iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / net / e1000e / netdev.c
blobd70bde03619eba5b041b451167c2c0650e32d5cc
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
47 #include "e1000.h"
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name[] = "e1000e";
51 const char e1000e_driver_version[] = DRV_VERSION;
53 static const struct e1000_info *e1000_info_tbl[] = {
54 [board_82571] = &e1000_82571_info,
55 [board_82572] = &e1000_82572_info,
56 [board_82573] = &e1000_82573_info,
57 [board_80003es2lan] = &e1000_es2_info,
58 [board_ich8lan] = &e1000_ich8_info,
59 [board_ich9lan] = &e1000_ich9_info,
62 #ifdef DEBUG
63 /**
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
66 **/
67 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
69 return hw->adapter->netdev->name;
71 #endif
73 /**
74 * e1000_desc_unused - calculate if we have unused descriptors
75 **/
76 static int e1000_desc_unused(struct e1000_ring *ring)
78 if (ring->next_to_clean > ring->next_to_use)
79 return ring->next_to_clean - ring->next_to_use - 1;
81 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
84 /**
85 * e1000_receive_skb - helper function to handle Rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
90 **/
91 static void e1000_receive_skb(struct e1000_adapter *adapter,
92 struct net_device *netdev,
93 struct sk_buff *skb,
94 u8 status, __le16 vlan)
96 skb->protocol = eth_type_trans(skb, netdev);
98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100 le16_to_cpu(vlan) &
101 E1000_RXD_SPC_VLAN_MASK);
102 else
103 netif_receive_skb(skb);
105 netdev->last_rx = jiffies;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
148 skb->ip_summed = CHECKSUM_COMPLETE;
150 adapter->hw_csum_good++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158 int cleaned_count)
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
174 if (skb) {
175 skb_trim(skb, 0);
176 goto map_skb;
179 skb = netdev_alloc_skb(netdev, bufsz);
180 if (!skb) {
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
183 break;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb, NET_IP_ALIGN);
193 buffer_info->skb = skb;
194 map_skb:
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
197 PCI_DMA_FROMDEVICE);
198 if (pci_dma_mapping_error(buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
201 break;
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
207 i++;
208 if (i == rx_ring->count)
209 i = 0;
210 buffer_info = &rx_ring->buffer_info[i];
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i-- == 0)
216 i = (rx_ring->count - 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
222 * such as IA-64).
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234 int cleaned_count)
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
242 struct sk_buff *skb;
243 unsigned int i, j;
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
256 continue;
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
260 if (!ps_page->page) {
261 adapter->alloc_rx_buff_failed++;
262 goto no_buffers;
264 ps_page->dma = pci_map_page(pdev,
265 ps_page->page,
266 0, PAGE_SIZE,
267 PCI_DMA_FROMDEVICE);
268 if (pci_dma_mapping_error(ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
272 goto no_buffers;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
278 * erases this info.
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
287 if (!skb) {
288 adapter->alloc_rx_buff_failed++;
289 break;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb, NET_IP_ALIGN);
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
302 PCI_DMA_FROMDEVICE);
303 if (pci_dma_mapping_error(buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
306 /* cleanup skb */
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
309 break;
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 buffer_info = &rx_ring->buffer_info[i];
320 no_buffers:
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
324 if (!(i--))
325 i = (rx_ring->count - 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
331 * such as IA-64).
333 wmb();
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
337 * twice as much.
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
344 * e1000_clean_rx_irq - Send received data up the network stack; legacy
345 * @adapter: board private structure
347 * the return value indicates whether actual cleaning was done, there
348 * is no guarantee that everything was cleaned
350 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
351 int *work_done, int work_to_do)
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_ring *rx_ring = adapter->rx_ring;
356 struct e1000_rx_desc *rx_desc, *next_rxd;
357 struct e1000_buffer *buffer_info, *next_buffer;
358 u32 length;
359 unsigned int i;
360 int cleaned_count = 0;
361 bool cleaned = 0;
362 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
364 i = rx_ring->next_to_clean;
365 rx_desc = E1000_RX_DESC(*rx_ring, i);
366 buffer_info = &rx_ring->buffer_info[i];
368 while (rx_desc->status & E1000_RXD_STAT_DD) {
369 struct sk_buff *skb;
370 u8 status;
372 if (*work_done >= work_to_do)
373 break;
374 (*work_done)++;
376 status = rx_desc->status;
377 skb = buffer_info->skb;
378 buffer_info->skb = NULL;
380 prefetch(skb->data - NET_IP_ALIGN);
382 i++;
383 if (i == rx_ring->count)
384 i = 0;
385 next_rxd = E1000_RX_DESC(*rx_ring, i);
386 prefetch(next_rxd);
388 next_buffer = &rx_ring->buffer_info[i];
390 cleaned = 1;
391 cleaned_count++;
392 pci_unmap_single(pdev,
393 buffer_info->dma,
394 adapter->rx_buffer_len,
395 PCI_DMA_FROMDEVICE);
396 buffer_info->dma = 0;
398 length = le16_to_cpu(rx_desc->length);
400 /* !EOP means multiple descriptors were used to store a single
401 * packet, also make sure the frame isn't just CRC only */
402 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
403 /* All receives must fit into a single buffer */
404 ndev_dbg(netdev, "%s: Receive packet consumed "
405 "multiple buffers\n", netdev->name);
406 /* recycle */
407 buffer_info->skb = skb;
408 goto next_desc;
411 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
412 /* recycle */
413 buffer_info->skb = skb;
414 goto next_desc;
417 total_rx_bytes += length;
418 total_rx_packets++;
421 * code added for copybreak, this should improve
422 * performance for small packets with large amounts
423 * of reassembly being done in the stack
425 if (length < copybreak) {
426 struct sk_buff *new_skb =
427 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
428 if (new_skb) {
429 skb_reserve(new_skb, NET_IP_ALIGN);
430 memcpy(new_skb->data - NET_IP_ALIGN,
431 skb->data - NET_IP_ALIGN,
432 length + NET_IP_ALIGN);
433 /* save the skb in buffer_info as good */
434 buffer_info->skb = skb;
435 skb = new_skb;
437 /* else just continue with the old one */
439 /* end copybreak code */
440 skb_put(skb, length);
442 /* Receive Checksum Offload */
443 e1000_rx_checksum(adapter,
444 (u32)(status) |
445 ((u32)(rx_desc->errors) << 24),
446 le16_to_cpu(rx_desc->csum), skb);
448 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
450 next_desc:
451 rx_desc->status = 0;
453 /* return some buffers to hardware, one at a time is too slow */
454 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
455 adapter->alloc_rx_buf(adapter, cleaned_count);
456 cleaned_count = 0;
459 /* use prefetched values */
460 rx_desc = next_rxd;
461 buffer_info = next_buffer;
463 rx_ring->next_to_clean = i;
465 cleaned_count = e1000_desc_unused(rx_ring);
466 if (cleaned_count)
467 adapter->alloc_rx_buf(adapter, cleaned_count);
469 adapter->total_rx_packets += total_rx_packets;
470 adapter->total_rx_bytes += total_rx_bytes;
471 adapter->net_stats.rx_packets += total_rx_packets;
472 adapter->net_stats.rx_bytes += total_rx_bytes;
473 return cleaned;
476 static void e1000_put_txbuf(struct e1000_adapter *adapter,
477 struct e1000_buffer *buffer_info)
479 if (buffer_info->dma) {
480 pci_unmap_page(adapter->pdev, buffer_info->dma,
481 buffer_info->length, PCI_DMA_TODEVICE);
482 buffer_info->dma = 0;
484 if (buffer_info->skb) {
485 dev_kfree_skb_any(buffer_info->skb);
486 buffer_info->skb = NULL;
490 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
492 struct e1000_ring *tx_ring = adapter->tx_ring;
493 unsigned int i = tx_ring->next_to_clean;
494 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
495 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
496 struct net_device *netdev = adapter->netdev;
498 /* detected Tx unit hang */
499 ndev_err(netdev,
500 "Detected Tx Unit Hang:\n"
501 " TDH <%x>\n"
502 " TDT <%x>\n"
503 " next_to_use <%x>\n"
504 " next_to_clean <%x>\n"
505 "buffer_info[next_to_clean]:\n"
506 " time_stamp <%lx>\n"
507 " next_to_watch <%x>\n"
508 " jiffies <%lx>\n"
509 " next_to_watch.status <%x>\n",
510 readl(adapter->hw.hw_addr + tx_ring->head),
511 readl(adapter->hw.hw_addr + tx_ring->tail),
512 tx_ring->next_to_use,
513 tx_ring->next_to_clean,
514 tx_ring->buffer_info[eop].time_stamp,
515 eop,
516 jiffies,
517 eop_desc->upper.fields.status);
521 * e1000_clean_tx_irq - Reclaim resources after transmit completes
522 * @adapter: board private structure
524 * the return value indicates whether actual cleaning was done, there
525 * is no guarantee that everything was cleaned
527 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
529 struct net_device *netdev = adapter->netdev;
530 struct e1000_hw *hw = &adapter->hw;
531 struct e1000_ring *tx_ring = adapter->tx_ring;
532 struct e1000_tx_desc *tx_desc, *eop_desc;
533 struct e1000_buffer *buffer_info;
534 unsigned int i, eop;
535 unsigned int count = 0;
536 bool cleaned = 0;
537 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
539 i = tx_ring->next_to_clean;
540 eop = tx_ring->buffer_info[i].next_to_watch;
541 eop_desc = E1000_TX_DESC(*tx_ring, eop);
543 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
544 for (cleaned = 0; !cleaned; ) {
545 tx_desc = E1000_TX_DESC(*tx_ring, i);
546 buffer_info = &tx_ring->buffer_info[i];
547 cleaned = (i == eop);
549 if (cleaned) {
550 struct sk_buff *skb = buffer_info->skb;
551 unsigned int segs, bytecount;
552 segs = skb_shinfo(skb)->gso_segs ?: 1;
553 /* multiply data chunks by size of headers */
554 bytecount = ((segs - 1) * skb_headlen(skb)) +
555 skb->len;
556 total_tx_packets += segs;
557 total_tx_bytes += bytecount;
560 e1000_put_txbuf(adapter, buffer_info);
561 tx_desc->upper.data = 0;
563 i++;
564 if (i == tx_ring->count)
565 i = 0;
568 eop = tx_ring->buffer_info[i].next_to_watch;
569 eop_desc = E1000_TX_DESC(*tx_ring, eop);
570 #define E1000_TX_WEIGHT 64
571 /* weight of a sort for tx, to avoid endless transmit cleanup */
572 if (count++ == E1000_TX_WEIGHT)
573 break;
576 tx_ring->next_to_clean = i;
578 #define TX_WAKE_THRESHOLD 32
579 if (cleaned && netif_carrier_ok(netdev) &&
580 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
581 /* Make sure that anybody stopping the queue after this
582 * sees the new next_to_clean.
584 smp_mb();
586 if (netif_queue_stopped(netdev) &&
587 !(test_bit(__E1000_DOWN, &adapter->state))) {
588 netif_wake_queue(netdev);
589 ++adapter->restart_queue;
593 if (adapter->detect_tx_hung) {
595 * Detect a transmit hang in hardware, this serializes the
596 * check with the clearing of time_stamp and movement of i
598 adapter->detect_tx_hung = 0;
599 if (tx_ring->buffer_info[eop].dma &&
600 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
601 + (adapter->tx_timeout_factor * HZ))
602 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
603 e1000_print_tx_hang(adapter);
604 netif_stop_queue(netdev);
607 adapter->total_tx_bytes += total_tx_bytes;
608 adapter->total_tx_packets += total_tx_packets;
609 adapter->net_stats.tx_packets += total_tx_packets;
610 adapter->net_stats.tx_bytes += total_tx_bytes;
611 return cleaned;
615 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
616 * @adapter: board private structure
618 * the return value indicates whether actual cleaning was done, there
619 * is no guarantee that everything was cleaned
621 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
622 int *work_done, int work_to_do)
624 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
625 struct net_device *netdev = adapter->netdev;
626 struct pci_dev *pdev = adapter->pdev;
627 struct e1000_ring *rx_ring = adapter->rx_ring;
628 struct e1000_buffer *buffer_info, *next_buffer;
629 struct e1000_ps_page *ps_page;
630 struct sk_buff *skb;
631 unsigned int i, j;
632 u32 length, staterr;
633 int cleaned_count = 0;
634 bool cleaned = 0;
635 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
637 i = rx_ring->next_to_clean;
638 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
639 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
640 buffer_info = &rx_ring->buffer_info[i];
642 while (staterr & E1000_RXD_STAT_DD) {
643 if (*work_done >= work_to_do)
644 break;
645 (*work_done)++;
646 skb = buffer_info->skb;
648 /* in the packet split case this is header only */
649 prefetch(skb->data - NET_IP_ALIGN);
651 i++;
652 if (i == rx_ring->count)
653 i = 0;
654 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
655 prefetch(next_rxd);
657 next_buffer = &rx_ring->buffer_info[i];
659 cleaned = 1;
660 cleaned_count++;
661 pci_unmap_single(pdev, buffer_info->dma,
662 adapter->rx_ps_bsize0,
663 PCI_DMA_FROMDEVICE);
664 buffer_info->dma = 0;
666 if (!(staterr & E1000_RXD_STAT_EOP)) {
667 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
668 "up the full packet\n", netdev->name);
669 dev_kfree_skb_irq(skb);
670 goto next_desc;
673 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
674 dev_kfree_skb_irq(skb);
675 goto next_desc;
678 length = le16_to_cpu(rx_desc->wb.middle.length0);
680 if (!length) {
681 ndev_dbg(netdev, "%s: Last part of the packet spanning"
682 " multiple descriptors\n", netdev->name);
683 dev_kfree_skb_irq(skb);
684 goto next_desc;
687 /* Good Receive */
688 skb_put(skb, length);
692 * this looks ugly, but it seems compiler issues make it
693 * more efficient than reusing j
695 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
698 * page alloc/put takes too long and effects small packet
699 * throughput, so unsplit small packets and save the alloc/put
700 * only valid in softirq (napi) context to call kmap_*
702 if (l1 && (l1 <= copybreak) &&
703 ((length + l1) <= adapter->rx_ps_bsize0)) {
704 u8 *vaddr;
706 ps_page = &buffer_info->ps_pages[0];
709 * there is no documentation about how to call
710 * kmap_atomic, so we can't hold the mapping
711 * very long
713 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
714 PAGE_SIZE, PCI_DMA_FROMDEVICE);
715 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
716 memcpy(skb_tail_pointer(skb), vaddr, l1);
717 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
718 pci_dma_sync_single_for_device(pdev, ps_page->dma,
719 PAGE_SIZE, PCI_DMA_FROMDEVICE);
721 skb_put(skb, l1);
722 goto copydone;
723 } /* if */
726 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
727 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
728 if (!length)
729 break;
731 ps_page = &buffer_info->ps_pages[j];
732 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
733 PCI_DMA_FROMDEVICE);
734 ps_page->dma = 0;
735 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
736 ps_page->page = NULL;
737 skb->len += length;
738 skb->data_len += length;
739 skb->truesize += length;
742 copydone:
743 total_rx_bytes += skb->len;
744 total_rx_packets++;
746 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
747 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
749 if (rx_desc->wb.upper.header_status &
750 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
751 adapter->rx_hdr_split++;
753 e1000_receive_skb(adapter, netdev, skb,
754 staterr, rx_desc->wb.middle.vlan);
756 next_desc:
757 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
758 buffer_info->skb = NULL;
760 /* return some buffers to hardware, one at a time is too slow */
761 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
762 adapter->alloc_rx_buf(adapter, cleaned_count);
763 cleaned_count = 0;
766 /* use prefetched values */
767 rx_desc = next_rxd;
768 buffer_info = next_buffer;
770 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
772 rx_ring->next_to_clean = i;
774 cleaned_count = e1000_desc_unused(rx_ring);
775 if (cleaned_count)
776 adapter->alloc_rx_buf(adapter, cleaned_count);
778 adapter->total_rx_packets += total_rx_packets;
779 adapter->total_rx_bytes += total_rx_bytes;
780 adapter->net_stats.rx_packets += total_rx_packets;
781 adapter->net_stats.rx_bytes += total_rx_bytes;
782 return cleaned;
786 * e1000_clean_rx_ring - Free Rx Buffers per Queue
787 * @adapter: board private structure
789 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
791 struct e1000_ring *rx_ring = adapter->rx_ring;
792 struct e1000_buffer *buffer_info;
793 struct e1000_ps_page *ps_page;
794 struct pci_dev *pdev = adapter->pdev;
795 unsigned int i, j;
797 /* Free all the Rx ring sk_buffs */
798 for (i = 0; i < rx_ring->count; i++) {
799 buffer_info = &rx_ring->buffer_info[i];
800 if (buffer_info->dma) {
801 if (adapter->clean_rx == e1000_clean_rx_irq)
802 pci_unmap_single(pdev, buffer_info->dma,
803 adapter->rx_buffer_len,
804 PCI_DMA_FROMDEVICE);
805 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
806 pci_unmap_single(pdev, buffer_info->dma,
807 adapter->rx_ps_bsize0,
808 PCI_DMA_FROMDEVICE);
809 buffer_info->dma = 0;
812 if (buffer_info->skb) {
813 dev_kfree_skb(buffer_info->skb);
814 buffer_info->skb = NULL;
817 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
818 ps_page = &buffer_info->ps_pages[j];
819 if (!ps_page->page)
820 break;
821 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
822 PCI_DMA_FROMDEVICE);
823 ps_page->dma = 0;
824 put_page(ps_page->page);
825 ps_page->page = NULL;
829 /* there also may be some cached data from a chained receive */
830 if (rx_ring->rx_skb_top) {
831 dev_kfree_skb(rx_ring->rx_skb_top);
832 rx_ring->rx_skb_top = NULL;
835 /* Zero out the descriptor ring */
836 memset(rx_ring->desc, 0, rx_ring->size);
838 rx_ring->next_to_clean = 0;
839 rx_ring->next_to_use = 0;
841 writel(0, adapter->hw.hw_addr + rx_ring->head);
842 writel(0, adapter->hw.hw_addr + rx_ring->tail);
846 * e1000_intr_msi - Interrupt Handler
847 * @irq: interrupt number
848 * @data: pointer to a network interface device structure
850 static irqreturn_t e1000_intr_msi(int irq, void *data)
852 struct net_device *netdev = data;
853 struct e1000_adapter *adapter = netdev_priv(netdev);
854 struct e1000_hw *hw = &adapter->hw;
855 u32 icr = er32(ICR);
858 * read ICR disables interrupts using IAM
861 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
862 hw->mac.get_link_status = 1;
864 * ICH8 workaround-- Call gig speed drop workaround on cable
865 * disconnect (LSC) before accessing any PHY registers
867 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
868 (!(er32(STATUS) & E1000_STATUS_LU)))
869 e1000e_gig_downshift_workaround_ich8lan(hw);
872 * 80003ES2LAN workaround-- For packet buffer work-around on
873 * link down event; disable receives here in the ISR and reset
874 * adapter in watchdog
876 if (netif_carrier_ok(netdev) &&
877 adapter->flags & FLAG_RX_NEEDS_RESTART) {
878 /* disable receives */
879 u32 rctl = er32(RCTL);
880 ew32(RCTL, rctl & ~E1000_RCTL_EN);
881 adapter->flags |= FLAG_RX_RESTART_NOW;
883 /* guard against interrupt when we're going down */
884 if (!test_bit(__E1000_DOWN, &adapter->state))
885 mod_timer(&adapter->watchdog_timer, jiffies + 1);
888 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
889 adapter->total_tx_bytes = 0;
890 adapter->total_tx_packets = 0;
891 adapter->total_rx_bytes = 0;
892 adapter->total_rx_packets = 0;
893 __netif_rx_schedule(netdev, &adapter->napi);
896 return IRQ_HANDLED;
900 * e1000_intr - Interrupt Handler
901 * @irq: interrupt number
902 * @data: pointer to a network interface device structure
904 static irqreturn_t e1000_intr(int irq, void *data)
906 struct net_device *netdev = data;
907 struct e1000_adapter *adapter = netdev_priv(netdev);
908 struct e1000_hw *hw = &adapter->hw;
910 u32 rctl, icr = er32(ICR);
911 if (!icr)
912 return IRQ_NONE; /* Not our interrupt */
915 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
916 * not set, then the adapter didn't send an interrupt
918 if (!(icr & E1000_ICR_INT_ASSERTED))
919 return IRQ_NONE;
922 * Interrupt Auto-Mask...upon reading ICR,
923 * interrupts are masked. No need for the
924 * IMC write
927 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
928 hw->mac.get_link_status = 1;
930 * ICH8 workaround-- Call gig speed drop workaround on cable
931 * disconnect (LSC) before accessing any PHY registers
933 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
934 (!(er32(STATUS) & E1000_STATUS_LU)))
935 e1000e_gig_downshift_workaround_ich8lan(hw);
938 * 80003ES2LAN workaround--
939 * For packet buffer work-around on link down event;
940 * disable receives here in the ISR and
941 * reset adapter in watchdog
943 if (netif_carrier_ok(netdev) &&
944 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
945 /* disable receives */
946 rctl = er32(RCTL);
947 ew32(RCTL, rctl & ~E1000_RCTL_EN);
948 adapter->flags |= FLAG_RX_RESTART_NOW;
950 /* guard against interrupt when we're going down */
951 if (!test_bit(__E1000_DOWN, &adapter->state))
952 mod_timer(&adapter->watchdog_timer, jiffies + 1);
955 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
956 adapter->total_tx_bytes = 0;
957 adapter->total_tx_packets = 0;
958 adapter->total_rx_bytes = 0;
959 adapter->total_rx_packets = 0;
960 __netif_rx_schedule(netdev, &adapter->napi);
963 return IRQ_HANDLED;
966 static int e1000_request_irq(struct e1000_adapter *adapter)
968 struct net_device *netdev = adapter->netdev;
969 irq_handler_t handler = e1000_intr;
970 int irq_flags = IRQF_SHARED;
971 int err;
973 if (!pci_enable_msi(adapter->pdev)) {
974 adapter->flags |= FLAG_MSI_ENABLED;
975 handler = e1000_intr_msi;
976 irq_flags = 0;
979 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
980 netdev);
981 if (err) {
982 ndev_err(netdev,
983 "Unable to allocate %s interrupt (return: %d)\n",
984 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
985 err);
986 if (adapter->flags & FLAG_MSI_ENABLED)
987 pci_disable_msi(adapter->pdev);
990 return err;
993 static void e1000_free_irq(struct e1000_adapter *adapter)
995 struct net_device *netdev = adapter->netdev;
997 free_irq(adapter->pdev->irq, netdev);
998 if (adapter->flags & FLAG_MSI_ENABLED) {
999 pci_disable_msi(adapter->pdev);
1000 adapter->flags &= ~FLAG_MSI_ENABLED;
1005 * e1000_irq_disable - Mask off interrupt generation on the NIC
1007 static void e1000_irq_disable(struct e1000_adapter *adapter)
1009 struct e1000_hw *hw = &adapter->hw;
1011 ew32(IMC, ~0);
1012 e1e_flush();
1013 synchronize_irq(adapter->pdev->irq);
1017 * e1000_irq_enable - Enable default interrupt generation settings
1019 static void e1000_irq_enable(struct e1000_adapter *adapter)
1021 struct e1000_hw *hw = &adapter->hw;
1023 ew32(IMS, IMS_ENABLE_MASK);
1024 e1e_flush();
1028 * e1000_get_hw_control - get control of the h/w from f/w
1029 * @adapter: address of board private structure
1031 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1032 * For ASF and Pass Through versions of f/w this means that
1033 * the driver is loaded. For AMT version (only with 82573)
1034 * of the f/w this means that the network i/f is open.
1036 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1038 struct e1000_hw *hw = &adapter->hw;
1039 u32 ctrl_ext;
1040 u32 swsm;
1042 /* Let firmware know the driver has taken over */
1043 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1044 swsm = er32(SWSM);
1045 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1046 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1047 ctrl_ext = er32(CTRL_EXT);
1048 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1053 * e1000_release_hw_control - release control of the h/w to f/w
1054 * @adapter: address of board private structure
1056 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1057 * For ASF and Pass Through versions of f/w this means that the
1058 * driver is no longer loaded. For AMT version (only with 82573) i
1059 * of the f/w this means that the network i/f is closed.
1062 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1064 struct e1000_hw *hw = &adapter->hw;
1065 u32 ctrl_ext;
1066 u32 swsm;
1068 /* Let firmware taken over control of h/w */
1069 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1070 swsm = er32(SWSM);
1071 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1072 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1073 ctrl_ext = er32(CTRL_EXT);
1074 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1079 * @e1000_alloc_ring - allocate memory for a ring structure
1081 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1082 struct e1000_ring *ring)
1084 struct pci_dev *pdev = adapter->pdev;
1086 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1087 GFP_KERNEL);
1088 if (!ring->desc)
1089 return -ENOMEM;
1091 return 0;
1095 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1096 * @adapter: board private structure
1098 * Return 0 on success, negative on failure
1100 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1102 struct e1000_ring *tx_ring = adapter->tx_ring;
1103 int err = -ENOMEM, size;
1105 size = sizeof(struct e1000_buffer) * tx_ring->count;
1106 tx_ring->buffer_info = vmalloc(size);
1107 if (!tx_ring->buffer_info)
1108 goto err;
1109 memset(tx_ring->buffer_info, 0, size);
1111 /* round up to nearest 4K */
1112 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1113 tx_ring->size = ALIGN(tx_ring->size, 4096);
1115 err = e1000_alloc_ring_dma(adapter, tx_ring);
1116 if (err)
1117 goto err;
1119 tx_ring->next_to_use = 0;
1120 tx_ring->next_to_clean = 0;
1121 spin_lock_init(&adapter->tx_queue_lock);
1123 return 0;
1124 err:
1125 vfree(tx_ring->buffer_info);
1126 ndev_err(adapter->netdev,
1127 "Unable to allocate memory for the transmit descriptor ring\n");
1128 return err;
1132 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1133 * @adapter: board private structure
1135 * Returns 0 on success, negative on failure
1137 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1139 struct e1000_ring *rx_ring = adapter->rx_ring;
1140 struct e1000_buffer *buffer_info;
1141 int i, size, desc_len, err = -ENOMEM;
1143 size = sizeof(struct e1000_buffer) * rx_ring->count;
1144 rx_ring->buffer_info = vmalloc(size);
1145 if (!rx_ring->buffer_info)
1146 goto err;
1147 memset(rx_ring->buffer_info, 0, size);
1149 for (i = 0; i < rx_ring->count; i++) {
1150 buffer_info = &rx_ring->buffer_info[i];
1151 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1152 sizeof(struct e1000_ps_page),
1153 GFP_KERNEL);
1154 if (!buffer_info->ps_pages)
1155 goto err_pages;
1158 desc_len = sizeof(union e1000_rx_desc_packet_split);
1160 /* Round up to nearest 4K */
1161 rx_ring->size = rx_ring->count * desc_len;
1162 rx_ring->size = ALIGN(rx_ring->size, 4096);
1164 err = e1000_alloc_ring_dma(adapter, rx_ring);
1165 if (err)
1166 goto err_pages;
1168 rx_ring->next_to_clean = 0;
1169 rx_ring->next_to_use = 0;
1170 rx_ring->rx_skb_top = NULL;
1172 return 0;
1174 err_pages:
1175 for (i = 0; i < rx_ring->count; i++) {
1176 buffer_info = &rx_ring->buffer_info[i];
1177 kfree(buffer_info->ps_pages);
1179 err:
1180 vfree(rx_ring->buffer_info);
1181 ndev_err(adapter->netdev,
1182 "Unable to allocate memory for the transmit descriptor ring\n");
1183 return err;
1187 * e1000_clean_tx_ring - Free Tx Buffers
1188 * @adapter: board private structure
1190 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1192 struct e1000_ring *tx_ring = adapter->tx_ring;
1193 struct e1000_buffer *buffer_info;
1194 unsigned long size;
1195 unsigned int i;
1197 for (i = 0; i < tx_ring->count; i++) {
1198 buffer_info = &tx_ring->buffer_info[i];
1199 e1000_put_txbuf(adapter, buffer_info);
1202 size = sizeof(struct e1000_buffer) * tx_ring->count;
1203 memset(tx_ring->buffer_info, 0, size);
1205 memset(tx_ring->desc, 0, tx_ring->size);
1207 tx_ring->next_to_use = 0;
1208 tx_ring->next_to_clean = 0;
1210 writel(0, adapter->hw.hw_addr + tx_ring->head);
1211 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1215 * e1000e_free_tx_resources - Free Tx Resources per Queue
1216 * @adapter: board private structure
1218 * Free all transmit software resources
1220 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1222 struct pci_dev *pdev = adapter->pdev;
1223 struct e1000_ring *tx_ring = adapter->tx_ring;
1225 e1000_clean_tx_ring(adapter);
1227 vfree(tx_ring->buffer_info);
1228 tx_ring->buffer_info = NULL;
1230 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1231 tx_ring->dma);
1232 tx_ring->desc = NULL;
1236 * e1000e_free_rx_resources - Free Rx Resources
1237 * @adapter: board private structure
1239 * Free all receive software resources
1242 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1244 struct pci_dev *pdev = adapter->pdev;
1245 struct e1000_ring *rx_ring = adapter->rx_ring;
1246 int i;
1248 e1000_clean_rx_ring(adapter);
1250 for (i = 0; i < rx_ring->count; i++) {
1251 kfree(rx_ring->buffer_info[i].ps_pages);
1254 vfree(rx_ring->buffer_info);
1255 rx_ring->buffer_info = NULL;
1257 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1258 rx_ring->dma);
1259 rx_ring->desc = NULL;
1263 * e1000_update_itr - update the dynamic ITR value based on statistics
1264 * @adapter: pointer to adapter
1265 * @itr_setting: current adapter->itr
1266 * @packets: the number of packets during this measurement interval
1267 * @bytes: the number of bytes during this measurement interval
1269 * Stores a new ITR value based on packets and byte
1270 * counts during the last interrupt. The advantage of per interrupt
1271 * computation is faster updates and more accurate ITR for the current
1272 * traffic pattern. Constants in this function were computed
1273 * based on theoretical maximum wire speed and thresholds were set based
1274 * on testing data as well as attempting to minimize response time
1275 * while increasing bulk throughput.
1276 * this functionality is controlled by the InterruptThrottleRate module
1277 * parameter (see e1000_param.c)
1279 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1280 u16 itr_setting, int packets,
1281 int bytes)
1283 unsigned int retval = itr_setting;
1285 if (packets == 0)
1286 goto update_itr_done;
1288 switch (itr_setting) {
1289 case lowest_latency:
1290 /* handle TSO and jumbo frames */
1291 if (bytes/packets > 8000)
1292 retval = bulk_latency;
1293 else if ((packets < 5) && (bytes > 512)) {
1294 retval = low_latency;
1296 break;
1297 case low_latency: /* 50 usec aka 20000 ints/s */
1298 if (bytes > 10000) {
1299 /* this if handles the TSO accounting */
1300 if (bytes/packets > 8000) {
1301 retval = bulk_latency;
1302 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1303 retval = bulk_latency;
1304 } else if ((packets > 35)) {
1305 retval = lowest_latency;
1307 } else if (bytes/packets > 2000) {
1308 retval = bulk_latency;
1309 } else if (packets <= 2 && bytes < 512) {
1310 retval = lowest_latency;
1312 break;
1313 case bulk_latency: /* 250 usec aka 4000 ints/s */
1314 if (bytes > 25000) {
1315 if (packets > 35) {
1316 retval = low_latency;
1318 } else if (bytes < 6000) {
1319 retval = low_latency;
1321 break;
1324 update_itr_done:
1325 return retval;
1328 static void e1000_set_itr(struct e1000_adapter *adapter)
1330 struct e1000_hw *hw = &adapter->hw;
1331 u16 current_itr;
1332 u32 new_itr = adapter->itr;
1334 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1335 if (adapter->link_speed != SPEED_1000) {
1336 current_itr = 0;
1337 new_itr = 4000;
1338 goto set_itr_now;
1341 adapter->tx_itr = e1000_update_itr(adapter,
1342 adapter->tx_itr,
1343 adapter->total_tx_packets,
1344 adapter->total_tx_bytes);
1345 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1346 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1347 adapter->tx_itr = low_latency;
1349 adapter->rx_itr = e1000_update_itr(adapter,
1350 adapter->rx_itr,
1351 adapter->total_rx_packets,
1352 adapter->total_rx_bytes);
1353 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1354 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1355 adapter->rx_itr = low_latency;
1357 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1359 switch (current_itr) {
1360 /* counts and packets in update_itr are dependent on these numbers */
1361 case lowest_latency:
1362 new_itr = 70000;
1363 break;
1364 case low_latency:
1365 new_itr = 20000; /* aka hwitr = ~200 */
1366 break;
1367 case bulk_latency:
1368 new_itr = 4000;
1369 break;
1370 default:
1371 break;
1374 set_itr_now:
1375 if (new_itr != adapter->itr) {
1377 * this attempts to bias the interrupt rate towards Bulk
1378 * by adding intermediate steps when interrupt rate is
1379 * increasing
1381 new_itr = new_itr > adapter->itr ?
1382 min(adapter->itr + (new_itr >> 2), new_itr) :
1383 new_itr;
1384 adapter->itr = new_itr;
1385 ew32(ITR, 1000000000 / (new_itr * 256));
1390 * e1000_clean - NAPI Rx polling callback
1391 * @napi: struct associated with this polling callback
1392 * @budget: amount of packets driver is allowed to process this poll
1394 static int e1000_clean(struct napi_struct *napi, int budget)
1396 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1397 struct net_device *poll_dev = adapter->netdev;
1398 int tx_cleaned = 0, work_done = 0;
1400 /* Must NOT use netdev_priv macro here. */
1401 adapter = poll_dev->priv;
1404 * e1000_clean is called per-cpu. This lock protects
1405 * tx_ring from being cleaned by multiple cpus
1406 * simultaneously. A failure obtaining the lock means
1407 * tx_ring is currently being cleaned anyway.
1409 if (spin_trylock(&adapter->tx_queue_lock)) {
1410 tx_cleaned = e1000_clean_tx_irq(adapter);
1411 spin_unlock(&adapter->tx_queue_lock);
1414 adapter->clean_rx(adapter, &work_done, budget);
1416 if (tx_cleaned)
1417 work_done = budget;
1419 /* If budget not fully consumed, exit the polling mode */
1420 if (work_done < budget) {
1421 if (adapter->itr_setting & 3)
1422 e1000_set_itr(adapter);
1423 netif_rx_complete(poll_dev, napi);
1424 e1000_irq_enable(adapter);
1427 return work_done;
1430 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1432 struct e1000_adapter *adapter = netdev_priv(netdev);
1433 struct e1000_hw *hw = &adapter->hw;
1434 u32 vfta, index;
1436 /* don't update vlan cookie if already programmed */
1437 if ((adapter->hw.mng_cookie.status &
1438 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1439 (vid == adapter->mng_vlan_id))
1440 return;
1441 /* add VID to filter table */
1442 index = (vid >> 5) & 0x7F;
1443 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1444 vfta |= (1 << (vid & 0x1F));
1445 e1000e_write_vfta(hw, index, vfta);
1448 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1450 struct e1000_adapter *adapter = netdev_priv(netdev);
1451 struct e1000_hw *hw = &adapter->hw;
1452 u32 vfta, index;
1454 if (!test_bit(__E1000_DOWN, &adapter->state))
1455 e1000_irq_disable(adapter);
1456 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1458 if (!test_bit(__E1000_DOWN, &adapter->state))
1459 e1000_irq_enable(adapter);
1461 if ((adapter->hw.mng_cookie.status &
1462 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1463 (vid == adapter->mng_vlan_id)) {
1464 /* release control to f/w */
1465 e1000_release_hw_control(adapter);
1466 return;
1469 /* remove VID from filter table */
1470 index = (vid >> 5) & 0x7F;
1471 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1472 vfta &= ~(1 << (vid & 0x1F));
1473 e1000e_write_vfta(hw, index, vfta);
1476 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1478 struct net_device *netdev = adapter->netdev;
1479 u16 vid = adapter->hw.mng_cookie.vlan_id;
1480 u16 old_vid = adapter->mng_vlan_id;
1482 if (!adapter->vlgrp)
1483 return;
1485 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1486 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1487 if (adapter->hw.mng_cookie.status &
1488 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489 e1000_vlan_rx_add_vid(netdev, vid);
1490 adapter->mng_vlan_id = vid;
1493 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1494 (vid != old_vid) &&
1495 !vlan_group_get_device(adapter->vlgrp, old_vid))
1496 e1000_vlan_rx_kill_vid(netdev, old_vid);
1497 } else {
1498 adapter->mng_vlan_id = vid;
1503 static void e1000_vlan_rx_register(struct net_device *netdev,
1504 struct vlan_group *grp)
1506 struct e1000_adapter *adapter = netdev_priv(netdev);
1507 struct e1000_hw *hw = &adapter->hw;
1508 u32 ctrl, rctl;
1510 if (!test_bit(__E1000_DOWN, &adapter->state))
1511 e1000_irq_disable(adapter);
1512 adapter->vlgrp = grp;
1514 if (grp) {
1515 /* enable VLAN tag insert/strip */
1516 ctrl = er32(CTRL);
1517 ctrl |= E1000_CTRL_VME;
1518 ew32(CTRL, ctrl);
1520 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1521 /* enable VLAN receive filtering */
1522 rctl = er32(RCTL);
1523 rctl |= E1000_RCTL_VFE;
1524 rctl &= ~E1000_RCTL_CFIEN;
1525 ew32(RCTL, rctl);
1526 e1000_update_mng_vlan(adapter);
1528 } else {
1529 /* disable VLAN tag insert/strip */
1530 ctrl = er32(CTRL);
1531 ctrl &= ~E1000_CTRL_VME;
1532 ew32(CTRL, ctrl);
1534 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1535 /* disable VLAN filtering */
1536 rctl = er32(RCTL);
1537 rctl &= ~E1000_RCTL_VFE;
1538 ew32(RCTL, rctl);
1539 if (adapter->mng_vlan_id !=
1540 (u16)E1000_MNG_VLAN_NONE) {
1541 e1000_vlan_rx_kill_vid(netdev,
1542 adapter->mng_vlan_id);
1543 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1548 if (!test_bit(__E1000_DOWN, &adapter->state))
1549 e1000_irq_enable(adapter);
1552 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1554 u16 vid;
1556 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1558 if (!adapter->vlgrp)
1559 return;
1561 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1562 if (!vlan_group_get_device(adapter->vlgrp, vid))
1563 continue;
1564 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1568 static void e1000_init_manageability(struct e1000_adapter *adapter)
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 manc, manc2h;
1573 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1574 return;
1576 manc = er32(MANC);
1579 * enable receiving management packets to the host. this will probably
1580 * generate destination unreachable messages from the host OS, but
1581 * the packets will be handled on SMBUS
1583 manc |= E1000_MANC_EN_MNG2HOST;
1584 manc2h = er32(MANC2H);
1585 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1586 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1587 manc2h |= E1000_MNG2HOST_PORT_623;
1588 manc2h |= E1000_MNG2HOST_PORT_664;
1589 ew32(MANC2H, manc2h);
1590 ew32(MANC, manc);
1594 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1595 * @adapter: board private structure
1597 * Configure the Tx unit of the MAC after a reset.
1599 static void e1000_configure_tx(struct e1000_adapter *adapter)
1601 struct e1000_hw *hw = &adapter->hw;
1602 struct e1000_ring *tx_ring = adapter->tx_ring;
1603 u64 tdba;
1604 u32 tdlen, tctl, tipg, tarc;
1605 u32 ipgr1, ipgr2;
1607 /* Setup the HW Tx Head and Tail descriptor pointers */
1608 tdba = tx_ring->dma;
1609 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1610 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1611 ew32(TDBAH, (tdba >> 32));
1612 ew32(TDLEN, tdlen);
1613 ew32(TDH, 0);
1614 ew32(TDT, 0);
1615 tx_ring->head = E1000_TDH;
1616 tx_ring->tail = E1000_TDT;
1618 /* Set the default values for the Tx Inter Packet Gap timer */
1619 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1620 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1621 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1623 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1624 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1626 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1627 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1628 ew32(TIPG, tipg);
1630 /* Set the Tx Interrupt Delay register */
1631 ew32(TIDV, adapter->tx_int_delay);
1632 /* Tx irq moderation */
1633 ew32(TADV, adapter->tx_abs_int_delay);
1635 /* Program the Transmit Control Register */
1636 tctl = er32(TCTL);
1637 tctl &= ~E1000_TCTL_CT;
1638 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1639 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1641 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1642 tarc = er32(TARC0);
1644 * set the speed mode bit, we'll clear it if we're not at
1645 * gigabit link later
1647 #define SPEED_MODE_BIT (1 << 21)
1648 tarc |= SPEED_MODE_BIT;
1649 ew32(TARC0, tarc);
1652 /* errata: program both queues to unweighted RR */
1653 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1654 tarc = er32(TARC0);
1655 tarc |= 1;
1656 ew32(TARC0, tarc);
1657 tarc = er32(TARC1);
1658 tarc |= 1;
1659 ew32(TARC1, tarc);
1662 e1000e_config_collision_dist(hw);
1664 /* Setup Transmit Descriptor Settings for eop descriptor */
1665 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1667 /* only set IDE if we are delaying interrupts using the timers */
1668 if (adapter->tx_int_delay)
1669 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1671 /* enable Report Status bit */
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1674 ew32(TCTL, tctl);
1676 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1680 * e1000_setup_rctl - configure the receive control registers
1681 * @adapter: Board private structure
1683 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1684 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1685 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1687 struct e1000_hw *hw = &adapter->hw;
1688 u32 rctl, rfctl;
1689 u32 psrctl = 0;
1690 u32 pages = 0;
1692 /* Program MC offset vector base */
1693 rctl = er32(RCTL);
1694 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1695 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1696 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1697 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1699 /* Do not Store bad packets */
1700 rctl &= ~E1000_RCTL_SBP;
1702 /* Enable Long Packet receive */
1703 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1704 rctl &= ~E1000_RCTL_LPE;
1705 else
1706 rctl |= E1000_RCTL_LPE;
1708 /* Enable hardware CRC frame stripping */
1709 rctl |= E1000_RCTL_SECRC;
1711 /* Setup buffer sizes */
1712 rctl &= ~E1000_RCTL_SZ_4096;
1713 rctl |= E1000_RCTL_BSEX;
1714 switch (adapter->rx_buffer_len) {
1715 case 256:
1716 rctl |= E1000_RCTL_SZ_256;
1717 rctl &= ~E1000_RCTL_BSEX;
1718 break;
1719 case 512:
1720 rctl |= E1000_RCTL_SZ_512;
1721 rctl &= ~E1000_RCTL_BSEX;
1722 break;
1723 case 1024:
1724 rctl |= E1000_RCTL_SZ_1024;
1725 rctl &= ~E1000_RCTL_BSEX;
1726 break;
1727 case 2048:
1728 default:
1729 rctl |= E1000_RCTL_SZ_2048;
1730 rctl &= ~E1000_RCTL_BSEX;
1731 break;
1732 case 4096:
1733 rctl |= E1000_RCTL_SZ_4096;
1734 break;
1735 case 8192:
1736 rctl |= E1000_RCTL_SZ_8192;
1737 break;
1738 case 16384:
1739 rctl |= E1000_RCTL_SZ_16384;
1740 break;
1744 * 82571 and greater support packet-split where the protocol
1745 * header is placed in skb->data and the packet data is
1746 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1747 * In the case of a non-split, skb->data is linearly filled,
1748 * followed by the page buffers. Therefore, skb->data is
1749 * sized to hold the largest protocol header.
1751 * allocations using alloc_page take too long for regular MTU
1752 * so only enable packet split for jumbo frames
1754 * Using pages when the page size is greater than 16k wastes
1755 * a lot of memory, since we allocate 3 pages at all times
1756 * per packet.
1758 adapter->rx_ps_pages = 0;
1759 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1760 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1761 adapter->rx_ps_pages = pages;
1763 if (adapter->rx_ps_pages) {
1764 /* Configure extra packet-split registers */
1765 rfctl = er32(RFCTL);
1766 rfctl |= E1000_RFCTL_EXTEN;
1768 * disable packet split support for IPv6 extension headers,
1769 * because some malformed IPv6 headers can hang the Rx
1771 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1772 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1774 ew32(RFCTL, rfctl);
1776 /* Enable Packet split descriptors */
1777 rctl |= E1000_RCTL_DTYP_PS;
1779 psrctl |= adapter->rx_ps_bsize0 >>
1780 E1000_PSRCTL_BSIZE0_SHIFT;
1782 switch (adapter->rx_ps_pages) {
1783 case 3:
1784 psrctl |= PAGE_SIZE <<
1785 E1000_PSRCTL_BSIZE3_SHIFT;
1786 case 2:
1787 psrctl |= PAGE_SIZE <<
1788 E1000_PSRCTL_BSIZE2_SHIFT;
1789 case 1:
1790 psrctl |= PAGE_SIZE >>
1791 E1000_PSRCTL_BSIZE1_SHIFT;
1792 break;
1795 ew32(PSRCTL, psrctl);
1798 ew32(RCTL, rctl);
1799 /* just started the receive unit, no need to restart */
1800 adapter->flags &= ~FLAG_RX_RESTART_NOW;
1804 * e1000_configure_rx - Configure Receive Unit after Reset
1805 * @adapter: board private structure
1807 * Configure the Rx unit of the MAC after a reset.
1809 static void e1000_configure_rx(struct e1000_adapter *adapter)
1811 struct e1000_hw *hw = &adapter->hw;
1812 struct e1000_ring *rx_ring = adapter->rx_ring;
1813 u64 rdba;
1814 u32 rdlen, rctl, rxcsum, ctrl_ext;
1816 if (adapter->rx_ps_pages) {
1817 /* this is a 32 byte descriptor */
1818 rdlen = rx_ring->count *
1819 sizeof(union e1000_rx_desc_packet_split);
1820 adapter->clean_rx = e1000_clean_rx_irq_ps;
1821 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1822 } else {
1823 rdlen = rx_ring->count *
1824 sizeof(struct e1000_rx_desc);
1825 adapter->clean_rx = e1000_clean_rx_irq;
1826 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1829 /* disable receives while setting up the descriptors */
1830 rctl = er32(RCTL);
1831 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1832 e1e_flush();
1833 msleep(10);
1835 /* set the Receive Delay Timer Register */
1836 ew32(RDTR, adapter->rx_int_delay);
1838 /* irq moderation */
1839 ew32(RADV, adapter->rx_abs_int_delay);
1840 if (adapter->itr_setting != 0)
1841 ew32(ITR, 1000000000 / (adapter->itr * 256));
1843 ctrl_ext = er32(CTRL_EXT);
1844 /* Reset delay timers after every interrupt */
1845 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1846 /* Auto-Mask interrupts upon ICR access */
1847 ctrl_ext |= E1000_CTRL_EXT_IAME;
1848 ew32(IAM, 0xffffffff);
1849 ew32(CTRL_EXT, ctrl_ext);
1850 e1e_flush();
1853 * Setup the HW Rx Head and Tail Descriptor Pointers and
1854 * the Base and Length of the Rx Descriptor Ring
1856 rdba = rx_ring->dma;
1857 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1858 ew32(RDBAH, (rdba >> 32));
1859 ew32(RDLEN, rdlen);
1860 ew32(RDH, 0);
1861 ew32(RDT, 0);
1862 rx_ring->head = E1000_RDH;
1863 rx_ring->tail = E1000_RDT;
1865 /* Enable Receive Checksum Offload for TCP and UDP */
1866 rxcsum = er32(RXCSUM);
1867 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1868 rxcsum |= E1000_RXCSUM_TUOFL;
1871 * IPv4 payload checksum for UDP fragments must be
1872 * used in conjunction with packet-split.
1874 if (adapter->rx_ps_pages)
1875 rxcsum |= E1000_RXCSUM_IPPCSE;
1876 } else {
1877 rxcsum &= ~E1000_RXCSUM_TUOFL;
1878 /* no need to clear IPPCSE as it defaults to 0 */
1880 ew32(RXCSUM, rxcsum);
1883 * Enable early receives on supported devices, only takes effect when
1884 * packet size is equal or larger than the specified value (in 8 byte
1885 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
1887 if ((adapter->flags & FLAG_HAS_ERT) &&
1888 (adapter->netdev->mtu > ETH_DATA_LEN))
1889 ew32(ERT, E1000_ERT_2048);
1891 /* Enable Receives */
1892 ew32(RCTL, rctl);
1896 * e1000_update_mc_addr_list - Update Multicast addresses
1897 * @hw: pointer to the HW structure
1898 * @mc_addr_list: array of multicast addresses to program
1899 * @mc_addr_count: number of multicast addresses to program
1900 * @rar_used_count: the first RAR register free to program
1901 * @rar_count: total number of supported Receive Address Registers
1903 * Updates the Receive Address Registers and Multicast Table Array.
1904 * The caller must have a packed mc_addr_list of multicast addresses.
1905 * The parameter rar_count will usually be hw->mac.rar_entry_count
1906 * unless there are workarounds that change this. Currently no func pointer
1907 * exists and all implementations are handled in the generic version of this
1908 * function.
1910 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
1911 u32 mc_addr_count, u32 rar_used_count,
1912 u32 rar_count)
1914 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
1915 rar_used_count, rar_count);
1919 * e1000_set_multi - Multicast and Promiscuous mode set
1920 * @netdev: network interface device structure
1922 * The set_multi entry point is called whenever the multicast address
1923 * list or the network interface flags are updated. This routine is
1924 * responsible for configuring the hardware for proper multicast,
1925 * promiscuous mode, and all-multi behavior.
1927 static void e1000_set_multi(struct net_device *netdev)
1929 struct e1000_adapter *adapter = netdev_priv(netdev);
1930 struct e1000_hw *hw = &adapter->hw;
1931 struct e1000_mac_info *mac = &hw->mac;
1932 struct dev_mc_list *mc_ptr;
1933 u8 *mta_list;
1934 u32 rctl;
1935 int i;
1937 /* Check for Promiscuous and All Multicast modes */
1939 rctl = er32(RCTL);
1941 if (netdev->flags & IFF_PROMISC) {
1942 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1943 } else if (netdev->flags & IFF_ALLMULTI) {
1944 rctl |= E1000_RCTL_MPE;
1945 rctl &= ~E1000_RCTL_UPE;
1946 } else {
1947 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1950 ew32(RCTL, rctl);
1952 if (netdev->mc_count) {
1953 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1954 if (!mta_list)
1955 return;
1957 /* prepare a packed array of only addresses. */
1958 mc_ptr = netdev->mc_list;
1960 for (i = 0; i < netdev->mc_count; i++) {
1961 if (!mc_ptr)
1962 break;
1963 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1964 ETH_ALEN);
1965 mc_ptr = mc_ptr->next;
1968 e1000_update_mc_addr_list(hw, mta_list, i, 1,
1969 mac->rar_entry_count);
1970 kfree(mta_list);
1971 } else {
1973 * if we're called from probe, we might not have
1974 * anything to do here, so clear out the list
1976 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
1981 * e1000_configure - configure the hardware for Rx and Tx
1982 * @adapter: private board structure
1984 static void e1000_configure(struct e1000_adapter *adapter)
1986 e1000_set_multi(adapter->netdev);
1988 e1000_restore_vlan(adapter);
1989 e1000_init_manageability(adapter);
1991 e1000_configure_tx(adapter);
1992 e1000_setup_rctl(adapter);
1993 e1000_configure_rx(adapter);
1994 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
1998 * e1000e_power_up_phy - restore link in case the phy was powered down
1999 * @adapter: address of board private structure
2001 * The phy may be powered down to save power and turn off link when the
2002 * driver is unloaded and wake on lan is not enabled (among others)
2003 * *** this routine MUST be followed by a call to e1000e_reset ***
2005 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2007 u16 mii_reg = 0;
2009 /* Just clear the power down bit to wake the phy back up */
2010 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2012 * According to the manual, the phy will retain its
2013 * settings across a power-down/up cycle
2015 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2016 mii_reg &= ~MII_CR_POWER_DOWN;
2017 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2020 adapter->hw.mac.ops.setup_link(&adapter->hw);
2024 * e1000_power_down_phy - Power down the PHY
2026 * Power down the PHY so no link is implied when interface is down
2027 * The PHY cannot be powered down is management or WoL is active
2029 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2031 struct e1000_hw *hw = &adapter->hw;
2032 u16 mii_reg;
2034 /* WoL is enabled */
2035 if (adapter->wol)
2036 return;
2038 /* non-copper PHY? */
2039 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2040 return;
2042 /* reset is blocked because of a SoL/IDER session */
2043 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2044 return;
2046 /* manageability (AMT) is enabled */
2047 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2048 return;
2050 /* power down the PHY */
2051 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2052 mii_reg |= MII_CR_POWER_DOWN;
2053 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2054 mdelay(1);
2058 * e1000e_reset - bring the hardware into a known good state
2060 * This function boots the hardware and enables some settings that
2061 * require a configuration cycle of the hardware - those cannot be
2062 * set/changed during runtime. After reset the device needs to be
2063 * properly configured for Rx, Tx etc.
2065 void e1000e_reset(struct e1000_adapter *adapter)
2067 struct e1000_mac_info *mac = &adapter->hw.mac;
2068 struct e1000_fc_info *fc = &adapter->hw.fc;
2069 struct e1000_hw *hw = &adapter->hw;
2070 u32 tx_space, min_tx_space, min_rx_space;
2071 u32 pba = adapter->pba;
2072 u16 hwm;
2074 /* reset Packet Buffer Allocation to default */
2075 ew32(PBA, pba);
2077 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2079 * To maintain wire speed transmits, the Tx FIFO should be
2080 * large enough to accommodate two full transmit packets,
2081 * rounded up to the next 1KB and expressed in KB. Likewise,
2082 * the Rx FIFO should be large enough to accommodate at least
2083 * one full receive packet and is similarly rounded up and
2084 * expressed in KB.
2086 pba = er32(PBA);
2087 /* upper 16 bits has Tx packet buffer allocation size in KB */
2088 tx_space = pba >> 16;
2089 /* lower 16 bits has Rx packet buffer allocation size in KB */
2090 pba &= 0xffff;
2092 * the Tx fifo also stores 16 bytes of information about the tx
2093 * but don't include ethernet FCS because hardware appends it
2095 min_tx_space = (adapter->max_frame_size +
2096 sizeof(struct e1000_tx_desc) -
2097 ETH_FCS_LEN) * 2;
2098 min_tx_space = ALIGN(min_tx_space, 1024);
2099 min_tx_space >>= 10;
2100 /* software strips receive CRC, so leave room for it */
2101 min_rx_space = adapter->max_frame_size;
2102 min_rx_space = ALIGN(min_rx_space, 1024);
2103 min_rx_space >>= 10;
2106 * If current Tx allocation is less than the min Tx FIFO size,
2107 * and the min Tx FIFO size is less than the current Rx FIFO
2108 * allocation, take space away from current Rx allocation
2110 if ((tx_space < min_tx_space) &&
2111 ((min_tx_space - tx_space) < pba)) {
2112 pba -= min_tx_space - tx_space;
2115 * if short on Rx space, Rx wins and must trump tx
2116 * adjustment or use Early Receive if available
2118 if ((pba < min_rx_space) &&
2119 (!(adapter->flags & FLAG_HAS_ERT)))
2120 /* ERT enabled in e1000_configure_rx */
2121 pba = min_rx_space;
2124 ew32(PBA, pba);
2129 * flow control settings
2131 * The high water mark must be low enough to fit one full frame
2132 * (or the size used for early receive) above it in the Rx FIFO.
2133 * Set it to the lower of:
2134 * - 90% of the Rx FIFO size, and
2135 * - the full Rx FIFO size minus the early receive size (for parts
2136 * with ERT support assuming ERT set to E1000_ERT_2048), or
2137 * - the full Rx FIFO size minus one full frame
2139 if (adapter->flags & FLAG_HAS_ERT)
2140 hwm = min(((pba << 10) * 9 / 10),
2141 ((pba << 10) - (E1000_ERT_2048 << 3)));
2142 else
2143 hwm = min(((pba << 10) * 9 / 10),
2144 ((pba << 10) - adapter->max_frame_size));
2146 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2147 fc->low_water = fc->high_water - 8;
2149 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2150 fc->pause_time = 0xFFFF;
2151 else
2152 fc->pause_time = E1000_FC_PAUSE_TIME;
2153 fc->send_xon = 1;
2154 fc->type = fc->original_type;
2156 /* Allow time for pending master requests to run */
2157 mac->ops.reset_hw(hw);
2158 ew32(WUC, 0);
2160 if (mac->ops.init_hw(hw))
2161 ndev_err(adapter->netdev, "Hardware Error\n");
2163 e1000_update_mng_vlan(adapter);
2165 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2166 ew32(VET, ETH_P_8021Q);
2168 e1000e_reset_adaptive(hw);
2169 e1000_get_phy_info(hw);
2171 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2172 u16 phy_data = 0;
2174 * speed up time to link by disabling smart power down, ignore
2175 * the return value of this function because there is nothing
2176 * different we would do if it failed
2178 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2179 phy_data &= ~IGP02E1000_PM_SPD;
2180 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2184 int e1000e_up(struct e1000_adapter *adapter)
2186 struct e1000_hw *hw = &adapter->hw;
2188 /* hardware has been reset, we need to reload some things */
2189 e1000_configure(adapter);
2191 clear_bit(__E1000_DOWN, &adapter->state);
2193 napi_enable(&adapter->napi);
2194 e1000_irq_enable(adapter);
2196 /* fire a link change interrupt to start the watchdog */
2197 ew32(ICS, E1000_ICS_LSC);
2198 return 0;
2201 void e1000e_down(struct e1000_adapter *adapter)
2203 struct net_device *netdev = adapter->netdev;
2204 struct e1000_hw *hw = &adapter->hw;
2205 u32 tctl, rctl;
2208 * signal that we're down so the interrupt handler does not
2209 * reschedule our watchdog timer
2211 set_bit(__E1000_DOWN, &adapter->state);
2213 /* disable receives in the hardware */
2214 rctl = er32(RCTL);
2215 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2216 /* flush and sleep below */
2218 netif_stop_queue(netdev);
2220 /* disable transmits in the hardware */
2221 tctl = er32(TCTL);
2222 tctl &= ~E1000_TCTL_EN;
2223 ew32(TCTL, tctl);
2224 /* flush both disables and wait for them to finish */
2225 e1e_flush();
2226 msleep(10);
2228 napi_disable(&adapter->napi);
2229 e1000_irq_disable(adapter);
2231 del_timer_sync(&adapter->watchdog_timer);
2232 del_timer_sync(&adapter->phy_info_timer);
2234 netdev->tx_queue_len = adapter->tx_queue_len;
2235 netif_carrier_off(netdev);
2236 adapter->link_speed = 0;
2237 adapter->link_duplex = 0;
2239 e1000e_reset(adapter);
2240 e1000_clean_tx_ring(adapter);
2241 e1000_clean_rx_ring(adapter);
2244 * TODO: for power management, we could drop the link and
2245 * pci_disable_device here.
2249 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2251 might_sleep();
2252 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2253 msleep(1);
2254 e1000e_down(adapter);
2255 e1000e_up(adapter);
2256 clear_bit(__E1000_RESETTING, &adapter->state);
2260 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2261 * @adapter: board private structure to initialize
2263 * e1000_sw_init initializes the Adapter private data structure.
2264 * Fields are initialized based on PCI device information and
2265 * OS network device settings (MTU size).
2267 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2269 struct net_device *netdev = adapter->netdev;
2271 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2272 adapter->rx_ps_bsize0 = 128;
2273 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2274 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2276 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2277 if (!adapter->tx_ring)
2278 goto err;
2280 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2281 if (!adapter->rx_ring)
2282 goto err;
2284 spin_lock_init(&adapter->tx_queue_lock);
2286 /* Explicitly disable IRQ since the NIC can be in any state. */
2287 e1000_irq_disable(adapter);
2289 spin_lock_init(&adapter->stats_lock);
2291 set_bit(__E1000_DOWN, &adapter->state);
2292 return 0;
2294 err:
2295 ndev_err(netdev, "Unable to allocate memory for queues\n");
2296 kfree(adapter->rx_ring);
2297 kfree(adapter->tx_ring);
2298 return -ENOMEM;
2302 * e1000_open - Called when a network interface is made active
2303 * @netdev: network interface device structure
2305 * Returns 0 on success, negative value on failure
2307 * The open entry point is called when a network interface is made
2308 * active by the system (IFF_UP). At this point all resources needed
2309 * for transmit and receive operations are allocated, the interrupt
2310 * handler is registered with the OS, the watchdog timer is started,
2311 * and the stack is notified that the interface is ready.
2313 static int e1000_open(struct net_device *netdev)
2315 struct e1000_adapter *adapter = netdev_priv(netdev);
2316 struct e1000_hw *hw = &adapter->hw;
2317 int err;
2319 /* disallow open during test */
2320 if (test_bit(__E1000_TESTING, &adapter->state))
2321 return -EBUSY;
2323 /* allocate transmit descriptors */
2324 err = e1000e_setup_tx_resources(adapter);
2325 if (err)
2326 goto err_setup_tx;
2328 /* allocate receive descriptors */
2329 err = e1000e_setup_rx_resources(adapter);
2330 if (err)
2331 goto err_setup_rx;
2333 e1000e_power_up_phy(adapter);
2335 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2336 if ((adapter->hw.mng_cookie.status &
2337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2338 e1000_update_mng_vlan(adapter);
2341 * If AMT is enabled, let the firmware know that the network
2342 * interface is now open
2344 if ((adapter->flags & FLAG_HAS_AMT) &&
2345 e1000e_check_mng_mode(&adapter->hw))
2346 e1000_get_hw_control(adapter);
2349 * before we allocate an interrupt, we must be ready to handle it.
2350 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2351 * as soon as we call pci_request_irq, so we have to setup our
2352 * clean_rx handler before we do so.
2354 e1000_configure(adapter);
2356 err = e1000_request_irq(adapter);
2357 if (err)
2358 goto err_req_irq;
2360 /* From here on the code is the same as e1000e_up() */
2361 clear_bit(__E1000_DOWN, &adapter->state);
2363 napi_enable(&adapter->napi);
2365 e1000_irq_enable(adapter);
2367 /* fire a link status change interrupt to start the watchdog */
2368 ew32(ICS, E1000_ICS_LSC);
2370 return 0;
2372 err_req_irq:
2373 e1000_release_hw_control(adapter);
2374 e1000_power_down_phy(adapter);
2375 e1000e_free_rx_resources(adapter);
2376 err_setup_rx:
2377 e1000e_free_tx_resources(adapter);
2378 err_setup_tx:
2379 e1000e_reset(adapter);
2381 return err;
2385 * e1000_close - Disables a network interface
2386 * @netdev: network interface device structure
2388 * Returns 0, this is not allowed to fail
2390 * The close entry point is called when an interface is de-activated
2391 * by the OS. The hardware is still under the drivers control, but
2392 * needs to be disabled. A global MAC reset is issued to stop the
2393 * hardware, and all transmit and receive resources are freed.
2395 static int e1000_close(struct net_device *netdev)
2397 struct e1000_adapter *adapter = netdev_priv(netdev);
2399 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2400 e1000e_down(adapter);
2401 e1000_power_down_phy(adapter);
2402 e1000_free_irq(adapter);
2404 e1000e_free_tx_resources(adapter);
2405 e1000e_free_rx_resources(adapter);
2408 * kill manageability vlan ID if supported, but not if a vlan with
2409 * the same ID is registered on the host OS (let 8021q kill it)
2411 if ((adapter->hw.mng_cookie.status &
2412 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2413 !(adapter->vlgrp &&
2414 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2415 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2418 * If AMT is enabled, let the firmware know that the network
2419 * interface is now closed
2421 if ((adapter->flags & FLAG_HAS_AMT) &&
2422 e1000e_check_mng_mode(&adapter->hw))
2423 e1000_release_hw_control(adapter);
2425 return 0;
2428 * e1000_set_mac - Change the Ethernet Address of the NIC
2429 * @netdev: network interface device structure
2430 * @p: pointer to an address structure
2432 * Returns 0 on success, negative on failure
2434 static int e1000_set_mac(struct net_device *netdev, void *p)
2436 struct e1000_adapter *adapter = netdev_priv(netdev);
2437 struct sockaddr *addr = p;
2439 if (!is_valid_ether_addr(addr->sa_data))
2440 return -EADDRNOTAVAIL;
2442 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2443 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2445 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2447 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2448 /* activate the work around */
2449 e1000e_set_laa_state_82571(&adapter->hw, 1);
2452 * Hold a copy of the LAA in RAR[14] This is done so that
2453 * between the time RAR[0] gets clobbered and the time it
2454 * gets fixed (in e1000_watchdog), the actual LAA is in one
2455 * of the RARs and no incoming packets directed to this port
2456 * are dropped. Eventually the LAA will be in RAR[0] and
2457 * RAR[14]
2459 e1000e_rar_set(&adapter->hw,
2460 adapter->hw.mac.addr,
2461 adapter->hw.mac.rar_entry_count - 1);
2464 return 0;
2468 * Need to wait a few seconds after link up to get diagnostic information from
2469 * the phy
2471 static void e1000_update_phy_info(unsigned long data)
2473 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2474 e1000_get_phy_info(&adapter->hw);
2478 * e1000e_update_stats - Update the board statistics counters
2479 * @adapter: board private structure
2481 void e1000e_update_stats(struct e1000_adapter *adapter)
2483 struct e1000_hw *hw = &adapter->hw;
2484 struct pci_dev *pdev = adapter->pdev;
2485 unsigned long irq_flags;
2486 u16 phy_tmp;
2488 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2491 * Prevent stats update while adapter is being reset, or if the pci
2492 * connection is down.
2494 if (adapter->link_speed == 0)
2495 return;
2496 if (pci_channel_offline(pdev))
2497 return;
2499 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2502 * these counters are modified from e1000_adjust_tbi_stats,
2503 * called from the interrupt context, so they must only
2504 * be written while holding adapter->stats_lock
2507 adapter->stats.crcerrs += er32(CRCERRS);
2508 adapter->stats.gprc += er32(GPRC);
2509 adapter->stats.gorcl += er32(GORCL);
2510 adapter->stats.gorch += er32(GORCH);
2511 adapter->stats.bprc += er32(BPRC);
2512 adapter->stats.mprc += er32(MPRC);
2513 adapter->stats.roc += er32(ROC);
2515 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2516 adapter->stats.prc64 += er32(PRC64);
2517 adapter->stats.prc127 += er32(PRC127);
2518 adapter->stats.prc255 += er32(PRC255);
2519 adapter->stats.prc511 += er32(PRC511);
2520 adapter->stats.prc1023 += er32(PRC1023);
2521 adapter->stats.prc1522 += er32(PRC1522);
2522 adapter->stats.symerrs += er32(SYMERRS);
2523 adapter->stats.sec += er32(SEC);
2526 adapter->stats.mpc += er32(MPC);
2527 adapter->stats.scc += er32(SCC);
2528 adapter->stats.ecol += er32(ECOL);
2529 adapter->stats.mcc += er32(MCC);
2530 adapter->stats.latecol += er32(LATECOL);
2531 adapter->stats.dc += er32(DC);
2532 adapter->stats.rlec += er32(RLEC);
2533 adapter->stats.xonrxc += er32(XONRXC);
2534 adapter->stats.xontxc += er32(XONTXC);
2535 adapter->stats.xoffrxc += er32(XOFFRXC);
2536 adapter->stats.xofftxc += er32(XOFFTXC);
2537 adapter->stats.fcruc += er32(FCRUC);
2538 adapter->stats.gptc += er32(GPTC);
2539 adapter->stats.gotcl += er32(GOTCL);
2540 adapter->stats.gotch += er32(GOTCH);
2541 adapter->stats.rnbc += er32(RNBC);
2542 adapter->stats.ruc += er32(RUC);
2543 adapter->stats.rfc += er32(RFC);
2544 adapter->stats.rjc += er32(RJC);
2545 adapter->stats.torl += er32(TORL);
2546 adapter->stats.torh += er32(TORH);
2547 adapter->stats.totl += er32(TOTL);
2548 adapter->stats.toth += er32(TOTH);
2549 adapter->stats.tpr += er32(TPR);
2551 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2552 adapter->stats.ptc64 += er32(PTC64);
2553 adapter->stats.ptc127 += er32(PTC127);
2554 adapter->stats.ptc255 += er32(PTC255);
2555 adapter->stats.ptc511 += er32(PTC511);
2556 adapter->stats.ptc1023 += er32(PTC1023);
2557 adapter->stats.ptc1522 += er32(PTC1522);
2560 adapter->stats.mptc += er32(MPTC);
2561 adapter->stats.bptc += er32(BPTC);
2563 /* used for adaptive IFS */
2565 hw->mac.tx_packet_delta = er32(TPT);
2566 adapter->stats.tpt += hw->mac.tx_packet_delta;
2567 hw->mac.collision_delta = er32(COLC);
2568 adapter->stats.colc += hw->mac.collision_delta;
2570 adapter->stats.algnerrc += er32(ALGNERRC);
2571 adapter->stats.rxerrc += er32(RXERRC);
2572 adapter->stats.tncrs += er32(TNCRS);
2573 adapter->stats.cexterr += er32(CEXTERR);
2574 adapter->stats.tsctc += er32(TSCTC);
2575 adapter->stats.tsctfc += er32(TSCTFC);
2577 adapter->stats.iac += er32(IAC);
2579 if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2580 adapter->stats.icrxoc += er32(ICRXOC);
2581 adapter->stats.icrxptc += er32(ICRXPTC);
2582 adapter->stats.icrxatc += er32(ICRXATC);
2583 adapter->stats.ictxptc += er32(ICTXPTC);
2584 adapter->stats.ictxatc += er32(ICTXATC);
2585 adapter->stats.ictxqec += er32(ICTXQEC);
2586 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2587 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2590 /* Fill out the OS statistics structure */
2591 adapter->net_stats.multicast = adapter->stats.mprc;
2592 adapter->net_stats.collisions = adapter->stats.colc;
2594 /* Rx Errors */
2597 * RLEC on some newer hardware can be incorrect so build
2598 * our own version based on RUC and ROC
2600 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2601 adapter->stats.crcerrs + adapter->stats.algnerrc +
2602 adapter->stats.ruc + adapter->stats.roc +
2603 adapter->stats.cexterr;
2604 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2605 adapter->stats.roc;
2606 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2607 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2608 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2610 /* Tx Errors */
2611 adapter->net_stats.tx_errors = adapter->stats.ecol +
2612 adapter->stats.latecol;
2613 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2614 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2615 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2617 /* Tx Dropped needs to be maintained elsewhere */
2619 /* Phy Stats */
2620 if (hw->phy.media_type == e1000_media_type_copper) {
2621 if ((adapter->link_speed == SPEED_1000) &&
2622 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2623 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2624 adapter->phy_stats.idle_errors += phy_tmp;
2628 /* Management Stats */
2629 adapter->stats.mgptc += er32(MGTPTC);
2630 adapter->stats.mgprc += er32(MGTPRC);
2631 adapter->stats.mgpdc += er32(MGTPDC);
2633 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2636 static void e1000_print_link_info(struct e1000_adapter *adapter)
2638 struct e1000_hw *hw = &adapter->hw;
2639 struct net_device *netdev = adapter->netdev;
2640 u32 ctrl = er32(CTRL);
2642 ndev_info(netdev,
2643 "Link is Up %d Mbps %s, Flow Control: %s\n",
2644 adapter->link_speed,
2645 (adapter->link_duplex == FULL_DUPLEX) ?
2646 "Full Duplex" : "Half Duplex",
2647 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2648 "RX/TX" :
2649 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2650 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2653 static bool e1000_has_link(struct e1000_adapter *adapter)
2655 struct e1000_hw *hw = &adapter->hw;
2656 bool link_active = 0;
2657 s32 ret_val = 0;
2660 * get_link_status is set on LSC (link status) interrupt or
2661 * Rx sequence error interrupt. get_link_status will stay
2662 * false until the check_for_link establishes link
2663 * for copper adapters ONLY
2665 switch (hw->phy.media_type) {
2666 case e1000_media_type_copper:
2667 if (hw->mac.get_link_status) {
2668 ret_val = hw->mac.ops.check_for_link(hw);
2669 link_active = !hw->mac.get_link_status;
2670 } else {
2671 link_active = 1;
2673 break;
2674 case e1000_media_type_fiber:
2675 ret_val = hw->mac.ops.check_for_link(hw);
2676 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2677 break;
2678 case e1000_media_type_internal_serdes:
2679 ret_val = hw->mac.ops.check_for_link(hw);
2680 link_active = adapter->hw.mac.serdes_has_link;
2681 break;
2682 default:
2683 case e1000_media_type_unknown:
2684 break;
2687 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
2688 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2689 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2690 ndev_info(adapter->netdev,
2691 "Gigabit has been disabled, downgrading speed\n");
2694 return link_active;
2697 static void e1000e_enable_receives(struct e1000_adapter *adapter)
2699 /* make sure the receive unit is started */
2700 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
2701 (adapter->flags & FLAG_RX_RESTART_NOW)) {
2702 struct e1000_hw *hw = &adapter->hw;
2703 u32 rctl = er32(RCTL);
2704 ew32(RCTL, rctl | E1000_RCTL_EN);
2705 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2710 * e1000_watchdog - Timer Call-back
2711 * @data: pointer to adapter cast into an unsigned long
2713 static void e1000_watchdog(unsigned long data)
2715 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2717 /* Do the rest outside of interrupt context */
2718 schedule_work(&adapter->watchdog_task);
2720 /* TODO: make this use queue_delayed_work() */
2723 static void e1000_watchdog_task(struct work_struct *work)
2725 struct e1000_adapter *adapter = container_of(work,
2726 struct e1000_adapter, watchdog_task);
2727 struct net_device *netdev = adapter->netdev;
2728 struct e1000_mac_info *mac = &adapter->hw.mac;
2729 struct e1000_ring *tx_ring = adapter->tx_ring;
2730 struct e1000_hw *hw = &adapter->hw;
2731 u32 link, tctl;
2732 int tx_pending = 0;
2734 link = e1000_has_link(adapter);
2735 if ((netif_carrier_ok(netdev)) && link) {
2736 e1000e_enable_receives(adapter);
2737 goto link_up;
2740 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2741 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2742 e1000_update_mng_vlan(adapter);
2744 if (link) {
2745 if (!netif_carrier_ok(netdev)) {
2746 bool txb2b = 1;
2747 /* update snapshot of PHY registers on LSC */
2748 mac->ops.get_link_up_info(&adapter->hw,
2749 &adapter->link_speed,
2750 &adapter->link_duplex);
2751 e1000_print_link_info(adapter);
2753 * tweak tx_queue_len according to speed/duplex
2754 * and adjust the timeout factor
2756 netdev->tx_queue_len = adapter->tx_queue_len;
2757 adapter->tx_timeout_factor = 1;
2758 switch (adapter->link_speed) {
2759 case SPEED_10:
2760 txb2b = 0;
2761 netdev->tx_queue_len = 10;
2762 adapter->tx_timeout_factor = 14;
2763 break;
2764 case SPEED_100:
2765 txb2b = 0;
2766 netdev->tx_queue_len = 100;
2767 /* maybe add some timeout factor ? */
2768 break;
2772 * workaround: re-program speed mode bit after
2773 * link-up event
2775 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2776 !txb2b) {
2777 u32 tarc0;
2778 tarc0 = er32(TARC0);
2779 tarc0 &= ~SPEED_MODE_BIT;
2780 ew32(TARC0, tarc0);
2784 * disable TSO for pcie and 10/100 speeds, to avoid
2785 * some hardware issues
2787 if (!(adapter->flags & FLAG_TSO_FORCE)) {
2788 switch (adapter->link_speed) {
2789 case SPEED_10:
2790 case SPEED_100:
2791 ndev_info(netdev,
2792 "10/100 speed: disabling TSO\n");
2793 netdev->features &= ~NETIF_F_TSO;
2794 netdev->features &= ~NETIF_F_TSO6;
2795 break;
2796 case SPEED_1000:
2797 netdev->features |= NETIF_F_TSO;
2798 netdev->features |= NETIF_F_TSO6;
2799 break;
2800 default:
2801 /* oops */
2802 break;
2807 * enable transmits in the hardware, need to do this
2808 * after setting TARC(0)
2810 tctl = er32(TCTL);
2811 tctl |= E1000_TCTL_EN;
2812 ew32(TCTL, tctl);
2814 netif_carrier_on(netdev);
2815 netif_wake_queue(netdev);
2817 if (!test_bit(__E1000_DOWN, &adapter->state))
2818 mod_timer(&adapter->phy_info_timer,
2819 round_jiffies(jiffies + 2 * HZ));
2821 } else {
2822 if (netif_carrier_ok(netdev)) {
2823 adapter->link_speed = 0;
2824 adapter->link_duplex = 0;
2825 ndev_info(netdev, "Link is Down\n");
2826 netif_carrier_off(netdev);
2827 netif_stop_queue(netdev);
2828 if (!test_bit(__E1000_DOWN, &adapter->state))
2829 mod_timer(&adapter->phy_info_timer,
2830 round_jiffies(jiffies + 2 * HZ));
2832 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2833 schedule_work(&adapter->reset_task);
2837 link_up:
2838 e1000e_update_stats(adapter);
2840 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2841 adapter->tpt_old = adapter->stats.tpt;
2842 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2843 adapter->colc_old = adapter->stats.colc;
2845 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2846 adapter->gorcl_old = adapter->stats.gorcl;
2847 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2848 adapter->gotcl_old = adapter->stats.gotcl;
2850 e1000e_update_adaptive(&adapter->hw);
2852 if (!netif_carrier_ok(netdev)) {
2853 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2854 tx_ring->count);
2855 if (tx_pending) {
2857 * We've lost link, so the controller stops DMA,
2858 * but we've got queued Tx work that's never going
2859 * to get done, so reset controller to flush Tx.
2860 * (Do the reset outside of interrupt context).
2862 adapter->tx_timeout_count++;
2863 schedule_work(&adapter->reset_task);
2867 /* Cause software interrupt to ensure Rx ring is cleaned */
2868 ew32(ICS, E1000_ICS_RXDMT0);
2870 /* Force detection of hung controller every watchdog period */
2871 adapter->detect_tx_hung = 1;
2874 * With 82571 controllers, LAA may be overwritten due to controller
2875 * reset from the other port. Set the appropriate LAA in RAR[0]
2877 if (e1000e_get_laa_state_82571(hw))
2878 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2880 /* Reset the timer */
2881 if (!test_bit(__E1000_DOWN, &adapter->state))
2882 mod_timer(&adapter->watchdog_timer,
2883 round_jiffies(jiffies + 2 * HZ));
2886 #define E1000_TX_FLAGS_CSUM 0x00000001
2887 #define E1000_TX_FLAGS_VLAN 0x00000002
2888 #define E1000_TX_FLAGS_TSO 0x00000004
2889 #define E1000_TX_FLAGS_IPV4 0x00000008
2890 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2891 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2893 static int e1000_tso(struct e1000_adapter *adapter,
2894 struct sk_buff *skb)
2896 struct e1000_ring *tx_ring = adapter->tx_ring;
2897 struct e1000_context_desc *context_desc;
2898 struct e1000_buffer *buffer_info;
2899 unsigned int i;
2900 u32 cmd_length = 0;
2901 u16 ipcse = 0, tucse, mss;
2902 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2903 int err;
2905 if (skb_is_gso(skb)) {
2906 if (skb_header_cloned(skb)) {
2907 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2908 if (err)
2909 return err;
2912 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2913 mss = skb_shinfo(skb)->gso_size;
2914 if (skb->protocol == htons(ETH_P_IP)) {
2915 struct iphdr *iph = ip_hdr(skb);
2916 iph->tot_len = 0;
2917 iph->check = 0;
2918 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2919 iph->daddr, 0,
2920 IPPROTO_TCP,
2922 cmd_length = E1000_TXD_CMD_IP;
2923 ipcse = skb_transport_offset(skb) - 1;
2924 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2925 ipv6_hdr(skb)->payload_len = 0;
2926 tcp_hdr(skb)->check =
2927 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2928 &ipv6_hdr(skb)->daddr,
2929 0, IPPROTO_TCP, 0);
2930 ipcse = 0;
2932 ipcss = skb_network_offset(skb);
2933 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2934 tucss = skb_transport_offset(skb);
2935 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2936 tucse = 0;
2938 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2939 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2941 i = tx_ring->next_to_use;
2942 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2943 buffer_info = &tx_ring->buffer_info[i];
2945 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2946 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2947 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2948 context_desc->upper_setup.tcp_fields.tucss = tucss;
2949 context_desc->upper_setup.tcp_fields.tucso = tucso;
2950 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2951 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2952 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2953 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2955 buffer_info->time_stamp = jiffies;
2956 buffer_info->next_to_watch = i;
2958 i++;
2959 if (i == tx_ring->count)
2960 i = 0;
2961 tx_ring->next_to_use = i;
2963 return 1;
2966 return 0;
2969 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2971 struct e1000_ring *tx_ring = adapter->tx_ring;
2972 struct e1000_context_desc *context_desc;
2973 struct e1000_buffer *buffer_info;
2974 unsigned int i;
2975 u8 css;
2977 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2978 css = skb_transport_offset(skb);
2980 i = tx_ring->next_to_use;
2981 buffer_info = &tx_ring->buffer_info[i];
2982 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2984 context_desc->lower_setup.ip_config = 0;
2985 context_desc->upper_setup.tcp_fields.tucss = css;
2986 context_desc->upper_setup.tcp_fields.tucso =
2987 css + skb->csum_offset;
2988 context_desc->upper_setup.tcp_fields.tucse = 0;
2989 context_desc->tcp_seg_setup.data = 0;
2990 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2992 buffer_info->time_stamp = jiffies;
2993 buffer_info->next_to_watch = i;
2995 i++;
2996 if (i == tx_ring->count)
2997 i = 0;
2998 tx_ring->next_to_use = i;
3000 return 1;
3003 return 0;
3006 #define E1000_MAX_PER_TXD 8192
3007 #define E1000_MAX_TXD_PWR 12
3009 static int e1000_tx_map(struct e1000_adapter *adapter,
3010 struct sk_buff *skb, unsigned int first,
3011 unsigned int max_per_txd, unsigned int nr_frags,
3012 unsigned int mss)
3014 struct e1000_ring *tx_ring = adapter->tx_ring;
3015 struct e1000_buffer *buffer_info;
3016 unsigned int len = skb->len - skb->data_len;
3017 unsigned int offset = 0, size, count = 0, i;
3018 unsigned int f;
3020 i = tx_ring->next_to_use;
3022 while (len) {
3023 buffer_info = &tx_ring->buffer_info[i];
3024 size = min(len, max_per_txd);
3026 /* Workaround for premature desc write-backs
3027 * in TSO mode. Append 4-byte sentinel desc */
3028 if (mss && !nr_frags && size == len && size > 8)
3029 size -= 4;
3031 buffer_info->length = size;
3032 /* set time_stamp *before* dma to help avoid a possible race */
3033 buffer_info->time_stamp = jiffies;
3034 buffer_info->dma =
3035 pci_map_single(adapter->pdev,
3036 skb->data + offset,
3037 size,
3038 PCI_DMA_TODEVICE);
3039 if (pci_dma_mapping_error(buffer_info->dma)) {
3040 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3041 adapter->tx_dma_failed++;
3042 return -1;
3044 buffer_info->next_to_watch = i;
3046 len -= size;
3047 offset += size;
3048 count++;
3049 i++;
3050 if (i == tx_ring->count)
3051 i = 0;
3054 for (f = 0; f < nr_frags; f++) {
3055 struct skb_frag_struct *frag;
3057 frag = &skb_shinfo(skb)->frags[f];
3058 len = frag->size;
3059 offset = frag->page_offset;
3061 while (len) {
3062 buffer_info = &tx_ring->buffer_info[i];
3063 size = min(len, max_per_txd);
3064 /* Workaround for premature desc write-backs
3065 * in TSO mode. Append 4-byte sentinel desc */
3066 if (mss && f == (nr_frags-1) && size == len && size > 8)
3067 size -= 4;
3069 buffer_info->length = size;
3070 buffer_info->time_stamp = jiffies;
3071 buffer_info->dma =
3072 pci_map_page(adapter->pdev,
3073 frag->page,
3074 offset,
3075 size,
3076 PCI_DMA_TODEVICE);
3077 if (pci_dma_mapping_error(buffer_info->dma)) {
3078 dev_err(&adapter->pdev->dev,
3079 "TX DMA page map failed\n");
3080 adapter->tx_dma_failed++;
3081 return -1;
3084 buffer_info->next_to_watch = i;
3086 len -= size;
3087 offset += size;
3088 count++;
3090 i++;
3091 if (i == tx_ring->count)
3092 i = 0;
3096 if (i == 0)
3097 i = tx_ring->count - 1;
3098 else
3099 i--;
3101 tx_ring->buffer_info[i].skb = skb;
3102 tx_ring->buffer_info[first].next_to_watch = i;
3104 return count;
3107 static void e1000_tx_queue(struct e1000_adapter *adapter,
3108 int tx_flags, int count)
3110 struct e1000_ring *tx_ring = adapter->tx_ring;
3111 struct e1000_tx_desc *tx_desc = NULL;
3112 struct e1000_buffer *buffer_info;
3113 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3114 unsigned int i;
3116 if (tx_flags & E1000_TX_FLAGS_TSO) {
3117 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3118 E1000_TXD_CMD_TSE;
3119 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3121 if (tx_flags & E1000_TX_FLAGS_IPV4)
3122 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3125 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3126 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3127 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3130 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3131 txd_lower |= E1000_TXD_CMD_VLE;
3132 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3135 i = tx_ring->next_to_use;
3137 while (count--) {
3138 buffer_info = &tx_ring->buffer_info[i];
3139 tx_desc = E1000_TX_DESC(*tx_ring, i);
3140 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3141 tx_desc->lower.data =
3142 cpu_to_le32(txd_lower | buffer_info->length);
3143 tx_desc->upper.data = cpu_to_le32(txd_upper);
3145 i++;
3146 if (i == tx_ring->count)
3147 i = 0;
3150 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3153 * Force memory writes to complete before letting h/w
3154 * know there are new descriptors to fetch. (Only
3155 * applicable for weak-ordered memory model archs,
3156 * such as IA-64).
3158 wmb();
3160 tx_ring->next_to_use = i;
3161 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3163 * we need this if more than one processor can write to our tail
3164 * at a time, it synchronizes IO on IA64/Altix systems
3166 mmiowb();
3169 #define MINIMUM_DHCP_PACKET_SIZE 282
3170 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3171 struct sk_buff *skb)
3173 struct e1000_hw *hw = &adapter->hw;
3174 u16 length, offset;
3176 if (vlan_tx_tag_present(skb)) {
3177 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3178 && (adapter->hw.mng_cookie.status &
3179 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3180 return 0;
3183 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3184 return 0;
3186 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3187 return 0;
3190 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3191 struct udphdr *udp;
3193 if (ip->protocol != IPPROTO_UDP)
3194 return 0;
3196 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3197 if (ntohs(udp->dest) != 67)
3198 return 0;
3200 offset = (u8 *)udp + 8 - skb->data;
3201 length = skb->len - offset;
3202 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3205 return 0;
3208 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3210 struct e1000_adapter *adapter = netdev_priv(netdev);
3212 netif_stop_queue(netdev);
3214 * Herbert's original patch had:
3215 * smp_mb__after_netif_stop_queue();
3216 * but since that doesn't exist yet, just open code it.
3218 smp_mb();
3221 * We need to check again in a case another CPU has just
3222 * made room available.
3224 if (e1000_desc_unused(adapter->tx_ring) < size)
3225 return -EBUSY;
3227 /* A reprieve! */
3228 netif_start_queue(netdev);
3229 ++adapter->restart_queue;
3230 return 0;
3233 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3235 struct e1000_adapter *adapter = netdev_priv(netdev);
3237 if (e1000_desc_unused(adapter->tx_ring) >= size)
3238 return 0;
3239 return __e1000_maybe_stop_tx(netdev, size);
3242 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3243 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3245 struct e1000_adapter *adapter = netdev_priv(netdev);
3246 struct e1000_ring *tx_ring = adapter->tx_ring;
3247 unsigned int first;
3248 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3249 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3250 unsigned int tx_flags = 0;
3251 unsigned int len = skb->len - skb->data_len;
3252 unsigned long irq_flags;
3253 unsigned int nr_frags;
3254 unsigned int mss;
3255 int count = 0;
3256 int tso;
3257 unsigned int f;
3259 if (test_bit(__E1000_DOWN, &adapter->state)) {
3260 dev_kfree_skb_any(skb);
3261 return NETDEV_TX_OK;
3264 if (skb->len <= 0) {
3265 dev_kfree_skb_any(skb);
3266 return NETDEV_TX_OK;
3269 mss = skb_shinfo(skb)->gso_size;
3271 * The controller does a simple calculation to
3272 * make sure there is enough room in the FIFO before
3273 * initiating the DMA for each buffer. The calc is:
3274 * 4 = ceil(buffer len/mss). To make sure we don't
3275 * overrun the FIFO, adjust the max buffer len if mss
3276 * drops.
3278 if (mss) {
3279 u8 hdr_len;
3280 max_per_txd = min(mss << 2, max_per_txd);
3281 max_txd_pwr = fls(max_per_txd) - 1;
3284 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3285 * points to just header, pull a few bytes of payload from
3286 * frags into skb->data
3288 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3290 * we do this workaround for ES2LAN, but it is un-necessary,
3291 * avoiding it could save a lot of cycles
3293 if (skb->data_len && (hdr_len == len)) {
3294 unsigned int pull_size;
3296 pull_size = min((unsigned int)4, skb->data_len);
3297 if (!__pskb_pull_tail(skb, pull_size)) {
3298 ndev_err(netdev,
3299 "__pskb_pull_tail failed.\n");
3300 dev_kfree_skb_any(skb);
3301 return NETDEV_TX_OK;
3303 len = skb->len - skb->data_len;
3307 /* reserve a descriptor for the offload context */
3308 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3309 count++;
3310 count++;
3312 count += TXD_USE_COUNT(len, max_txd_pwr);
3314 nr_frags = skb_shinfo(skb)->nr_frags;
3315 for (f = 0; f < nr_frags; f++)
3316 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3317 max_txd_pwr);
3319 if (adapter->hw.mac.tx_pkt_filtering)
3320 e1000_transfer_dhcp_info(adapter, skb);
3322 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3323 /* Collision - tell upper layer to requeue */
3324 return NETDEV_TX_LOCKED;
3327 * need: count + 2 desc gap to keep tail from touching
3328 * head, otherwise try next time
3330 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3331 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3332 return NETDEV_TX_BUSY;
3335 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3336 tx_flags |= E1000_TX_FLAGS_VLAN;
3337 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3340 first = tx_ring->next_to_use;
3342 tso = e1000_tso(adapter, skb);
3343 if (tso < 0) {
3344 dev_kfree_skb_any(skb);
3345 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3346 return NETDEV_TX_OK;
3349 if (tso)
3350 tx_flags |= E1000_TX_FLAGS_TSO;
3351 else if (e1000_tx_csum(adapter, skb))
3352 tx_flags |= E1000_TX_FLAGS_CSUM;
3355 * Old method was to assume IPv4 packet by default if TSO was enabled.
3356 * 82571 hardware supports TSO capabilities for IPv6 as well...
3357 * no longer assume, we must.
3359 if (skb->protocol == htons(ETH_P_IP))
3360 tx_flags |= E1000_TX_FLAGS_IPV4;
3362 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3363 if (count < 0) {
3364 /* handle pci_map_single() error in e1000_tx_map */
3365 dev_kfree_skb_any(skb);
3366 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3367 return NETDEV_TX_OK;
3370 e1000_tx_queue(adapter, tx_flags, count);
3372 netdev->trans_start = jiffies;
3374 /* Make sure there is space in the ring for the next send. */
3375 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3377 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3378 return NETDEV_TX_OK;
3382 * e1000_tx_timeout - Respond to a Tx Hang
3383 * @netdev: network interface device structure
3385 static void e1000_tx_timeout(struct net_device *netdev)
3387 struct e1000_adapter *adapter = netdev_priv(netdev);
3389 /* Do the reset outside of interrupt context */
3390 adapter->tx_timeout_count++;
3391 schedule_work(&adapter->reset_task);
3394 static void e1000_reset_task(struct work_struct *work)
3396 struct e1000_adapter *adapter;
3397 adapter = container_of(work, struct e1000_adapter, reset_task);
3399 e1000e_reinit_locked(adapter);
3403 * e1000_get_stats - Get System Network Statistics
3404 * @netdev: network interface device structure
3406 * Returns the address of the device statistics structure.
3407 * The statistics are actually updated from the timer callback.
3409 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3411 struct e1000_adapter *adapter = netdev_priv(netdev);
3413 /* only return the current stats */
3414 return &adapter->net_stats;
3418 * e1000_change_mtu - Change the Maximum Transfer Unit
3419 * @netdev: network interface device structure
3420 * @new_mtu: new value for maximum frame size
3422 * Returns 0 on success, negative on failure
3424 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3426 struct e1000_adapter *adapter = netdev_priv(netdev);
3427 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3429 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3430 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3431 ndev_err(netdev, "Invalid MTU setting\n");
3432 return -EINVAL;
3435 /* Jumbo frame size limits */
3436 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3437 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3438 ndev_err(netdev, "Jumbo Frames not supported.\n");
3439 return -EINVAL;
3441 if (adapter->hw.phy.type == e1000_phy_ife) {
3442 ndev_err(netdev, "Jumbo Frames not supported.\n");
3443 return -EINVAL;
3447 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3448 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3449 ndev_err(netdev, "MTU > 9216 not supported.\n");
3450 return -EINVAL;
3453 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3454 msleep(1);
3455 /* e1000e_down has a dependency on max_frame_size */
3456 adapter->max_frame_size = max_frame;
3457 if (netif_running(netdev))
3458 e1000e_down(adapter);
3461 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3462 * means we reserve 2 more, this pushes us to allocate from the next
3463 * larger slab size.
3464 * i.e. RXBUFFER_2048 --> size-4096 slab
3467 if (max_frame <= 256)
3468 adapter->rx_buffer_len = 256;
3469 else if (max_frame <= 512)
3470 adapter->rx_buffer_len = 512;
3471 else if (max_frame <= 1024)
3472 adapter->rx_buffer_len = 1024;
3473 else if (max_frame <= 2048)
3474 adapter->rx_buffer_len = 2048;
3475 else
3476 adapter->rx_buffer_len = 4096;
3478 /* adjust allocation if LPE protects us, and we aren't using SBP */
3479 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3480 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3481 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3482 + ETH_FCS_LEN;
3484 ndev_info(netdev, "changing MTU from %d to %d\n",
3485 netdev->mtu, new_mtu);
3486 netdev->mtu = new_mtu;
3488 if (netif_running(netdev))
3489 e1000e_up(adapter);
3490 else
3491 e1000e_reset(adapter);
3493 clear_bit(__E1000_RESETTING, &adapter->state);
3495 return 0;
3498 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3499 int cmd)
3501 struct e1000_adapter *adapter = netdev_priv(netdev);
3502 struct mii_ioctl_data *data = if_mii(ifr);
3503 unsigned long irq_flags;
3505 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3506 return -EOPNOTSUPP;
3508 switch (cmd) {
3509 case SIOCGMIIPHY:
3510 data->phy_id = adapter->hw.phy.addr;
3511 break;
3512 case SIOCGMIIREG:
3513 if (!capable(CAP_NET_ADMIN))
3514 return -EPERM;
3515 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3516 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3517 &data->val_out)) {
3518 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3519 return -EIO;
3521 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3522 break;
3523 case SIOCSMIIREG:
3524 default:
3525 return -EOPNOTSUPP;
3527 return 0;
3530 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3532 switch (cmd) {
3533 case SIOCGMIIPHY:
3534 case SIOCGMIIREG:
3535 case SIOCSMIIREG:
3536 return e1000_mii_ioctl(netdev, ifr, cmd);
3537 default:
3538 return -EOPNOTSUPP;
3542 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3544 struct net_device *netdev = pci_get_drvdata(pdev);
3545 struct e1000_adapter *adapter = netdev_priv(netdev);
3546 struct e1000_hw *hw = &adapter->hw;
3547 u32 ctrl, ctrl_ext, rctl, status;
3548 u32 wufc = adapter->wol;
3549 int retval = 0;
3551 netif_device_detach(netdev);
3553 if (netif_running(netdev)) {
3554 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3555 e1000e_down(adapter);
3556 e1000_free_irq(adapter);
3559 retval = pci_save_state(pdev);
3560 if (retval)
3561 return retval;
3563 status = er32(STATUS);
3564 if (status & E1000_STATUS_LU)
3565 wufc &= ~E1000_WUFC_LNKC;
3567 if (wufc) {
3568 e1000_setup_rctl(adapter);
3569 e1000_set_multi(netdev);
3571 /* turn on all-multi mode if wake on multicast is enabled */
3572 if (wufc & E1000_WUFC_MC) {
3573 rctl = er32(RCTL);
3574 rctl |= E1000_RCTL_MPE;
3575 ew32(RCTL, rctl);
3578 ctrl = er32(CTRL);
3579 /* advertise wake from D3Cold */
3580 #define E1000_CTRL_ADVD3WUC 0x00100000
3581 /* phy power management enable */
3582 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3583 ctrl |= E1000_CTRL_ADVD3WUC |
3584 E1000_CTRL_EN_PHY_PWR_MGMT;
3585 ew32(CTRL, ctrl);
3587 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3588 adapter->hw.phy.media_type ==
3589 e1000_media_type_internal_serdes) {
3590 /* keep the laser running in D3 */
3591 ctrl_ext = er32(CTRL_EXT);
3592 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3593 ew32(CTRL_EXT, ctrl_ext);
3596 /* Allow time for pending master requests to run */
3597 e1000e_disable_pcie_master(&adapter->hw);
3599 ew32(WUC, E1000_WUC_PME_EN);
3600 ew32(WUFC, wufc);
3601 pci_enable_wake(pdev, PCI_D3hot, 1);
3602 pci_enable_wake(pdev, PCI_D3cold, 1);
3603 } else {
3604 ew32(WUC, 0);
3605 ew32(WUFC, 0);
3606 pci_enable_wake(pdev, PCI_D3hot, 0);
3607 pci_enable_wake(pdev, PCI_D3cold, 0);
3610 /* make sure adapter isn't asleep if manageability is enabled */
3611 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3612 pci_enable_wake(pdev, PCI_D3hot, 1);
3613 pci_enable_wake(pdev, PCI_D3cold, 1);
3616 if (adapter->hw.phy.type == e1000_phy_igp_3)
3617 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3620 * Release control of h/w to f/w. If f/w is AMT enabled, this
3621 * would have already happened in close and is redundant.
3623 e1000_release_hw_control(adapter);
3625 pci_disable_device(pdev);
3627 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3629 return 0;
3632 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3634 int pos;
3635 u16 val;
3638 * 82573 workaround - disable L1 ASPM on mobile chipsets
3640 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3641 * resulting in lost data or garbage information on the pci-e link
3642 * level. This could result in (false) bad EEPROM checksum errors,
3643 * long ping times (up to 2s) or even a system freeze/hang.
3645 * Unfortunately this feature saves about 1W power consumption when
3646 * active.
3648 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3649 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3650 if (val & 0x2) {
3651 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3652 val &= ~0x2;
3653 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3657 #ifdef CONFIG_PM
3658 static int e1000_resume(struct pci_dev *pdev)
3660 struct net_device *netdev = pci_get_drvdata(pdev);
3661 struct e1000_adapter *adapter = netdev_priv(netdev);
3662 struct e1000_hw *hw = &adapter->hw;
3663 u32 err;
3665 pci_set_power_state(pdev, PCI_D0);
3666 pci_restore_state(pdev);
3667 e1000e_disable_l1aspm(pdev);
3668 err = pci_enable_device(pdev);
3669 if (err) {
3670 dev_err(&pdev->dev,
3671 "Cannot enable PCI device from suspend\n");
3672 return err;
3675 pci_set_master(pdev);
3677 pci_enable_wake(pdev, PCI_D3hot, 0);
3678 pci_enable_wake(pdev, PCI_D3cold, 0);
3680 if (netif_running(netdev)) {
3681 err = e1000_request_irq(adapter);
3682 if (err)
3683 return err;
3686 e1000e_power_up_phy(adapter);
3687 e1000e_reset(adapter);
3688 ew32(WUS, ~0);
3690 e1000_init_manageability(adapter);
3692 if (netif_running(netdev))
3693 e1000e_up(adapter);
3695 netif_device_attach(netdev);
3698 * If the controller has AMT, do not set DRV_LOAD until the interface
3699 * is up. For all other cases, let the f/w know that the h/w is now
3700 * under the control of the driver.
3702 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3703 e1000_get_hw_control(adapter);
3705 return 0;
3707 #endif
3709 static void e1000_shutdown(struct pci_dev *pdev)
3711 e1000_suspend(pdev, PMSG_SUSPEND);
3714 #ifdef CONFIG_NET_POLL_CONTROLLER
3716 * Polling 'interrupt' - used by things like netconsole to send skbs
3717 * without having to re-enable interrupts. It's not called while
3718 * the interrupt routine is executing.
3720 static void e1000_netpoll(struct net_device *netdev)
3722 struct e1000_adapter *adapter = netdev_priv(netdev);
3724 disable_irq(adapter->pdev->irq);
3725 e1000_intr(adapter->pdev->irq, netdev);
3727 e1000_clean_tx_irq(adapter);
3729 enable_irq(adapter->pdev->irq);
3731 #endif
3734 * e1000_io_error_detected - called when PCI error is detected
3735 * @pdev: Pointer to PCI device
3736 * @state: The current pci connection state
3738 * This function is called after a PCI bus error affecting
3739 * this device has been detected.
3741 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3742 pci_channel_state_t state)
3744 struct net_device *netdev = pci_get_drvdata(pdev);
3745 struct e1000_adapter *adapter = netdev_priv(netdev);
3747 netif_device_detach(netdev);
3749 if (netif_running(netdev))
3750 e1000e_down(adapter);
3751 pci_disable_device(pdev);
3753 /* Request a slot slot reset. */
3754 return PCI_ERS_RESULT_NEED_RESET;
3758 * e1000_io_slot_reset - called after the pci bus has been reset.
3759 * @pdev: Pointer to PCI device
3761 * Restart the card from scratch, as if from a cold-boot. Implementation
3762 * resembles the first-half of the e1000_resume routine.
3764 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3766 struct net_device *netdev = pci_get_drvdata(pdev);
3767 struct e1000_adapter *adapter = netdev_priv(netdev);
3768 struct e1000_hw *hw = &adapter->hw;
3770 e1000e_disable_l1aspm(pdev);
3771 if (pci_enable_device(pdev)) {
3772 dev_err(&pdev->dev,
3773 "Cannot re-enable PCI device after reset.\n");
3774 return PCI_ERS_RESULT_DISCONNECT;
3776 pci_set_master(pdev);
3778 pci_enable_wake(pdev, PCI_D3hot, 0);
3779 pci_enable_wake(pdev, PCI_D3cold, 0);
3781 e1000e_reset(adapter);
3782 ew32(WUS, ~0);
3784 return PCI_ERS_RESULT_RECOVERED;
3788 * e1000_io_resume - called when traffic can start flowing again.
3789 * @pdev: Pointer to PCI device
3791 * This callback is called when the error recovery driver tells us that
3792 * its OK to resume normal operation. Implementation resembles the
3793 * second-half of the e1000_resume routine.
3795 static void e1000_io_resume(struct pci_dev *pdev)
3797 struct net_device *netdev = pci_get_drvdata(pdev);
3798 struct e1000_adapter *adapter = netdev_priv(netdev);
3800 e1000_init_manageability(adapter);
3802 if (netif_running(netdev)) {
3803 if (e1000e_up(adapter)) {
3804 dev_err(&pdev->dev,
3805 "can't bring device back up after reset\n");
3806 return;
3810 netif_device_attach(netdev);
3813 * If the controller has AMT, do not set DRV_LOAD until the interface
3814 * is up. For all other cases, let the f/w know that the h/w is now
3815 * under the control of the driver.
3817 if (!(adapter->flags & FLAG_HAS_AMT) ||
3818 !e1000e_check_mng_mode(&adapter->hw))
3819 e1000_get_hw_control(adapter);
3823 static void e1000_print_device_info(struct e1000_adapter *adapter)
3825 struct e1000_hw *hw = &adapter->hw;
3826 struct net_device *netdev = adapter->netdev;
3827 u32 part_num;
3829 /* print bus type/speed/width info */
3830 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3831 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3832 /* bus width */
3833 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3834 "Width x1"),
3835 /* MAC address */
3836 netdev->dev_addr[0], netdev->dev_addr[1],
3837 netdev->dev_addr[2], netdev->dev_addr[3],
3838 netdev->dev_addr[4], netdev->dev_addr[5]);
3839 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3840 (hw->phy.type == e1000_phy_ife)
3841 ? "10/100" : "1000");
3842 e1000e_read_part_num(hw, &part_num);
3843 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3844 hw->mac.type, hw->phy.type,
3845 (part_num >> 8), (part_num & 0xff));
3849 * e1000_probe - Device Initialization Routine
3850 * @pdev: PCI device information struct
3851 * @ent: entry in e1000_pci_tbl
3853 * Returns 0 on success, negative on failure
3855 * e1000_probe initializes an adapter identified by a pci_dev structure.
3856 * The OS initialization, configuring of the adapter private structure,
3857 * and a hardware reset occur.
3859 static int __devinit e1000_probe(struct pci_dev *pdev,
3860 const struct pci_device_id *ent)
3862 struct net_device *netdev;
3863 struct e1000_adapter *adapter;
3864 struct e1000_hw *hw;
3865 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3866 unsigned long mmio_start, mmio_len;
3867 unsigned long flash_start, flash_len;
3869 static int cards_found;
3870 int i, err, pci_using_dac;
3871 u16 eeprom_data = 0;
3872 u16 eeprom_apme_mask = E1000_EEPROM_APME;
3874 e1000e_disable_l1aspm(pdev);
3875 err = pci_enable_device(pdev);
3876 if (err)
3877 return err;
3879 pci_using_dac = 0;
3880 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3881 if (!err) {
3882 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3883 if (!err)
3884 pci_using_dac = 1;
3885 } else {
3886 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3887 if (err) {
3888 err = pci_set_consistent_dma_mask(pdev,
3889 DMA_32BIT_MASK);
3890 if (err) {
3891 dev_err(&pdev->dev, "No usable DMA "
3892 "configuration, aborting\n");
3893 goto err_dma;
3898 err = pci_request_regions(pdev, e1000e_driver_name);
3899 if (err)
3900 goto err_pci_reg;
3902 pci_set_master(pdev);
3904 err = -ENOMEM;
3905 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3906 if (!netdev)
3907 goto err_alloc_etherdev;
3909 SET_NETDEV_DEV(netdev, &pdev->dev);
3911 pci_set_drvdata(pdev, netdev);
3912 adapter = netdev_priv(netdev);
3913 hw = &adapter->hw;
3914 adapter->netdev = netdev;
3915 adapter->pdev = pdev;
3916 adapter->ei = ei;
3917 adapter->pba = ei->pba;
3918 adapter->flags = ei->flags;
3919 adapter->hw.adapter = adapter;
3920 adapter->hw.mac.type = ei->mac;
3921 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3923 mmio_start = pci_resource_start(pdev, 0);
3924 mmio_len = pci_resource_len(pdev, 0);
3926 err = -EIO;
3927 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3928 if (!adapter->hw.hw_addr)
3929 goto err_ioremap;
3931 if ((adapter->flags & FLAG_HAS_FLASH) &&
3932 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3933 flash_start = pci_resource_start(pdev, 1);
3934 flash_len = pci_resource_len(pdev, 1);
3935 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3936 if (!adapter->hw.flash_address)
3937 goto err_flashmap;
3940 /* construct the net_device struct */
3941 netdev->open = &e1000_open;
3942 netdev->stop = &e1000_close;
3943 netdev->hard_start_xmit = &e1000_xmit_frame;
3944 netdev->get_stats = &e1000_get_stats;
3945 netdev->set_multicast_list = &e1000_set_multi;
3946 netdev->set_mac_address = &e1000_set_mac;
3947 netdev->change_mtu = &e1000_change_mtu;
3948 netdev->do_ioctl = &e1000_ioctl;
3949 e1000e_set_ethtool_ops(netdev);
3950 netdev->tx_timeout = &e1000_tx_timeout;
3951 netdev->watchdog_timeo = 5 * HZ;
3952 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3953 netdev->vlan_rx_register = e1000_vlan_rx_register;
3954 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
3955 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
3956 #ifdef CONFIG_NET_POLL_CONTROLLER
3957 netdev->poll_controller = e1000_netpoll;
3958 #endif
3959 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3961 netdev->mem_start = mmio_start;
3962 netdev->mem_end = mmio_start + mmio_len;
3964 adapter->bd_number = cards_found++;
3966 /* setup adapter struct */
3967 err = e1000_sw_init(adapter);
3968 if (err)
3969 goto err_sw_init;
3971 err = -EIO;
3973 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3974 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3975 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3977 err = ei->get_invariants(adapter);
3978 if (err)
3979 goto err_hw_init;
3981 hw->mac.ops.get_bus_info(&adapter->hw);
3983 adapter->hw.phy.autoneg_wait_to_complete = 0;
3985 /* Copper options */
3986 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
3987 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3988 adapter->hw.phy.disable_polarity_correction = 0;
3989 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3992 if (e1000_check_reset_block(&adapter->hw))
3993 ndev_info(netdev,
3994 "PHY reset is blocked due to SOL/IDER session.\n");
3996 netdev->features = NETIF_F_SG |
3997 NETIF_F_HW_CSUM |
3998 NETIF_F_HW_VLAN_TX |
3999 NETIF_F_HW_VLAN_RX;
4001 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4002 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4004 netdev->features |= NETIF_F_TSO;
4005 netdev->features |= NETIF_F_TSO6;
4007 if (pci_using_dac)
4008 netdev->features |= NETIF_F_HIGHDMA;
4011 * We should not be using LLTX anymore, but we are still Tx faster with
4012 * it.
4014 netdev->features |= NETIF_F_LLTX;
4016 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4017 adapter->flags |= FLAG_MNG_PT_ENABLED;
4020 * before reading the NVM, reset the controller to
4021 * put the device in a known good starting state
4023 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4026 * systems with ASPM and others may see the checksum fail on the first
4027 * attempt. Let's give it a few tries
4029 for (i = 0;; i++) {
4030 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4031 break;
4032 if (i == 2) {
4033 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
4034 err = -EIO;
4035 goto err_eeprom;
4039 /* copy the MAC address out of the NVM */
4040 if (e1000e_read_mac_addr(&adapter->hw))
4041 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
4043 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4044 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4046 if (!is_valid_ether_addr(netdev->perm_addr)) {
4047 ndev_err(netdev, "Invalid MAC Address: "
4048 "%02x:%02x:%02x:%02x:%02x:%02x\n",
4049 netdev->perm_addr[0], netdev->perm_addr[1],
4050 netdev->perm_addr[2], netdev->perm_addr[3],
4051 netdev->perm_addr[4], netdev->perm_addr[5]);
4052 err = -EIO;
4053 goto err_eeprom;
4056 init_timer(&adapter->watchdog_timer);
4057 adapter->watchdog_timer.function = &e1000_watchdog;
4058 adapter->watchdog_timer.data = (unsigned long) adapter;
4060 init_timer(&adapter->phy_info_timer);
4061 adapter->phy_info_timer.function = &e1000_update_phy_info;
4062 adapter->phy_info_timer.data = (unsigned long) adapter;
4064 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4065 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4067 e1000e_check_options(adapter);
4069 /* Initialize link parameters. User can change them with ethtool */
4070 adapter->hw.mac.autoneg = 1;
4071 adapter->fc_autoneg = 1;
4072 adapter->hw.fc.original_type = e1000_fc_default;
4073 adapter->hw.fc.type = e1000_fc_default;
4074 adapter->hw.phy.autoneg_advertised = 0x2f;
4076 /* ring size defaults */
4077 adapter->rx_ring->count = 256;
4078 adapter->tx_ring->count = 256;
4081 * Initial Wake on LAN setting - If APM wake is enabled in
4082 * the EEPROM, enable the ACPI Magic Packet filter
4084 if (adapter->flags & FLAG_APME_IN_WUC) {
4085 /* APME bit in EEPROM is mapped to WUC.APME */
4086 eeprom_data = er32(WUC);
4087 eeprom_apme_mask = E1000_WUC_APME;
4088 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4089 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4090 (adapter->hw.bus.func == 1))
4091 e1000_read_nvm(&adapter->hw,
4092 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4093 else
4094 e1000_read_nvm(&adapter->hw,
4095 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4098 /* fetch WoL from EEPROM */
4099 if (eeprom_data & eeprom_apme_mask)
4100 adapter->eeprom_wol |= E1000_WUFC_MAG;
4103 * now that we have the eeprom settings, apply the special cases
4104 * where the eeprom may be wrong or the board simply won't support
4105 * wake on lan on a particular port
4107 if (!(adapter->flags & FLAG_HAS_WOL))
4108 adapter->eeprom_wol = 0;
4110 /* initialize the wol settings based on the eeprom settings */
4111 adapter->wol = adapter->eeprom_wol;
4113 /* reset the hardware with the new settings */
4114 e1000e_reset(adapter);
4117 * If the controller has AMT, do not set DRV_LOAD until the interface
4118 * is up. For all other cases, let the f/w know that the h/w is now
4119 * under the control of the driver.
4121 if (!(adapter->flags & FLAG_HAS_AMT) ||
4122 !e1000e_check_mng_mode(&adapter->hw))
4123 e1000_get_hw_control(adapter);
4125 /* tell the stack to leave us alone until e1000_open() is called */
4126 netif_carrier_off(netdev);
4127 netif_stop_queue(netdev);
4129 strcpy(netdev->name, "eth%d");
4130 err = register_netdev(netdev);
4131 if (err)
4132 goto err_register;
4134 e1000_print_device_info(adapter);
4136 return 0;
4138 err_register:
4139 err_hw_init:
4140 e1000_release_hw_control(adapter);
4141 err_eeprom:
4142 if (!e1000_check_reset_block(&adapter->hw))
4143 e1000_phy_hw_reset(&adapter->hw);
4145 if (adapter->hw.flash_address)
4146 iounmap(adapter->hw.flash_address);
4148 err_flashmap:
4149 kfree(adapter->tx_ring);
4150 kfree(adapter->rx_ring);
4151 err_sw_init:
4152 iounmap(adapter->hw.hw_addr);
4153 err_ioremap:
4154 free_netdev(netdev);
4155 err_alloc_etherdev:
4156 pci_release_regions(pdev);
4157 err_pci_reg:
4158 err_dma:
4159 pci_disable_device(pdev);
4160 return err;
4164 * e1000_remove - Device Removal Routine
4165 * @pdev: PCI device information struct
4167 * e1000_remove is called by the PCI subsystem to alert the driver
4168 * that it should release a PCI device. The could be caused by a
4169 * Hot-Plug event, or because the driver is going to be removed from
4170 * memory.
4172 static void __devexit e1000_remove(struct pci_dev *pdev)
4174 struct net_device *netdev = pci_get_drvdata(pdev);
4175 struct e1000_adapter *adapter = netdev_priv(netdev);
4178 * flush_scheduled work may reschedule our watchdog task, so
4179 * explicitly disable watchdog tasks from being rescheduled
4181 set_bit(__E1000_DOWN, &adapter->state);
4182 del_timer_sync(&adapter->watchdog_timer);
4183 del_timer_sync(&adapter->phy_info_timer);
4185 flush_scheduled_work();
4188 * Release control of h/w to f/w. If f/w is AMT enabled, this
4189 * would have already happened in close and is redundant.
4191 e1000_release_hw_control(adapter);
4193 unregister_netdev(netdev);
4195 if (!e1000_check_reset_block(&adapter->hw))
4196 e1000_phy_hw_reset(&adapter->hw);
4198 kfree(adapter->tx_ring);
4199 kfree(adapter->rx_ring);
4201 iounmap(adapter->hw.hw_addr);
4202 if (adapter->hw.flash_address)
4203 iounmap(adapter->hw.flash_address);
4204 pci_release_regions(pdev);
4206 free_netdev(netdev);
4208 pci_disable_device(pdev);
4211 /* PCI Error Recovery (ERS) */
4212 static struct pci_error_handlers e1000_err_handler = {
4213 .error_detected = e1000_io_error_detected,
4214 .slot_reset = e1000_io_slot_reset,
4215 .resume = e1000_io_resume,
4218 static struct pci_device_id e1000_pci_tbl[] = {
4219 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4220 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4221 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4222 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4223 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4224 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4225 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4226 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4227 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4229 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4230 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4231 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4232 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4234 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4235 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4236 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4238 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4239 board_80003es2lan },
4240 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4241 board_80003es2lan },
4242 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4243 board_80003es2lan },
4244 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4245 board_80003es2lan },
4247 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4248 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4249 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4250 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4251 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4252 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4253 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4255 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4256 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4257 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4258 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4259 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4261 { } /* terminate list */
4263 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4265 /* PCI Device API Driver */
4266 static struct pci_driver e1000_driver = {
4267 .name = e1000e_driver_name,
4268 .id_table = e1000_pci_tbl,
4269 .probe = e1000_probe,
4270 .remove = __devexit_p(e1000_remove),
4271 #ifdef CONFIG_PM
4272 /* Power Management Hooks */
4273 .suspend = e1000_suspend,
4274 .resume = e1000_resume,
4275 #endif
4276 .shutdown = e1000_shutdown,
4277 .err_handler = &e1000_err_handler
4281 * e1000_init_module - Driver Registration Routine
4283 * e1000_init_module is the first routine called when the driver is
4284 * loaded. All it does is register with the PCI subsystem.
4286 static int __init e1000_init_module(void)
4288 int ret;
4289 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4290 e1000e_driver_name, e1000e_driver_version);
4291 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4292 e1000e_driver_name);
4293 ret = pci_register_driver(&e1000_driver);
4295 return ret;
4297 module_init(e1000_init_module);
4300 * e1000_exit_module - Driver Exit Cleanup Routine
4302 * e1000_exit_module is called just before the driver is removed
4303 * from memory.
4305 static void __exit e1000_exit_module(void)
4307 pci_unregister_driver(&e1000_driver);
4309 module_exit(e1000_exit_module);
4312 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4313 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4314 MODULE_LICENSE("GPL");
4315 MODULE_VERSION(DRV_VERSION);
4317 /* e1000_main.c */