1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
33 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
);
34 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
);
35 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
);
36 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table
[] =
40 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
42 static const u16 e1000_igp_2_cable_length_table
[] =
43 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
44 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
45 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
46 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
47 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
48 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
49 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
51 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
52 ARRAY_SIZE(e1000_igp_2_cable_length_table)
55 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
56 * @hw: pointer to the HW structure
58 * Read the PHY management control register and check whether a PHY reset
59 * is blocked. If a reset is not blocked return 0, otherwise
60 * return E1000_BLK_PHY_RESET (12).
62 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
68 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
69 E1000_BLK_PHY_RESET
: 0;
73 * e1000e_get_phy_id - Retrieve the PHY ID and revision
74 * @hw: pointer to the HW structure
76 * Reads the PHY registers and stores the PHY ID and possibly the PHY
77 * revision in the hardware structure.
79 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
81 struct e1000_phy_info
*phy
= &hw
->phy
;
85 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
89 phy
->id
= (u32
)(phy_id
<< 16);
91 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
95 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
96 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
102 * e1000e_phy_reset_dsp - Reset PHY DSP
103 * @hw: pointer to the HW structure
105 * Reset the digital signal processor.
107 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
111 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
115 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
119 * e1000_read_phy_reg_mdic - Read MDI control register
120 * @hw: pointer to the HW structure
121 * @offset: register offset to be read
122 * @data: pointer to the read data
124 * Reads the MDI control register in the PHY at offset and stores the
125 * information read to data.
127 static s32
e1000_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
129 struct e1000_phy_info
*phy
= &hw
->phy
;
132 if (offset
> MAX_PHY_REG_ADDRESS
) {
133 hw_dbg(hw
, "PHY Address %d is out of range\n", offset
);
134 return -E1000_ERR_PARAM
;
138 * Set up Op-code, Phy Address, and register offset in the MDI
139 * Control register. The MAC will take care of interfacing with the
140 * PHY to retrieve the desired data.
142 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
143 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
144 (E1000_MDIC_OP_READ
));
149 * Poll the ready bit to see if the MDI read completed
150 * Increasing the time out as testing showed failures with
153 for (i
= 0; i
< 64; i
++) {
156 if (mdic
& E1000_MDIC_READY
)
159 if (!(mdic
& E1000_MDIC_READY
)) {
160 hw_dbg(hw
, "MDI Read did not complete\n");
161 return -E1000_ERR_PHY
;
163 if (mdic
& E1000_MDIC_ERROR
) {
164 hw_dbg(hw
, "MDI Error\n");
165 return -E1000_ERR_PHY
;
173 * e1000_write_phy_reg_mdic - Write MDI control register
174 * @hw: pointer to the HW structure
175 * @offset: register offset to write to
176 * @data: data to write to register at offset
178 * Writes data to MDI control register in the PHY at offset.
180 static s32
e1000_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
182 struct e1000_phy_info
*phy
= &hw
->phy
;
185 if (offset
> MAX_PHY_REG_ADDRESS
) {
186 hw_dbg(hw
, "PHY Address %d is out of range\n", offset
);
187 return -E1000_ERR_PARAM
;
191 * Set up Op-code, Phy Address, and register offset in the MDI
192 * Control register. The MAC will take care of interfacing with the
193 * PHY to retrieve the desired data.
195 mdic
= (((u32
)data
) |
196 (offset
<< E1000_MDIC_REG_SHIFT
) |
197 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
198 (E1000_MDIC_OP_WRITE
));
202 /* Poll the ready bit to see if the MDI read completed */
203 for (i
= 0; i
< E1000_GEN_POLL_TIMEOUT
; i
++) {
206 if (mdic
& E1000_MDIC_READY
)
209 if (!(mdic
& E1000_MDIC_READY
)) {
210 hw_dbg(hw
, "MDI Write did not complete\n");
211 return -E1000_ERR_PHY
;
218 * e1000e_read_phy_reg_m88 - Read m88 PHY register
219 * @hw: pointer to the HW structure
220 * @offset: register offset to be read
221 * @data: pointer to the read data
223 * Acquires semaphore, if necessary, then reads the PHY register at offset
224 * and storing the retrieved information in data. Release any acquired
225 * semaphores before exiting.
227 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
231 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
235 ret_val
= e1000_read_phy_reg_mdic(hw
,
236 MAX_PHY_REG_ADDRESS
& offset
,
239 hw
->phy
.ops
.release_phy(hw
);
245 * e1000e_write_phy_reg_m88 - Write m88 PHY register
246 * @hw: pointer to the HW structure
247 * @offset: register offset to write to
248 * @data: data to write at register offset
250 * Acquires semaphore, if necessary, then writes the data to PHY register
251 * at the offset. Release any acquired semaphores before exiting.
253 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
257 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
261 ret_val
= e1000_write_phy_reg_mdic(hw
,
262 MAX_PHY_REG_ADDRESS
& offset
,
265 hw
->phy
.ops
.release_phy(hw
);
271 * e1000e_read_phy_reg_igp - Read igp PHY register
272 * @hw: pointer to the HW structure
273 * @offset: register offset to be read
274 * @data: pointer to the read data
276 * Acquires semaphore, if necessary, then reads the PHY register at offset
277 * and storing the retrieved information in data. Release any acquired
278 * semaphores before exiting.
280 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
284 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
288 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
289 ret_val
= e1000_write_phy_reg_mdic(hw
,
290 IGP01E1000_PHY_PAGE_SELECT
,
293 hw
->phy
.ops
.release_phy(hw
);
298 ret_val
= e1000_read_phy_reg_mdic(hw
,
299 MAX_PHY_REG_ADDRESS
& offset
,
302 hw
->phy
.ops
.release_phy(hw
);
308 * e1000e_write_phy_reg_igp - Write igp PHY register
309 * @hw: pointer to the HW structure
310 * @offset: register offset to write to
311 * @data: data to write at register offset
313 * Acquires semaphore, if necessary, then writes the data to PHY register
314 * at the offset. Release any acquired semaphores before exiting.
316 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
320 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
324 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
325 ret_val
= e1000_write_phy_reg_mdic(hw
,
326 IGP01E1000_PHY_PAGE_SELECT
,
329 hw
->phy
.ops
.release_phy(hw
);
334 ret_val
= e1000_write_phy_reg_mdic(hw
,
335 MAX_PHY_REG_ADDRESS
& offset
,
338 hw
->phy
.ops
.release_phy(hw
);
344 * e1000e_read_kmrn_reg - Read kumeran register
345 * @hw: pointer to the HW structure
346 * @offset: register offset to be read
347 * @data: pointer to the read data
349 * Acquires semaphore, if necessary. Then reads the PHY register at offset
350 * using the kumeran interface. The information retrieved is stored in data.
351 * Release any acquired semaphores before exiting.
353 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
358 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
362 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
363 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
364 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
368 kmrnctrlsta
= er32(KMRNCTRLSTA
);
369 *data
= (u16
)kmrnctrlsta
;
371 hw
->phy
.ops
.release_phy(hw
);
377 * e1000e_write_kmrn_reg - Write kumeran register
378 * @hw: pointer to the HW structure
379 * @offset: register offset to write to
380 * @data: data to write at register offset
382 * Acquires semaphore, if necessary. Then write the data to PHY register
383 * at the offset using the kumeran interface. Release any acquired semaphores
386 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
391 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
395 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
396 E1000_KMRNCTRLSTA_OFFSET
) | data
;
397 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
400 hw
->phy
.ops
.release_phy(hw
);
406 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
407 * @hw: pointer to the HW structure
409 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
410 * and downshift values are set also.
412 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
414 struct e1000_phy_info
*phy
= &hw
->phy
;
418 /* Enable CRS on Tx. This must be set for half-duplex operation. */
419 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
423 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
427 * MDI/MDI-X = 0 (default)
428 * 0 - Auto for all speeds
431 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
433 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
437 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
440 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
443 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
447 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
453 * disable_polarity_correction = 0 (default)
454 * Automatic Correction for Reversed Cable Polarity
458 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
459 if (phy
->disable_polarity_correction
== 1)
460 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
462 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
466 if (phy
->revision
< 4) {
468 * Force TX_CLK in the Extended PHY Specific Control Register
471 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
475 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
477 if ((phy
->revision
== 2) &&
478 (phy
->id
== M88E1111_I_PHY_ID
)) {
479 /* 82573L PHY - set the downshift counter to 5x. */
480 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
481 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
483 /* Configure Master and Slave downshift values */
484 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
485 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
486 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
487 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
489 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
494 /* Commit the changes. */
495 ret_val
= e1000e_commit_phy(hw
);
497 hw_dbg(hw
, "Error committing the PHY changes\n");
503 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
504 * @hw: pointer to the HW structure
506 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
509 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
511 struct e1000_phy_info
*phy
= &hw
->phy
;
515 ret_val
= e1000_phy_hw_reset(hw
);
517 hw_dbg(hw
, "Error resetting the PHY.\n");
521 /* Wait 15ms for MAC to configure PHY from NVM settings. */
524 /* disable lplu d0 during driver init */
525 ret_val
= e1000_set_d0_lplu_state(hw
, 0);
527 hw_dbg(hw
, "Error Disabling LPLU D0\n");
530 /* Configure mdi-mdix settings */
531 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
535 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
539 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
542 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
546 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
549 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
553 /* set auto-master slave resolution settings */
554 if (hw
->mac
.autoneg
) {
556 * when autonegotiation advertisement is only 1000Mbps then we
557 * should disable SmartSpeed and enable Auto MasterSlave
558 * resolution as hardware default.
560 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
561 /* Disable SmartSpeed */
562 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
567 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
568 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
573 /* Set auto Master/Slave resolution process */
574 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
578 data
&= ~CR_1000T_MS_ENABLE
;
579 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
584 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
588 /* load defaults for future use */
589 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
590 ((data
& CR_1000T_MS_VALUE
) ?
591 e1000_ms_force_master
:
592 e1000_ms_force_slave
) :
595 switch (phy
->ms_type
) {
596 case e1000_ms_force_master
:
597 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
599 case e1000_ms_force_slave
:
600 data
|= CR_1000T_MS_ENABLE
;
601 data
&= ~(CR_1000T_MS_VALUE
);
604 data
&= ~CR_1000T_MS_ENABLE
;
608 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
615 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
616 * @hw: pointer to the HW structure
618 * Reads the MII auto-neg advertisement register and/or the 1000T control
619 * register and if the PHY is already setup for auto-negotiation, then
620 * return successful. Otherwise, setup advertisement and flow control to
621 * the appropriate values for the wanted auto-negotiation.
623 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
625 struct e1000_phy_info
*phy
= &hw
->phy
;
627 u16 mii_autoneg_adv_reg
;
628 u16 mii_1000t_ctrl_reg
= 0;
630 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
632 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
633 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
637 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
638 /* Read the MII 1000Base-T Control Register (Address 9). */
639 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &mii_1000t_ctrl_reg
);
645 * Need to parse both autoneg_advertised and fc and set up
646 * the appropriate PHY registers. First we will parse for
647 * autoneg_advertised software override. Since we can advertise
648 * a plethora of combinations, we need to check each bit
653 * First we clear all the 10/100 mb speed bits in the Auto-Neg
654 * Advertisement Register (Address 4) and the 1000 mb speed bits in
655 * the 1000Base-T Control Register (Address 9).
657 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
658 NWAY_AR_100TX_HD_CAPS
|
659 NWAY_AR_10T_FD_CAPS
|
660 NWAY_AR_10T_HD_CAPS
);
661 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
663 hw_dbg(hw
, "autoneg_advertised %x\n", phy
->autoneg_advertised
);
665 /* Do we want to advertise 10 Mb Half Duplex? */
666 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
667 hw_dbg(hw
, "Advertise 10mb Half duplex\n");
668 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
671 /* Do we want to advertise 10 Mb Full Duplex? */
672 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
673 hw_dbg(hw
, "Advertise 10mb Full duplex\n");
674 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
677 /* Do we want to advertise 100 Mb Half Duplex? */
678 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
679 hw_dbg(hw
, "Advertise 100mb Half duplex\n");
680 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
683 /* Do we want to advertise 100 Mb Full Duplex? */
684 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
685 hw_dbg(hw
, "Advertise 100mb Full duplex\n");
686 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
689 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
690 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
691 hw_dbg(hw
, "Advertise 1000mb Half duplex request denied!\n");
693 /* Do we want to advertise 1000 Mb Full Duplex? */
694 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
695 hw_dbg(hw
, "Advertise 1000mb Full duplex\n");
696 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
700 * Check for a software override of the flow control settings, and
701 * setup the PHY advertisement registers accordingly. If
702 * auto-negotiation is enabled, then software will have to set the
703 * "PAUSE" bits to the correct value in the Auto-Negotiation
704 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
707 * The possible values of the "fc" parameter are:
708 * 0: Flow control is completely disabled
709 * 1: Rx flow control is enabled (we can receive pause frames
710 * but not send pause frames).
711 * 2: Tx flow control is enabled (we can send pause frames
712 * but we do not support receiving pause frames).
713 * 3: Both Rx and Tx flow control (symmetric) are enabled.
714 * other: No software override. The flow control configuration
715 * in the EEPROM is used.
717 switch (hw
->fc
.type
) {
720 * Flow control (Rx & Tx) is completely disabled by a
721 * software over-ride.
723 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
725 case e1000_fc_rx_pause
:
727 * Rx Flow control is enabled, and Tx Flow control is
728 * disabled, by a software over-ride.
730 * Since there really isn't a way to advertise that we are
731 * capable of Rx Pause ONLY, we will advertise that we
732 * support both symmetric and asymmetric Rx PAUSE. Later
733 * (in e1000e_config_fc_after_link_up) we will disable the
734 * hw's ability to send PAUSE frames.
736 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
738 case e1000_fc_tx_pause
:
740 * Tx Flow control is enabled, and Rx Flow control is
741 * disabled, by a software over-ride.
743 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
744 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
748 * Flow control (both Rx and Tx) is enabled by a software
751 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
754 hw_dbg(hw
, "Flow control param set incorrectly\n");
755 ret_val
= -E1000_ERR_CONFIG
;
759 ret_val
= e1e_wphy(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
763 hw_dbg(hw
, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
765 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
766 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, mii_1000t_ctrl_reg
);
773 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
774 * @hw: pointer to the HW structure
776 * Performs initial bounds checking on autoneg advertisement parameter, then
777 * configure to advertise the full capability. Setup the PHY to autoneg
778 * and restart the negotiation process between the link partner. If
779 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
781 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
783 struct e1000_phy_info
*phy
= &hw
->phy
;
788 * Perform some bounds checking on the autoneg advertisement
791 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
794 * If autoneg_advertised is zero, we assume it was not defaulted
795 * by the calling code so we set to advertise full capability.
797 if (phy
->autoneg_advertised
== 0)
798 phy
->autoneg_advertised
= phy
->autoneg_mask
;
800 hw_dbg(hw
, "Reconfiguring auto-neg advertisement params\n");
801 ret_val
= e1000_phy_setup_autoneg(hw
);
803 hw_dbg(hw
, "Error Setting up Auto-Negotiation\n");
806 hw_dbg(hw
, "Restarting Auto-Neg\n");
809 * Restart auto-negotiation by setting the Auto Neg Enable bit and
810 * the Auto Neg Restart bit in the PHY control register.
812 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
816 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
817 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
822 * Does the user want to wait for Auto-Neg to complete here, or
823 * check at a later time (for example, callback routine).
825 if (phy
->autoneg_wait_to_complete
) {
826 ret_val
= e1000_wait_autoneg(hw
);
828 hw_dbg(hw
, "Error while waiting for "
829 "autoneg to complete\n");
834 hw
->mac
.get_link_status
= 1;
840 * e1000e_setup_copper_link - Configure copper link settings
841 * @hw: pointer to the HW structure
843 * Calls the appropriate function to configure the link for auto-neg or forced
844 * speed and duplex. Then we check for link, once link is established calls
845 * to configure collision distance and flow control are called. If link is
846 * not established, we return -E1000_ERR_PHY (-2).
848 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
853 if (hw
->mac
.autoneg
) {
855 * Setup autoneg and flow control advertisement and perform
858 ret_val
= e1000_copper_link_autoneg(hw
);
863 * PHY will be set to 10H, 10F, 100H or 100F
864 * depending on user settings.
866 hw_dbg(hw
, "Forcing Speed and Duplex\n");
867 ret_val
= e1000_phy_force_speed_duplex(hw
);
869 hw_dbg(hw
, "Error Forcing Speed and Duplex\n");
875 * Check link status. Wait up to 100 microseconds for link to become
878 ret_val
= e1000e_phy_has_link_generic(hw
,
879 COPPER_LINK_UP_LIMIT
,
886 hw_dbg(hw
, "Valid link established!!!\n");
887 e1000e_config_collision_dist(hw
);
888 ret_val
= e1000e_config_fc_after_link_up(hw
);
890 hw_dbg(hw
, "Unable to establish link!!!\n");
897 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
898 * @hw: pointer to the HW structure
900 * Calls the PHY setup function to force speed and duplex. Clears the
901 * auto-crossover to force MDI manually. Waits for link and returns
902 * successful if link up is successful, else -E1000_ERR_PHY (-2).
904 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
906 struct e1000_phy_info
*phy
= &hw
->phy
;
911 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
915 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
917 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
922 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
923 * forced whenever speed and duplex are forced.
925 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
929 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
930 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
932 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
936 hw_dbg(hw
, "IGP PSCR: %X\n", phy_data
);
940 if (phy
->autoneg_wait_to_complete
) {
941 hw_dbg(hw
, "Waiting for forced speed/duplex link on IGP phy.\n");
943 ret_val
= e1000e_phy_has_link_generic(hw
,
951 hw_dbg(hw
, "Link taking longer than expected.\n");
954 ret_val
= e1000e_phy_has_link_generic(hw
,
966 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
967 * @hw: pointer to the HW structure
969 * Calls the PHY setup function to force speed and duplex. Clears the
970 * auto-crossover to force MDI manually. Resets the PHY to commit the
971 * changes. If time expires while waiting for link up, we reset the DSP.
972 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
973 * successful completion, else return corresponding error code.
975 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
977 struct e1000_phy_info
*phy
= &hw
->phy
;
983 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
984 * forced whenever speed and duplex are forced.
986 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
990 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
991 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
995 hw_dbg(hw
, "M88E1000 PSCR: %X\n", phy_data
);
997 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
1001 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1003 /* Reset the phy to commit changes. */
1004 phy_data
|= MII_CR_RESET
;
1006 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
1012 if (phy
->autoneg_wait_to_complete
) {
1013 hw_dbg(hw
, "Waiting for forced speed/duplex link on M88 phy.\n");
1015 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1022 * We didn't get link.
1023 * Reset the DSP and cross our fingers.
1025 ret_val
= e1e_wphy(hw
, M88E1000_PHY_PAGE_SELECT
,
1029 ret_val
= e1000e_phy_reset_dsp(hw
);
1035 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1041 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1046 * Resetting the phy means we need to re-force TX_CLK in the
1047 * Extended PHY Specific Control Register to 25MHz clock from
1048 * the reset value of 2.5MHz.
1050 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1051 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1056 * In addition, we must re-enable CRS on Tx for both half and full
1059 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1063 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1064 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1070 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1071 * @hw: pointer to the HW structure
1072 * @phy_ctrl: pointer to current value of PHY_CONTROL
1074 * Forces speed and duplex on the PHY by doing the following: disable flow
1075 * control, force speed/duplex on the MAC, disable auto speed detection,
1076 * disable auto-negotiation, configure duplex, configure speed, configure
1077 * the collision distance, write configuration to CTRL register. The
1078 * caller must write to the PHY_CONTROL register for these settings to
1081 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1083 struct e1000_mac_info
*mac
= &hw
->mac
;
1086 /* Turn off flow control when forcing speed/duplex */
1087 hw
->fc
.type
= e1000_fc_none
;
1089 /* Force speed/duplex on the mac */
1091 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1092 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1094 /* Disable Auto Speed Detection */
1095 ctrl
&= ~E1000_CTRL_ASDE
;
1097 /* Disable autoneg on the phy */
1098 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1100 /* Forcing Full or Half Duplex? */
1101 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1102 ctrl
&= ~E1000_CTRL_FD
;
1103 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1104 hw_dbg(hw
, "Half Duplex\n");
1106 ctrl
|= E1000_CTRL_FD
;
1107 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1108 hw_dbg(hw
, "Full Duplex\n");
1111 /* Forcing 10mb or 100mb? */
1112 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1113 ctrl
|= E1000_CTRL_SPD_100
;
1114 *phy_ctrl
|= MII_CR_SPEED_100
;
1115 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1116 hw_dbg(hw
, "Forcing 100mb\n");
1118 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1119 *phy_ctrl
|= MII_CR_SPEED_10
;
1120 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1121 hw_dbg(hw
, "Forcing 10mb\n");
1124 e1000e_config_collision_dist(hw
);
1130 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1131 * @hw: pointer to the HW structure
1132 * @active: boolean used to enable/disable lplu
1134 * Success returns 0, Failure returns 1
1136 * The low power link up (lplu) state is set to the power management level D3
1137 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1138 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1139 * is used during Dx states where the power conservation is most important.
1140 * During driver activity, SmartSpeed should be enabled so performance is
1143 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1145 struct e1000_phy_info
*phy
= &hw
->phy
;
1149 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1154 data
&= ~IGP02E1000_PM_D3_LPLU
;
1155 ret_val
= e1e_wphy(hw
,
1156 IGP02E1000_PHY_POWER_MGMT
,
1161 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1162 * during Dx states where the power conservation is most
1163 * important. During driver activity we should enable
1164 * SmartSpeed, so performance is maintained.
1166 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1167 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1172 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1173 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1177 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1178 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1183 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1184 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1189 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1190 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1191 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1192 data
|= IGP02E1000_PM_D3_LPLU
;
1193 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1197 /* When LPLU is enabled, we should disable SmartSpeed */
1198 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1202 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1203 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1210 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1211 * @hw: pointer to the HW structure
1213 * Success returns 0, Failure returns 1
1215 * A downshift is detected by querying the PHY link health.
1217 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1219 struct e1000_phy_info
*phy
= &hw
->phy
;
1221 u16 phy_data
, offset
, mask
;
1223 switch (phy
->type
) {
1225 case e1000_phy_gg82563
:
1226 offset
= M88E1000_PHY_SPEC_STATUS
;
1227 mask
= M88E1000_PSSR_DOWNSHIFT
;
1229 case e1000_phy_igp_2
:
1230 case e1000_phy_igp_3
:
1231 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1232 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1235 /* speed downshift not supported */
1236 phy
->speed_downgraded
= 0;
1240 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1243 phy
->speed_downgraded
= (phy_data
& mask
);
1249 * e1000_check_polarity_m88 - Checks the polarity.
1250 * @hw: pointer to the HW structure
1252 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1254 * Polarity is determined based on the PHY specific status register.
1256 static s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1258 struct e1000_phy_info
*phy
= &hw
->phy
;
1262 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1265 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1266 ? e1000_rev_polarity_reversed
1267 : e1000_rev_polarity_normal
;
1273 * e1000_check_polarity_igp - Checks the polarity.
1274 * @hw: pointer to the HW structure
1276 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1278 * Polarity is determined based on the PHY port status register, and the
1279 * current speed (since there is no polarity at 100Mbps).
1281 static s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1283 struct e1000_phy_info
*phy
= &hw
->phy
;
1285 u16 data
, offset
, mask
;
1288 * Polarity is determined based on the speed of
1291 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1295 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1296 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1297 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1298 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1301 * This really only applies to 10Mbps since
1302 * there is no polarity for 100Mbps (always 0).
1304 offset
= IGP01E1000_PHY_PORT_STATUS
;
1305 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1308 ret_val
= e1e_rphy(hw
, offset
, &data
);
1311 phy
->cable_polarity
= (data
& mask
)
1312 ? e1000_rev_polarity_reversed
1313 : e1000_rev_polarity_normal
;
1319 * e1000_wait_autoneg - Wait for auto-neg completion
1320 * @hw: pointer to the HW structure
1322 * Waits for auto-negotiation to complete or for the auto-negotiation time
1323 * limit to expire, which ever happens first.
1325 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1330 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1331 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1332 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1335 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1338 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1344 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1351 * e1000e_phy_has_link_generic - Polls PHY for link
1352 * @hw: pointer to the HW structure
1353 * @iterations: number of times to poll for link
1354 * @usec_interval: delay between polling attempts
1355 * @success: pointer to whether polling was successful or not
1357 * Polls the PHY status register for link, 'iterations' number of times.
1359 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1360 u32 usec_interval
, bool *success
)
1365 for (i
= 0; i
< iterations
; i
++) {
1367 * Some PHYs require the PHY_STATUS register to be read
1368 * twice due to the link bit being sticky. No harm doing
1369 * it across the board.
1371 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1374 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1377 if (phy_status
& MII_SR_LINK_STATUS
)
1379 if (usec_interval
>= 1000)
1380 mdelay(usec_interval
/1000);
1382 udelay(usec_interval
);
1385 *success
= (i
< iterations
);
1391 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1392 * @hw: pointer to the HW structure
1394 * Reads the PHY specific status register to retrieve the cable length
1395 * information. The cable length is determined by averaging the minimum and
1396 * maximum values to get the "average" cable length. The m88 PHY has four
1397 * possible cable length values, which are:
1398 * Register Value Cable Length
1402 * 3 110 - 140 meters
1405 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1407 struct e1000_phy_info
*phy
= &hw
->phy
;
1409 u16 phy_data
, index
;
1411 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1415 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1416 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1417 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1418 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+1];
1420 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1426 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1427 * @hw: pointer to the HW structure
1429 * The automatic gain control (agc) normalizes the amplitude of the
1430 * received signal, adjusting for the attenuation produced by the
1431 * cable. By reading the AGC registers, which represent the
1432 * combination of course and fine gain value, the value can be put
1433 * into a lookup table to obtain the approximate cable length
1436 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1438 struct e1000_phy_info
*phy
= &hw
->phy
;
1440 u16 phy_data
, i
, agc_value
= 0;
1441 u16 cur_agc_index
, max_agc_index
= 0;
1442 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1443 u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] =
1444 {IGP02E1000_PHY_AGC_A
,
1445 IGP02E1000_PHY_AGC_B
,
1446 IGP02E1000_PHY_AGC_C
,
1447 IGP02E1000_PHY_AGC_D
};
1449 /* Read the AGC registers for all channels */
1450 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1451 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1456 * Getting bits 15:9, which represent the combination of
1457 * course and fine gain values. The result is a number
1458 * that can be put into the lookup table to obtain the
1459 * approximate cable length.
1461 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1462 IGP02E1000_AGC_LENGTH_MASK
;
1464 /* Array index bound check. */
1465 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1466 (cur_agc_index
== 0))
1467 return -E1000_ERR_PHY
;
1469 /* Remove min & max AGC values from calculation. */
1470 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1471 e1000_igp_2_cable_length_table
[cur_agc_index
])
1472 min_agc_index
= cur_agc_index
;
1473 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1474 e1000_igp_2_cable_length_table
[cur_agc_index
])
1475 max_agc_index
= cur_agc_index
;
1477 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1480 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1481 e1000_igp_2_cable_length_table
[max_agc_index
]);
1482 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1484 /* Calculate cable length with the error range of +/- 10 meters. */
1485 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1486 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1487 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1489 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1495 * e1000e_get_phy_info_m88 - Retrieve PHY information
1496 * @hw: pointer to the HW structure
1498 * Valid for only copper links. Read the PHY status register (sticky read)
1499 * to verify that link is up. Read the PHY special control register to
1500 * determine the polarity and 10base-T extended distance. Read the PHY
1501 * special status register to determine MDI/MDIx and current speed. If
1502 * speed is 1000, then determine cable length, local and remote receiver.
1504 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1506 struct e1000_phy_info
*phy
= &hw
->phy
;
1511 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
1512 hw_dbg(hw
, "Phy info is only valid for copper media\n");
1513 return -E1000_ERR_CONFIG
;
1516 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1521 hw_dbg(hw
, "Phy info is only valid if link is up\n");
1522 return -E1000_ERR_CONFIG
;
1525 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1529 phy
->polarity_correction
= (phy_data
&
1530 M88E1000_PSCR_POLARITY_REVERSAL
);
1532 ret_val
= e1000_check_polarity_m88(hw
);
1536 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1540 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
);
1542 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1543 ret_val
= e1000_get_cable_length(hw
);
1547 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
1551 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1552 ? e1000_1000t_rx_status_ok
1553 : e1000_1000t_rx_status_not_ok
;
1555 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1556 ? e1000_1000t_rx_status_ok
1557 : e1000_1000t_rx_status_not_ok
;
1559 /* Set values to "undefined" */
1560 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1561 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1562 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1569 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1570 * @hw: pointer to the HW structure
1572 * Read PHY status to determine if link is up. If link is up, then
1573 * set/determine 10base-T extended distance and polarity correction. Read
1574 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1575 * determine on the cable length, local and remote receiver.
1577 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
1579 struct e1000_phy_info
*phy
= &hw
->phy
;
1584 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1589 hw_dbg(hw
, "Phy info is only valid if link is up\n");
1590 return -E1000_ERR_CONFIG
;
1593 phy
->polarity_correction
= 1;
1595 ret_val
= e1000_check_polarity_igp(hw
);
1599 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1603 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
);
1605 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1606 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1607 ret_val
= e1000_get_cable_length(hw
);
1611 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &data
);
1615 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
1616 ? e1000_1000t_rx_status_ok
1617 : e1000_1000t_rx_status_not_ok
;
1619 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
1620 ? e1000_1000t_rx_status_ok
1621 : e1000_1000t_rx_status_not_ok
;
1623 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1624 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1625 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1632 * e1000e_phy_sw_reset - PHY software reset
1633 * @hw: pointer to the HW structure
1635 * Does a software reset of the PHY by reading the PHY control register and
1636 * setting/write the control register reset bit to the PHY.
1638 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
1643 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
1647 phy_ctrl
|= MII_CR_RESET
;
1648 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
1658 * e1000e_phy_hw_reset_generic - PHY hardware reset
1659 * @hw: pointer to the HW structure
1661 * Verify the reset block is not blocking us from resetting. Acquire
1662 * semaphore (if necessary) and read/set/write the device control reset
1663 * bit in the PHY. Wait the appropriate delay time for the device to
1664 * reset and release the semaphore (if necessary).
1666 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
1668 struct e1000_phy_info
*phy
= &hw
->phy
;
1672 ret_val
= e1000_check_reset_block(hw
);
1676 ret_val
= phy
->ops
.acquire_phy(hw
);
1681 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
1684 udelay(phy
->reset_delay_us
);
1691 phy
->ops
.release_phy(hw
);
1693 return e1000_get_phy_cfg_done(hw
);
1697 * e1000e_get_cfg_done - Generic configuration done
1698 * @hw: pointer to the HW structure
1700 * Generic function to wait 10 milli-seconds for configuration to complete
1701 * and return success.
1703 s32
e1000e_get_cfg_done(struct e1000_hw
*hw
)
1709 /* Internal function pointers */
1712 * e1000_get_phy_cfg_done - Generic PHY configuration done
1713 * @hw: pointer to the HW structure
1715 * Return success if silicon family did not implement a family specific
1716 * get_cfg_done function.
1718 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
)
1720 if (hw
->phy
.ops
.get_cfg_done
)
1721 return hw
->phy
.ops
.get_cfg_done(hw
);
1727 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1728 * @hw: pointer to the HW structure
1730 * When the silicon family has not implemented a forced speed/duplex
1731 * function for the PHY, simply return 0.
1733 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
)
1735 if (hw
->phy
.ops
.force_speed_duplex
)
1736 return hw
->phy
.ops
.force_speed_duplex(hw
);
1742 * e1000e_get_phy_type_from_id - Get PHY type from id
1743 * @phy_id: phy_id read from the phy
1745 * Returns the phy type from the id.
1747 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
1749 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
1752 case M88E1000_I_PHY_ID
:
1753 case M88E1000_E_PHY_ID
:
1754 case M88E1111_I_PHY_ID
:
1755 case M88E1011_I_PHY_ID
:
1756 phy_type
= e1000_phy_m88
;
1758 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
1759 phy_type
= e1000_phy_igp_2
;
1761 case GG82563_E_PHY_ID
:
1762 phy_type
= e1000_phy_gg82563
;
1764 case IGP03E1000_E_PHY_ID
:
1765 phy_type
= e1000_phy_igp_3
;
1768 case IFE_PLUS_E_PHY_ID
:
1769 case IFE_C_E_PHY_ID
:
1770 phy_type
= e1000_phy_ife
;
1773 phy_type
= e1000_phy_unknown
;
1780 * e1000e_commit_phy - Soft PHY reset
1781 * @hw: pointer to the HW structure
1783 * Performs a soft PHY reset on those that apply. This is a function pointer
1784 * entry point called by drivers.
1786 s32
e1000e_commit_phy(struct e1000_hw
*hw
)
1788 if (hw
->phy
.ops
.commit_phy
)
1789 return hw
->phy
.ops
.commit_phy(hw
);
1795 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1796 * @hw: pointer to the HW structure
1797 * @active: boolean used to enable/disable lplu
1799 * Success returns 0, Failure returns 1
1801 * The low power link up (lplu) state is set to the power management level D0
1802 * and SmartSpeed is disabled when active is true, else clear lplu for D0
1803 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1804 * is used during Dx states where the power conservation is most important.
1805 * During driver activity, SmartSpeed should be enabled so performance is
1806 * maintained. This is a function pointer entry point called by drivers.
1808 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
)
1810 if (hw
->phy
.ops
.set_d0_lplu_state
)
1811 return hw
->phy
.ops
.set_d0_lplu_state(hw
, active
);