2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32
rt2500pci_bbp_check(struct rt2x00_dev
*rt2x00dev
)
57 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
58 rt2x00pci_register_read(rt2x00dev
, BBPCSR
, ®
);
59 if (!rt2x00_get_field32(reg
, BBPCSR_BUSY
))
61 udelay(REGISTER_BUSY_DELAY
);
67 static void rt2500pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
68 const unsigned int word
, const u8 value
)
73 * Wait until the BBP becomes ready.
75 reg
= rt2500pci_bbp_check(rt2x00dev
);
76 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
77 ERROR(rt2x00dev
, "BBPCSR register busy. Write failed.\n");
82 * Write the data into the BBP.
85 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
86 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
87 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
88 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
90 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
93 static void rt2500pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
94 const unsigned int word
, u8
*value
)
99 * Wait until the BBP becomes ready.
101 reg
= rt2500pci_bbp_check(rt2x00dev
);
102 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
103 ERROR(rt2x00dev
, "BBPCSR register busy. Read failed.\n");
108 * Write the request into the BBP.
111 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
112 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
113 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
115 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
118 * Wait until the BBP becomes ready.
120 reg
= rt2500pci_bbp_check(rt2x00dev
);
121 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
122 ERROR(rt2x00dev
, "BBPCSR register busy. Read failed.\n");
127 *value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
130 static void rt2500pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
131 const unsigned int word
, const u32 value
)
139 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
140 rt2x00pci_register_read(rt2x00dev
, RFCSR
, ®
);
141 if (!rt2x00_get_field32(reg
, RFCSR_BUSY
))
143 udelay(REGISTER_BUSY_DELAY
);
146 ERROR(rt2x00dev
, "RFCSR register busy. Write failed.\n");
151 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
152 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
153 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
154 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
156 rt2x00pci_register_write(rt2x00dev
, RFCSR
, reg
);
157 rt2x00_rf_write(rt2x00dev
, word
, value
);
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
162 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
165 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
167 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
168 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
169 eeprom
->reg_data_clock
=
170 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
171 eeprom
->reg_chip_select
=
172 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
177 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
180 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
181 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
182 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
183 !!eeprom
->reg_data_clock
);
184 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
185 !!eeprom
->reg_chip_select
);
187 rt2x00pci_register_write(rt2x00dev
, CSR21
, reg
);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2500pci_read_csr(struct rt2x00_dev
*rt2x00dev
,
194 const unsigned int word
, u32
*data
)
196 rt2x00pci_register_read(rt2x00dev
, CSR_OFFSET(word
), data
);
199 static void rt2500pci_write_csr(struct rt2x00_dev
*rt2x00dev
,
200 const unsigned int word
, u32 data
)
202 rt2x00pci_register_write(rt2x00dev
, CSR_OFFSET(word
), data
);
205 static const struct rt2x00debug rt2500pci_rt2x00debug
= {
206 .owner
= THIS_MODULE
,
208 .read
= rt2500pci_read_csr
,
209 .write
= rt2500pci_write_csr
,
210 .word_size
= sizeof(u32
),
211 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
214 .read
= rt2x00_eeprom_read
,
215 .write
= rt2x00_eeprom_write
,
216 .word_size
= sizeof(u16
),
217 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
220 .read
= rt2500pci_bbp_read
,
221 .write
= rt2500pci_bbp_write
,
222 .word_size
= sizeof(u8
),
223 .word_count
= BBP_SIZE
/ sizeof(u8
),
226 .read
= rt2x00_rf_read
,
227 .write
= rt2500pci_rf_write
,
228 .word_size
= sizeof(u32
),
229 .word_count
= RF_SIZE
/ sizeof(u32
),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
239 rt2x00pci_register_read(rt2x00dev
, GPIOCSR
, ®
);
240 return rt2x00_get_field32(reg
, GPIOCSR_BIT0
);
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_brightness_set(struct led_classdev
*led_cdev
,
248 enum led_brightness brightness
)
250 struct rt2x00_led
*led
=
251 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
252 unsigned int enabled
= brightness
!= LED_OFF
;
255 rt2x00pci_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
257 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
258 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
259 else if (led
->type
== LED_TYPE_ACTIVITY
)
260 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
262 rt2x00pci_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
265 static int rt2500pci_blink_set(struct led_classdev
*led_cdev
,
266 unsigned long *delay_on
,
267 unsigned long *delay_off
)
269 struct rt2x00_led
*led
=
270 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
273 rt2x00pci_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
274 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
275 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
276 rt2x00pci_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
280 #endif /* CONFIG_RT2500PCI_LEDS */
283 * Configuration handlers.
285 static void rt2500pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
286 const unsigned int filter_flags
)
291 * Start configuration steps.
292 * Note that the version error will always be dropped
293 * and broadcast frames will always be accepted since
294 * there is no filter for it at this time.
296 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
297 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
298 !(filter_flags
& FIF_FCSFAIL
));
299 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
300 !(filter_flags
& FIF_PLCPFAIL
));
301 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
302 !(filter_flags
& FIF_CONTROL
));
303 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
304 !(filter_flags
& FIF_PROMISC_IN_BSS
));
305 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
306 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
307 !rt2x00dev
->intf_ap_count
);
308 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
309 rt2x00_set_field32(®
, RXCSR0_DROP_MCAST
,
310 !(filter_flags
& FIF_ALLMULTI
));
311 rt2x00_set_field32(®
, RXCSR0_DROP_BCAST
, 0);
312 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
315 static void rt2500pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
316 struct rt2x00_intf
*intf
,
317 struct rt2x00intf_conf
*conf
,
318 const unsigned int flags
)
320 struct data_queue
*queue
=
321 rt2x00queue_get_queue(rt2x00dev
, RT2X00_BCN_QUEUE_BEACON
);
322 unsigned int bcn_preload
;
325 if (flags
& CONFIG_UPDATE_TYPE
) {
327 * Enable beacon config
329 bcn_preload
= PREAMBLE
+ get_duration(IEEE80211_HEADER
, 20);
330 rt2x00pci_register_read(rt2x00dev
, BCNCSR1
, ®
);
331 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
332 rt2x00_set_field32(®
, BCNCSR1_BEACON_CWMIN
, queue
->cw_min
);
333 rt2x00pci_register_write(rt2x00dev
, BCNCSR1
, reg
);
336 * Enable synchronisation.
338 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
339 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
340 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
341 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
342 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
345 if (flags
& CONFIG_UPDATE_MAC
)
346 rt2x00pci_register_multiwrite(rt2x00dev
, CSR3
,
347 conf
->mac
, sizeof(conf
->mac
));
349 if (flags
& CONFIG_UPDATE_BSSID
)
350 rt2x00pci_register_multiwrite(rt2x00dev
, CSR5
,
351 conf
->bssid
, sizeof(conf
->bssid
));
354 static void rt2500pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
355 struct rt2x00lib_erp
*erp
)
361 * When short preamble is enabled, we should set bit 0x08
363 preamble_mask
= erp
->short_preamble
<< 3;
365 rt2x00pci_register_read(rt2x00dev
, TXCSR1
, ®
);
366 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
,
368 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
,
369 erp
->ack_consume_time
);
370 rt2x00pci_register_write(rt2x00dev
, TXCSR1
, reg
);
372 rt2x00pci_register_read(rt2x00dev
, ARCSR2
, ®
);
373 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00 | preamble_mask
);
374 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
375 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 10));
376 rt2x00pci_register_write(rt2x00dev
, ARCSR2
, reg
);
378 rt2x00pci_register_read(rt2x00dev
, ARCSR3
, ®
);
379 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
380 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
381 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 20));
382 rt2x00pci_register_write(rt2x00dev
, ARCSR3
, reg
);
384 rt2x00pci_register_read(rt2x00dev
, ARCSR4
, ®
);
385 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
386 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
387 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 55));
388 rt2x00pci_register_write(rt2x00dev
, ARCSR4
, reg
);
390 rt2x00pci_register_read(rt2x00dev
, ARCSR5
, ®
);
391 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
392 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
393 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 110));
394 rt2x00pci_register_write(rt2x00dev
, ARCSR5
, reg
);
397 static void rt2500pci_config_phymode(struct rt2x00_dev
*rt2x00dev
,
398 const int basic_rate_mask
)
400 rt2x00pci_register_write(rt2x00dev
, ARCSR1
, basic_rate_mask
);
403 static void rt2500pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
404 struct rf_channel
*rf
, const int txpower
)
411 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
414 * Switch on tuning bits.
415 * For RT2523 devices we do not need to update the R1 register.
417 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2523
))
418 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
419 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
422 * For RT2525 we should first set the channel to half band higher.
424 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525
)) {
425 static const u32 vals
[] = {
426 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
427 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
428 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
429 0x00080d2e, 0x00080d3a
432 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
433 rt2500pci_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
434 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
436 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
439 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
440 rt2500pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
441 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
443 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
446 * Channel 14 requires the Japan filter bit to be set.
449 rt2x00_set_field8(&r70
, BBP_R70_JAPAN_FILTER
, rf
->channel
== 14);
450 rt2500pci_bbp_write(rt2x00dev
, 70, r70
);
455 * Switch off tuning bits.
456 * For RT2523 devices we do not need to update the R1 register.
458 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2523
)) {
459 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
460 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
463 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
464 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
467 * Clear false CRC during channel switch.
469 rt2x00pci_register_read(rt2x00dev
, CNT0
, &rf
->rf1
);
472 static void rt2500pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
477 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
478 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
479 rt2500pci_rf_write(rt2x00dev
, 3, rf3
);
482 static void rt2500pci_config_antenna(struct rt2x00_dev
*rt2x00dev
,
483 struct antenna_setup
*ant
)
490 * We should never come here because rt2x00lib is supposed
491 * to catch this and send us the correct antenna explicitely.
493 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
494 ant
->tx
== ANTENNA_SW_DIVERSITY
);
496 rt2x00pci_register_read(rt2x00dev
, BBPCSR1
, ®
);
497 rt2500pci_bbp_read(rt2x00dev
, 14, &r14
);
498 rt2500pci_bbp_read(rt2x00dev
, 2, &r2
);
501 * Configure the TX antenna.
505 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
506 rt2x00_set_field32(®
, BBPCSR1_CCK
, 0);
507 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 0);
511 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
512 rt2x00_set_field32(®
, BBPCSR1_CCK
, 2);
513 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 2);
518 * Configure the RX antenna.
522 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
526 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
531 * RT2525E and RT5222 need to flip TX I/Q
533 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) ||
534 rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
535 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
536 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 1);
537 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 1);
540 * RT2525E does not need RX I/Q Flip.
542 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
))
543 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
545 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 0);
546 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 0);
549 rt2x00pci_register_write(rt2x00dev
, BBPCSR1
, reg
);
550 rt2500pci_bbp_write(rt2x00dev
, 14, r14
);
551 rt2500pci_bbp_write(rt2x00dev
, 2, r2
);
554 static void rt2500pci_config_duration(struct rt2x00_dev
*rt2x00dev
,
555 struct rt2x00lib_conf
*libconf
)
559 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
560 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, libconf
->slot_time
);
561 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
563 rt2x00pci_register_read(rt2x00dev
, CSR18
, ®
);
564 rt2x00_set_field32(®
, CSR18_SIFS
, libconf
->sifs
);
565 rt2x00_set_field32(®
, CSR18_PIFS
, libconf
->pifs
);
566 rt2x00pci_register_write(rt2x00dev
, CSR18
, reg
);
568 rt2x00pci_register_read(rt2x00dev
, CSR19
, ®
);
569 rt2x00_set_field32(®
, CSR19_DIFS
, libconf
->difs
);
570 rt2x00_set_field32(®
, CSR19_EIFS
, libconf
->eifs
);
571 rt2x00pci_register_write(rt2x00dev
, CSR19
, reg
);
573 rt2x00pci_register_read(rt2x00dev
, TXCSR1
, ®
);
574 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
575 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
576 rt2x00pci_register_write(rt2x00dev
, TXCSR1
, reg
);
578 rt2x00pci_register_read(rt2x00dev
, CSR12
, ®
);
579 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
580 libconf
->conf
->beacon_int
* 16);
581 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
582 libconf
->conf
->beacon_int
* 16);
583 rt2x00pci_register_write(rt2x00dev
, CSR12
, reg
);
586 static void rt2500pci_config(struct rt2x00_dev
*rt2x00dev
,
587 struct rt2x00lib_conf
*libconf
,
588 const unsigned int flags
)
590 if (flags
& CONFIG_UPDATE_PHYMODE
)
591 rt2500pci_config_phymode(rt2x00dev
, libconf
->basic_rates
);
592 if (flags
& CONFIG_UPDATE_CHANNEL
)
593 rt2500pci_config_channel(rt2x00dev
, &libconf
->rf
,
594 libconf
->conf
->power_level
);
595 if ((flags
& CONFIG_UPDATE_TXPOWER
) && !(flags
& CONFIG_UPDATE_CHANNEL
))
596 rt2500pci_config_txpower(rt2x00dev
,
597 libconf
->conf
->power_level
);
598 if (flags
& CONFIG_UPDATE_ANTENNA
)
599 rt2500pci_config_antenna(rt2x00dev
, &libconf
->ant
);
600 if (flags
& (CONFIG_UPDATE_SLOT_TIME
| CONFIG_UPDATE_BEACON_INT
))
601 rt2500pci_config_duration(rt2x00dev
, libconf
);
607 static void rt2500pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
608 struct link_qual
*qual
)
613 * Update FCS error count from register.
615 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
616 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
619 * Update False CCA count from register.
621 rt2x00pci_register_read(rt2x00dev
, CNT3
, ®
);
622 qual
->false_cca
= rt2x00_get_field32(reg
, CNT3_FALSE_CCA
);
625 static void rt2500pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
)
627 rt2500pci_bbp_write(rt2x00dev
, 17, 0x48);
628 rt2x00dev
->link
.vgc_level
= 0x48;
631 static void rt2500pci_link_tuner(struct rt2x00_dev
*rt2x00dev
)
633 int rssi
= rt2x00_get_link_rssi(&rt2x00dev
->link
);
637 * To prevent collisions with MAC ASIC on chipsets
638 * up to version C the link tuning should halt after 20
639 * seconds while being associated.
641 if (rt2x00_rev(&rt2x00dev
->chip
) < RT2560_VERSION_D
&&
642 rt2x00dev
->intf_associated
&&
643 rt2x00dev
->link
.count
> 20)
646 rt2500pci_bbp_read(rt2x00dev
, 17, &r17
);
649 * Chipset versions C and lower should directly continue
650 * to the dynamic CCA tuning. Chipset version D and higher
651 * should go straight to dynamic CCA tuning when they
652 * are not associated.
654 if (rt2x00_rev(&rt2x00dev
->chip
) < RT2560_VERSION_D
||
655 !rt2x00dev
->intf_associated
)
656 goto dynamic_cca_tune
;
659 * A too low RSSI will cause too much false CCA which will
660 * then corrupt the R17 tuning. To remidy this the tuning should
661 * be stopped (While making sure the R17 value will not exceed limits)
663 if (rssi
< -80 && rt2x00dev
->link
.count
> 20) {
665 r17
= rt2x00dev
->link
.vgc_level
;
666 rt2500pci_bbp_write(rt2x00dev
, 17, r17
);
672 * Special big-R17 for short distance
676 rt2500pci_bbp_write(rt2x00dev
, 17, 0x50);
681 * Special mid-R17 for middle distance
685 rt2500pci_bbp_write(rt2x00dev
, 17, 0x41);
690 * Leave short or middle distance condition, restore r17
691 * to the dynamic tuning range.
694 rt2500pci_bbp_write(rt2x00dev
, 17, rt2x00dev
->link
.vgc_level
);
701 * R17 is inside the dynamic tuning range,
702 * start tuning the link based on the false cca counter.
704 if (rt2x00dev
->link
.qual
.false_cca
> 512 && r17
< 0x40) {
705 rt2500pci_bbp_write(rt2x00dev
, 17, ++r17
);
706 rt2x00dev
->link
.vgc_level
= r17
;
707 } else if (rt2x00dev
->link
.qual
.false_cca
< 100 && r17
> 0x32) {
708 rt2500pci_bbp_write(rt2x00dev
, 17, --r17
);
709 rt2x00dev
->link
.vgc_level
= r17
;
714 * Initialization functions.
716 static void rt2500pci_init_rxentry(struct rt2x00_dev
*rt2x00dev
,
717 struct queue_entry
*entry
)
719 struct queue_entry_priv_pci_rx
*priv_rx
= entry
->priv_data
;
722 rt2x00_desc_read(priv_rx
->desc
, 1, &word
);
723 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, priv_rx
->data_dma
);
724 rt2x00_desc_write(priv_rx
->desc
, 1, word
);
726 rt2x00_desc_read(priv_rx
->desc
, 0, &word
);
727 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
728 rt2x00_desc_write(priv_rx
->desc
, 0, word
);
731 static void rt2500pci_init_txentry(struct rt2x00_dev
*rt2x00dev
,
732 struct queue_entry
*entry
)
734 struct queue_entry_priv_pci_tx
*priv_tx
= entry
->priv_data
;
737 rt2x00_desc_read(priv_tx
->desc
, 1, &word
);
738 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, priv_tx
->data_dma
);
739 rt2x00_desc_write(priv_tx
->desc
, 1, word
);
741 rt2x00_desc_read(priv_tx
->desc
, 0, &word
);
742 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
743 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
744 rt2x00_desc_write(priv_tx
->desc
, 0, word
);
747 static int rt2500pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
749 struct queue_entry_priv_pci_rx
*priv_rx
;
750 struct queue_entry_priv_pci_tx
*priv_tx
;
754 * Initialize registers.
756 rt2x00pci_register_read(rt2x00dev
, TXCSR2
, ®
);
757 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
758 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
759 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->bcn
[1].limit
);
760 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
761 rt2x00pci_register_write(rt2x00dev
, TXCSR2
, reg
);
763 priv_tx
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
764 rt2x00pci_register_read(rt2x00dev
, TXCSR3
, ®
);
765 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
767 rt2x00pci_register_write(rt2x00dev
, TXCSR3
, reg
);
769 priv_tx
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
770 rt2x00pci_register_read(rt2x00dev
, TXCSR5
, ®
);
771 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
773 rt2x00pci_register_write(rt2x00dev
, TXCSR5
, reg
);
775 priv_tx
= rt2x00dev
->bcn
[1].entries
[0].priv_data
;
776 rt2x00pci_register_read(rt2x00dev
, TXCSR4
, ®
);
777 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
779 rt2x00pci_register_write(rt2x00dev
, TXCSR4
, reg
);
781 priv_tx
= rt2x00dev
->bcn
[0].entries
[0].priv_data
;
782 rt2x00pci_register_read(rt2x00dev
, TXCSR6
, ®
);
783 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
785 rt2x00pci_register_write(rt2x00dev
, TXCSR6
, reg
);
787 rt2x00pci_register_read(rt2x00dev
, RXCSR1
, ®
);
788 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
789 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
790 rt2x00pci_register_write(rt2x00dev
, RXCSR1
, reg
);
792 priv_rx
= rt2x00dev
->rx
->entries
[0].priv_data
;
793 rt2x00pci_register_read(rt2x00dev
, RXCSR2
, ®
);
794 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
, priv_rx
->desc_dma
);
795 rt2x00pci_register_write(rt2x00dev
, RXCSR2
, reg
);
800 static int rt2500pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
804 rt2x00pci_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
805 rt2x00pci_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
806 rt2x00pci_register_write(rt2x00dev
, PSCSR2
, 0x00020002);
807 rt2x00pci_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
809 rt2x00pci_register_read(rt2x00dev
, TIMECSR
, ®
);
810 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
811 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
812 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
813 rt2x00pci_register_write(rt2x00dev
, TIMECSR
, reg
);
815 rt2x00pci_register_read(rt2x00dev
, CSR9
, ®
);
816 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
817 rt2x00dev
->rx
->data_size
/ 128);
818 rt2x00pci_register_write(rt2x00dev
, CSR9
, reg
);
821 * Always use CWmin and CWmax set in descriptor.
823 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
824 rt2x00_set_field32(®
, CSR11_CW_SELECT
, 0);
825 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
827 rt2x00pci_register_write(rt2x00dev
, CNT3
, 0);
829 rt2x00pci_register_read(rt2x00dev
, TXCSR8
, ®
);
830 rt2x00_set_field32(®
, TXCSR8_BBP_ID0
, 10);
831 rt2x00_set_field32(®
, TXCSR8_BBP_ID0_VALID
, 1);
832 rt2x00_set_field32(®
, TXCSR8_BBP_ID1
, 11);
833 rt2x00_set_field32(®
, TXCSR8_BBP_ID1_VALID
, 1);
834 rt2x00_set_field32(®
, TXCSR8_BBP_ID2
, 13);
835 rt2x00_set_field32(®
, TXCSR8_BBP_ID2_VALID
, 1);
836 rt2x00_set_field32(®
, TXCSR8_BBP_ID3
, 12);
837 rt2x00_set_field32(®
, TXCSR8_BBP_ID3_VALID
, 1);
838 rt2x00pci_register_write(rt2x00dev
, TXCSR8
, reg
);
840 rt2x00pci_register_read(rt2x00dev
, ARTCSR0
, ®
);
841 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_1MBS
, 112);
842 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_2MBS
, 56);
843 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_5_5MBS
, 20);
844 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_11MBS
, 10);
845 rt2x00pci_register_write(rt2x00dev
, ARTCSR0
, reg
);
847 rt2x00pci_register_read(rt2x00dev
, ARTCSR1
, ®
);
848 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_6MBS
, 45);
849 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_9MBS
, 37);
850 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_12MBS
, 33);
851 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_18MBS
, 29);
852 rt2x00pci_register_write(rt2x00dev
, ARTCSR1
, reg
);
854 rt2x00pci_register_read(rt2x00dev
, ARTCSR2
, ®
);
855 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_24MBS
, 29);
856 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_36MBS
, 25);
857 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_48MBS
, 25);
858 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_54MBS
, 25);
859 rt2x00pci_register_write(rt2x00dev
, ARTCSR2
, reg
);
861 rt2x00pci_register_read(rt2x00dev
, RXCSR3
, ®
);
862 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 47); /* CCK Signal */
863 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
864 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 51); /* Rssi */
865 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
866 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 42); /* OFDM Rate */
867 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
868 rt2x00_set_field32(®
, RXCSR3_BBP_ID3
, 51); /* RSSI */
869 rt2x00_set_field32(®
, RXCSR3_BBP_ID3_VALID
, 1);
870 rt2x00pci_register_write(rt2x00dev
, RXCSR3
, reg
);
872 rt2x00pci_register_read(rt2x00dev
, PCICSR
, ®
);
873 rt2x00_set_field32(®
, PCICSR_BIG_ENDIAN
, 0);
874 rt2x00_set_field32(®
, PCICSR_RX_TRESHOLD
, 0);
875 rt2x00_set_field32(®
, PCICSR_TX_TRESHOLD
, 3);
876 rt2x00_set_field32(®
, PCICSR_BURST_LENTH
, 1);
877 rt2x00_set_field32(®
, PCICSR_ENABLE_CLK
, 1);
878 rt2x00_set_field32(®
, PCICSR_READ_MULTIPLE
, 1);
879 rt2x00_set_field32(®
, PCICSR_WRITE_INVALID
, 1);
880 rt2x00pci_register_write(rt2x00dev
, PCICSR
, reg
);
882 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
884 rt2x00pci_register_write(rt2x00dev
, GPIOCSR
, 0x0000ff00);
885 rt2x00pci_register_write(rt2x00dev
, TESTCSR
, 0x000000f0);
887 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
890 rt2x00pci_register_write(rt2x00dev
, MACCSR0
, 0x00213223);
891 rt2x00pci_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
893 rt2x00pci_register_read(rt2x00dev
, MACCSR2
, ®
);
894 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
895 rt2x00pci_register_write(rt2x00dev
, MACCSR2
, reg
);
897 rt2x00pci_register_read(rt2x00dev
, RALINKCSR
, ®
);
898 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
899 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 26);
900 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID0
, 1);
901 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
902 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 26);
903 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID1
, 1);
904 rt2x00pci_register_write(rt2x00dev
, RALINKCSR
, reg
);
906 rt2x00pci_register_write(rt2x00dev
, BBPCSR1
, 0x82188200);
908 rt2x00pci_register_write(rt2x00dev
, TXACKCSR0
, 0x00000020);
910 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
911 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
912 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
913 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
914 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
916 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
917 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
918 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
919 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
922 * We must clear the FCS and FIFO error count.
923 * These registers are cleared on read,
924 * so we may pass a useless variable to store the value.
926 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
927 rt2x00pci_register_read(rt2x00dev
, CNT4
, ®
);
932 static int rt2500pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
939 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
940 rt2500pci_bbp_read(rt2x00dev
, 0, &value
);
941 if ((value
!= 0xff) && (value
!= 0x00))
942 goto continue_csr_init
;
943 NOTICE(rt2x00dev
, "Waiting for BBP register.\n");
944 udelay(REGISTER_BUSY_DELAY
);
947 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
951 rt2500pci_bbp_write(rt2x00dev
, 3, 0x02);
952 rt2500pci_bbp_write(rt2x00dev
, 4, 0x19);
953 rt2500pci_bbp_write(rt2x00dev
, 14, 0x1c);
954 rt2500pci_bbp_write(rt2x00dev
, 15, 0x30);
955 rt2500pci_bbp_write(rt2x00dev
, 16, 0xac);
956 rt2500pci_bbp_write(rt2x00dev
, 18, 0x18);
957 rt2500pci_bbp_write(rt2x00dev
, 19, 0xff);
958 rt2500pci_bbp_write(rt2x00dev
, 20, 0x1e);
959 rt2500pci_bbp_write(rt2x00dev
, 21, 0x08);
960 rt2500pci_bbp_write(rt2x00dev
, 22, 0x08);
961 rt2500pci_bbp_write(rt2x00dev
, 23, 0x08);
962 rt2500pci_bbp_write(rt2x00dev
, 24, 0x70);
963 rt2500pci_bbp_write(rt2x00dev
, 25, 0x40);
964 rt2500pci_bbp_write(rt2x00dev
, 26, 0x08);
965 rt2500pci_bbp_write(rt2x00dev
, 27, 0x23);
966 rt2500pci_bbp_write(rt2x00dev
, 30, 0x10);
967 rt2500pci_bbp_write(rt2x00dev
, 31, 0x2b);
968 rt2500pci_bbp_write(rt2x00dev
, 32, 0xb9);
969 rt2500pci_bbp_write(rt2x00dev
, 34, 0x12);
970 rt2500pci_bbp_write(rt2x00dev
, 35, 0x50);
971 rt2500pci_bbp_write(rt2x00dev
, 39, 0xc4);
972 rt2500pci_bbp_write(rt2x00dev
, 40, 0x02);
973 rt2500pci_bbp_write(rt2x00dev
, 41, 0x60);
974 rt2500pci_bbp_write(rt2x00dev
, 53, 0x10);
975 rt2500pci_bbp_write(rt2x00dev
, 54, 0x18);
976 rt2500pci_bbp_write(rt2x00dev
, 56, 0x08);
977 rt2500pci_bbp_write(rt2x00dev
, 57, 0x10);
978 rt2500pci_bbp_write(rt2x00dev
, 58, 0x08);
979 rt2500pci_bbp_write(rt2x00dev
, 61, 0x6d);
980 rt2500pci_bbp_write(rt2x00dev
, 62, 0x10);
982 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
983 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
985 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
986 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
987 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
988 rt2500pci_bbp_write(rt2x00dev
, reg_id
, value
);
996 * Device state switch handlers.
998 static void rt2500pci_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
999 enum dev_state state
)
1003 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
1004 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
,
1005 state
== STATE_RADIO_RX_OFF
);
1006 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
1009 static void rt2500pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1010 enum dev_state state
)
1012 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1016 * When interrupts are being enabled, the interrupt registers
1017 * should clear the register to assure a clean state.
1019 if (state
== STATE_RADIO_IRQ_ON
) {
1020 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1021 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1025 * Only toggle the interrupts bits we are going to use.
1026 * Non-checked interrupt bits are disabled by default.
1028 rt2x00pci_register_read(rt2x00dev
, CSR8
, ®
);
1029 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
1030 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
1031 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
1032 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
1033 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
1034 rt2x00pci_register_write(rt2x00dev
, CSR8
, reg
);
1037 static int rt2500pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1040 * Initialize all registers.
1042 if (rt2500pci_init_queues(rt2x00dev
) ||
1043 rt2500pci_init_registers(rt2x00dev
) ||
1044 rt2500pci_init_bbp(rt2x00dev
)) {
1045 ERROR(rt2x00dev
, "Register initialization failed.\n");
1050 * Enable interrupts.
1052 rt2500pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_ON
);
1057 static void rt2500pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1061 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0);
1064 * Disable synchronisation.
1066 rt2x00pci_register_write(rt2x00dev
, CSR14
, 0);
1071 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
1072 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
1073 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
1076 * Disable interrupts.
1078 rt2500pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
1081 static int rt2500pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1082 enum dev_state state
)
1090 put_to_sleep
= (state
!= STATE_AWAKE
);
1092 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
1093 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1094 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1095 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1096 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1097 rt2x00pci_register_write(rt2x00dev
, PWRCSR1
, reg
);
1100 * Device is not guaranteed to be in the requested state yet.
1101 * We must wait until the register indicates that the
1102 * device has entered the correct state.
1104 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1105 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
1106 bbp_state
= rt2x00_get_field32(reg
, PWRCSR1_BBP_CURR_STATE
);
1107 rf_state
= rt2x00_get_field32(reg
, PWRCSR1_RF_CURR_STATE
);
1108 if (bbp_state
== state
&& rf_state
== state
)
1113 NOTICE(rt2x00dev
, "Device failed to enter state %d, "
1114 "current device state: bbp %d and rf %d.\n",
1115 state
, bbp_state
, rf_state
);
1120 static int rt2500pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1121 enum dev_state state
)
1126 case STATE_RADIO_ON
:
1127 retval
= rt2500pci_enable_radio(rt2x00dev
);
1129 case STATE_RADIO_OFF
:
1130 rt2500pci_disable_radio(rt2x00dev
);
1132 case STATE_RADIO_RX_ON
:
1133 case STATE_RADIO_RX_ON_LINK
:
1134 rt2500pci_toggle_rx(rt2x00dev
, STATE_RADIO_RX_ON
);
1136 case STATE_RADIO_RX_OFF
:
1137 case STATE_RADIO_RX_OFF_LINK
:
1138 rt2500pci_toggle_rx(rt2x00dev
, STATE_RADIO_RX_OFF
);
1140 case STATE_DEEP_SLEEP
:
1144 retval
= rt2500pci_set_state(rt2x00dev
, state
);
1155 * TX descriptor initialization
1157 static void rt2500pci_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1158 struct sk_buff
*skb
,
1159 struct txentry_desc
*txdesc
,
1160 struct ieee80211_tx_control
*control
)
1162 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1163 __le32
*txd
= skbdesc
->desc
;
1167 * Start writing the descriptor words.
1169 rt2x00_desc_read(txd
, 2, &word
);
1170 rt2x00_set_field32(&word
, TXD_W2_IV_OFFSET
, IEEE80211_HEADER
);
1171 rt2x00_set_field32(&word
, TXD_W2_AIFS
, txdesc
->aifs
);
1172 rt2x00_set_field32(&word
, TXD_W2_CWMIN
, txdesc
->cw_min
);
1173 rt2x00_set_field32(&word
, TXD_W2_CWMAX
, txdesc
->cw_max
);
1174 rt2x00_desc_write(txd
, 2, word
);
1176 rt2x00_desc_read(txd
, 3, &word
);
1177 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->signal
);
1178 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->service
);
1179 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1180 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1181 rt2x00_desc_write(txd
, 3, word
);
1183 rt2x00_desc_read(txd
, 10, &word
);
1184 rt2x00_set_field32(&word
, TXD_W10_RTS
,
1185 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1186 rt2x00_desc_write(txd
, 10, word
);
1188 rt2x00_desc_read(txd
, 0, &word
);
1189 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1190 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1191 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1192 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1193 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1194 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1195 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1196 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1197 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1198 test_bit(ENTRY_TXD_OFDM_RATE
, &txdesc
->flags
));
1199 rt2x00_set_field32(&word
, TXD_W0_CIPHER_OWNER
, 1);
1200 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1201 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1203 IEEE80211_TXCTL_LONG_RETRY_LIMIT
));
1204 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skbdesc
->data_len
);
1205 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1206 rt2x00_desc_write(txd
, 0, word
);
1210 * TX data initialization
1212 static void rt2500pci_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1213 const unsigned int queue
)
1217 if (queue
== RT2X00_BCN_QUEUE_BEACON
) {
1218 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
1219 if (!rt2x00_get_field32(reg
, CSR14_BEACON_GEN
)) {
1220 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
1221 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
1222 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1223 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1228 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
1229 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
,
1230 (queue
== IEEE80211_TX_QUEUE_DATA0
));
1231 rt2x00_set_field32(®
, TXCSR0_KICK_TX
,
1232 (queue
== IEEE80211_TX_QUEUE_DATA1
));
1233 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
,
1234 (queue
== RT2X00_BCN_QUEUE_ATIM
));
1235 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
1239 * RX control handlers
1241 static void rt2500pci_fill_rxdone(struct queue_entry
*entry
,
1242 struct rxdone_entry_desc
*rxdesc
)
1244 struct queue_entry_priv_pci_rx
*priv_rx
= entry
->priv_data
;
1248 rt2x00_desc_read(priv_rx
->desc
, 0, &word0
);
1249 rt2x00_desc_read(priv_rx
->desc
, 2, &word2
);
1252 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1253 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1254 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1255 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1258 * Obtain the status about this packet.
1259 * When frame was received with an OFDM bitrate,
1260 * the signal is the PLCP value. If it was received with
1261 * a CCK bitrate the signal is the rate in 100kbit/s.
1263 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
);
1264 rxdesc
->rssi
= rt2x00_get_field32(word2
, RXD_W2_RSSI
) -
1265 entry
->queue
->rt2x00dev
->rssi_offset
;
1266 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1268 rxdesc
->dev_flags
= 0;
1269 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1270 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1271 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1272 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1276 * Interrupt functions.
1278 static void rt2500pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1279 const enum ieee80211_tx_queue queue_idx
)
1281 struct data_queue
*queue
= rt2x00queue_get_queue(rt2x00dev
, queue_idx
);
1282 struct queue_entry_priv_pci_tx
*priv_tx
;
1283 struct queue_entry
*entry
;
1284 struct txdone_entry_desc txdesc
;
1287 while (!rt2x00queue_empty(queue
)) {
1288 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1289 priv_tx
= entry
->priv_data
;
1290 rt2x00_desc_read(priv_tx
->desc
, 0, &word
);
1292 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1293 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1297 * Obtain the status about this packet.
1299 txdesc
.status
= rt2x00_get_field32(word
, TXD_W0_RESULT
);
1300 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1302 rt2x00pci_txdone(rt2x00dev
, entry
, &txdesc
);
1306 static irqreturn_t
rt2500pci_interrupt(int irq
, void *dev_instance
)
1308 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1312 * Get the interrupt sources & saved to local variable.
1313 * Write register value back to clear pending interrupts.
1315 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1316 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1321 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1325 * Handle interrupts, walk through all bits
1326 * and run the tasks, the bits are checked in order of
1331 * 1 - Beacon timer expired interrupt.
1333 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1334 rt2x00lib_beacondone(rt2x00dev
);
1337 * 2 - Rx ring done interrupt.
1339 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1340 rt2x00pci_rxdone(rt2x00dev
);
1343 * 3 - Atim ring transmit done interrupt.
1345 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
))
1346 rt2500pci_txdone(rt2x00dev
, RT2X00_BCN_QUEUE_ATIM
);
1349 * 4 - Priority ring transmit done interrupt.
1351 if (rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
))
1352 rt2500pci_txdone(rt2x00dev
, IEEE80211_TX_QUEUE_DATA0
);
1355 * 5 - Tx ring transmit done interrupt.
1357 if (rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
))
1358 rt2500pci_txdone(rt2x00dev
, IEEE80211_TX_QUEUE_DATA1
);
1364 * Device probe functions.
1366 static int rt2500pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1368 struct eeprom_93cx6 eeprom
;
1373 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
1375 eeprom
.data
= rt2x00dev
;
1376 eeprom
.register_read
= rt2500pci_eepromregister_read
;
1377 eeprom
.register_write
= rt2500pci_eepromregister_write
;
1378 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1379 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1380 eeprom
.reg_data_in
= 0;
1381 eeprom
.reg_data_out
= 0;
1382 eeprom
.reg_data_clock
= 0;
1383 eeprom
.reg_chip_select
= 0;
1385 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1386 EEPROM_SIZE
/ sizeof(u16
));
1389 * Start validation of the data that has been read.
1391 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1392 if (!is_valid_ether_addr(mac
)) {
1393 DECLARE_MAC_BUF(macbuf
);
1395 random_ether_addr(mac
);
1396 EEPROM(rt2x00dev
, "MAC: %s\n",
1397 print_mac(macbuf
, mac
));
1400 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1401 if (word
== 0xffff) {
1402 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1403 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1404 ANTENNA_SW_DIVERSITY
);
1405 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1406 ANTENNA_SW_DIVERSITY
);
1407 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1409 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1410 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1411 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1412 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1413 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1416 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1417 if (word
== 0xffff) {
1418 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1419 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1420 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1421 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1422 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1425 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1426 if (word
== 0xffff) {
1427 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1428 DEFAULT_RSSI_OFFSET
);
1429 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1430 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1436 static int rt2500pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1443 * Read EEPROM word for configuration.
1445 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1448 * Identify RF chipset.
1450 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1451 rt2x00pci_register_read(rt2x00dev
, CSR0
, ®
);
1452 rt2x00_set_chip(rt2x00dev
, RT2560
, value
, reg
);
1454 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2522
) &&
1455 !rt2x00_rf(&rt2x00dev
->chip
, RF2523
) &&
1456 !rt2x00_rf(&rt2x00dev
->chip
, RF2524
) &&
1457 !rt2x00_rf(&rt2x00dev
->chip
, RF2525
) &&
1458 !rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) &&
1459 !rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1460 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1465 * Identify default antenna configuration.
1467 rt2x00dev
->default_ant
.tx
=
1468 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1469 rt2x00dev
->default_ant
.rx
=
1470 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1473 * Store led mode, for correct led behaviour.
1475 #ifdef CONFIG_RT2500PCI_LEDS
1476 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1478 rt2x00dev
->led_radio
.rt2x00dev
= rt2x00dev
;
1479 rt2x00dev
->led_radio
.type
= LED_TYPE_RADIO
;
1480 rt2x00dev
->led_radio
.led_dev
.brightness_set
=
1481 rt2500pci_brightness_set
;
1482 rt2x00dev
->led_radio
.led_dev
.blink_set
=
1483 rt2500pci_blink_set
;
1484 rt2x00dev
->led_radio
.flags
= LED_INITIALIZED
;
1486 if (value
== LED_MODE_TXRX_ACTIVITY
) {
1487 rt2x00dev
->led_qual
.rt2x00dev
= rt2x00dev
;
1488 rt2x00dev
->led_radio
.type
= LED_TYPE_ACTIVITY
;
1489 rt2x00dev
->led_qual
.led_dev
.brightness_set
=
1490 rt2500pci_brightness_set
;
1491 rt2x00dev
->led_qual
.led_dev
.blink_set
=
1492 rt2500pci_blink_set
;
1493 rt2x00dev
->led_qual
.flags
= LED_INITIALIZED
;
1495 #endif /* CONFIG_RT2500PCI_LEDS */
1498 * Detect if this device has an hardware controlled radio.
1500 #ifdef CONFIG_RT2500PCI_RFKILL
1501 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1502 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1503 #endif /* CONFIG_RT2500PCI_RFKILL */
1506 * Check if the BBP tuning should be enabled.
1508 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1510 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1511 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1514 * Read the RSSI <-> dBm offset information.
1516 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1517 rt2x00dev
->rssi_offset
=
1518 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1524 * RF value list for RF2522
1527 static const struct rf_channel rf_vals_bg_2522
[] = {
1528 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1529 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1530 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1531 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1532 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1533 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1534 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1535 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1536 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1537 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1538 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1539 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1540 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1541 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1545 * RF value list for RF2523
1548 static const struct rf_channel rf_vals_bg_2523
[] = {
1549 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1550 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1551 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1552 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1553 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1554 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1555 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1556 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1557 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1558 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1559 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1560 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1561 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1562 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1566 * RF value list for RF2524
1569 static const struct rf_channel rf_vals_bg_2524
[] = {
1570 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1571 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1572 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1573 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1574 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1575 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1576 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1577 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1578 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1579 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1580 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1581 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1582 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1583 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1587 * RF value list for RF2525
1590 static const struct rf_channel rf_vals_bg_2525
[] = {
1591 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1592 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1593 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1594 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1595 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1596 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1597 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1598 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1599 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1600 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1601 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1602 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1603 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1604 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1608 * RF value list for RF2525e
1611 static const struct rf_channel rf_vals_bg_2525e
[] = {
1612 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1613 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1614 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1615 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1616 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1617 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1618 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1619 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1620 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1621 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1622 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1623 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1624 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1625 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1629 * RF value list for RF5222
1630 * Supports: 2.4 GHz & 5.2 GHz
1632 static const struct rf_channel rf_vals_5222
[] = {
1633 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1634 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1635 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1636 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1637 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1638 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1639 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1640 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1641 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1642 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1643 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1644 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1645 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1646 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1648 /* 802.11 UNI / HyperLan 2 */
1649 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1650 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1651 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1652 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1653 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1654 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1655 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1656 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1658 /* 802.11 HyperLan 2 */
1659 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1660 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1661 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1662 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1663 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1664 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1665 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1666 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1667 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1668 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1671 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1672 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1673 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1674 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1675 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1678 static void rt2500pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1680 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1685 * Initialize all hw fields.
1687 rt2x00dev
->hw
->flags
= IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
1688 rt2x00dev
->hw
->extra_tx_headroom
= 0;
1689 rt2x00dev
->hw
->max_signal
= MAX_SIGNAL
;
1690 rt2x00dev
->hw
->max_rssi
= MAX_RX_SSI
;
1691 rt2x00dev
->hw
->queues
= 2;
1693 SET_IEEE80211_DEV(rt2x00dev
->hw
, &rt2x00dev_pci(rt2x00dev
)->dev
);
1694 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1695 rt2x00_eeprom_addr(rt2x00dev
,
1696 EEPROM_MAC_ADDR_0
));
1699 * Convert tx_power array in eeprom.
1701 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1702 for (i
= 0; i
< 14; i
++)
1703 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
1706 * Initialize hw_mode information.
1708 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1709 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1710 spec
->tx_power_a
= NULL
;
1711 spec
->tx_power_bg
= txpower
;
1712 spec
->tx_power_default
= DEFAULT_TXPOWER
;
1714 if (rt2x00_rf(&rt2x00dev
->chip
, RF2522
)) {
1715 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1716 spec
->channels
= rf_vals_bg_2522
;
1717 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2523
)) {
1718 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1719 spec
->channels
= rf_vals_bg_2523
;
1720 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2524
)) {
1721 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1722 spec
->channels
= rf_vals_bg_2524
;
1723 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525
)) {
1724 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1725 spec
->channels
= rf_vals_bg_2525
;
1726 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
)) {
1727 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1728 spec
->channels
= rf_vals_bg_2525e
;
1729 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1730 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1731 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1732 spec
->channels
= rf_vals_5222
;
1736 static int rt2500pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1741 * Allocate eeprom data.
1743 retval
= rt2500pci_validate_eeprom(rt2x00dev
);
1747 retval
= rt2500pci_init_eeprom(rt2x00dev
);
1752 * Initialize hw specifications.
1754 rt2500pci_probe_hw_mode(rt2x00dev
);
1757 * This device requires the atim queue
1759 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
);
1762 * Set the rssi offset.
1764 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1770 * IEEE80211 stack callback functions.
1772 static int rt2500pci_set_retry_limit(struct ieee80211_hw
*hw
,
1773 u32 short_retry
, u32 long_retry
)
1775 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1778 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
1779 rt2x00_set_field32(®
, CSR11_LONG_RETRY
, long_retry
);
1780 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
, short_retry
);
1781 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
1786 static u64
rt2500pci_get_tsf(struct ieee80211_hw
*hw
)
1788 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1792 rt2x00pci_register_read(rt2x00dev
, CSR17
, ®
);
1793 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1794 rt2x00pci_register_read(rt2x00dev
, CSR16
, ®
);
1795 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
1800 static int rt2500pci_beacon_update(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1801 struct ieee80211_tx_control
*control
)
1803 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1804 struct rt2x00_intf
*intf
= vif_to_intf(control
->vif
);
1805 struct queue_entry_priv_pci_tx
*priv_tx
;
1806 struct skb_frame_desc
*skbdesc
;
1809 if (unlikely(!intf
->beacon
))
1812 priv_tx
= intf
->beacon
->priv_data
;
1815 * Fill in skb descriptor
1817 skbdesc
= get_skb_frame_desc(skb
);
1818 memset(skbdesc
, 0, sizeof(*skbdesc
));
1819 skbdesc
->flags
|= FRAME_DESC_DRIVER_GENERATED
;
1820 skbdesc
->data
= skb
->data
;
1821 skbdesc
->data_len
= skb
->len
;
1822 skbdesc
->desc
= priv_tx
->desc
;
1823 skbdesc
->desc_len
= intf
->beacon
->queue
->desc_size
;
1824 skbdesc
->entry
= intf
->beacon
;
1827 * Disable beaconing while we are reloading the beacon data,
1828 * otherwise we might be sending out invalid data.
1830 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
1831 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
1832 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
1833 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1834 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1837 * mac80211 doesn't provide the control->queue variable
1838 * for beacons. Set our own queue identification so
1839 * it can be used during descriptor initialization.
1841 control
->queue
= RT2X00_BCN_QUEUE_BEACON
;
1842 rt2x00lib_write_tx_desc(rt2x00dev
, skb
, control
);
1845 * Enable beacon generation.
1846 * Write entire beacon with descriptor to register,
1847 * and kick the beacon generator.
1849 memcpy(priv_tx
->data
, skb
->data
, skb
->len
);
1850 rt2x00dev
->ops
->lib
->kick_tx_queue(rt2x00dev
, control
->queue
);
1855 static int rt2500pci_tx_last_beacon(struct ieee80211_hw
*hw
)
1857 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1860 rt2x00pci_register_read(rt2x00dev
, CSR15
, ®
);
1861 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
1864 static const struct ieee80211_ops rt2500pci_mac80211_ops
= {
1866 .start
= rt2x00mac_start
,
1867 .stop
= rt2x00mac_stop
,
1868 .add_interface
= rt2x00mac_add_interface
,
1869 .remove_interface
= rt2x00mac_remove_interface
,
1870 .config
= rt2x00mac_config
,
1871 .config_interface
= rt2x00mac_config_interface
,
1872 .configure_filter
= rt2x00mac_configure_filter
,
1873 .get_stats
= rt2x00mac_get_stats
,
1874 .set_retry_limit
= rt2500pci_set_retry_limit
,
1875 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1876 .conf_tx
= rt2x00mac_conf_tx
,
1877 .get_tx_stats
= rt2x00mac_get_tx_stats
,
1878 .get_tsf
= rt2500pci_get_tsf
,
1879 .beacon_update
= rt2500pci_beacon_update
,
1880 .tx_last_beacon
= rt2500pci_tx_last_beacon
,
1883 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops
= {
1884 .irq_handler
= rt2500pci_interrupt
,
1885 .probe_hw
= rt2500pci_probe_hw
,
1886 .initialize
= rt2x00pci_initialize
,
1887 .uninitialize
= rt2x00pci_uninitialize
,
1888 .init_rxentry
= rt2500pci_init_rxentry
,
1889 .init_txentry
= rt2500pci_init_txentry
,
1890 .set_device_state
= rt2500pci_set_device_state
,
1891 .rfkill_poll
= rt2500pci_rfkill_poll
,
1892 .link_stats
= rt2500pci_link_stats
,
1893 .reset_tuner
= rt2500pci_reset_tuner
,
1894 .link_tuner
= rt2500pci_link_tuner
,
1895 .write_tx_desc
= rt2500pci_write_tx_desc
,
1896 .write_tx_data
= rt2x00pci_write_tx_data
,
1897 .kick_tx_queue
= rt2500pci_kick_tx_queue
,
1898 .fill_rxdone
= rt2500pci_fill_rxdone
,
1899 .config_filter
= rt2500pci_config_filter
,
1900 .config_intf
= rt2500pci_config_intf
,
1901 .config_erp
= rt2500pci_config_erp
,
1902 .config
= rt2500pci_config
,
1905 static const struct data_queue_desc rt2500pci_queue_rx
= {
1906 .entry_num
= RX_ENTRIES
,
1907 .data_size
= DATA_FRAME_SIZE
,
1908 .desc_size
= RXD_DESC_SIZE
,
1909 .priv_size
= sizeof(struct queue_entry_priv_pci_rx
),
1912 static const struct data_queue_desc rt2500pci_queue_tx
= {
1913 .entry_num
= TX_ENTRIES
,
1914 .data_size
= DATA_FRAME_SIZE
,
1915 .desc_size
= TXD_DESC_SIZE
,
1916 .priv_size
= sizeof(struct queue_entry_priv_pci_tx
),
1919 static const struct data_queue_desc rt2500pci_queue_bcn
= {
1920 .entry_num
= BEACON_ENTRIES
,
1921 .data_size
= MGMT_FRAME_SIZE
,
1922 .desc_size
= TXD_DESC_SIZE
,
1923 .priv_size
= sizeof(struct queue_entry_priv_pci_tx
),
1926 static const struct data_queue_desc rt2500pci_queue_atim
= {
1927 .entry_num
= ATIM_ENTRIES
,
1928 .data_size
= DATA_FRAME_SIZE
,
1929 .desc_size
= TXD_DESC_SIZE
,
1930 .priv_size
= sizeof(struct queue_entry_priv_pci_tx
),
1933 static const struct rt2x00_ops rt2500pci_ops
= {
1934 .name
= KBUILD_MODNAME
,
1937 .eeprom_size
= EEPROM_SIZE
,
1939 .rx
= &rt2500pci_queue_rx
,
1940 .tx
= &rt2500pci_queue_tx
,
1941 .bcn
= &rt2500pci_queue_bcn
,
1942 .atim
= &rt2500pci_queue_atim
,
1943 .lib
= &rt2500pci_rt2x00_ops
,
1944 .hw
= &rt2500pci_mac80211_ops
,
1945 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1946 .debugfs
= &rt2500pci_rt2x00debug
,
1947 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1951 * RT2500pci module information.
1953 static struct pci_device_id rt2500pci_device_table
[] = {
1954 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops
) },
1958 MODULE_AUTHOR(DRV_PROJECT
);
1959 MODULE_VERSION(DRV_VERSION
);
1960 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1961 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1962 MODULE_DEVICE_TABLE(pci
, rt2500pci_device_table
);
1963 MODULE_LICENSE("GPL");
1965 static struct pci_driver rt2500pci_driver
= {
1966 .name
= KBUILD_MODNAME
,
1967 .id_table
= rt2500pci_device_table
,
1968 .probe
= rt2x00pci_probe
,
1969 .remove
= __devexit_p(rt2x00pci_remove
),
1970 .suspend
= rt2x00pci_suspend
,
1971 .resume
= rt2x00pci_resume
,
1974 static int __init
rt2500pci_init(void)
1976 return pci_register_driver(&rt2500pci_driver
);
1979 static void __exit
rt2500pci_exit(void)
1981 pci_unregister_driver(&rt2500pci_driver
);
1984 module_init(rt2500pci_init
);
1985 module_exit(rt2500pci_exit
);