointer to the HW structure
1900 * @offset: offset of word in the EEPROM to read
1901 * @words: number of words to read
1902 * @data: word read from the EEPROM
1904 * Reads a 16 bit word from the EEPROM using the EERD register.
1906 s32
e1000e_read_nvm_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
1908 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1913 * A check for invalid values: offset too large, too many words,
1914 * too many words for the offset, and not enough words.
1916 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
1918 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1919 return -E1000_ERR_NVM
;
1922 for (i
= 0; i
< words
; i
++) {
1923 eerd
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) +
1924 E1000_NVM_RW_REG_START
;
1927 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_READ
);
1931 data
[i
] = (er32(EERD
) >> E1000_NVM_RW_REG_DATA
);
1938 * e1000e_write_nvm_spi - Write to EEPROM using SPI
1939 * @hw: pointer to the HW structure
1940 * @offset: offset within the EEPROM to be written to
1941 * @words: number of words to write
1942 * @data: 16 bit word(s) to be written to the EEPROM
1944 * Writes data to EEPROM at offset using SPI interface.
1946 * If e1000e_update_nvm_checksum is not called after this function , the
1947 * EEPROM will most likely contain an invalid checksum.
1949 s32
e1000e_write_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
1951 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1956 * A check for invalid values: offset too large, too many words,
1957 * and not enough words.
1959 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
1961 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1962 return -E1000_ERR_NVM
;
1965 ret_val
= nvm
->ops
.acquire_nvm(hw
);
1971 while (widx
< words
) {
1972 u8 write_opcode
= NVM_WRITE_OPCODE_SPI
;
1974 ret_val
= e1000_ready_nvm_eeprom(hw
);
1976 nvm
->ops
.release_nvm(hw
);
1980 e1000_standby_nvm(hw
);
1982 /* Send the WRITE ENABLE command (8 bit opcode) */
1983 e1000_shift_out_eec_bits(hw
, NVM_WREN_OPCODE_SPI
,
1986 e1000_standby_nvm(hw
);
1989 * Some SPI eeproms use the 8th address bit embedded in the
1992 if ((nvm
->address_bits
== 8) && (offset
>= 128))
1993 write_opcode
|= NVM_A8_OPCODE_SPI
;
1995 /* Send the Write command (8-bit opcode + addr) */
1996 e1000_shift_out_eec_bits(hw
, write_opcode
, nvm
->opcode_bits
);
1997 e1000_shift_out_eec_bits(hw
, (u16
)((offset
+ widx
) * 2),
2000 /* Loop to allow for up to whole page write of eeprom */
2001 while (widx
< words
) {
2002 u16 word_out
= data
[widx
];
2003 word_out
= (word_out
>> 8) | (word_out
<< 8);
2004 e1000_shift_out_eec_bits(hw
, word_out
, 16);
2007 if ((((offset
+ widx
) * 2) % nvm
->page_size
) == 0) {
2008 e1000_standby_nvm(hw
);
2019 * e1000e_read_mac_addr - Read device MAC address
2020 * @hw: pointer to the HW structure
2022 * Reads the device MAC address from the EEPROM and stores the value.
2023 * Since devices with two ports use the same EEPROM, we increment the
2024 * last bit in the MAC address for the second port.
2026 s32
e1000e_read_mac_addr(struct e1000_hw
*hw
)
2029 u16 offset
, nvm_data
, i
;
2030 u16 mac_addr_offset
= 0;
2032 if (hw
->mac
.type
== e1000_82571
) {
2033 /* Check for an alternate MAC address. An alternate MAC
2034 * address can be setup by pre-boot software and must be
2035 * treated like a permanent address and must override the
2036 * actual permanent MAC address.*/
2037 ret_val
= e1000_read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
2040 hw_dbg(hw
, "NVM Read Error\n");
2043 if (mac_addr_offset
== 0xFFFF)
2044 mac_addr_offset
= 0;
2046 if (mac_addr_offset
) {
2047 if (hw
->bus
.func
== E1000_FUNC_1
)
2048 mac_addr_offset
+= ETH_ALEN
/sizeof(u16
);
2050 /* make sure we have a valid mac address here
2051 * before using it */
2052 ret_val
= e1000_read_nvm(hw
, mac_addr_offset
, 1,
2055 hw_dbg(hw
, "NVM Read Error\n");
2058 if (nvm_data
& 0x0001)
2059 mac_addr_offset
= 0;
2062 if (mac_addr_offset
)
2063 hw
->dev_spec
.e82571
.alt_mac_addr_is_present
= 1;
2066 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
2067 offset
= mac_addr_offset
+ (i
>> 1);
2068 ret_val
= e1000_read_nvm(hw
, offset
, 1, &nvm_data
);
2070 hw_dbg(hw
, "NVM Read Error\n");
2073 hw
->mac
.perm_addr
[i
] = (u8
)(nvm_data
& 0xFF);
2074 hw
->mac
.perm_addr
[i
+1] = (u8
)(nvm_data
>> 8);
2077 /* Flip last bit of mac address if we're on second port */
2078 if (!mac_addr_offset
&& hw
->bus
.func
== E1000_FUNC_1
)
2079 hw
->mac
.perm_addr
[5] ^= 1;
2081 for (i
= 0; i
< ETH_ALEN
; i
++)
2082 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
];
2088 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2089 * @hw: pointer to the HW structure
2091 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2092 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2094 s32
e1000e_validate_nvm_checksum_generic(struct e1000_hw
*hw
)
2100 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
2101 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
2103 hw_dbg(hw
, "NVM Read Error\n");
2106 checksum
+= nvm_data
;
2109 if (checksum
!= (u16
) NVM_SUM
) {
2110 hw_dbg(hw
, "NVM Checksum Invalid\n");
2111 return -E1000_ERR_NVM
;
2118 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2119 * @hw: pointer to the HW structure
2121 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2122 * up to the checksum. Then calculates the EEPROM checksum and writes the
2123 * value to the EEPROM.
2125 s32
e1000e_update_nvm_checksum_generic(struct e1000_hw
*hw
)
2131 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
2132 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
2134 hw_dbg(hw
, "NVM Read Error while updating checksum.\n");
2137 checksum
+= nvm_data
;
2139 checksum
= (u16
) NVM_SUM
- checksum
;
2140 ret_val
= e1000_write_nvm(hw
, NVM_CHECKSUM_REG
, 1, &checksum
);
2142 hw_dbg(hw
, "NVM Write Error while updating checksum.\n");
2148 * e1000e_reload_nvm - Reloads EEPROM
2149 * @hw: pointer to the HW structure
2151 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2152 * extended control register.
2154 void e1000e_reload_nvm(struct e1000_hw
*hw
)
2159 ctrl_ext
= er32(CTRL_EXT
);
2160 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
2161 ew32(CTRL_EXT
, ctrl_ext
);
2166 * e1000_calculate_checksum - Calculate checksum for buffer
2167 * @buffer: pointer to EEPROM
2168 * @length: size of EEPROM to calculate a checksum for
2170 * Calculates the checksum for some buffer on a specified length. The
2171 * checksum calculated is returned.
2173 static u8
e1000_calculate_checksum(u8
*buffer
, u32 length
)
2181 for (i
= 0; i
< length
; i
++)
2184 return (u8
) (0 - sum
);
2188 * e1000_mng_enable_host_if - Checks host interface is enabled
2189 * @hw: pointer to the HW structure
2191 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2193 * This function checks whether the HOST IF is enabled for command operation
2194 * and also checks whether the previous command is completed. It busy waits
2195 * in case of previous command is not completed.
2197 static s32
e1000_mng_enable_host_if(struct e1000_hw
*hw
)
2202 /* Check that the host interface is enabled. */
2204 if ((hicr
& E1000_HICR_EN
) == 0) {
2205 hw_dbg(hw
, "E1000_HOST_EN bit disabled.\n");
2206 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2208 /* check the previous command is completed */
2209 for (i
= 0; i
< E1000_MNG_DHCP_COMMAND_TIMEOUT
; i
++) {
2211 if (!(hicr
& E1000_HICR_C
))
2216 if (i
== E1000_MNG_DHCP_COMMAND_TIMEOUT
) {
2217 hw_dbg(hw
, "Previous command timeout failed .\n");
2218 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2225 * e1000e_check_mng_mode - check management mode
2226 * @hw: pointer to the HW structure
2228 * Reads the firmware semaphore register and returns true (>0) if
2229 * manageability is enabled, else false (0).
2231 bool e1000e_check_mng_mode(struct e1000_hw
*hw
)
2233 u32 fwsm
= er32(FWSM
);
2235 return (fwsm
& E1000_FWSM_MODE_MASK
) == hw
->mac
.ops
.mng_mode_enab
;
2239 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
2240 * @hw: pointer to the HW structure
2242 * Enables packet filtering on transmit packets if manageability is enabled
2243 * and host interface is enabled.
2245 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw
*hw
)
2247 struct e1000_host_mng_dhcp_cookie
*hdr
= &hw
->mng_cookie
;
2248 u32
*buffer
= (u32
*)&hw
->mng_cookie
;
2250 s32 ret_val
, hdr_csum
, csum
;
2253 /* No manageability, no filtering */
2254 if (!e1000e_check_mng_mode(hw
)) {
2255 hw
->mac
.tx_pkt_filtering
= 0;
2260 * If we can't read from the host interface for whatever
2261 * reason, disable filtering.
2263 ret_val
= e1000_mng_enable_host_if(hw
);
2265 hw
->mac
.tx_pkt_filtering
= 0;
2269 /* Read in the header. Length and offset are in dwords. */
2270 len
= E1000_MNG_DHCP_COOKIE_LENGTH
>> 2;
2271 offset
= E1000_MNG_DHCP_COOKIE_OFFSET
>> 2;
2272 for (i
= 0; i
< len
; i
++)
2273 *(buffer
+ i
) = E1000_READ_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
);
2274 hdr_csum
= hdr
->checksum
;
2276 csum
= e1000_calculate_checksum((u8
*)hdr
,
2277 E1000_MNG_DHCP_COOKIE_LENGTH
);
2279 * If either the checksums or signature don't match, then
2280 * the cookie area isn't considered valid, in which case we
2281 * take the safe route of assuming Tx filtering is enabled.
2283 if ((hdr_csum
!= csum
) || (hdr
->signature
!= E1000_IAMT_SIGNATURE
)) {
2284 hw
->mac
.tx_pkt_filtering
= 1;
2288 /* Cookie area is valid, make the final check for filtering. */
2289 if (!(hdr
->status
& E1000_MNG_DHCP_COOKIE_STATUS_PARSING
)) {
2290 hw
->mac
.tx_pkt_filtering
= 0;
2294 hw
->mac
.tx_pkt_filtering
= 1;
2299 * e1000_mng_write_cmd_header - Writes manageability command header
2300 * @hw: pointer to the HW structure
2301 * @hdr: pointer to the host interface command header
2303 * Writes the command header after does the checksum calculation.
2305 static s32
e1000_mng_write_cmd_header(struct e1000_hw
*hw
,
2306 struct e1000_host_mng_command_header
*hdr
)
2308 u16 i
, length
= sizeof(struct e1000_host_mng_command_header
);
2310 /* Write the whole command header structure with new checksum. */
2312 hdr
->checksum
= e1000_calculate_checksum((u8
*)hdr
, length
);
2315 /* Write the relevant command block into the ram area. */
2316 for (i
= 0; i
< length
; i
++) {
2317 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, i
,
2318 *((u32
*) hdr
+ i
));
2326 * e1000_mng_host_if_write - Writes to the manageability host interface
2327 * @hw: pointer to the HW structure
2328 * @buffer: pointer to the host interface buffer
2329 * @length: size of the buffer
2330 * @offset: location in the buffer to write to
2331 * @sum: sum of the data (not checksum)
2333 * This function writes the buffer content at the offset given on the host if.
2334 * It also does alignment considerations to do the writes in most efficient
2335 * way. Also fills up the sum of the buffer in *buffer parameter.
2337 static s32
e1000_mng_host_if_write(struct e1000_hw
*hw
, u8
*buffer
,
2338 u16 length
, u16 offset
, u8
*sum
)
2341 u8
*bufptr
= buffer
;
2343 u16 remaining
, i
, j
, prev_bytes
;
2345 /* sum = only sum of the data and it is not checksum */
2347 if (length
== 0 || offset
+ length
> E1000_HI_MAX_MNG_DATA_LENGTH
)
2348 return -E1000_ERR_PARAM
;
2351 prev_bytes
= offset
& 0x3;
2355 data
= E1000_READ_REG_ARRAY(hw
, E1000_HOST_IF
, offset
);
2356 for (j
= prev_bytes
; j
< sizeof(u32
); j
++) {
2357 *(tmp
+ j
) = *bufptr
++;
2360 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
, data
);
2361 length
-= j
- prev_bytes
;
2365 remaining
= length
& 0x3;
2366 length
-= remaining
;
2368 /* Calculate length in DWORDs */
2372 * The device driver writes the relevant command block into the
2375 for (i
= 0; i
< length
; i
++) {
2376 for (j
= 0; j
< sizeof(u32
); j
++) {
2377 *(tmp
+ j
) = *bufptr
++;
2381 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
, data
);
2384 for (j
= 0; j
< sizeof(u32
); j
++) {
2386 *(tmp
+ j
) = *bufptr
++;
2392 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
, data
);
2399 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2400 * @hw: pointer to the HW structure
2401 * @buffer: pointer to the host interface
2402 * @length: size of the buffer
2404 * Writes the DHCP information to the host interface.
2406 s32
e1000e_mng_write_dhcp_info(struct e1000_hw
*hw
, u8
*buffer
, u16 length
)
2408 struct e1000_host_mng_command_header hdr
;
2412 hdr
.command_id
= E1000_MNG_DHCP_TX_PAYLOAD_CMD
;
2413 hdr
.command_length
= length
;
2418 /* Enable the host interface */
2419 ret_val
= e1000_mng_enable_host_if(hw
);
2423 /* Populate the host interface with the contents of "buffer". */
2424 ret_val
= e1000_mng_host_if_write(hw
, buffer
, length
,
2425 sizeof(hdr
), &(hdr
.checksum
));
2429 /* Write the manageability command header */
2430 ret_val
= e1000_mng_write_cmd_header(hw
, &hdr
);
2434 /* Tell the ARC a new command is pending. */
2436 ew32(HICR
, hicr
| E1000_HICR_C
);
2442 * e1000e_enable_mng_pass_thru - Enable processing of ARP's
2443 * @hw: pointer to the HW structure
2445 * Verifies the hardware needs to allow ARPs to be processed by the host.
2447 bool e1000e_enable_mng_pass_thru(struct e1000_hw
*hw
)
2455 if (!(manc
& E1000_MANC_RCV_TCO_EN
) ||
2456 !(manc
& E1000_MANC_EN_MAC_ADDR_FILTER
))
2459 if (hw
->mac
.arc_subsystem_valid
) {
2461 factps
= er32(FACTPS
);
2463 if (!(factps
& E1000_FACTPS_MNGCG
) &&
2464 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
2465 (e1000_mng_mode_pt
<< E1000_FWSM_MODE_SHIFT
))) {
2470 if ((manc
& E1000_MANC_SMBUS_EN
) &&
2471 !(manc
& E1000_MANC_ASF_EN
)) {
2480 s32
e1000e_read_part_num(struct e1000_hw
*hw
, u32
*part_num
)
2485 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_0
, 1, &nvm_data
);
2487 hw_dbg(hw
, "NVM Read Error\n");
2490 *part_num
= (u32
)(nvm_data
<< 16);
2492 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_1
, 1, &nvm_data
);
2494 hw_dbg(hw
, "NVM Read Error\n");
2497 *part_num
|= nvm_data
;