iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / net / igb / igb_main.c
blobaaee02e9e3f03c4bc0da116942964996fe061fda
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
45 #include "igb.h"
47 #define DRV_VERSION "1.0.8-k2"
48 char igb_driver_name[] = "igb";
49 char igb_driver_version[] = DRV_VERSION;
50 static const char igb_driver_string[] =
51 "Intel(R) Gigabit Ethernet Network Driver";
52 static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
55 static const struct e1000_info *igb_info_tbl[] = {
56 [board_82575] = &e1000_82575_info,
59 static struct pci_device_id igb_pci_tbl[] = {
60 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
63 /* required last entry */
64 {0, }
67 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
69 void igb_reset(struct igb_adapter *);
70 static int igb_setup_all_tx_resources(struct igb_adapter *);
71 static int igb_setup_all_rx_resources(struct igb_adapter *);
72 static void igb_free_all_tx_resources(struct igb_adapter *);
73 static void igb_free_all_rx_resources(struct igb_adapter *);
74 static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
75 static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
76 void igb_update_stats(struct igb_adapter *);
77 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
78 static void __devexit igb_remove(struct pci_dev *pdev);
79 static int igb_sw_init(struct igb_adapter *);
80 static int igb_open(struct net_device *);
81 static int igb_close(struct net_device *);
82 static void igb_configure_tx(struct igb_adapter *);
83 static void igb_configure_rx(struct igb_adapter *);
84 static void igb_setup_rctl(struct igb_adapter *);
85 static void igb_clean_all_tx_rings(struct igb_adapter *);
86 static void igb_clean_all_rx_rings(struct igb_adapter *);
87 static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
88 static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
89 static void igb_set_multi(struct net_device *);
90 static void igb_update_phy_info(unsigned long);
91 static void igb_watchdog(unsigned long);
92 static void igb_watchdog_task(struct work_struct *);
93 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
94 struct igb_ring *);
95 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
96 static struct net_device_stats *igb_get_stats(struct net_device *);
97 static int igb_change_mtu(struct net_device *, int);
98 static int igb_set_mac(struct net_device *, void *);
99 static irqreturn_t igb_intr(int irq, void *);
100 static irqreturn_t igb_intr_msi(int irq, void *);
101 static irqreturn_t igb_msix_other(int irq, void *);
102 static irqreturn_t igb_msix_rx(int irq, void *);
103 static irqreturn_t igb_msix_tx(int irq, void *);
104 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
105 static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
106 static int igb_clean(struct napi_struct *, int);
107 static bool igb_clean_rx_irq_adv(struct igb_adapter *,
108 struct igb_ring *, int *, int);
109 static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
110 struct igb_ring *, int);
111 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
112 static void igb_tx_timeout(struct net_device *);
113 static void igb_reset_task(struct work_struct *);
114 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
115 static void igb_vlan_rx_add_vid(struct net_device *, u16);
116 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
117 static void igb_restore_vlan(struct igb_adapter *);
119 static int igb_suspend(struct pci_dev *, pm_message_t);
120 #ifdef CONFIG_PM
121 static int igb_resume(struct pci_dev *);
122 #endif
123 static void igb_shutdown(struct pci_dev *);
125 #ifdef CONFIG_NET_POLL_CONTROLLER
126 /* for netdump / net console */
127 static void igb_netpoll(struct net_device *);
128 #endif
130 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
131 pci_channel_state_t);
132 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
133 static void igb_io_resume(struct pci_dev *);
135 static struct pci_error_handlers igb_err_handler = {
136 .error_detected = igb_io_error_detected,
137 .slot_reset = igb_io_slot_reset,
138 .resume = igb_io_resume,
142 static struct pci_driver igb_driver = {
143 .name = igb_driver_name,
144 .id_table = igb_pci_tbl,
145 .probe = igb_probe,
146 .remove = __devexit_p(igb_remove),
147 #ifdef CONFIG_PM
148 /* Power Managment Hooks */
149 .suspend = igb_suspend,
150 .resume = igb_resume,
151 #endif
152 .shutdown = igb_shutdown,
153 .err_handler = &igb_err_handler
156 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
157 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
158 MODULE_LICENSE("GPL");
159 MODULE_VERSION(DRV_VERSION);
161 #ifdef DEBUG
163 * igb_get_hw_dev_name - return device name string
164 * used by hardware layer to print debugging information
166 char *igb_get_hw_dev_name(struct e1000_hw *hw)
168 struct igb_adapter *adapter = hw->back;
169 return adapter->netdev->name;
171 #endif
174 * igb_init_module - Driver Registration Routine
176 * igb_init_module is the first routine called when the driver is
177 * loaded. All it does is register with the PCI subsystem.
179 static int __init igb_init_module(void)
181 int ret;
182 printk(KERN_INFO "%s - version %s\n",
183 igb_driver_string, igb_driver_version);
185 printk(KERN_INFO "%s\n", igb_copyright);
187 ret = pci_register_driver(&igb_driver);
188 return ret;
191 module_init(igb_init_module);
194 * igb_exit_module - Driver Exit Cleanup Routine
196 * igb_exit_module is called just before the driver is removed
197 * from memory.
199 static void __exit igb_exit_module(void)
201 pci_unregister_driver(&igb_driver);
204 module_exit(igb_exit_module);
207 * igb_alloc_queues - Allocate memory for all rings
208 * @adapter: board private structure to initialize
210 * We allocate one ring per queue at run-time since we don't know the
211 * number of queues at compile-time.
213 static int igb_alloc_queues(struct igb_adapter *adapter)
215 int i;
217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
218 sizeof(struct igb_ring), GFP_KERNEL);
219 if (!adapter->tx_ring)
220 return -ENOMEM;
222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
223 sizeof(struct igb_ring), GFP_KERNEL);
224 if (!adapter->rx_ring) {
225 kfree(adapter->tx_ring);
226 return -ENOMEM;
229 for (i = 0; i < adapter->num_rx_queues; i++) {
230 struct igb_ring *ring = &(adapter->rx_ring[i]);
231 ring->adapter = adapter;
232 ring->itr_register = E1000_ITR;
234 if (!ring->napi.poll)
235 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
236 adapter->napi.weight /
237 adapter->num_rx_queues);
239 return 0;
242 #define IGB_N0_QUEUE -1
243 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
244 int tx_queue, int msix_vector)
246 u32 msixbm = 0;
247 struct e1000_hw *hw = &adapter->hw;
248 /* The 82575 assigns vectors using a bitmask, which matches the
249 bitmask for the EICR/EIMS/EIMC registers. To assign one
250 or more queues to a vector, we write the appropriate bits
251 into the MSIXBM register for that vector. */
252 if (rx_queue > IGB_N0_QUEUE) {
253 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
254 adapter->rx_ring[rx_queue].eims_value = msixbm;
256 if (tx_queue > IGB_N0_QUEUE) {
257 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
258 adapter->tx_ring[tx_queue].eims_value =
259 E1000_EICR_TX_QUEUE0 << tx_queue;
261 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
265 * igb_configure_msix - Configure MSI-X hardware
267 * igb_configure_msix sets up the hardware to properly
268 * generate MSI-X interrupts.
270 static void igb_configure_msix(struct igb_adapter *adapter)
272 u32 tmp;
273 int i, vector = 0;
274 struct e1000_hw *hw = &adapter->hw;
276 adapter->eims_enable_mask = 0;
278 for (i = 0; i < adapter->num_tx_queues; i++) {
279 struct igb_ring *tx_ring = &adapter->tx_ring[i];
280 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
281 adapter->eims_enable_mask |= tx_ring->eims_value;
282 if (tx_ring->itr_val)
283 writel(1000000000 / (tx_ring->itr_val * 256),
284 hw->hw_addr + tx_ring->itr_register);
285 else
286 writel(1, hw->hw_addr + tx_ring->itr_register);
289 for (i = 0; i < adapter->num_rx_queues; i++) {
290 struct igb_ring *rx_ring = &adapter->rx_ring[i];
291 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
292 adapter->eims_enable_mask |= rx_ring->eims_value;
293 if (rx_ring->itr_val)
294 writel(1000000000 / (rx_ring->itr_val * 256),
295 hw->hw_addr + rx_ring->itr_register);
296 else
297 writel(1, hw->hw_addr + rx_ring->itr_register);
301 /* set vector for other causes, i.e. link changes */
302 array_wr32(E1000_MSIXBM(0), vector++,
303 E1000_EIMS_OTHER);
305 /* disable IAM for ICR interrupt bits */
306 wr32(E1000_IAM, 0);
308 tmp = rd32(E1000_CTRL_EXT);
309 /* enable MSI-X PBA support*/
310 tmp |= E1000_CTRL_EXT_PBA_CLR;
312 /* Auto-Mask interrupts upon ICR read. */
313 tmp |= E1000_CTRL_EXT_EIAME;
314 tmp |= E1000_CTRL_EXT_IRCA;
316 wr32(E1000_CTRL_EXT, tmp);
317 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
319 wrfl();
323 * igb_request_msix - Initialize MSI-X interrupts
325 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
326 * kernel.
328 static int igb_request_msix(struct igb_adapter *adapter)
330 struct net_device *netdev = adapter->netdev;
331 int i, err = 0, vector = 0;
333 vector = 0;
335 for (i = 0; i < adapter->num_tx_queues; i++) {
336 struct igb_ring *ring = &(adapter->tx_ring[i]);
337 sprintf(ring->name, "%s-tx%d", netdev->name, i);
338 err = request_irq(adapter->msix_entries[vector].vector,
339 &igb_msix_tx, 0, ring->name,
340 &(adapter->tx_ring[i]));
341 if (err)
342 goto out;
343 ring->itr_register = E1000_EITR(0) + (vector << 2);
344 ring->itr_val = adapter->itr;
345 vector++;
347 for (i = 0; i < adapter->num_rx_queues; i++) {
348 struct igb_ring *ring = &(adapter->rx_ring[i]);
349 if (strlen(netdev->name) < (IFNAMSIZ - 5))
350 sprintf(ring->name, "%s-rx%d", netdev->name, i);
351 else
352 memcpy(ring->name, netdev->name, IFNAMSIZ);
353 err = request_irq(adapter->msix_entries[vector].vector,
354 &igb_msix_rx, 0, ring->name,
355 &(adapter->rx_ring[i]));
356 if (err)
357 goto out;
358 ring->itr_register = E1000_EITR(0) + (vector << 2);
359 ring->itr_val = adapter->itr;
360 vector++;
363 err = request_irq(adapter->msix_entries[vector].vector,
364 &igb_msix_other, 0, netdev->name, netdev);
365 if (err)
366 goto out;
368 adapter->napi.poll = igb_clean_rx_ring_msix;
369 for (i = 0; i < adapter->num_rx_queues; i++)
370 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
371 igb_configure_msix(adapter);
372 return 0;
373 out:
374 return err;
377 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
379 if (adapter->msix_entries) {
380 pci_disable_msix(adapter->pdev);
381 kfree(adapter->msix_entries);
382 adapter->msix_entries = NULL;
383 } else if (adapter->msi_enabled)
384 pci_disable_msi(adapter->pdev);
385 return;
390 * igb_set_interrupt_capability - set MSI or MSI-X if supported
392 * Attempt to configure interrupts using the best available
393 * capabilities of the hardware and kernel.
395 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
397 int err;
398 int numvecs, i;
400 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
401 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
402 GFP_KERNEL);
403 if (!adapter->msix_entries)
404 goto msi_only;
406 for (i = 0; i < numvecs; i++)
407 adapter->msix_entries[i].entry = i;
409 err = pci_enable_msix(adapter->pdev,
410 adapter->msix_entries,
411 numvecs);
412 if (err == 0)
413 return;
415 igb_reset_interrupt_capability(adapter);
417 /* If we can't do MSI-X, try MSI */
418 msi_only:
419 adapter->num_rx_queues = 1;
420 if (!pci_enable_msi(adapter->pdev))
421 adapter->msi_enabled = 1;
422 return;
426 * igb_request_irq - initialize interrupts
428 * Attempts to configure interrupts using the best available
429 * capabilities of the hardware and kernel.
431 static int igb_request_irq(struct igb_adapter *adapter)
433 struct net_device *netdev = adapter->netdev;
434 struct e1000_hw *hw = &adapter->hw;
435 int err = 0;
437 if (adapter->msix_entries) {
438 err = igb_request_msix(adapter);
439 if (!err) {
440 /* enable IAM, auto-mask,
441 * DO NOT USE EIAM or IAM in legacy mode */
442 wr32(E1000_IAM, IMS_ENABLE_MASK);
443 goto request_done;
445 /* fall back to MSI */
446 igb_reset_interrupt_capability(adapter);
447 if (!pci_enable_msi(adapter->pdev))
448 adapter->msi_enabled = 1;
449 igb_free_all_tx_resources(adapter);
450 igb_free_all_rx_resources(adapter);
451 adapter->num_rx_queues = 1;
452 igb_alloc_queues(adapter);
454 if (adapter->msi_enabled) {
455 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
456 netdev->name, netdev);
457 if (!err)
458 goto request_done;
459 /* fall back to legacy interrupts */
460 igb_reset_interrupt_capability(adapter);
461 adapter->msi_enabled = 0;
464 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
465 netdev->name, netdev);
467 if (err)
468 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
469 err);
471 request_done:
472 return err;
475 static void igb_free_irq(struct igb_adapter *adapter)
477 struct net_device *netdev = adapter->netdev;
479 if (adapter->msix_entries) {
480 int vector = 0, i;
482 for (i = 0; i < adapter->num_tx_queues; i++)
483 free_irq(adapter->msix_entries[vector++].vector,
484 &(adapter->tx_ring[i]));
485 for (i = 0; i < adapter->num_rx_queues; i++)
486 free_irq(adapter->msix_entries[vector++].vector,
487 &(adapter->rx_ring[i]));
489 free_irq(adapter->msix_entries[vector++].vector, netdev);
490 return;
493 free_irq(adapter->pdev->irq, netdev);
497 * igb_irq_disable - Mask off interrupt generation on the NIC
498 * @adapter: board private structure
500 static void igb_irq_disable(struct igb_adapter *adapter)
502 struct e1000_hw *hw = &adapter->hw;
504 if (adapter->msix_entries) {
505 wr32(E1000_EIMC, ~0);
506 wr32(E1000_EIAC, 0);
508 wr32(E1000_IMC, ~0);
509 wrfl();
510 synchronize_irq(adapter->pdev->irq);
514 * igb_irq_enable - Enable default interrupt generation settings
515 * @adapter: board private structure
517 static void igb_irq_enable(struct igb_adapter *adapter)
519 struct e1000_hw *hw = &adapter->hw;
521 if (adapter->msix_entries) {
522 wr32(E1000_EIMS,
523 adapter->eims_enable_mask);
524 wr32(E1000_EIAC,
525 adapter->eims_enable_mask);
526 wr32(E1000_IMS, E1000_IMS_LSC);
527 } else
528 wr32(E1000_IMS, IMS_ENABLE_MASK);
531 static void igb_update_mng_vlan(struct igb_adapter *adapter)
533 struct net_device *netdev = adapter->netdev;
534 u16 vid = adapter->hw.mng_cookie.vlan_id;
535 u16 old_vid = adapter->mng_vlan_id;
536 if (adapter->vlgrp) {
537 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
538 if (adapter->hw.mng_cookie.status &
539 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
540 igb_vlan_rx_add_vid(netdev, vid);
541 adapter->mng_vlan_id = vid;
542 } else
543 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
545 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
546 (vid != old_vid) &&
547 !vlan_group_get_device(adapter->vlgrp, old_vid))
548 igb_vlan_rx_kill_vid(netdev, old_vid);
549 } else
550 adapter->mng_vlan_id = vid;
555 * igb_release_hw_control - release control of the h/w to f/w
556 * @adapter: address of board private structure
558 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
559 * For ASF and Pass Through versions of f/w this means that the
560 * driver is no longer loaded.
563 static void igb_release_hw_control(struct igb_adapter *adapter)
565 struct e1000_hw *hw = &adapter->hw;
566 u32 ctrl_ext;
568 /* Let firmware take over control of h/w */
569 ctrl_ext = rd32(E1000_CTRL_EXT);
570 wr32(E1000_CTRL_EXT,
571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
576 * igb_get_hw_control - get control of the h/w from f/w
577 * @adapter: address of board private structure
579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
580 * For ASF and Pass Through versions of f/w this means that
581 * the driver is loaded.
584 static void igb_get_hw_control(struct igb_adapter *adapter)
586 struct e1000_hw *hw = &adapter->hw;
587 u32 ctrl_ext;
589 /* Let firmware know the driver has taken over */
590 ctrl_ext = rd32(E1000_CTRL_EXT);
591 wr32(E1000_CTRL_EXT,
592 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
595 static void igb_init_manageability(struct igb_adapter *adapter)
597 struct e1000_hw *hw = &adapter->hw;
599 if (adapter->en_mng_pt) {
600 u32 manc2h = rd32(E1000_MANC2H);
601 u32 manc = rd32(E1000_MANC);
603 /* enable receiving management packets to the host */
604 /* this will probably generate destination unreachable messages
605 * from the host OS, but the packets will be handled on SMBUS */
606 manc |= E1000_MANC_EN_MNG2HOST;
607 #define E1000_MNG2HOST_PORT_623 (1 << 5)
608 #define E1000_MNG2HOST_PORT_664 (1 << 6)
609 manc2h |= E1000_MNG2HOST_PORT_623;
610 manc2h |= E1000_MNG2HOST_PORT_664;
611 wr32(E1000_MANC2H, manc2h);
613 wr32(E1000_MANC, manc);
618 * igb_configure - configure the hardware for RX and TX
619 * @adapter: private board structure
621 static void igb_configure(struct igb_adapter *adapter)
623 struct net_device *netdev = adapter->netdev;
624 int i;
626 igb_get_hw_control(adapter);
627 igb_set_multi(netdev);
629 igb_restore_vlan(adapter);
630 igb_init_manageability(adapter);
632 igb_configure_tx(adapter);
633 igb_setup_rctl(adapter);
634 igb_configure_rx(adapter);
635 /* call IGB_DESC_UNUSED which always leaves
636 * at least 1 descriptor unused to make sure
637 * next_to_use != next_to_clean */
638 for (i = 0; i < adapter->num_rx_queues; i++) {
639 struct igb_ring *ring = &adapter->rx_ring[i];
640 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
644 adapter->tx_queue_len = netdev->tx_queue_len;
649 * igb_up - Open the interface and prepare it to handle traffic
650 * @adapter: board private structure
653 int igb_up(struct igb_adapter *adapter)
655 struct e1000_hw *hw = &adapter->hw;
656 int i;
658 /* hardware has been reset, we need to reload some things */
659 igb_configure(adapter);
661 clear_bit(__IGB_DOWN, &adapter->state);
663 napi_enable(&adapter->napi);
665 if (adapter->msix_entries) {
666 for (i = 0; i < adapter->num_rx_queues; i++)
667 napi_enable(&adapter->rx_ring[i].napi);
668 igb_configure_msix(adapter);
671 /* Clear any pending interrupts. */
672 rd32(E1000_ICR);
673 igb_irq_enable(adapter);
675 /* Fire a link change interrupt to start the watchdog. */
676 wr32(E1000_ICS, E1000_ICS_LSC);
677 return 0;
680 void igb_down(struct igb_adapter *adapter)
682 struct e1000_hw *hw = &adapter->hw;
683 struct net_device *netdev = adapter->netdev;
684 u32 tctl, rctl;
685 int i;
687 /* signal that we're down so the interrupt handler does not
688 * reschedule our watchdog timer */
689 set_bit(__IGB_DOWN, &adapter->state);
691 /* disable receives in the hardware */
692 rctl = rd32(E1000_RCTL);
693 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
694 /* flush and sleep below */
696 netif_stop_queue(netdev);
698 /* disable transmits in the hardware */
699 tctl = rd32(E1000_TCTL);
700 tctl &= ~E1000_TCTL_EN;
701 wr32(E1000_TCTL, tctl);
702 /* flush both disables and wait for them to finish */
703 wrfl();
704 msleep(10);
706 napi_disable(&adapter->napi);
708 if (adapter->msix_entries)
709 for (i = 0; i < adapter->num_rx_queues; i++)
710 napi_disable(&adapter->rx_ring[i].napi);
711 igb_irq_disable(adapter);
713 del_timer_sync(&adapter->watchdog_timer);
714 del_timer_sync(&adapter->phy_info_timer);
716 netdev->tx_queue_len = adapter->tx_queue_len;
717 netif_carrier_off(netdev);
718 adapter->link_speed = 0;
719 adapter->link_duplex = 0;
721 igb_reset(adapter);
722 igb_clean_all_tx_rings(adapter);
723 igb_clean_all_rx_rings(adapter);
726 void igb_reinit_locked(struct igb_adapter *adapter)
728 WARN_ON(in_interrupt());
729 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
730 msleep(1);
731 igb_down(adapter);
732 igb_up(adapter);
733 clear_bit(__IGB_RESETTING, &adapter->state);
736 void igb_reset(struct igb_adapter *adapter)
738 struct e1000_hw *hw = &adapter->hw;
739 struct e1000_fc_info *fc = &adapter->hw.fc;
740 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
741 u16 hwm;
743 /* Repartition Pba for greater than 9k mtu
744 * To take effect CTRL.RST is required.
746 pba = E1000_PBA_34K;
748 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
749 /* adjust PBA for jumbo frames */
750 wr32(E1000_PBA, pba);
752 /* To maintain wire speed transmits, the Tx FIFO should be
753 * large enough to accommodate two full transmit packets,
754 * rounded up to the next 1KB and expressed in KB. Likewise,
755 * the Rx FIFO should be large enough to accommodate at least
756 * one full receive packet and is similarly rounded up and
757 * expressed in KB. */
758 pba = rd32(E1000_PBA);
759 /* upper 16 bits has Tx packet buffer allocation size in KB */
760 tx_space = pba >> 16;
761 /* lower 16 bits has Rx packet buffer allocation size in KB */
762 pba &= 0xffff;
763 /* the tx fifo also stores 16 bytes of information about the tx
764 * but don't include ethernet FCS because hardware appends it */
765 min_tx_space = (adapter->max_frame_size +
766 sizeof(struct e1000_tx_desc) -
767 ETH_FCS_LEN) * 2;
768 min_tx_space = ALIGN(min_tx_space, 1024);
769 min_tx_space >>= 10;
770 /* software strips receive CRC, so leave room for it */
771 min_rx_space = adapter->max_frame_size;
772 min_rx_space = ALIGN(min_rx_space, 1024);
773 min_rx_space >>= 10;
775 /* If current Tx allocation is less than the min Tx FIFO size,
776 * and the min Tx FIFO size is less than the current Rx FIFO
777 * allocation, take space away from current Rx allocation */
778 if (tx_space < min_tx_space &&
779 ((min_tx_space - tx_space) < pba)) {
780 pba = pba - (min_tx_space - tx_space);
782 /* if short on rx space, rx wins and must trump tx
783 * adjustment */
784 if (pba < min_rx_space)
785 pba = min_rx_space;
788 wr32(E1000_PBA, pba);
790 /* flow control settings */
791 /* The high water mark must be low enough to fit one full frame
792 * (or the size used for early receive) above it in the Rx FIFO.
793 * Set it to the lower of:
794 * - 90% of the Rx FIFO size, or
795 * - the full Rx FIFO size minus one full frame */
796 hwm = min(((pba << 10) * 9 / 10),
797 ((pba << 10) - adapter->max_frame_size));
799 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
800 fc->low_water = fc->high_water - 8;
801 fc->pause_time = 0xFFFF;
802 fc->send_xon = 1;
803 fc->type = fc->original_type;
805 /* Allow time for pending master requests to run */
806 adapter->hw.mac.ops.reset_hw(&adapter->hw);
807 wr32(E1000_WUC, 0);
809 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
810 dev_err(&adapter->pdev->dev, "Hardware Error\n");
812 igb_update_mng_vlan(adapter);
814 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
815 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
817 igb_reset_adaptive(&adapter->hw);
818 if (adapter->hw.phy.ops.get_phy_info)
819 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
823 * igb_probe - Device Initialization Routine
824 * @pdev: PCI device information struct
825 * @ent: entry in igb_pci_tbl
827 * Returns 0 on success, negative on failure
829 * igb_probe initializes an adapter identified by a pci_dev structure.
830 * The OS initialization, configuring of the adapter private structure,
831 * and a hardware reset occur.
833 static int __devinit igb_probe(struct pci_dev *pdev,
834 const struct pci_device_id *ent)
836 struct net_device *netdev;
837 struct igb_adapter *adapter;
838 struct e1000_hw *hw;
839 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
840 unsigned long mmio_start, mmio_len;
841 static int cards_found;
842 int i, err, pci_using_dac;
843 u16 eeprom_data = 0;
844 u16 eeprom_apme_mask = IGB_EEPROM_APME;
845 u32 part_num;
847 err = pci_enable_device(pdev);
848 if (err)
849 return err;
851 pci_using_dac = 0;
852 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
853 if (!err) {
854 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
855 if (!err)
856 pci_using_dac = 1;
857 } else {
858 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
859 if (err) {
860 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
861 if (err) {
862 dev_err(&pdev->dev, "No usable DMA "
863 "configuration, aborting\n");
864 goto err_dma;
869 err = pci_request_regions(pdev, igb_driver_name);
870 if (err)
871 goto err_pci_reg;
873 pci_set_master(pdev);
875 err = -ENOMEM;
876 netdev = alloc_etherdev(sizeof(struct igb_adapter));
877 if (!netdev)
878 goto err_alloc_etherdev;
880 SET_NETDEV_DEV(netdev, &pdev->dev);
882 pci_set_drvdata(pdev, netdev);
883 adapter = netdev_priv(netdev);
884 adapter->netdev = netdev;
885 adapter->pdev = pdev;
886 hw = &adapter->hw;
887 hw->back = adapter;
888 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
890 mmio_start = pci_resource_start(pdev, 0);
891 mmio_len = pci_resource_len(pdev, 0);
893 err = -EIO;
894 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
895 if (!adapter->hw.hw_addr)
896 goto err_ioremap;
898 netdev->open = &igb_open;
899 netdev->stop = &igb_close;
900 netdev->get_stats = &igb_get_stats;
901 netdev->set_multicast_list = &igb_set_multi;
902 netdev->set_mac_address = &igb_set_mac;
903 netdev->change_mtu = &igb_change_mtu;
904 netdev->do_ioctl = &igb_ioctl;
905 igb_set_ethtool_ops(netdev);
906 netdev->tx_timeout = &igb_tx_timeout;
907 netdev->watchdog_timeo = 5 * HZ;
908 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
909 netdev->vlan_rx_register = igb_vlan_rx_register;
910 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
911 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
912 #ifdef CONFIG_NET_POLL_CONTROLLER
913 netdev->poll_controller = igb_netpoll;
914 #endif
915 netdev->hard_start_xmit = &igb_xmit_frame_adv;
917 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
919 netdev->mem_start = mmio_start;
920 netdev->mem_end = mmio_start + mmio_len;
922 adapter->bd_number = cards_found;
924 /* PCI config space info */
925 hw->vendor_id = pdev->vendor;
926 hw->device_id = pdev->device;
927 hw->revision_id = pdev->revision;
928 hw->subsystem_vendor_id = pdev->subsystem_vendor;
929 hw->subsystem_device_id = pdev->subsystem_device;
931 /* setup the private structure */
932 hw->back = adapter;
933 /* Copy the default MAC, PHY and NVM function pointers */
934 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
935 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
936 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
937 /* Initialize skew-specific constants */
938 err = ei->get_invariants(hw);
939 if (err)
940 goto err_hw_init;
942 err = igb_sw_init(adapter);
943 if (err)
944 goto err_sw_init;
946 igb_get_bus_info_pcie(hw);
948 hw->phy.autoneg_wait_to_complete = false;
949 hw->mac.adaptive_ifs = true;
951 /* Copper options */
952 if (hw->phy.media_type == e1000_media_type_copper) {
953 hw->phy.mdix = AUTO_ALL_MODES;
954 hw->phy.disable_polarity_correction = false;
955 hw->phy.ms_type = e1000_ms_hw_default;
958 if (igb_check_reset_block(hw))
959 dev_info(&pdev->dev,
960 "PHY reset is blocked due to SOL/IDER session.\n");
962 netdev->features = NETIF_F_SG |
963 NETIF_F_HW_CSUM |
964 NETIF_F_HW_VLAN_TX |
965 NETIF_F_HW_VLAN_RX |
966 NETIF_F_HW_VLAN_FILTER;
968 netdev->features |= NETIF_F_TSO;
970 netdev->features |= NETIF_F_TSO6;
971 if (pci_using_dac)
972 netdev->features |= NETIF_F_HIGHDMA;
974 netdev->features |= NETIF_F_LLTX;
975 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
977 /* before reading the NVM, reset the controller to put the device in a
978 * known good starting state */
979 hw->mac.ops.reset_hw(hw);
981 /* make sure the NVM is good */
982 if (igb_validate_nvm_checksum(hw) < 0) {
983 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
984 err = -EIO;
985 goto err_eeprom;
988 /* copy the MAC address out of the NVM */
989 if (hw->mac.ops.read_mac_addr(hw))
990 dev_err(&pdev->dev, "NVM Read Error\n");
992 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
993 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
995 if (!is_valid_ether_addr(netdev->perm_addr)) {
996 dev_err(&pdev->dev, "Invalid MAC Address\n");
997 err = -EIO;
998 goto err_eeprom;
1001 init_timer(&adapter->watchdog_timer);
1002 adapter->watchdog_timer.function = &igb_watchdog;
1003 adapter->watchdog_timer.data = (unsigned long) adapter;
1005 init_timer(&adapter->phy_info_timer);
1006 adapter->phy_info_timer.function = &igb_update_phy_info;
1007 adapter->phy_info_timer.data = (unsigned long) adapter;
1009 INIT_WORK(&adapter->reset_task, igb_reset_task);
1010 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1012 /* Initialize link & ring properties that are user-changeable */
1013 adapter->tx_ring->count = 256;
1014 for (i = 0; i < adapter->num_tx_queues; i++)
1015 adapter->tx_ring[i].count = adapter->tx_ring->count;
1016 adapter->rx_ring->count = 256;
1017 for (i = 0; i < adapter->num_rx_queues; i++)
1018 adapter->rx_ring[i].count = adapter->rx_ring->count;
1020 adapter->fc_autoneg = true;
1021 hw->mac.autoneg = true;
1022 hw->phy.autoneg_advertised = 0x2f;
1024 hw->fc.original_type = e1000_fc_default;
1025 hw->fc.type = e1000_fc_default;
1027 adapter->itr_setting = 3;
1028 adapter->itr = IGB_START_ITR;
1030 igb_validate_mdi_setting(hw);
1032 adapter->rx_csum = 1;
1034 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1035 * enable the ACPI Magic Packet filter
1038 if (hw->bus.func == 0 ||
1039 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1040 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1041 &eeprom_data);
1043 if (eeprom_data & eeprom_apme_mask)
1044 adapter->eeprom_wol |= E1000_WUFC_MAG;
1046 /* now that we have the eeprom settings, apply the special cases where
1047 * the eeprom may be wrong or the board simply won't support wake on
1048 * lan on a particular port */
1049 switch (pdev->device) {
1050 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1051 adapter->eeprom_wol = 0;
1052 break;
1053 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1054 /* Wake events only supported on port A for dual fiber
1055 * regardless of eeprom setting */
1056 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1057 adapter->eeprom_wol = 0;
1058 break;
1061 /* initialize the wol settings based on the eeprom settings */
1062 adapter->wol = adapter->eeprom_wol;
1064 /* reset the hardware with the new settings */
1065 igb_reset(adapter);
1067 /* let the f/w know that the h/w is now under the control of the
1068 * driver. */
1069 igb_get_hw_control(adapter);
1071 /* tell the stack to leave us alone until igb_open() is called */
1072 netif_carrier_off(netdev);
1073 netif_stop_queue(netdev);
1075 strcpy(netdev->name, "eth%d");
1076 err = register_netdev(netdev);
1077 if (err)
1078 goto err_register;
1080 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1081 /* print bus type/speed/width info */
1082 dev_info(&pdev->dev,
1083 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1084 netdev->name,
1085 ((hw->bus.speed == e1000_bus_speed_2500)
1086 ? "2.5Gb/s" : "unknown"),
1087 ((hw->bus.width == e1000_bus_width_pcie_x4)
1088 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1089 ? "Width x1" : "unknown"),
1090 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1091 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1093 igb_read_part_num(hw, &part_num);
1094 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1095 (part_num >> 8), (part_num & 0xff));
1097 dev_info(&pdev->dev,
1098 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1099 adapter->msix_entries ? "MSI-X" :
1100 adapter->msi_enabled ? "MSI" : "legacy",
1101 adapter->num_rx_queues, adapter->num_tx_queues);
1103 cards_found++;
1104 return 0;
1106 err_register:
1107 igb_release_hw_control(adapter);
1108 err_eeprom:
1109 if (!igb_check_reset_block(hw))
1110 hw->phy.ops.reset_phy(hw);
1112 if (hw->flash_address)
1113 iounmap(hw->flash_address);
1115 igb_remove_device(hw);
1116 kfree(adapter->tx_ring);
1117 kfree(adapter->rx_ring);
1118 err_sw_init:
1119 err_hw_init:
1120 iounmap(hw->hw_addr);
1121 err_ioremap:
1122 free_netdev(netdev);
1123 err_alloc_etherdev:
1124 pci_release_regions(pdev);
1125 err_pci_reg:
1126 err_dma:
1127 pci_disable_device(pdev);
1128 return err;
1132 * igb_remove - Device Removal Routine
1133 * @pdev: PCI device information struct
1135 * igb_remove is called by the PCI subsystem to alert the driver
1136 * that it should release a PCI device. The could be caused by a
1137 * Hot-Plug event, or because the driver is going to be removed from
1138 * memory.
1140 static void __devexit igb_remove(struct pci_dev *pdev)
1142 struct net_device *netdev = pci_get_drvdata(pdev);
1143 struct igb_adapter *adapter = netdev_priv(netdev);
1145 /* flush_scheduled work may reschedule our watchdog task, so
1146 * explicitly disable watchdog tasks from being rescheduled */
1147 set_bit(__IGB_DOWN, &adapter->state);
1148 del_timer_sync(&adapter->watchdog_timer);
1149 del_timer_sync(&adapter->phy_info_timer);
1151 flush_scheduled_work();
1153 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1154 * would have already happened in close and is redundant. */
1155 igb_release_hw_control(adapter);
1157 unregister_netdev(netdev);
1159 if (!igb_check_reset_block(&adapter->hw))
1160 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1162 igb_remove_device(&adapter->hw);
1163 igb_reset_interrupt_capability(adapter);
1165 kfree(adapter->tx_ring);
1166 kfree(adapter->rx_ring);
1168 iounmap(adapter->hw.hw_addr);
1169 if (adapter->hw.flash_address)
1170 iounmap(adapter->hw.flash_address);
1171 pci_release_regions(pdev);
1173 free_netdev(netdev);
1175 pci_disable_device(pdev);
1179 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1180 * @adapter: board private structure to initialize
1182 * igb_sw_init initializes the Adapter private data structure.
1183 * Fields are initialized based on PCI device information and
1184 * OS network device settings (MTU size).
1186 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1188 struct e1000_hw *hw = &adapter->hw;
1189 struct net_device *netdev = adapter->netdev;
1190 struct pci_dev *pdev = adapter->pdev;
1192 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1194 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1195 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1196 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1197 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1199 /* Number of supported queues. */
1200 /* Having more queues than CPUs doesn't make sense. */
1201 adapter->num_tx_queues = 1;
1202 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1204 igb_set_interrupt_capability(adapter);
1206 if (igb_alloc_queues(adapter)) {
1207 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1208 return -ENOMEM;
1211 /* Explicitly disable IRQ since the NIC can be in any state. */
1212 igb_irq_disable(adapter);
1214 set_bit(__IGB_DOWN, &adapter->state);
1215 return 0;
1219 * igb_open - Called when a network interface is made active
1220 * @netdev: network interface device structure
1222 * Returns 0 on success, negative value on failure
1224 * The open entry point is called when a network interface is made
1225 * active by the system (IFF_UP). At this point all resources needed
1226 * for transmit and receive operations are allocated, the interrupt
1227 * handler is registered with the OS, the watchdog timer is started,
1228 * and the stack is notified that the interface is ready.
1230 static int igb_open(struct net_device *netdev)
1232 struct igb_adapter *adapter = netdev_priv(netdev);
1233 struct e1000_hw *hw = &adapter->hw;
1234 int err;
1235 int i;
1237 /* disallow open during test */
1238 if (test_bit(__IGB_TESTING, &adapter->state))
1239 return -EBUSY;
1241 /* allocate transmit descriptors */
1242 err = igb_setup_all_tx_resources(adapter);
1243 if (err)
1244 goto err_setup_tx;
1246 /* allocate receive descriptors */
1247 err = igb_setup_all_rx_resources(adapter);
1248 if (err)
1249 goto err_setup_rx;
1251 /* e1000_power_up_phy(adapter); */
1253 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1254 if ((adapter->hw.mng_cookie.status &
1255 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1256 igb_update_mng_vlan(adapter);
1258 /* before we allocate an interrupt, we must be ready to handle it.
1259 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1260 * as soon as we call pci_request_irq, so we have to setup our
1261 * clean_rx handler before we do so. */
1262 igb_configure(adapter);
1264 err = igb_request_irq(adapter);
1265 if (err)
1266 goto err_req_irq;
1268 /* From here on the code is the same as igb_up() */
1269 clear_bit(__IGB_DOWN, &adapter->state);
1271 napi_enable(&adapter->napi);
1272 if (adapter->msix_entries)
1273 for (i = 0; i < adapter->num_rx_queues; i++)
1274 napi_enable(&adapter->rx_ring[i].napi);
1276 igb_irq_enable(adapter);
1278 /* Clear any pending interrupts. */
1279 rd32(E1000_ICR);
1280 /* Fire a link status change interrupt to start the watchdog. */
1281 wr32(E1000_ICS, E1000_ICS_LSC);
1283 return 0;
1285 err_req_irq:
1286 igb_release_hw_control(adapter);
1287 /* e1000_power_down_phy(adapter); */
1288 igb_free_all_rx_resources(adapter);
1289 err_setup_rx:
1290 igb_free_all_tx_resources(adapter);
1291 err_setup_tx:
1292 igb_reset(adapter);
1294 return err;
1298 * igb_close - Disables a network interface
1299 * @netdev: network interface device structure
1301 * Returns 0, this is not allowed to fail
1303 * The close entry point is called when an interface is de-activated
1304 * by the OS. The hardware is still under the driver's control, but
1305 * needs to be disabled. A global MAC reset is issued to stop the
1306 * hardware, and all transmit and receive resources are freed.
1308 static int igb_close(struct net_device *netdev)
1310 struct igb_adapter *adapter = netdev_priv(netdev);
1312 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1313 igb_down(adapter);
1315 igb_free_irq(adapter);
1317 igb_free_all_tx_resources(adapter);
1318 igb_free_all_rx_resources(adapter);
1320 /* kill manageability vlan ID if supported, but not if a vlan with
1321 * the same ID is registered on the host OS (let 8021q kill it) */
1322 if ((adapter->hw.mng_cookie.status &
1323 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1324 !(adapter->vlgrp &&
1325 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1326 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1328 return 0;
1332 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1333 * @adapter: board private structure
1334 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1336 * Return 0 on success, negative on failure
1339 int igb_setup_tx_resources(struct igb_adapter *adapter,
1340 struct igb_ring *tx_ring)
1342 struct pci_dev *pdev = adapter->pdev;
1343 int size;
1345 size = sizeof(struct igb_buffer) * tx_ring->count;
1346 tx_ring->buffer_info = vmalloc(size);
1347 if (!tx_ring->buffer_info)
1348 goto err;
1349 memset(tx_ring->buffer_info, 0, size);
1351 /* round up to nearest 4K */
1352 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1353 + sizeof(u32);
1354 tx_ring->size = ALIGN(tx_ring->size, 4096);
1356 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1357 &tx_ring->dma);
1359 if (!tx_ring->desc)
1360 goto err;
1362 tx_ring->adapter = adapter;
1363 tx_ring->next_to_use = 0;
1364 tx_ring->next_to_clean = 0;
1365 spin_lock_init(&tx_ring->tx_clean_lock);
1366 spin_lock_init(&tx_ring->tx_lock);
1367 return 0;
1369 err:
1370 vfree(tx_ring->buffer_info);
1371 dev_err(&adapter->pdev->dev,
1372 "Unable to allocate memory for the transmit descriptor ring\n");
1373 return -ENOMEM;
1377 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1378 * (Descriptors) for all queues
1379 * @adapter: board private structure
1381 * Return 0 on success, negative on failure
1383 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1385 int i, err = 0;
1387 for (i = 0; i < adapter->num_tx_queues; i++) {
1388 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1389 if (err) {
1390 dev_err(&adapter->pdev->dev,
1391 "Allocation for Tx Queue %u failed\n", i);
1392 for (i--; i >= 0; i--)
1393 igb_free_tx_resources(adapter,
1394 &adapter->tx_ring[i]);
1395 break;
1399 return err;
1403 * igb_configure_tx - Configure transmit Unit after Reset
1404 * @adapter: board private structure
1406 * Configure the Tx unit of the MAC after a reset.
1408 static void igb_configure_tx(struct igb_adapter *adapter)
1410 u64 tdba, tdwba;
1411 struct e1000_hw *hw = &adapter->hw;
1412 u32 tctl;
1413 u32 txdctl, txctrl;
1414 int i;
1416 for (i = 0; i < adapter->num_tx_queues; i++) {
1417 struct igb_ring *ring = &(adapter->tx_ring[i]);
1419 wr32(E1000_TDLEN(i),
1420 ring->count * sizeof(struct e1000_tx_desc));
1421 tdba = ring->dma;
1422 wr32(E1000_TDBAL(i),
1423 tdba & 0x00000000ffffffffULL);
1424 wr32(E1000_TDBAH(i), tdba >> 32);
1426 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1427 tdwba |= 1; /* enable head wb */
1428 wr32(E1000_TDWBAL(i),
1429 tdwba & 0x00000000ffffffffULL);
1430 wr32(E1000_TDWBAH(i), tdwba >> 32);
1432 ring->head = E1000_TDH(i);
1433 ring->tail = E1000_TDT(i);
1434 writel(0, hw->hw_addr + ring->tail);
1435 writel(0, hw->hw_addr + ring->head);
1436 txdctl = rd32(E1000_TXDCTL(i));
1437 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1438 wr32(E1000_TXDCTL(i), txdctl);
1440 /* Turn off Relaxed Ordering on head write-backs. The
1441 * writebacks MUST be delivered in order or it will
1442 * completely screw up our bookeeping.
1444 txctrl = rd32(E1000_DCA_TXCTRL(i));
1445 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1446 wr32(E1000_DCA_TXCTRL(i), txctrl);
1451 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1453 /* Program the Transmit Control Register */
1455 tctl = rd32(E1000_TCTL);
1456 tctl &= ~E1000_TCTL_CT;
1457 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1458 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1460 igb_config_collision_dist(hw);
1462 /* Setup Transmit Descriptor Settings for eop descriptor */
1463 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1465 /* Enable transmits */
1466 tctl |= E1000_TCTL_EN;
1468 wr32(E1000_TCTL, tctl);
1472 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1473 * @adapter: board private structure
1474 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1476 * Returns 0 on success, negative on failure
1479 int igb_setup_rx_resources(struct igb_adapter *adapter,
1480 struct igb_ring *rx_ring)
1482 struct pci_dev *pdev = adapter->pdev;
1483 int size, desc_len;
1485 size = sizeof(struct igb_buffer) * rx_ring->count;
1486 rx_ring->buffer_info = vmalloc(size);
1487 if (!rx_ring->buffer_info)
1488 goto err;
1489 memset(rx_ring->buffer_info, 0, size);
1491 desc_len = sizeof(union e1000_adv_rx_desc);
1493 /* Round up to nearest 4K */
1494 rx_ring->size = rx_ring->count * desc_len;
1495 rx_ring->size = ALIGN(rx_ring->size, 4096);
1497 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1498 &rx_ring->dma);
1500 if (!rx_ring->desc)
1501 goto err;
1503 rx_ring->next_to_clean = 0;
1504 rx_ring->next_to_use = 0;
1505 rx_ring->pending_skb = NULL;
1507 rx_ring->adapter = adapter;
1508 /* FIXME: do we want to setup ring->napi->poll here? */
1509 rx_ring->napi.poll = adapter->napi.poll;
1511 return 0;
1513 err:
1514 vfree(rx_ring->buffer_info);
1515 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1516 "the receive descriptor ring\n");
1517 return -ENOMEM;
1521 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1522 * (Descriptors) for all queues
1523 * @adapter: board private structure
1525 * Return 0 on success, negative on failure
1527 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1529 int i, err = 0;
1531 for (i = 0; i < adapter->num_rx_queues; i++) {
1532 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1533 if (err) {
1534 dev_err(&adapter->pdev->dev,
1535 "Allocation for Rx Queue %u failed\n", i);
1536 for (i--; i >= 0; i--)
1537 igb_free_rx_resources(adapter,
1538 &adapter->rx_ring[i]);
1539 break;
1543 return err;
1547 * igb_setup_rctl - configure the receive control registers
1548 * @adapter: Board private structure
1550 static void igb_setup_rctl(struct igb_adapter *adapter)
1552 struct e1000_hw *hw = &adapter->hw;
1553 u32 rctl;
1554 u32 srrctl = 0;
1555 int i;
1557 rctl = rd32(E1000_RCTL);
1559 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1561 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1562 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1563 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1565 /* disable the stripping of CRC because it breaks
1566 * BMC firmware connected over SMBUS
1567 rctl |= E1000_RCTL_SECRC;
1570 rctl &= ~E1000_RCTL_SBP;
1572 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1573 rctl &= ~E1000_RCTL_LPE;
1574 else
1575 rctl |= E1000_RCTL_LPE;
1576 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1577 /* Setup buffer sizes */
1578 rctl &= ~E1000_RCTL_SZ_4096;
1579 rctl |= E1000_RCTL_BSEX;
1580 switch (adapter->rx_buffer_len) {
1581 case IGB_RXBUFFER_256:
1582 rctl |= E1000_RCTL_SZ_256;
1583 rctl &= ~E1000_RCTL_BSEX;
1584 break;
1585 case IGB_RXBUFFER_512:
1586 rctl |= E1000_RCTL_SZ_512;
1587 rctl &= ~E1000_RCTL_BSEX;
1588 break;
1589 case IGB_RXBUFFER_1024:
1590 rctl |= E1000_RCTL_SZ_1024;
1591 rctl &= ~E1000_RCTL_BSEX;
1592 break;
1593 case IGB_RXBUFFER_2048:
1594 default:
1595 rctl |= E1000_RCTL_SZ_2048;
1596 rctl &= ~E1000_RCTL_BSEX;
1597 break;
1598 case IGB_RXBUFFER_4096:
1599 rctl |= E1000_RCTL_SZ_4096;
1600 break;
1601 case IGB_RXBUFFER_8192:
1602 rctl |= E1000_RCTL_SZ_8192;
1603 break;
1604 case IGB_RXBUFFER_16384:
1605 rctl |= E1000_RCTL_SZ_16384;
1606 break;
1608 } else {
1609 rctl &= ~E1000_RCTL_BSEX;
1610 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1613 /* 82575 and greater support packet-split where the protocol
1614 * header is placed in skb->data and the packet data is
1615 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1616 * In the case of a non-split, skb->data is linearly filled,
1617 * followed by the page buffers. Therefore, skb->data is
1618 * sized to hold the largest protocol header.
1620 /* allocations using alloc_page take too long for regular MTU
1621 * so only enable packet split for jumbo frames */
1622 if (rctl & E1000_RCTL_LPE) {
1623 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1624 srrctl = adapter->rx_ps_hdr_size <<
1625 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1626 /* buffer size is ALWAYS one page */
1627 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1628 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1629 } else {
1630 adapter->rx_ps_hdr_size = 0;
1631 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1634 for (i = 0; i < adapter->num_rx_queues; i++)
1635 wr32(E1000_SRRCTL(i), srrctl);
1637 wr32(E1000_RCTL, rctl);
1641 * igb_configure_rx - Configure receive Unit after Reset
1642 * @adapter: board private structure
1644 * Configure the Rx unit of the MAC after a reset.
1646 static void igb_configure_rx(struct igb_adapter *adapter)
1648 u64 rdba;
1649 struct e1000_hw *hw = &adapter->hw;
1650 u32 rctl, rxcsum;
1651 u32 rxdctl;
1652 int i;
1654 /* disable receives while setting up the descriptors */
1655 rctl = rd32(E1000_RCTL);
1656 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1657 wrfl();
1658 mdelay(10);
1660 if (adapter->itr_setting > 3)
1661 wr32(E1000_ITR,
1662 1000000000 / (adapter->itr * 256));
1664 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1665 * the Base and Length of the Rx Descriptor Ring */
1666 for (i = 0; i < adapter->num_rx_queues; i++) {
1667 struct igb_ring *ring = &(adapter->rx_ring[i]);
1668 rdba = ring->dma;
1669 wr32(E1000_RDBAL(i),
1670 rdba & 0x00000000ffffffffULL);
1671 wr32(E1000_RDBAH(i), rdba >> 32);
1672 wr32(E1000_RDLEN(i),
1673 ring->count * sizeof(union e1000_adv_rx_desc));
1675 ring->head = E1000_RDH(i);
1676 ring->tail = E1000_RDT(i);
1677 writel(0, hw->hw_addr + ring->tail);
1678 writel(0, hw->hw_addr + ring->head);
1680 rxdctl = rd32(E1000_RXDCTL(i));
1681 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1682 rxdctl &= 0xFFF00000;
1683 rxdctl |= IGB_RX_PTHRESH;
1684 rxdctl |= IGB_RX_HTHRESH << 8;
1685 rxdctl |= IGB_RX_WTHRESH << 16;
1686 wr32(E1000_RXDCTL(i), rxdctl);
1689 if (adapter->num_rx_queues > 1) {
1690 u32 random[10];
1691 u32 mrqc;
1692 u32 j, shift;
1693 union e1000_reta {
1694 u32 dword;
1695 u8 bytes[4];
1696 } reta;
1698 get_random_bytes(&random[0], 40);
1700 shift = 6;
1701 for (j = 0; j < (32 * 4); j++) {
1702 reta.bytes[j & 3] =
1703 (j % adapter->num_rx_queues) << shift;
1704 if ((j & 3) == 3)
1705 writel(reta.dword,
1706 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1708 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1710 /* Fill out hash function seeds */
1711 for (j = 0; j < 10; j++)
1712 array_wr32(E1000_RSSRK(0), j, random[j]);
1714 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1715 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1716 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1717 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1718 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1719 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1720 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1721 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1724 wr32(E1000_MRQC, mrqc);
1726 /* Multiqueue and raw packet checksumming are mutually
1727 * exclusive. Note that this not the same as TCP/IP
1728 * checksumming, which works fine. */
1729 rxcsum = rd32(E1000_RXCSUM);
1730 rxcsum |= E1000_RXCSUM_PCSD;
1731 wr32(E1000_RXCSUM, rxcsum);
1732 } else {
1733 /* Enable Receive Checksum Offload for TCP and UDP */
1734 rxcsum = rd32(E1000_RXCSUM);
1735 if (adapter->rx_csum) {
1736 rxcsum |= E1000_RXCSUM_TUOFL;
1738 /* Enable IPv4 payload checksum for UDP fragments
1739 * Must be used in conjunction with packet-split. */
1740 if (adapter->rx_ps_hdr_size)
1741 rxcsum |= E1000_RXCSUM_IPPCSE;
1742 } else {
1743 rxcsum &= ~E1000_RXCSUM_TUOFL;
1744 /* don't need to clear IPPCSE as it defaults to 0 */
1746 wr32(E1000_RXCSUM, rxcsum);
1749 if (adapter->vlgrp)
1750 wr32(E1000_RLPML,
1751 adapter->max_frame_size + VLAN_TAG_SIZE);
1752 else
1753 wr32(E1000_RLPML, adapter->max_frame_size);
1755 /* Enable Receives */
1756 wr32(E1000_RCTL, rctl);
1760 * igb_free_tx_resources - Free Tx Resources per Queue
1761 * @adapter: board private structure
1762 * @tx_ring: Tx descriptor ring for a specific queue
1764 * Free all transmit software resources
1766 static void igb_free_tx_resources(struct igb_adapter *adapter,
1767 struct igb_ring *tx_ring)
1769 struct pci_dev *pdev = adapter->pdev;
1771 igb_clean_tx_ring(adapter, tx_ring);
1773 vfree(tx_ring->buffer_info);
1774 tx_ring->buffer_info = NULL;
1776 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1778 tx_ring->desc = NULL;
1782 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1783 * @adapter: board private structure
1785 * Free all transmit software resources
1787 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1789 int i;
1791 for (i = 0; i < adapter->num_tx_queues; i++)
1792 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1795 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1796 struct igb_buffer *buffer_info)
1798 if (buffer_info->dma) {
1799 pci_unmap_page(adapter->pdev,
1800 buffer_info->dma,
1801 buffer_info->length,
1802 PCI_DMA_TODEVICE);
1803 buffer_info->dma = 0;
1805 if (buffer_info->skb) {
1806 dev_kfree_skb_any(buffer_info->skb);
1807 buffer_info->skb = NULL;
1809 buffer_info->time_stamp = 0;
1810 /* buffer_info must be completely set up in the transmit path */
1814 * igb_clean_tx_ring - Free Tx Buffers
1815 * @adapter: board private structure
1816 * @tx_ring: ring to be cleaned
1818 static void igb_clean_tx_ring(struct igb_adapter *adapter,
1819 struct igb_ring *tx_ring)
1821 struct igb_buffer *buffer_info;
1822 unsigned long size;
1823 unsigned int i;
1825 if (!tx_ring->buffer_info)
1826 return;
1827 /* Free all the Tx ring sk_buffs */
1829 for (i = 0; i < tx_ring->count; i++) {
1830 buffer_info = &tx_ring->buffer_info[i];
1831 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1834 size = sizeof(struct igb_buffer) * tx_ring->count;
1835 memset(tx_ring->buffer_info, 0, size);
1837 /* Zero out the descriptor ring */
1839 memset(tx_ring->desc, 0, tx_ring->size);
1841 tx_ring->next_to_use = 0;
1842 tx_ring->next_to_clean = 0;
1844 writel(0, adapter->hw.hw_addr + tx_ring->head);
1845 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1849 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1850 * @adapter: board private structure
1852 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1854 int i;
1856 for (i = 0; i < adapter->num_tx_queues; i++)
1857 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1861 * igb_free_rx_resources - Free Rx Resources
1862 * @adapter: board private structure
1863 * @rx_ring: ring to clean the resources from
1865 * Free all receive software resources
1867 static void igb_free_rx_resources(struct igb_adapter *adapter,
1868 struct igb_ring *rx_ring)
1870 struct pci_dev *pdev = adapter->pdev;
1872 igb_clean_rx_ring(adapter, rx_ring);
1874 vfree(rx_ring->buffer_info);
1875 rx_ring->buffer_info = NULL;
1877 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1879 rx_ring->desc = NULL;
1883 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1884 * @adapter: board private structure
1886 * Free all receive software resources
1888 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1890 int i;
1892 for (i = 0; i < adapter->num_rx_queues; i++)
1893 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1897 * igb_clean_rx_ring - Free Rx Buffers per Queue
1898 * @adapter: board private structure
1899 * @rx_ring: ring to free buffers from
1901 static void igb_clean_rx_ring(struct igb_adapter *adapter,
1902 struct igb_ring *rx_ring)
1904 struct igb_buffer *buffer_info;
1905 struct pci_dev *pdev = adapter->pdev;
1906 unsigned long size;
1907 unsigned int i;
1909 if (!rx_ring->buffer_info)
1910 return;
1911 /* Free all the Rx ring sk_buffs */
1912 for (i = 0; i < rx_ring->count; i++) {
1913 buffer_info = &rx_ring->buffer_info[i];
1914 if (buffer_info->dma) {
1915 if (adapter->rx_ps_hdr_size)
1916 pci_unmap_single(pdev, buffer_info->dma,
1917 adapter->rx_ps_hdr_size,
1918 PCI_DMA_FROMDEVICE);
1919 else
1920 pci_unmap_single(pdev, buffer_info->dma,
1921 adapter->rx_buffer_len,
1922 PCI_DMA_FROMDEVICE);
1923 buffer_info->dma = 0;
1926 if (buffer_info->skb) {
1927 dev_kfree_skb(buffer_info->skb);
1928 buffer_info->skb = NULL;
1930 if (buffer_info->page) {
1931 pci_unmap_page(pdev, buffer_info->page_dma,
1932 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1933 put_page(buffer_info->page);
1934 buffer_info->page = NULL;
1935 buffer_info->page_dma = 0;
1939 /* there also may be some cached data from a chained receive */
1940 if (rx_ring->pending_skb) {
1941 dev_kfree_skb(rx_ring->pending_skb);
1942 rx_ring->pending_skb = NULL;
1945 size = sizeof(struct igb_buffer) * rx_ring->count;
1946 memset(rx_ring->buffer_info, 0, size);
1948 /* Zero out the descriptor ring */
1949 memset(rx_ring->desc, 0, rx_ring->size);
1951 rx_ring->next_to_clean = 0;
1952 rx_ring->next_to_use = 0;
1954 writel(0, adapter->hw.hw_addr + rx_ring->head);
1955 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1959 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1960 * @adapter: board private structure
1962 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1964 int i;
1966 for (i = 0; i < adapter->num_rx_queues; i++)
1967 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1971 * igb_set_mac - Change the Ethernet Address of the NIC
1972 * @netdev: network interface device structure
1973 * @p: pointer to an address structure
1975 * Returns 0 on success, negative on failure
1977 static int igb_set_mac(struct net_device *netdev, void *p)
1979 struct igb_adapter *adapter = netdev_priv(netdev);
1980 struct sockaddr *addr = p;
1982 if (!is_valid_ether_addr(addr->sa_data))
1983 return -EADDRNOTAVAIL;
1985 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1986 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
1988 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1990 return 0;
1994 * igb_set_multi - Multicast and Promiscuous mode set
1995 * @netdev: network interface device structure
1997 * The set_multi entry point is called whenever the multicast address
1998 * list or the network interface flags are updated. This routine is
1999 * responsible for configuring the hardware for proper multicast,
2000 * promiscuous mode, and all-multi behavior.
2002 static void igb_set_multi(struct net_device *netdev)
2004 struct igb_adapter *adapter = netdev_priv(netdev);
2005 struct e1000_hw *hw = &adapter->hw;
2006 struct e1000_mac_info *mac = &hw->mac;
2007 struct dev_mc_list *mc_ptr;
2008 u8 *mta_list;
2009 u32 rctl;
2010 int i;
2012 /* Check for Promiscuous and All Multicast modes */
2014 rctl = rd32(E1000_RCTL);
2016 if (netdev->flags & IFF_PROMISC)
2017 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2018 else if (netdev->flags & IFF_ALLMULTI) {
2019 rctl |= E1000_RCTL_MPE;
2020 rctl &= ~E1000_RCTL_UPE;
2021 } else
2022 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2024 wr32(E1000_RCTL, rctl);
2026 if (!netdev->mc_count) {
2027 /* nothing to program, so clear mc list */
2028 igb_update_mc_addr_list(hw, NULL, 0, 1,
2029 mac->rar_entry_count);
2030 return;
2033 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2034 if (!mta_list)
2035 return;
2037 /* The shared function expects a packed array of only addresses. */
2038 mc_ptr = netdev->mc_list;
2040 for (i = 0; i < netdev->mc_count; i++) {
2041 if (!mc_ptr)
2042 break;
2043 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2044 mc_ptr = mc_ptr->next;
2046 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2047 kfree(mta_list);
2050 /* Need to wait a few seconds after link up to get diagnostic information from
2051 * the phy */
2052 static void igb_update_phy_info(unsigned long data)
2054 struct igb_adapter *adapter = (struct igb_adapter *) data;
2055 if (adapter->hw.phy.ops.get_phy_info)
2056 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2060 * igb_watchdog - Timer Call-back
2061 * @data: pointer to adapter cast into an unsigned long
2063 static void igb_watchdog(unsigned long data)
2065 struct igb_adapter *adapter = (struct igb_adapter *)data;
2066 /* Do the rest outside of interrupt context */
2067 schedule_work(&adapter->watchdog_task);
2070 static void igb_watchdog_task(struct work_struct *work)
2072 struct igb_adapter *adapter = container_of(work,
2073 struct igb_adapter, watchdog_task);
2074 struct e1000_hw *hw = &adapter->hw;
2076 struct net_device *netdev = adapter->netdev;
2077 struct igb_ring *tx_ring = adapter->tx_ring;
2078 struct e1000_mac_info *mac = &adapter->hw.mac;
2079 u32 link;
2080 s32 ret_val;
2082 if ((netif_carrier_ok(netdev)) &&
2083 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2084 goto link_up;
2086 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2087 if ((ret_val == E1000_ERR_PHY) &&
2088 (hw->phy.type == e1000_phy_igp_3) &&
2089 (rd32(E1000_CTRL) &
2090 E1000_PHY_CTRL_GBE_DISABLE))
2091 dev_info(&adapter->pdev->dev,
2092 "Gigabit has been disabled, downgrading speed\n");
2094 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2095 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2096 link = mac->serdes_has_link;
2097 else
2098 link = rd32(E1000_STATUS) &
2099 E1000_STATUS_LU;
2101 if (link) {
2102 if (!netif_carrier_ok(netdev)) {
2103 u32 ctrl;
2104 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2105 &adapter->link_speed,
2106 &adapter->link_duplex);
2108 ctrl = rd32(E1000_CTRL);
2109 dev_info(&adapter->pdev->dev,
2110 "NIC Link is Up %d Mbps %s, "
2111 "Flow Control: %s\n",
2112 adapter->link_speed,
2113 adapter->link_duplex == FULL_DUPLEX ?
2114 "Full Duplex" : "Half Duplex",
2115 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2116 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2117 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2118 E1000_CTRL_TFCE) ? "TX" : "None")));
2120 /* tweak tx_queue_len according to speed/duplex and
2121 * adjust the timeout factor */
2122 netdev->tx_queue_len = adapter->tx_queue_len;
2123 adapter->tx_timeout_factor = 1;
2124 switch (adapter->link_speed) {
2125 case SPEED_10:
2126 netdev->tx_queue_len = 10;
2127 adapter->tx_timeout_factor = 14;
2128 break;
2129 case SPEED_100:
2130 netdev->tx_queue_len = 100;
2131 /* maybe add some timeout factor ? */
2132 break;
2135 netif_carrier_on(netdev);
2136 netif_wake_queue(netdev);
2138 if (!test_bit(__IGB_DOWN, &adapter->state))
2139 mod_timer(&adapter->phy_info_timer,
2140 round_jiffies(jiffies + 2 * HZ));
2142 } else {
2143 if (netif_carrier_ok(netdev)) {
2144 adapter->link_speed = 0;
2145 adapter->link_duplex = 0;
2146 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2147 netif_carrier_off(netdev);
2148 netif_stop_queue(netdev);
2149 if (!test_bit(__IGB_DOWN, &adapter->state))
2150 mod_timer(&adapter->phy_info_timer,
2151 round_jiffies(jiffies + 2 * HZ));
2155 link_up:
2156 igb_update_stats(adapter);
2158 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2159 adapter->tpt_old = adapter->stats.tpt;
2160 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2161 adapter->colc_old = adapter->stats.colc;
2163 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2164 adapter->gorc_old = adapter->stats.gorc;
2165 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2166 adapter->gotc_old = adapter->stats.gotc;
2168 igb_update_adaptive(&adapter->hw);
2170 if (!netif_carrier_ok(netdev)) {
2171 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2172 /* We've lost link, so the controller stops DMA,
2173 * but we've got queued Tx work that's never going
2174 * to get done, so reset controller to flush Tx.
2175 * (Do the reset outside of interrupt context). */
2176 adapter->tx_timeout_count++;
2177 schedule_work(&adapter->reset_task);
2181 /* Cause software interrupt to ensure rx ring is cleaned */
2182 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2184 /* Force detection of hung controller every watchdog period */
2185 tx_ring->detect_tx_hung = true;
2187 /* Reset the timer */
2188 if (!test_bit(__IGB_DOWN, &adapter->state))
2189 mod_timer(&adapter->watchdog_timer,
2190 round_jiffies(jiffies + 2 * HZ));
2193 enum latency_range {
2194 lowest_latency = 0,
2195 low_latency = 1,
2196 bulk_latency = 2,
2197 latency_invalid = 255
2201 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2202 struct igb_ring *rx_ring)
2204 struct e1000_hw *hw = &adapter->hw;
2205 int new_val;
2207 new_val = rx_ring->itr_val / 2;
2208 if (new_val < IGB_MIN_DYN_ITR)
2209 new_val = IGB_MIN_DYN_ITR;
2211 if (new_val != rx_ring->itr_val) {
2212 rx_ring->itr_val = new_val;
2213 wr32(rx_ring->itr_register,
2214 1000000000 / (new_val * 256));
2218 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2219 struct igb_ring *rx_ring)
2221 struct e1000_hw *hw = &adapter->hw;
2222 int new_val;
2224 new_val = rx_ring->itr_val * 2;
2225 if (new_val > IGB_MAX_DYN_ITR)
2226 new_val = IGB_MAX_DYN_ITR;
2228 if (new_val != rx_ring->itr_val) {
2229 rx_ring->itr_val = new_val;
2230 wr32(rx_ring->itr_register,
2231 1000000000 / (new_val * 256));
2236 * igb_update_itr - update the dynamic ITR value based on statistics
2237 * Stores a new ITR value based on packets and byte
2238 * counts during the last interrupt. The advantage of per interrupt
2239 * computation is faster updates and more accurate ITR for the current
2240 * traffic pattern. Constants in this function were computed
2241 * based on theoretical maximum wire speed and thresholds were set based
2242 * on testing data as well as attempting to minimize response time
2243 * while increasing bulk throughput.
2244 * this functionality is controlled by the InterruptThrottleRate module
2245 * parameter (see igb_param.c)
2246 * NOTE: These calculations are only valid when operating in a single-
2247 * queue environment.
2248 * @adapter: pointer to adapter
2249 * @itr_setting: current adapter->itr
2250 * @packets: the number of packets during this measurement interval
2251 * @bytes: the number of bytes during this measurement interval
2253 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2254 int packets, int bytes)
2256 unsigned int retval = itr_setting;
2258 if (packets == 0)
2259 goto update_itr_done;
2261 switch (itr_setting) {
2262 case lowest_latency:
2263 /* handle TSO and jumbo frames */
2264 if (bytes/packets > 8000)
2265 retval = bulk_latency;
2266 else if ((packets < 5) && (bytes > 512))
2267 retval = low_latency;
2268 break;
2269 case low_latency: /* 50 usec aka 20000 ints/s */
2270 if (bytes > 10000) {
2271 /* this if handles the TSO accounting */
2272 if (bytes/packets > 8000) {
2273 retval = bulk_latency;
2274 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2275 retval = bulk_latency;
2276 } else if ((packets > 35)) {
2277 retval = lowest_latency;
2279 } else if (bytes/packets > 2000) {
2280 retval = bulk_latency;
2281 } else if (packets <= 2 && bytes < 512) {
2282 retval = lowest_latency;
2284 break;
2285 case bulk_latency: /* 250 usec aka 4000 ints/s */
2286 if (bytes > 25000) {
2287 if (packets > 35)
2288 retval = low_latency;
2289 } else if (bytes < 6000) {
2290 retval = low_latency;
2292 break;
2295 update_itr_done:
2296 return retval;
2299 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2300 int rx_only)
2302 u16 current_itr;
2303 u32 new_itr = adapter->itr;
2305 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2306 if (adapter->link_speed != SPEED_1000) {
2307 current_itr = 0;
2308 new_itr = 4000;
2309 goto set_itr_now;
2312 adapter->rx_itr = igb_update_itr(adapter,
2313 adapter->rx_itr,
2314 adapter->rx_ring->total_packets,
2315 adapter->rx_ring->total_bytes);
2316 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2317 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2318 adapter->rx_itr = low_latency;
2320 if (!rx_only) {
2321 adapter->tx_itr = igb_update_itr(adapter,
2322 adapter->tx_itr,
2323 adapter->tx_ring->total_packets,
2324 adapter->tx_ring->total_bytes);
2325 /* conservative mode (itr 3) eliminates the
2326 * lowest_latency setting */
2327 if (adapter->itr_setting == 3 &&
2328 adapter->tx_itr == lowest_latency)
2329 adapter->tx_itr = low_latency;
2331 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2332 } else {
2333 current_itr = adapter->rx_itr;
2336 switch (current_itr) {
2337 /* counts and packets in update_itr are dependent on these numbers */
2338 case lowest_latency:
2339 new_itr = 70000;
2340 break;
2341 case low_latency:
2342 new_itr = 20000; /* aka hwitr = ~200 */
2343 break;
2344 case bulk_latency:
2345 new_itr = 4000;
2346 break;
2347 default:
2348 break;
2351 set_itr_now:
2352 if (new_itr != adapter->itr) {
2353 /* this attempts to bias the interrupt rate towards Bulk
2354 * by adding intermediate steps when interrupt rate is
2355 * increasing */
2356 new_itr = new_itr > adapter->itr ?
2357 min(adapter->itr + (new_itr >> 2), new_itr) :
2358 new_itr;
2359 /* Don't write the value here; it resets the adapter's
2360 * internal timer, and causes us to delay far longer than
2361 * we should between interrupts. Instead, we write the ITR
2362 * value at the beginning of the next interrupt so the timing
2363 * ends up being correct.
2365 adapter->itr = new_itr;
2366 adapter->set_itr = 1;
2369 return;
2373 #define IGB_TX_FLAGS_CSUM 0x00000001
2374 #define IGB_TX_FLAGS_VLAN 0x00000002
2375 #define IGB_TX_FLAGS_TSO 0x00000004
2376 #define IGB_TX_FLAGS_IPV4 0x00000008
2377 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2378 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2380 static inline int igb_tso_adv(struct igb_adapter *adapter,
2381 struct igb_ring *tx_ring,
2382 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2384 struct e1000_adv_tx_context_desc *context_desc;
2385 unsigned int i;
2386 int err;
2387 struct igb_buffer *buffer_info;
2388 u32 info = 0, tu_cmd = 0;
2389 u32 mss_l4len_idx, l4len;
2390 *hdr_len = 0;
2392 if (skb_header_cloned(skb)) {
2393 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2394 if (err)
2395 return err;
2398 l4len = tcp_hdrlen(skb);
2399 *hdr_len += l4len;
2401 if (skb->protocol == htons(ETH_P_IP)) {
2402 struct iphdr *iph = ip_hdr(skb);
2403 iph->tot_len = 0;
2404 iph->check = 0;
2405 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2406 iph->daddr, 0,
2407 IPPROTO_TCP,
2409 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2410 ipv6_hdr(skb)->payload_len = 0;
2411 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2412 &ipv6_hdr(skb)->daddr,
2413 0, IPPROTO_TCP, 0);
2416 i = tx_ring->next_to_use;
2418 buffer_info = &tx_ring->buffer_info[i];
2419 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2420 /* VLAN MACLEN IPLEN */
2421 if (tx_flags & IGB_TX_FLAGS_VLAN)
2422 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2423 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2424 *hdr_len += skb_network_offset(skb);
2425 info |= skb_network_header_len(skb);
2426 *hdr_len += skb_network_header_len(skb);
2427 context_desc->vlan_macip_lens = cpu_to_le32(info);
2429 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2430 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2432 if (skb->protocol == htons(ETH_P_IP))
2433 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2434 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2436 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2438 /* MSS L4LEN IDX */
2439 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2440 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2442 /* Context index must be unique per ring. Luckily, so is the interrupt
2443 * mask value. */
2444 mss_l4len_idx |= tx_ring->eims_value >> 4;
2446 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2447 context_desc->seqnum_seed = 0;
2449 buffer_info->time_stamp = jiffies;
2450 buffer_info->dma = 0;
2451 i++;
2452 if (i == tx_ring->count)
2453 i = 0;
2455 tx_ring->next_to_use = i;
2457 return true;
2460 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2461 struct igb_ring *tx_ring,
2462 struct sk_buff *skb, u32 tx_flags)
2464 struct e1000_adv_tx_context_desc *context_desc;
2465 unsigned int i;
2466 struct igb_buffer *buffer_info;
2467 u32 info = 0, tu_cmd = 0;
2469 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2470 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2471 i = tx_ring->next_to_use;
2472 buffer_info = &tx_ring->buffer_info[i];
2473 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2475 if (tx_flags & IGB_TX_FLAGS_VLAN)
2476 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2477 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2478 if (skb->ip_summed == CHECKSUM_PARTIAL)
2479 info |= skb_network_header_len(skb);
2481 context_desc->vlan_macip_lens = cpu_to_le32(info);
2483 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2485 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2486 switch (skb->protocol) {
2487 case __constant_htons(ETH_P_IP):
2488 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2489 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2490 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2491 break;
2492 case __constant_htons(ETH_P_IPV6):
2493 /* XXX what about other V6 headers?? */
2494 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2495 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2496 break;
2497 default:
2498 if (unlikely(net_ratelimit()))
2499 dev_warn(&adapter->pdev->dev,
2500 "partial checksum but proto=%x!\n",
2501 skb->protocol);
2502 break;
2506 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2507 context_desc->seqnum_seed = 0;
2508 context_desc->mss_l4len_idx =
2509 cpu_to_le32(tx_ring->eims_value >> 4);
2511 buffer_info->time_stamp = jiffies;
2512 buffer_info->dma = 0;
2514 i++;
2515 if (i == tx_ring->count)
2516 i = 0;
2517 tx_ring->next_to_use = i;
2519 return true;
2523 return false;
2526 #define IGB_MAX_TXD_PWR 16
2527 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2529 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2530 struct igb_ring *tx_ring,
2531 struct sk_buff *skb)
2533 struct igb_buffer *buffer_info;
2534 unsigned int len = skb_headlen(skb);
2535 unsigned int count = 0, i;
2536 unsigned int f;
2538 i = tx_ring->next_to_use;
2540 buffer_info = &tx_ring->buffer_info[i];
2541 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2542 buffer_info->length = len;
2543 /* set time_stamp *before* dma to help avoid a possible race */
2544 buffer_info->time_stamp = jiffies;
2545 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2546 PCI_DMA_TODEVICE);
2547 count++;
2548 i++;
2549 if (i == tx_ring->count)
2550 i = 0;
2552 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2553 struct skb_frag_struct *frag;
2555 frag = &skb_shinfo(skb)->frags[f];
2556 len = frag->size;
2558 buffer_info = &tx_ring->buffer_info[i];
2559 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2560 buffer_info->length = len;
2561 buffer_info->time_stamp = jiffies;
2562 buffer_info->dma = pci_map_page(adapter->pdev,
2563 frag->page,
2564 frag->page_offset,
2565 len,
2566 PCI_DMA_TODEVICE);
2568 count++;
2569 i++;
2570 if (i == tx_ring->count)
2571 i = 0;
2574 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2575 tx_ring->buffer_info[i].skb = skb;
2577 return count;
2580 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2581 struct igb_ring *tx_ring,
2582 int tx_flags, int count, u32 paylen,
2583 u8 hdr_len)
2585 union e1000_adv_tx_desc *tx_desc = NULL;
2586 struct igb_buffer *buffer_info;
2587 u32 olinfo_status = 0, cmd_type_len;
2588 unsigned int i;
2590 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2591 E1000_ADVTXD_DCMD_DEXT);
2593 if (tx_flags & IGB_TX_FLAGS_VLAN)
2594 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2596 if (tx_flags & IGB_TX_FLAGS_TSO) {
2597 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2599 /* insert tcp checksum */
2600 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2602 /* insert ip checksum */
2603 if (tx_flags & IGB_TX_FLAGS_IPV4)
2604 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2606 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2607 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2610 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2611 IGB_TX_FLAGS_VLAN))
2612 olinfo_status |= tx_ring->eims_value >> 4;
2614 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2616 i = tx_ring->next_to_use;
2617 while (count--) {
2618 buffer_info = &tx_ring->buffer_info[i];
2619 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2620 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2621 tx_desc->read.cmd_type_len =
2622 cpu_to_le32(cmd_type_len | buffer_info->length);
2623 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2624 i++;
2625 if (i == tx_ring->count)
2626 i = 0;
2629 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2630 /* Force memory writes to complete before letting h/w
2631 * know there are new descriptors to fetch. (Only
2632 * applicable for weak-ordered memory model archs,
2633 * such as IA-64). */
2634 wmb();
2636 tx_ring->next_to_use = i;
2637 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2638 /* we need this if more than one processor can write to our tail
2639 * at a time, it syncronizes IO on IA64/Altix systems */
2640 mmiowb();
2643 static int __igb_maybe_stop_tx(struct net_device *netdev,
2644 struct igb_ring *tx_ring, int size)
2646 struct igb_adapter *adapter = netdev_priv(netdev);
2648 netif_stop_queue(netdev);
2649 /* Herbert's original patch had:
2650 * smp_mb__after_netif_stop_queue();
2651 * but since that doesn't exist yet, just open code it. */
2652 smp_mb();
2654 /* We need to check again in a case another CPU has just
2655 * made room available. */
2656 if (IGB_DESC_UNUSED(tx_ring) < size)
2657 return -EBUSY;
2659 /* A reprieve! */
2660 netif_start_queue(netdev);
2661 ++adapter->restart_queue;
2662 return 0;
2665 static int igb_maybe_stop_tx(struct net_device *netdev,
2666 struct igb_ring *tx_ring, int size)
2668 if (IGB_DESC_UNUSED(tx_ring) >= size)
2669 return 0;
2670 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2673 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2675 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2676 struct net_device *netdev,
2677 struct igb_ring *tx_ring)
2679 struct igb_adapter *adapter = netdev_priv(netdev);
2680 unsigned int tx_flags = 0;
2681 unsigned int len;
2682 unsigned long irq_flags;
2683 u8 hdr_len = 0;
2684 int tso = 0;
2686 len = skb_headlen(skb);
2688 if (test_bit(__IGB_DOWN, &adapter->state)) {
2689 dev_kfree_skb_any(skb);
2690 return NETDEV_TX_OK;
2693 if (skb->len <= 0) {
2694 dev_kfree_skb_any(skb);
2695 return NETDEV_TX_OK;
2698 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2699 /* Collision - tell upper layer to requeue */
2700 return NETDEV_TX_LOCKED;
2702 /* need: 1 descriptor per page,
2703 * + 2 desc gap to keep tail from touching head,
2704 * + 1 desc for skb->data,
2705 * + 1 desc for context descriptor,
2706 * otherwise try next time */
2707 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2708 /* this is a hard error */
2709 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2710 return NETDEV_TX_BUSY;
2713 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2714 tx_flags |= IGB_TX_FLAGS_VLAN;
2715 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2718 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2719 &hdr_len) : 0;
2721 if (tso < 0) {
2722 dev_kfree_skb_any(skb);
2723 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2724 return NETDEV_TX_OK;
2727 if (tso)
2728 tx_flags |= IGB_TX_FLAGS_TSO;
2729 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2730 if (skb->ip_summed == CHECKSUM_PARTIAL)
2731 tx_flags |= IGB_TX_FLAGS_CSUM;
2733 if (skb->protocol == htons(ETH_P_IP))
2734 tx_flags |= IGB_TX_FLAGS_IPV4;
2736 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2737 igb_tx_map_adv(adapter, tx_ring, skb),
2738 skb->len, hdr_len);
2740 netdev->trans_start = jiffies;
2742 /* Make sure there is space in the ring for the next send. */
2743 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2745 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2746 return NETDEV_TX_OK;
2749 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2751 struct igb_adapter *adapter = netdev_priv(netdev);
2752 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2754 /* This goes back to the question of how to logically map a tx queue
2755 * to a flow. Right now, performance is impacted slightly negatively
2756 * if using multiple tx queues. If the stack breaks away from a
2757 * single qdisc implementation, we can look at this again. */
2758 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2762 * igb_tx_timeout - Respond to a Tx Hang
2763 * @netdev: network interface device structure
2765 static void igb_tx_timeout(struct net_device *netdev)
2767 struct igb_adapter *adapter = netdev_priv(netdev);
2768 struct e1000_hw *hw = &adapter->hw;
2770 /* Do the reset outside of interrupt context */
2771 adapter->tx_timeout_count++;
2772 schedule_work(&adapter->reset_task);
2773 wr32(E1000_EICS, adapter->eims_enable_mask &
2774 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2777 static void igb_reset_task(struct work_struct *work)
2779 struct igb_adapter *adapter;
2780 adapter = container_of(work, struct igb_adapter, reset_task);
2782 igb_reinit_locked(adapter);
2786 * igb_get_stats - Get System Network Statistics
2787 * @netdev: network interface device structure
2789 * Returns the address of the device statistics structure.
2790 * The statistics are actually updated from the timer callback.
2792 static struct net_device_stats *
2793 igb_get_stats(struct net_device *netdev)
2795 struct igb_adapter *adapter = netdev_priv(netdev);
2797 /* only return the current stats */
2798 return &adapter->net_stats;
2802 * igb_change_mtu - Change the Maximum Transfer Unit
2803 * @netdev: network interface device structure
2804 * @new_mtu: new value for maximum frame size
2806 * Returns 0 on success, negative on failure
2808 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2810 struct igb_adapter *adapter = netdev_priv(netdev);
2811 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2813 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2814 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2815 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2816 return -EINVAL;
2819 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2820 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2821 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2822 return -EINVAL;
2825 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2826 msleep(1);
2827 /* igb_down has a dependency on max_frame_size */
2828 adapter->max_frame_size = max_frame;
2829 if (netif_running(netdev))
2830 igb_down(adapter);
2832 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2833 * means we reserve 2 more, this pushes us to allocate from the next
2834 * larger slab size.
2835 * i.e. RXBUFFER_2048 --> size-4096 slab
2838 if (max_frame <= IGB_RXBUFFER_256)
2839 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2840 else if (max_frame <= IGB_RXBUFFER_512)
2841 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2842 else if (max_frame <= IGB_RXBUFFER_1024)
2843 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2844 else if (max_frame <= IGB_RXBUFFER_2048)
2845 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2846 else
2847 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2848 /* adjust allocation if LPE protects us, and we aren't using SBP */
2849 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2850 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2851 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2853 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2854 netdev->mtu, new_mtu);
2855 netdev->mtu = new_mtu;
2857 if (netif_running(netdev))
2858 igb_up(adapter);
2859 else
2860 igb_reset(adapter);
2862 clear_bit(__IGB_RESETTING, &adapter->state);
2864 return 0;
2868 * igb_update_stats - Update the board statistics counters
2869 * @adapter: board private structure
2872 void igb_update_stats(struct igb_adapter *adapter)
2874 struct e1000_hw *hw = &adapter->hw;
2875 struct pci_dev *pdev = adapter->pdev;
2876 u16 phy_tmp;
2878 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2881 * Prevent stats update while adapter is being reset, or if the pci
2882 * connection is down.
2884 if (adapter->link_speed == 0)
2885 return;
2886 if (pci_channel_offline(pdev))
2887 return;
2889 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2890 adapter->stats.gprc += rd32(E1000_GPRC);
2891 adapter->stats.gorc += rd32(E1000_GORCL);
2892 rd32(E1000_GORCH); /* clear GORCL */
2893 adapter->stats.bprc += rd32(E1000_BPRC);
2894 adapter->stats.mprc += rd32(E1000_MPRC);
2895 adapter->stats.roc += rd32(E1000_ROC);
2897 adapter->stats.prc64 += rd32(E1000_PRC64);
2898 adapter->stats.prc127 += rd32(E1000_PRC127);
2899 adapter->stats.prc255 += rd32(E1000_PRC255);
2900 adapter->stats.prc511 += rd32(E1000_PRC511);
2901 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2902 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2903 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2904 adapter->stats.sec += rd32(E1000_SEC);
2906 adapter->stats.mpc += rd32(E1000_MPC);
2907 adapter->stats.scc += rd32(E1000_SCC);
2908 adapter->stats.ecol += rd32(E1000_ECOL);
2909 adapter->stats.mcc += rd32(E1000_MCC);
2910 adapter->stats.latecol += rd32(E1000_LATECOL);
2911 adapter->stats.dc += rd32(E1000_DC);
2912 adapter->stats.rlec += rd32(E1000_RLEC);
2913 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2914 adapter->stats.xontxc += rd32(E1000_XONTXC);
2915 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2916 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2917 adapter->stats.fcruc += rd32(E1000_FCRUC);
2918 adapter->stats.gptc += rd32(E1000_GPTC);
2919 adapter->stats.gotc += rd32(E1000_GOTCL);
2920 rd32(E1000_GOTCH); /* clear GOTCL */
2921 adapter->stats.rnbc += rd32(E1000_RNBC);
2922 adapter->stats.ruc += rd32(E1000_RUC);
2923 adapter->stats.rfc += rd32(E1000_RFC);
2924 adapter->stats.rjc += rd32(E1000_RJC);
2925 adapter->stats.tor += rd32(E1000_TORH);
2926 adapter->stats.tot += rd32(E1000_TOTH);
2927 adapter->stats.tpr += rd32(E1000_TPR);
2929 adapter->stats.ptc64 += rd32(E1000_PTC64);
2930 adapter->stats.ptc127 += rd32(E1000_PTC127);
2931 adapter->stats.ptc255 += rd32(E1000_PTC255);
2932 adapter->stats.ptc511 += rd32(E1000_PTC511);
2933 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2934 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2936 adapter->stats.mptc += rd32(E1000_MPTC);
2937 adapter->stats.bptc += rd32(E1000_BPTC);
2939 /* used for adaptive IFS */
2941 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2942 adapter->stats.tpt += hw->mac.tx_packet_delta;
2943 hw->mac.collision_delta = rd32(E1000_COLC);
2944 adapter->stats.colc += hw->mac.collision_delta;
2946 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2947 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2948 adapter->stats.tncrs += rd32(E1000_TNCRS);
2949 adapter->stats.tsctc += rd32(E1000_TSCTC);
2950 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2952 adapter->stats.iac += rd32(E1000_IAC);
2953 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2954 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2955 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2956 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2957 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2958 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2959 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2960 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2962 /* Fill out the OS statistics structure */
2963 adapter->net_stats.multicast = adapter->stats.mprc;
2964 adapter->net_stats.collisions = adapter->stats.colc;
2966 /* Rx Errors */
2968 /* RLEC on some newer hardware can be incorrect so build
2969 * our own version based on RUC and ROC */
2970 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2971 adapter->stats.crcerrs + adapter->stats.algnerrc +
2972 adapter->stats.ruc + adapter->stats.roc +
2973 adapter->stats.cexterr;
2974 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2975 adapter->stats.roc;
2976 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2977 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2978 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2980 /* Tx Errors */
2981 adapter->net_stats.tx_errors = adapter->stats.ecol +
2982 adapter->stats.latecol;
2983 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2984 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2985 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2987 /* Tx Dropped needs to be maintained elsewhere */
2989 /* Phy Stats */
2990 if (hw->phy.media_type == e1000_media_type_copper) {
2991 if ((adapter->link_speed == SPEED_1000) &&
2992 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
2993 &phy_tmp))) {
2994 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2995 adapter->phy_stats.idle_errors += phy_tmp;
2999 /* Management Stats */
3000 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3001 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3002 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3006 static irqreturn_t igb_msix_other(int irq, void *data)
3008 struct net_device *netdev = data;
3009 struct igb_adapter *adapter = netdev_priv(netdev);
3010 struct e1000_hw *hw = &adapter->hw;
3011 u32 eicr;
3012 /* disable interrupts from the "other" bit, avoid re-entry */
3013 wr32(E1000_EIMC, E1000_EIMS_OTHER);
3015 eicr = rd32(E1000_EICR);
3017 if (eicr & E1000_EIMS_OTHER) {
3018 u32 icr = rd32(E1000_ICR);
3019 /* reading ICR causes bit 31 of EICR to be cleared */
3020 if (!(icr & E1000_ICR_LSC))
3021 goto no_link_interrupt;
3022 hw->mac.get_link_status = 1;
3023 /* guard against interrupt when we're going down */
3024 if (!test_bit(__IGB_DOWN, &adapter->state))
3025 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3028 no_link_interrupt:
3029 wr32(E1000_IMS, E1000_IMS_LSC);
3030 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3032 return IRQ_HANDLED;
3035 static irqreturn_t igb_msix_tx(int irq, void *data)
3037 struct igb_ring *tx_ring = data;
3038 struct igb_adapter *adapter = tx_ring->adapter;
3039 struct e1000_hw *hw = &adapter->hw;
3041 if (!tx_ring->itr_val)
3042 wr32(E1000_EIMC, tx_ring->eims_value);
3044 tx_ring->total_bytes = 0;
3045 tx_ring->total_packets = 0;
3046 if (!igb_clean_tx_irq(adapter, tx_ring))
3047 /* Ring was not completely cleaned, so fire another interrupt */
3048 wr32(E1000_EICS, tx_ring->eims_value);
3050 if (!tx_ring->itr_val)
3051 wr32(E1000_EIMS, tx_ring->eims_value);
3052 return IRQ_HANDLED;
3055 static irqreturn_t igb_msix_rx(int irq, void *data)
3057 struct igb_ring *rx_ring = data;
3058 struct igb_adapter *adapter = rx_ring->adapter;
3059 struct e1000_hw *hw = &adapter->hw;
3061 if (!rx_ring->itr_val)
3062 wr32(E1000_EIMC, rx_ring->eims_value);
3064 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3065 rx_ring->total_bytes = 0;
3066 rx_ring->total_packets = 0;
3067 rx_ring->no_itr_adjust = 0;
3068 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3069 } else {
3070 if (!rx_ring->no_itr_adjust) {
3071 igb_lower_rx_eitr(adapter, rx_ring);
3072 rx_ring->no_itr_adjust = 1;
3076 return IRQ_HANDLED;
3081 * igb_intr_msi - Interrupt Handler
3082 * @irq: interrupt number
3083 * @data: pointer to a network interface device structure
3085 static irqreturn_t igb_intr_msi(int irq, void *data)
3087 struct net_device *netdev = data;
3088 struct igb_adapter *adapter = netdev_priv(netdev);
3089 struct napi_struct *napi = &adapter->napi;
3090 struct e1000_hw *hw = &adapter->hw;
3091 /* read ICR disables interrupts using IAM */
3092 u32 icr = rd32(E1000_ICR);
3094 /* Write the ITR value calculated at the end of the
3095 * previous interrupt.
3097 if (adapter->set_itr) {
3098 wr32(E1000_ITR,
3099 1000000000 / (adapter->itr * 256));
3100 adapter->set_itr = 0;
3103 /* read ICR disables interrupts using IAM */
3104 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3105 hw->mac.get_link_status = 1;
3106 if (!test_bit(__IGB_DOWN, &adapter->state))
3107 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3110 if (netif_rx_schedule_prep(netdev, napi)) {
3111 adapter->tx_ring->total_bytes = 0;
3112 adapter->tx_ring->total_packets = 0;
3113 adapter->rx_ring->total_bytes = 0;
3114 adapter->rx_ring->total_packets = 0;
3115 __netif_rx_schedule(netdev, napi);
3118 return IRQ_HANDLED;
3122 * igb_intr - Interrupt Handler
3123 * @irq: interrupt number
3124 * @data: pointer to a network interface device structure
3126 static irqreturn_t igb_intr(int irq, void *data)
3128 struct net_device *netdev = data;
3129 struct igb_adapter *adapter = netdev_priv(netdev);
3130 struct napi_struct *napi = &adapter->napi;
3131 struct e1000_hw *hw = &adapter->hw;
3132 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3133 * need for the IMC write */
3134 u32 icr = rd32(E1000_ICR);
3135 u32 eicr = 0;
3136 if (!icr)
3137 return IRQ_NONE; /* Not our interrupt */
3139 /* Write the ITR value calculated at the end of the
3140 * previous interrupt.
3142 if (adapter->set_itr) {
3143 wr32(E1000_ITR,
3144 1000000000 / (adapter->itr * 256));
3145 adapter->set_itr = 0;
3148 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3149 * not set, then the adapter didn't send an interrupt */
3150 if (!(icr & E1000_ICR_INT_ASSERTED))
3151 return IRQ_NONE;
3153 eicr = rd32(E1000_EICR);
3155 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3156 hw->mac.get_link_status = 1;
3157 /* guard against interrupt when we're going down */
3158 if (!test_bit(__IGB_DOWN, &adapter->state))
3159 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3162 if (netif_rx_schedule_prep(netdev, napi)) {
3163 adapter->tx_ring->total_bytes = 0;
3164 adapter->rx_ring->total_bytes = 0;
3165 adapter->tx_ring->total_packets = 0;
3166 adapter->rx_ring->total_packets = 0;
3167 __netif_rx_schedule(netdev, napi);
3170 return IRQ_HANDLED;
3174 * igb_clean - NAPI Rx polling callback
3175 * @adapter: board private structure
3177 static int igb_clean(struct napi_struct *napi, int budget)
3179 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3180 napi);
3181 struct net_device *netdev = adapter->netdev;
3182 int tx_clean_complete = 1, work_done = 0;
3183 int i;
3185 /* Must NOT use netdev_priv macro here. */
3186 adapter = netdev->priv;
3188 /* Keep link state information with original netdev */
3189 if (!netif_carrier_ok(netdev))
3190 goto quit_polling;
3192 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3193 * being cleaned by multiple cpus simultaneously. A failure obtaining
3194 * the lock means tx_ring[i] is currently being cleaned anyway. */
3195 for (i = 0; i < adapter->num_tx_queues; i++) {
3196 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3197 tx_clean_complete &= igb_clean_tx_irq(adapter,
3198 &adapter->tx_ring[i]);
3199 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3203 for (i = 0; i < adapter->num_rx_queues; i++)
3204 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3205 adapter->rx_ring[i].napi.weight);
3207 /* If no Tx and not enough Rx work done, exit the polling mode */
3208 if ((tx_clean_complete && (work_done < budget)) ||
3209 !netif_running(netdev)) {
3210 quit_polling:
3211 if (adapter->itr_setting & 3)
3212 igb_set_itr(adapter, E1000_ITR, false);
3213 netif_rx_complete(netdev, napi);
3214 if (!test_bit(__IGB_DOWN, &adapter->state))
3215 igb_irq_enable(adapter);
3216 return 0;
3219 return 1;
3222 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3224 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3225 struct igb_adapter *adapter = rx_ring->adapter;
3226 struct e1000_hw *hw = &adapter->hw;
3227 struct net_device *netdev = adapter->netdev;
3228 int work_done = 0;
3230 /* Keep link state information with original netdev */
3231 if (!netif_carrier_ok(netdev))
3232 goto quit_polling;
3234 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3237 /* If not enough Rx work done, exit the polling mode */
3238 if ((work_done == 0) || !netif_running(netdev)) {
3239 quit_polling:
3240 netif_rx_complete(netdev, napi);
3242 wr32(E1000_EIMS, rx_ring->eims_value);
3243 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3244 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3245 int mean_size = rx_ring->total_bytes /
3246 rx_ring->total_packets;
3247 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3248 igb_raise_rx_eitr(adapter, rx_ring);
3249 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3250 igb_lower_rx_eitr(adapter, rx_ring);
3252 return 0;
3255 return 1;
3258 static inline u32 get_head(struct igb_ring *tx_ring)
3260 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3261 return le32_to_cpu(*(volatile __le32 *)end);
3265 * igb_clean_tx_irq - Reclaim resources after transmit completes
3266 * @adapter: board private structure
3267 * returns true if ring is completely cleaned
3269 static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3270 struct igb_ring *tx_ring)
3272 struct net_device *netdev = adapter->netdev;
3273 struct e1000_hw *hw = &adapter->hw;
3274 struct e1000_tx_desc *tx_desc;
3275 struct igb_buffer *buffer_info;
3276 struct sk_buff *skb;
3277 unsigned int i;
3278 u32 head, oldhead;
3279 unsigned int count = 0;
3280 bool cleaned = false;
3281 bool retval = true;
3282 unsigned int total_bytes = 0, total_packets = 0;
3284 rmb();
3285 head = get_head(tx_ring);
3286 i = tx_ring->next_to_clean;
3287 while (1) {
3288 while (i != head) {
3289 cleaned = true;
3290 tx_desc = E1000_TX_DESC(*tx_ring, i);
3291 buffer_info = &tx_ring->buffer_info[i];
3292 skb = buffer_info->skb;
3294 if (skb) {
3295 unsigned int segs, bytecount;
3296 /* gso_segs is currently only valid for tcp */
3297 segs = skb_shinfo(skb)->gso_segs ?: 1;
3298 /* multiply data chunks by size of headers */
3299 bytecount = ((segs - 1) * skb_headlen(skb)) +
3300 skb->len;
3301 total_packets += segs;
3302 total_bytes += bytecount;
3305 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3306 tx_desc->upper.data = 0;
3308 i++;
3309 if (i == tx_ring->count)
3310 i = 0;
3312 count++;
3313 if (count == IGB_MAX_TX_CLEAN) {
3314 retval = false;
3315 goto done_cleaning;
3318 oldhead = head;
3319 rmb();
3320 head = get_head(tx_ring);
3321 if (head == oldhead)
3322 goto done_cleaning;
3323 } /* while (1) */
3325 done_cleaning:
3326 tx_ring->next_to_clean = i;
3328 if (unlikely(cleaned &&
3329 netif_carrier_ok(netdev) &&
3330 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3331 /* Make sure that anybody stopping the queue after this
3332 * sees the new next_to_clean.
3334 smp_mb();
3335 if (netif_queue_stopped(netdev) &&
3336 !(test_bit(__IGB_DOWN, &adapter->state))) {
3337 netif_wake_queue(netdev);
3338 ++adapter->restart_queue;
3342 if (tx_ring->detect_tx_hung) {
3343 /* Detect a transmit hang in hardware, this serializes the
3344 * check with the clearing of time_stamp and movement of i */
3345 tx_ring->detect_tx_hung = false;
3346 if (tx_ring->buffer_info[i].time_stamp &&
3347 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3348 (adapter->tx_timeout_factor * HZ))
3349 && !(rd32(E1000_STATUS) &
3350 E1000_STATUS_TXOFF)) {
3352 tx_desc = E1000_TX_DESC(*tx_ring, i);
3353 /* detected Tx unit hang */
3354 dev_err(&adapter->pdev->dev,
3355 "Detected Tx Unit Hang\n"
3356 " Tx Queue <%lu>\n"
3357 " TDH <%x>\n"
3358 " TDT <%x>\n"
3359 " next_to_use <%x>\n"
3360 " next_to_clean <%x>\n"
3361 " head (WB) <%x>\n"
3362 "buffer_info[next_to_clean]\n"
3363 " time_stamp <%lx>\n"
3364 " jiffies <%lx>\n"
3365 " desc.status <%x>\n",
3366 (unsigned long)((tx_ring - adapter->tx_ring) /
3367 sizeof(struct igb_ring)),
3368 readl(adapter->hw.hw_addr + tx_ring->head),
3369 readl(adapter->hw.hw_addr + tx_ring->tail),
3370 tx_ring->next_to_use,
3371 tx_ring->next_to_clean,
3372 head,
3373 tx_ring->buffer_info[i].time_stamp,
3374 jiffies,
3375 tx_desc->upper.fields.status);
3376 netif_stop_queue(netdev);
3379 tx_ring->total_bytes += total_bytes;
3380 tx_ring->total_packets += total_packets;
3381 adapter->net_stats.tx_bytes += total_bytes;
3382 adapter->net_stats.tx_packets += total_packets;
3383 return retval;
3388 * igb_receive_skb - helper function to handle rx indications
3389 * @adapter: board private structure
3390 * @status: descriptor status field as written by hardware
3391 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3392 * @skb: pointer to sk_buff to be indicated to stack
3394 static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
3395 struct sk_buff *skb)
3397 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3398 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3399 le16_to_cpu(vlan) &
3400 E1000_RXD_SPC_VLAN_MASK);
3401 else
3402 netif_receive_skb(skb);
3406 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3407 u32 status_err, struct sk_buff *skb)
3409 skb->ip_summed = CHECKSUM_NONE;
3411 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3412 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3413 return;
3414 /* TCP/UDP checksum error bit is set */
3415 if (status_err &
3416 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3417 /* let the stack verify checksum errors */
3418 adapter->hw_csum_err++;
3419 return;
3421 /* It must be a TCP or UDP packet with a valid checksum */
3422 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3423 skb->ip_summed = CHECKSUM_UNNECESSARY;
3425 adapter->hw_csum_good++;
3428 static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3429 struct igb_ring *rx_ring,
3430 int *work_done, int budget)
3432 struct net_device *netdev = adapter->netdev;
3433 struct pci_dev *pdev = adapter->pdev;
3434 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3435 struct igb_buffer *buffer_info , *next_buffer;
3436 struct sk_buff *skb;
3437 unsigned int i, j;
3438 u32 length, hlen, staterr;
3439 bool cleaned = false;
3440 int cleaned_count = 0;
3441 unsigned int total_bytes = 0, total_packets = 0;
3443 i = rx_ring->next_to_clean;
3444 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3445 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3447 while (staterr & E1000_RXD_STAT_DD) {
3448 if (*work_done >= budget)
3449 break;
3450 (*work_done)++;
3451 buffer_info = &rx_ring->buffer_info[i];
3453 /* HW will not DMA in data larger than the given buffer, even
3454 * if it parses the (NFS, of course) header to be larger. In
3455 * that case, it fills the header buffer and spills the rest
3456 * into the page.
3458 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3459 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3460 if (hlen > adapter->rx_ps_hdr_size)
3461 hlen = adapter->rx_ps_hdr_size;
3463 length = le16_to_cpu(rx_desc->wb.upper.length);
3464 cleaned = true;
3465 cleaned_count++;
3467 if (rx_ring->pending_skb != NULL) {
3468 skb = rx_ring->pending_skb;
3469 rx_ring->pending_skb = NULL;
3470 j = rx_ring->pending_skb_page;
3471 } else {
3472 skb = buffer_info->skb;
3473 prefetch(skb->data - NET_IP_ALIGN);
3474 buffer_info->skb = NULL;
3475 if (hlen) {
3476 pci_unmap_single(pdev, buffer_info->dma,
3477 adapter->rx_ps_hdr_size +
3478 NET_IP_ALIGN,
3479 PCI_DMA_FROMDEVICE);
3480 skb_put(skb, hlen);
3481 } else {
3482 pci_unmap_single(pdev, buffer_info->dma,
3483 adapter->rx_buffer_len +
3484 NET_IP_ALIGN,
3485 PCI_DMA_FROMDEVICE);
3486 skb_put(skb, length);
3487 goto send_up;
3489 j = 0;
3492 while (length) {
3493 pci_unmap_page(pdev, buffer_info->page_dma,
3494 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3495 buffer_info->page_dma = 0;
3496 skb_fill_page_desc(skb, j, buffer_info->page,
3497 0, length);
3498 buffer_info->page = NULL;
3500 skb->len += length;
3501 skb->data_len += length;
3502 skb->truesize += length;
3503 rx_desc->wb.upper.status_error = 0;
3504 if (staterr & E1000_RXD_STAT_EOP)
3505 break;
3507 j++;
3508 cleaned_count++;
3509 i++;
3510 if (i == rx_ring->count)
3511 i = 0;
3513 buffer_info = &rx_ring->buffer_info[i];
3514 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3515 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3516 length = le16_to_cpu(rx_desc->wb.upper.length);
3517 if (!(staterr & E1000_RXD_STAT_DD)) {
3518 rx_ring->pending_skb = skb;
3519 rx_ring->pending_skb_page = j;
3520 goto out;
3523 send_up:
3524 pskb_trim(skb, skb->len - 4);
3525 i++;
3526 if (i == rx_ring->count)
3527 i = 0;
3528 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3529 prefetch(next_rxd);
3530 next_buffer = &rx_ring->buffer_info[i];
3532 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3533 dev_kfree_skb_irq(skb);
3534 goto next_desc;
3536 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3538 total_bytes += skb->len;
3539 total_packets++;
3541 igb_rx_checksum_adv(adapter, staterr, skb);
3543 skb->protocol = eth_type_trans(skb, netdev);
3545 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3547 netdev->last_rx = jiffies;
3549 next_desc:
3550 rx_desc->wb.upper.status_error = 0;
3552 /* return some buffers to hardware, one at a time is too slow */
3553 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3554 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3555 cleaned_count);
3556 cleaned_count = 0;
3559 /* use prefetched values */
3560 rx_desc = next_rxd;
3561 buffer_info = next_buffer;
3563 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3565 out:
3566 rx_ring->next_to_clean = i;
3567 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3569 if (cleaned_count)
3570 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3572 rx_ring->total_packets += total_packets;
3573 rx_ring->total_bytes += total_bytes;
3574 rx_ring->rx_stats.packets += total_packets;
3575 rx_ring->rx_stats.bytes += total_bytes;
3576 adapter->net_stats.rx_bytes += total_bytes;
3577 adapter->net_stats.rx_packets += total_packets;
3578 return cleaned;
3583 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3584 * @adapter: address of board private structure
3586 static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3587 struct igb_ring *rx_ring,
3588 int cleaned_count)
3590 struct net_device *netdev = adapter->netdev;
3591 struct pci_dev *pdev = adapter->pdev;
3592 union e1000_adv_rx_desc *rx_desc;
3593 struct igb_buffer *buffer_info;
3594 struct sk_buff *skb;
3595 unsigned int i;
3597 i = rx_ring->next_to_use;
3598 buffer_info = &rx_ring->buffer_info[i];
3600 while (cleaned_count--) {
3601 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3603 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3604 buffer_info->page = alloc_page(GFP_ATOMIC);
3605 if (!buffer_info->page) {
3606 adapter->alloc_rx_buff_failed++;
3607 goto no_buffers;
3609 buffer_info->page_dma =
3610 pci_map_page(pdev,
3611 buffer_info->page,
3612 0, PAGE_SIZE,
3613 PCI_DMA_FROMDEVICE);
3616 if (!buffer_info->skb) {
3617 int bufsz;
3619 if (adapter->rx_ps_hdr_size)
3620 bufsz = adapter->rx_ps_hdr_size;
3621 else
3622 bufsz = adapter->rx_buffer_len;
3623 bufsz += NET_IP_ALIGN;
3624 skb = netdev_alloc_skb(netdev, bufsz);
3626 if (!skb) {
3627 adapter->alloc_rx_buff_failed++;
3628 goto no_buffers;
3631 /* Make buffer alignment 2 beyond a 16 byte boundary
3632 * this will result in a 16 byte aligned IP header after
3633 * the 14 byte MAC header is removed
3635 skb_reserve(skb, NET_IP_ALIGN);
3637 buffer_info->skb = skb;
3638 buffer_info->dma = pci_map_single(pdev, skb->data,
3639 bufsz,
3640 PCI_DMA_FROMDEVICE);
3643 /* Refresh the desc even if buffer_addrs didn't change because
3644 * each write-back erases this info. */
3645 if (adapter->rx_ps_hdr_size) {
3646 rx_desc->read.pkt_addr =
3647 cpu_to_le64(buffer_info->page_dma);
3648 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3649 } else {
3650 rx_desc->read.pkt_addr =
3651 cpu_to_le64(buffer_info->dma);
3652 rx_desc->read.hdr_addr = 0;
3655 i++;
3656 if (i == rx_ring->count)
3657 i = 0;
3658 buffer_info = &rx_ring->buffer_info[i];
3661 no_buffers:
3662 if (rx_ring->next_to_use != i) {
3663 rx_ring->next_to_use = i;
3664 if (i == 0)
3665 i = (rx_ring->count - 1);
3666 else
3667 i--;
3669 /* Force memory writes to complete before letting h/w
3670 * know there are new descriptors to fetch. (Only
3671 * applicable for weak-ordered memory model archs,
3672 * such as IA-64). */
3673 wmb();
3674 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3679 * igb_mii_ioctl -
3680 * @netdev:
3681 * @ifreq:
3682 * @cmd:
3684 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3686 struct igb_adapter *adapter = netdev_priv(netdev);
3687 struct mii_ioctl_data *data = if_mii(ifr);
3689 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3690 return -EOPNOTSUPP;
3692 switch (cmd) {
3693 case SIOCGMIIPHY:
3694 data->phy_id = adapter->hw.phy.addr;
3695 break;
3696 case SIOCGMIIREG:
3697 if (!capable(CAP_NET_ADMIN))
3698 return -EPERM;
3699 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3700 data->reg_num
3701 & 0x1F, &data->val_out))
3702 return -EIO;
3703 break;
3704 case SIOCSMIIREG:
3705 default:
3706 return -EOPNOTSUPP;
3708 return 0;
3712 * igb_ioctl -
3713 * @netdev:
3714 * @ifreq:
3715 * @cmd:
3717 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3719 switch (cmd) {
3720 case SIOCGMIIPHY:
3721 case SIOCGMIIREG:
3722 case SIOCSMIIREG:
3723 return igb_mii_ioctl(netdev, ifr, cmd);
3724 default:
3725 return -EOPNOTSUPP;
3729 static void igb_vlan_rx_register(struct net_device *netdev,
3730 struct vlan_group *grp)
3732 struct igb_adapter *adapter = netdev_priv(netdev);
3733 struct e1000_hw *hw = &adapter->hw;
3734 u32 ctrl, rctl;
3736 igb_irq_disable(adapter);
3737 adapter->vlgrp = grp;
3739 if (grp) {
3740 /* enable VLAN tag insert/strip */
3741 ctrl = rd32(E1000_CTRL);
3742 ctrl |= E1000_CTRL_VME;
3743 wr32(E1000_CTRL, ctrl);
3745 /* enable VLAN receive filtering */
3746 rctl = rd32(E1000_RCTL);
3747 rctl |= E1000_RCTL_VFE;
3748 rctl &= ~E1000_RCTL_CFIEN;
3749 wr32(E1000_RCTL, rctl);
3750 igb_update_mng_vlan(adapter);
3751 wr32(E1000_RLPML,
3752 adapter->max_frame_size + VLAN_TAG_SIZE);
3753 } else {
3754 /* disable VLAN tag insert/strip */
3755 ctrl = rd32(E1000_CTRL);
3756 ctrl &= ~E1000_CTRL_VME;
3757 wr32(E1000_CTRL, ctrl);
3759 /* disable VLAN filtering */
3760 rctl = rd32(E1000_RCTL);
3761 rctl &= ~E1000_RCTL_VFE;
3762 wr32(E1000_RCTL, rctl);
3763 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3764 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3765 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3767 wr32(E1000_RLPML,
3768 adapter->max_frame_size);
3771 if (!test_bit(__IGB_DOWN, &adapter->state))
3772 igb_irq_enable(adapter);
3775 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3777 struct igb_adapter *adapter = netdev_priv(netdev);
3778 struct e1000_hw *hw = &adapter->hw;
3779 u32 vfta, index;
3781 if ((adapter->hw.mng_cookie.status &
3782 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3783 (vid == adapter->mng_vlan_id))
3784 return;
3785 /* add VID to filter table */
3786 index = (vid >> 5) & 0x7F;
3787 vfta = array_rd32(E1000_VFTA, index);
3788 vfta |= (1 << (vid & 0x1F));
3789 igb_write_vfta(&adapter->hw, index, vfta);
3792 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3794 struct igb_adapter *adapter = netdev_priv(netdev);
3795 struct e1000_hw *hw = &adapter->hw;
3796 u32 vfta, index;
3798 igb_irq_disable(adapter);
3799 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3801 if (!test_bit(__IGB_DOWN, &adapter->state))
3802 igb_irq_enable(adapter);
3804 if ((adapter->hw.mng_cookie.status &
3805 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3806 (vid == adapter->mng_vlan_id)) {
3807 /* release control to f/w */
3808 igb_release_hw_control(adapter);
3809 return;
3812 /* remove VID from filter table */
3813 index = (vid >> 5) & 0x7F;
3814 vfta = array_rd32(E1000_VFTA, index);
3815 vfta &= ~(1 << (vid & 0x1F));
3816 igb_write_vfta(&adapter->hw, index, vfta);
3819 static void igb_restore_vlan(struct igb_adapter *adapter)
3821 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3823 if (adapter->vlgrp) {
3824 u16 vid;
3825 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3826 if (!vlan_group_get_device(adapter->vlgrp, vid))
3827 continue;
3828 igb_vlan_rx_add_vid(adapter->netdev, vid);
3833 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3835 struct e1000_mac_info *mac = &adapter->hw.mac;
3837 mac->autoneg = 0;
3839 /* Fiber NICs only allow 1000 gbps Full duplex */
3840 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3841 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3842 dev_err(&adapter->pdev->dev,
3843 "Unsupported Speed/Duplex configuration\n");
3844 return -EINVAL;
3847 switch (spddplx) {
3848 case SPEED_10 + DUPLEX_HALF:
3849 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3850 break;
3851 case SPEED_10 + DUPLEX_FULL:
3852 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3853 break;
3854 case SPEED_100 + DUPLEX_HALF:
3855 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3856 break;
3857 case SPEED_100 + DUPLEX_FULL:
3858 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3859 break;
3860 case SPEED_1000 + DUPLEX_FULL:
3861 mac->autoneg = 1;
3862 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3863 break;
3864 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3865 default:
3866 dev_err(&adapter->pdev->dev,
3867 "Unsupported Speed/Duplex configuration\n");
3868 return -EINVAL;
3870 return 0;
3874 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3876 struct net_device *netdev = pci_get_drvdata(pdev);
3877 struct igb_adapter *adapter = netdev_priv(netdev);
3878 struct e1000_hw *hw = &adapter->hw;
3879 u32 ctrl, ctrl_ext, rctl, status;
3880 u32 wufc = adapter->wol;
3881 #ifdef CONFIG_PM
3882 int retval = 0;
3883 #endif
3885 netif_device_detach(netdev);
3887 if (netif_running(netdev)) {
3888 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3889 igb_down(adapter);
3890 igb_free_irq(adapter);
3893 #ifdef CONFIG_PM
3894 retval = pci_save_state(pdev);
3895 if (retval)
3896 return retval;
3897 #endif
3899 status = rd32(E1000_STATUS);
3900 if (status & E1000_STATUS_LU)
3901 wufc &= ~E1000_WUFC_LNKC;
3903 if (wufc) {
3904 igb_setup_rctl(adapter);
3905 igb_set_multi(netdev);
3907 /* turn on all-multi mode if wake on multicast is enabled */
3908 if (wufc & E1000_WUFC_MC) {
3909 rctl = rd32(E1000_RCTL);
3910 rctl |= E1000_RCTL_MPE;
3911 wr32(E1000_RCTL, rctl);
3914 ctrl = rd32(E1000_CTRL);
3915 /* advertise wake from D3Cold */
3916 #define E1000_CTRL_ADVD3WUC 0x00100000
3917 /* phy power management enable */
3918 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3919 ctrl |= E1000_CTRL_ADVD3WUC;
3920 wr32(E1000_CTRL, ctrl);
3922 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3923 adapter->hw.phy.media_type ==
3924 e1000_media_type_internal_serdes) {
3925 /* keep the laser running in D3 */
3926 ctrl_ext = rd32(E1000_CTRL_EXT);
3927 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3928 wr32(E1000_CTRL_EXT, ctrl_ext);
3931 /* Allow time for pending master requests to run */
3932 igb_disable_pcie_master(&adapter->hw);
3934 wr32(E1000_WUC, E1000_WUC_PME_EN);
3935 wr32(E1000_WUFC, wufc);
3936 pci_enable_wake(pdev, PCI_D3hot, 1);
3937 pci_enable_wake(pdev, PCI_D3cold, 1);
3938 } else {
3939 wr32(E1000_WUC, 0);
3940 wr32(E1000_WUFC, 0);
3941 pci_enable_wake(pdev, PCI_D3hot, 0);
3942 pci_enable_wake(pdev, PCI_D3cold, 0);
3945 /* make sure adapter isn't asleep if manageability is enabled */
3946 if (adapter->en_mng_pt) {
3947 pci_enable_wake(pdev, PCI_D3hot, 1);
3948 pci_enable_wake(pdev, PCI_D3cold, 1);
3951 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3952 * would have already happened in close and is redundant. */
3953 igb_release_hw_control(adapter);
3955 pci_disable_device(pdev);
3957 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3959 return 0;
3962 #ifdef CONFIG_PM
3963 static int igb_resume(struct pci_dev *pdev)
3965 struct net_device *netdev = pci_get_drvdata(pdev);
3966 struct igb_adapter *adapter = netdev_priv(netdev);
3967 struct e1000_hw *hw = &adapter->hw;
3968 u32 err;
3970 pci_set_power_state(pdev, PCI_D0);
3971 pci_restore_state(pdev);
3972 err = pci_enable_device(pdev);
3973 if (err) {
3974 dev_err(&pdev->dev,
3975 "igb: Cannot enable PCI device from suspend\n");
3976 return err;
3978 pci_set_master(pdev);
3980 pci_enable_wake(pdev, PCI_D3hot, 0);
3981 pci_enable_wake(pdev, PCI_D3cold, 0);
3983 if (netif_running(netdev)) {
3984 err = igb_request_irq(adapter);
3985 if (err)
3986 return err;
3989 /* e1000_power_up_phy(adapter); */
3991 igb_reset(adapter);
3992 wr32(E1000_WUS, ~0);
3994 igb_init_manageability(adapter);
3996 if (netif_running(netdev))
3997 igb_up(adapter);
3999 netif_device_attach(netdev);
4001 /* let the f/w know that the h/w is now under the control of the
4002 * driver. */
4003 igb_get_hw_control(adapter);
4005 return 0;
4007 #endif
4009 static void igb_shutdown(struct pci_dev *pdev)
4011 igb_suspend(pdev, PMSG_SUSPEND);
4014 #ifdef CONFIG_NET_POLL_CONTROLLER
4016 * Polling 'interrupt' - used by things like netconsole to send skbs
4017 * without having to re-enable interrupts. It's not called while
4018 * the interrupt routine is executing.
4020 static void igb_netpoll(struct net_device *netdev)
4022 struct igb_adapter *adapter = netdev_priv(netdev);
4023 int i;
4024 int work_done = 0;
4026 igb_irq_disable(adapter);
4027 for (i = 0; i < adapter->num_tx_queues; i++)
4028 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4030 for (i = 0; i < adapter->num_rx_queues; i++)
4031 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4032 &work_done,
4033 adapter->rx_ring[i].napi.weight);
4035 igb_irq_enable(adapter);
4037 #endif /* CONFIG_NET_POLL_CONTROLLER */
4040 * igb_io_error_detected - called when PCI error is detected
4041 * @pdev: Pointer to PCI device
4042 * @state: The current pci connection state
4044 * This function is called after a PCI bus error affecting
4045 * this device has been detected.
4047 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4048 pci_channel_state_t state)
4050 struct net_device *netdev = pci_get_drvdata(pdev);
4051 struct igb_adapter *adapter = netdev_priv(netdev);
4053 netif_device_detach(netdev);
4055 if (netif_running(netdev))
4056 igb_down(adapter);
4057 pci_disable_device(pdev);
4059 /* Request a slot slot reset. */
4060 return PCI_ERS_RESULT_NEED_RESET;
4064 * igb_io_slot_reset - called after the pci bus has been reset.
4065 * @pdev: Pointer to PCI device
4067 * Restart the card from scratch, as if from a cold-boot. Implementation
4068 * resembles the first-half of the igb_resume routine.
4070 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4072 struct net_device *netdev = pci_get_drvdata(pdev);
4073 struct igb_adapter *adapter = netdev_priv(netdev);
4074 struct e1000_hw *hw = &adapter->hw;
4076 if (pci_enable_device(pdev)) {
4077 dev_err(&pdev->dev,
4078 "Cannot re-enable PCI device after reset.\n");
4079 return PCI_ERS_RESULT_DISCONNECT;
4081 pci_set_master(pdev);
4083 pci_enable_wake(pdev, PCI_D3hot, 0);
4084 pci_enable_wake(pdev, PCI_D3cold, 0);
4086 igb_reset(adapter);
4087 wr32(E1000_WUS, ~0);
4089 return PCI_ERS_RESULT_RECOVERED;
4093 * igb_io_resume - called when traffic can start flowing again.
4094 * @pdev: Pointer to PCI device
4096 * This callback is called when the error recovery driver tells us that
4097 * its OK to resume normal operation. Implementation resembles the
4098 * second-half of the igb_resume routine.
4100 static void igb_io_resume(struct pci_dev *pdev)
4102 struct net_device *netdev = pci_get_drvdata(pdev);
4103 struct igb_adapter *adapter = netdev_priv(netdev);
4105 igb_init_manageability(adapter);
4107 if (netif_running(netdev)) {
4108 if (igb_up(adapter)) {
4109 dev_err(&pdev->dev, "igb_up failed after reset\n");
4110 return;
4114 netif_device_attach(netdev);
4116 /* let the f/w know that the h/w is now under the control of the
4117 * driver. */
4118 igb_get_hw_control(adapter);
4122 /* igb_main.c */