iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blobf8fe7a139a8a540ef0f517ff85efe8aad494c999
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Link tuning handlers
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
53 * Reset the link tuner.
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
61 * Clear all (possibly) pre-existing quality statistics.
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
76 rt2x00lib_reset_link_tuner(rt2x00dev);
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
88 * Radio control handlers.
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
92 int status;
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
103 * Initialize all data queues.
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
109 * Enable radio.
111 status =
112 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
113 if (status)
114 return status;
116 rt2x00leds_led_radio(rt2x00dev, true);
118 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121 * Enable RX.
123 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126 * Start the TX queues.
128 ieee80211_start_queues(rt2x00dev->hw);
130 return 0;
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
135 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136 return;
139 * Stop all scheduled work.
141 if (work_pending(&rt2x00dev->intf_work))
142 cancel_work_sync(&rt2x00dev->intf_work);
143 if (work_pending(&rt2x00dev->filter_work))
144 cancel_work_sync(&rt2x00dev->filter_work);
147 * Stop the TX queues.
149 ieee80211_stop_queues(rt2x00dev->hw);
152 * Disable RX.
154 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
157 * Disable radio.
159 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160 rt2x00leds_led_radio(rt2x00dev, false);
163 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
166 * When we are disabling the RX, we should also stop the link tuner.
168 if (state == STATE_RADIO_RX_OFF)
169 rt2x00lib_stop_link_tuner(rt2x00dev);
171 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
174 * When we are enabling the RX, we should also start the link tuner.
176 if (state == STATE_RADIO_RX_ON &&
177 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
178 rt2x00lib_start_link_tuner(rt2x00dev);
181 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
183 enum antenna rx = rt2x00dev->link.ant.active.rx;
184 enum antenna tx = rt2x00dev->link.ant.active.tx;
185 int sample_a =
186 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
187 int sample_b =
188 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
191 * We are done sampling. Now we should evaluate the results.
193 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
196 * During the last period we have sampled the RSSI
197 * from both antenna's. It now is time to determine
198 * which antenna demonstrated the best performance.
199 * When we are already on the antenna with the best
200 * performance, then there really is nothing for us
201 * left to do.
203 if (sample_a == sample_b)
204 return;
206 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
207 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
210 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
212 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
215 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
217 enum antenna rx = rt2x00dev->link.ant.active.rx;
218 enum antenna tx = rt2x00dev->link.ant.active.tx;
219 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
220 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
223 * Legacy driver indicates that we should swap antenna's
224 * when the difference in RSSI is greater that 5. This
225 * also should be done when the RSSI was actually better
226 * then the previous sample.
227 * When the difference exceeds the threshold we should
228 * sample the rssi from the other antenna to make a valid
229 * comparison between the 2 antennas.
231 if (abs(rssi_curr - rssi_old) < 5)
232 return;
234 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
236 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
237 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
240 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
242 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
245 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
248 * Determine if software diversity is enabled for
249 * either the TX or RX antenna (or both).
250 * Always perform this check since within the link
251 * tuner interval the configuration might have changed.
253 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
254 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
256 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
257 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
258 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
259 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
260 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
261 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
263 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
264 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
265 rt2x00dev->link.ant.flags = 0;
266 return;
270 * If we have only sampled the data over the last period
271 * we should now harvest the data. Otherwise just evaluate
272 * the data. The latter should only be performed once
273 * every 2 seconds.
275 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
276 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
277 else if (rt2x00dev->link.count & 1)
278 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
281 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
283 int avg_rssi = rssi;
286 * Update global RSSI
288 if (link->qual.avg_rssi)
289 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
290 link->qual.avg_rssi = avg_rssi;
293 * Update antenna RSSI
295 if (link->ant.rssi_ant)
296 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
297 link->ant.rssi_ant = rssi;
300 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
302 if (qual->rx_failed || qual->rx_success)
303 qual->rx_percentage =
304 (qual->rx_success * 100) /
305 (qual->rx_failed + qual->rx_success);
306 else
307 qual->rx_percentage = 50;
309 if (qual->tx_failed || qual->tx_success)
310 qual->tx_percentage =
311 (qual->tx_success * 100) /
312 (qual->tx_failed + qual->tx_success);
313 else
314 qual->tx_percentage = 50;
316 qual->rx_success = 0;
317 qual->rx_failed = 0;
318 qual->tx_success = 0;
319 qual->tx_failed = 0;
322 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
323 int rssi)
325 int rssi_percentage = 0;
326 int signal;
329 * We need a positive value for the RSSI.
331 if (rssi < 0)
332 rssi += rt2x00dev->rssi_offset;
335 * Calculate the different percentages,
336 * which will be used for the signal.
338 if (rt2x00dev->rssi_offset)
339 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
342 * Add the individual percentages and use the WEIGHT
343 * defines to calculate the current link signal.
345 signal = ((WEIGHT_RSSI * rssi_percentage) +
346 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
347 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
349 return (signal > 100) ? 100 : signal;
352 static void rt2x00lib_link_tuner(struct work_struct *work)
354 struct rt2x00_dev *rt2x00dev =
355 container_of(work, struct rt2x00_dev, link.work.work);
358 * When the radio is shutting down we should
359 * immediately cease all link tuning.
361 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
362 return;
365 * Update statistics.
367 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
368 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
369 rt2x00dev->link.qual.rx_failed;
372 * Only perform the link tuning when Link tuning
373 * has been enabled (This could have been disabled from the EEPROM).
375 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
376 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
379 * Precalculate a portion of the link signal which is
380 * in based on the tx/rx success/failure counters.
382 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
385 * Send a signal to the led to update the led signal strength.
387 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
390 * Evaluate antenna setup, make this the last step since this could
391 * possibly reset some statistics.
393 rt2x00lib_evaluate_antenna(rt2x00dev);
396 * Increase tuner counter, and reschedule the next link tuner run.
398 rt2x00dev->link.count++;
399 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
400 LINK_TUNE_INTERVAL);
403 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
405 struct rt2x00_dev *rt2x00dev =
406 container_of(work, struct rt2x00_dev, filter_work);
408 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
411 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
412 struct ieee80211_vif *vif)
414 struct rt2x00_dev *rt2x00dev = data;
415 struct rt2x00_intf *intf = vif_to_intf(vif);
416 struct sk_buff *skb;
417 struct ieee80211_tx_control control;
418 struct ieee80211_bss_conf conf;
419 int delayed_flags;
422 * Copy all data we need during this action under the protection
423 * of a spinlock. Otherwise race conditions might occur which results
424 * into an invalid configuration.
426 spin_lock(&intf->lock);
428 memcpy(&conf, &intf->conf, sizeof(conf));
429 delayed_flags = intf->delayed_flags;
430 intf->delayed_flags = 0;
432 spin_unlock(&intf->lock);
434 if (delayed_flags & DELAYED_UPDATE_BEACON) {
435 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
436 if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw,
437 skb, &control))
438 dev_kfree_skb(skb);
441 if (delayed_flags & DELAYED_CONFIG_ERP)
442 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
444 if (delayed_flags & DELAYED_LED_ASSOC)
445 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
448 static void rt2x00lib_intf_scheduled(struct work_struct *work)
450 struct rt2x00_dev *rt2x00dev =
451 container_of(work, struct rt2x00_dev, intf_work);
454 * Iterate over each interface and perform the
455 * requested configurations.
457 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
458 rt2x00lib_intf_scheduled_iter,
459 rt2x00dev);
463 * Interrupt context handlers.
465 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
466 struct ieee80211_vif *vif)
468 struct rt2x00_intf *intf = vif_to_intf(vif);
470 if (vif->type != IEEE80211_IF_TYPE_AP &&
471 vif->type != IEEE80211_IF_TYPE_IBSS)
472 return;
474 spin_lock(&intf->lock);
475 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
476 spin_unlock(&intf->lock);
479 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
481 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
482 return;
484 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
485 rt2x00lib_beacondone_iter,
486 rt2x00dev);
488 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
490 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
492 void rt2x00lib_txdone(struct queue_entry *entry,
493 struct txdone_entry_desc *txdesc)
495 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
496 struct skb_frame_desc *skbdesc;
497 struct ieee80211_tx_status tx_status;
498 int success = !!(txdesc->status == TX_SUCCESS ||
499 txdesc->status == TX_SUCCESS_RETRY);
500 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
501 txdesc->status == TX_FAIL_INVALID ||
502 txdesc->status == TX_FAIL_OTHER);
505 * Update TX statistics.
507 rt2x00dev->link.qual.tx_success += success;
508 rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
511 * Initialize TX status
513 tx_status.flags = 0;
514 tx_status.ack_signal = 0;
515 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
516 tx_status.retry_count = txdesc->retry;
517 memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
519 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
520 if (success)
521 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
522 else
523 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
526 tx_status.queue_length = entry->queue->limit;
527 tx_status.queue_number = tx_status.control.queue;
529 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
530 if (success)
531 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
532 else
533 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
537 * Send the tx_status to debugfs. Only send the status report
538 * to mac80211 when the frame originated from there. If this was
539 * a extra frame coming through a mac80211 library call (RTS/CTS)
540 * then we should not send the status report back.
541 * If send to mac80211, mac80211 will clean up the skb structure,
542 * otherwise we have to do it ourself.
544 skbdesc = get_skb_frame_desc(entry->skb);
545 skbdesc->frame_type = DUMP_FRAME_TXDONE;
547 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
549 if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
550 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
551 entry->skb, &tx_status);
552 else
553 dev_kfree_skb(entry->skb);
554 entry->skb = NULL;
556 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
558 void rt2x00lib_rxdone(struct queue_entry *entry,
559 struct rxdone_entry_desc *rxdesc)
561 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
562 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
563 struct ieee80211_supported_band *sband;
564 struct ieee80211_hdr *hdr;
565 const struct rt2x00_rate *rate;
566 unsigned int i;
567 int idx = -1;
568 u16 fc;
571 * Update RX statistics.
573 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
574 for (i = 0; i < sband->n_bitrates; i++) {
575 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
577 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
578 (rate->plcp == rxdesc->signal)) ||
579 (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
580 (rate->bitrate == rxdesc->signal))) {
581 idx = i;
582 break;
586 if (idx < 0) {
587 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
588 "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
589 !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
590 idx = 0;
594 * Only update link status if this is a beacon frame carrying our bssid.
596 hdr = (struct ieee80211_hdr *)entry->skb->data;
597 fc = le16_to_cpu(hdr->frame_control);
598 if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
599 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
601 rt2x00dev->link.qual.rx_success++;
603 rx_status->rate_idx = idx;
604 rx_status->signal =
605 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
606 rx_status->ssi = rxdesc->rssi;
607 rx_status->flag = rxdesc->flags;
608 rx_status->antenna = rt2x00dev->link.ant.active.rx;
611 * Send frame to mac80211 & debugfs.
612 * mac80211 will clean up the skb structure.
614 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
615 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
616 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
617 entry->skb = NULL;
619 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
622 * TX descriptor initializer
624 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
625 struct sk_buff *skb,
626 struct ieee80211_tx_control *control)
628 struct txentry_desc txdesc;
629 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
631 const struct rt2x00_rate *rate;
632 int tx_rate;
633 int length;
634 int duration;
635 int residual;
636 u16 frame_control;
637 u16 seq_ctrl;
639 memset(&txdesc, 0, sizeof(txdesc));
641 txdesc.queue = skbdesc->entry->queue->qid;
642 txdesc.cw_min = skbdesc->entry->queue->cw_min;
643 txdesc.cw_max = skbdesc->entry->queue->cw_max;
644 txdesc.aifs = skbdesc->entry->queue->aifs;
647 * Read required fields from ieee80211 header.
649 frame_control = le16_to_cpu(hdr->frame_control);
650 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
652 tx_rate = control->tx_rate->hw_value;
655 * Check whether this frame is to be acked
657 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
658 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
661 * Check if this is a RTS/CTS frame
663 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
664 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
665 if (is_rts_frame(frame_control)) {
666 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
667 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
668 } else
669 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
670 if (control->rts_cts_rate)
671 tx_rate = control->rts_cts_rate->hw_value;
674 rate = rt2x00_get_rate(tx_rate);
677 * Check if more fragments are pending
679 if (ieee80211_get_morefrag(hdr)) {
680 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
681 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
685 * Beacons and probe responses require the tsf timestamp
686 * to be inserted into the frame.
688 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
689 is_probe_resp(frame_control))
690 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
693 * Determine with what IFS priority this frame should be send.
694 * Set ifs to IFS_SIFS when the this is not the first fragment,
695 * or this fragment came after RTS/CTS.
697 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
698 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
699 txdesc.ifs = IFS_SIFS;
700 else
701 txdesc.ifs = IFS_BACKOFF;
704 * PLCP setup
705 * Length calculation depends on OFDM/CCK rate.
707 txdesc.signal = rate->plcp;
708 txdesc.service = 0x04;
710 length = skbdesc->data_len + FCS_LEN;
711 if (rate->flags & DEV_RATE_OFDM) {
712 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
714 txdesc.length_high = (length >> 6) & 0x3f;
715 txdesc.length_low = length & 0x3f;
716 } else {
718 * Convert length to microseconds.
720 residual = get_duration_res(length, rate->bitrate);
721 duration = get_duration(length, rate->bitrate);
723 if (residual != 0) {
724 duration++;
727 * Check if we need to set the Length Extension
729 if (rate->bitrate == 110 && residual <= 30)
730 txdesc.service |= 0x80;
733 txdesc.length_high = (duration >> 8) & 0xff;
734 txdesc.length_low = duration & 0xff;
737 * When preamble is enabled we should set the
738 * preamble bit for the signal.
740 if (rt2x00_get_rate_preamble(tx_rate))
741 txdesc.signal |= 0x08;
744 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
747 * Update queue entry.
749 skbdesc->entry->skb = skb;
752 * The frame has been completely initialized and ready
753 * for sending to the device. The caller will push the
754 * frame to the device, but we are going to push the
755 * frame to debugfs here.
757 skbdesc->frame_type = DUMP_FRAME_TX;
758 rt2x00debug_dump_frame(rt2x00dev, skb);
760 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
763 * Driver initialization handlers.
765 const struct rt2x00_rate rt2x00_supported_rates[12] = {
767 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
768 .bitrate = 10,
769 .ratemask = BIT(0),
770 .plcp = 0x00,
773 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
774 .bitrate = 20,
775 .ratemask = BIT(1),
776 .plcp = 0x01,
779 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
780 .bitrate = 55,
781 .ratemask = BIT(2),
782 .plcp = 0x02,
785 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
786 .bitrate = 110,
787 .ratemask = BIT(3),
788 .plcp = 0x03,
791 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
792 .bitrate = 60,
793 .ratemask = BIT(4),
794 .plcp = 0x0b,
797 .flags = DEV_RATE_OFDM,
798 .bitrate = 90,
799 .ratemask = BIT(5),
800 .plcp = 0x0f,
803 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
804 .bitrate = 120,
805 .ratemask = BIT(6),
806 .plcp = 0x0a,
809 .flags = DEV_RATE_OFDM,
810 .bitrate = 180,
811 .ratemask = BIT(7),
812 .plcp = 0x0e,
815 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
816 .bitrate = 240,
817 .ratemask = BIT(8),
818 .plcp = 0x09,
821 .flags = DEV_RATE_OFDM,
822 .bitrate = 360,
823 .ratemask = BIT(9),
824 .plcp = 0x0d,
827 .flags = DEV_RATE_OFDM,
828 .bitrate = 480,
829 .ratemask = BIT(10),
830 .plcp = 0x08,
833 .flags = DEV_RATE_OFDM,
834 .bitrate = 540,
835 .ratemask = BIT(11),
836 .plcp = 0x0c,
840 static void rt2x00lib_channel(struct ieee80211_channel *entry,
841 const int channel, const int tx_power,
842 const int value)
844 entry->center_freq = ieee80211_channel_to_frequency(channel);
845 entry->hw_value = value;
846 entry->max_power = tx_power;
847 entry->max_antenna_gain = 0xff;
850 static void rt2x00lib_rate(struct ieee80211_rate *entry,
851 const u16 index, const struct rt2x00_rate *rate)
853 entry->flags = 0;
854 entry->bitrate = rate->bitrate;
855 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
856 entry->hw_value_short = entry->hw_value;
858 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
859 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
860 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
864 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
865 struct hw_mode_spec *spec)
867 struct ieee80211_hw *hw = rt2x00dev->hw;
868 struct ieee80211_channel *channels;
869 struct ieee80211_rate *rates;
870 unsigned int num_rates;
871 unsigned int i;
872 unsigned char tx_power;
874 num_rates = 0;
875 if (spec->supported_rates & SUPPORT_RATE_CCK)
876 num_rates += 4;
877 if (spec->supported_rates & SUPPORT_RATE_OFDM)
878 num_rates += 8;
880 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
881 if (!channels)
882 return -ENOMEM;
884 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
885 if (!rates)
886 goto exit_free_channels;
889 * Initialize Rate list.
891 for (i = 0; i < num_rates; i++)
892 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
895 * Initialize Channel list.
897 for (i = 0; i < spec->num_channels; i++) {
898 if (spec->channels[i].channel <= 14) {
899 if (spec->tx_power_bg)
900 tx_power = spec->tx_power_bg[i];
901 else
902 tx_power = spec->tx_power_default;
903 } else {
904 if (spec->tx_power_a)
905 tx_power = spec->tx_power_a[i];
906 else
907 tx_power = spec->tx_power_default;
910 rt2x00lib_channel(&channels[i],
911 spec->channels[i].channel, tx_power, i);
915 * Intitialize 802.11b, 802.11g
916 * Rates: CCK, OFDM.
917 * Channels: 2.4 GHz
919 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
920 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
921 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
922 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
923 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
924 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
925 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
929 * Intitialize 802.11a
930 * Rates: OFDM.
931 * Channels: OFDM, UNII, HiperLAN2.
933 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
934 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
935 spec->num_channels - 14;
936 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
937 num_rates - 4;
938 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
939 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
940 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
941 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
944 return 0;
946 exit_free_channels:
947 kfree(channels);
948 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
949 return -ENOMEM;
952 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
954 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
955 ieee80211_unregister_hw(rt2x00dev->hw);
957 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
958 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
959 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
960 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
961 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
965 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
967 struct hw_mode_spec *spec = &rt2x00dev->spec;
968 int status;
971 * Initialize HW modes.
973 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
974 if (status)
975 return status;
978 * Register HW.
980 status = ieee80211_register_hw(rt2x00dev->hw);
981 if (status) {
982 rt2x00lib_remove_hw(rt2x00dev);
983 return status;
986 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
988 return 0;
992 * Initialization/uninitialization handlers.
994 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
996 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
997 return;
1000 * Unregister extra components.
1002 rt2x00rfkill_unregister(rt2x00dev);
1005 * Allow the HW to uninitialize.
1007 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1010 * Free allocated queue entries.
1012 rt2x00queue_uninitialize(rt2x00dev);
1015 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1017 int status;
1019 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1020 return 0;
1023 * Allocate all queue entries.
1025 status = rt2x00queue_initialize(rt2x00dev);
1026 if (status)
1027 return status;
1030 * Initialize the device.
1032 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1033 if (status)
1034 goto exit;
1036 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1039 * Register the extra components.
1041 rt2x00rfkill_register(rt2x00dev);
1043 return 0;
1045 exit:
1046 rt2x00lib_uninitialize(rt2x00dev);
1048 return status;
1051 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1053 int retval;
1055 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1056 return 0;
1059 * If this is the first interface which is added,
1060 * we should load the firmware now.
1062 retval = rt2x00lib_load_firmware(rt2x00dev);
1063 if (retval)
1064 return retval;
1067 * Initialize the device.
1069 retval = rt2x00lib_initialize(rt2x00dev);
1070 if (retval)
1071 return retval;
1074 * Enable radio.
1076 retval = rt2x00lib_enable_radio(rt2x00dev);
1077 if (retval) {
1078 rt2x00lib_uninitialize(rt2x00dev);
1079 return retval;
1082 rt2x00dev->intf_ap_count = 0;
1083 rt2x00dev->intf_sta_count = 0;
1084 rt2x00dev->intf_associated = 0;
1086 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1088 return 0;
1091 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1093 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1094 return;
1097 * Perhaps we can add something smarter here,
1098 * but for now just disabling the radio should do.
1100 rt2x00lib_disable_radio(rt2x00dev);
1102 rt2x00dev->intf_ap_count = 0;
1103 rt2x00dev->intf_sta_count = 0;
1104 rt2x00dev->intf_associated = 0;
1106 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1110 * driver allocation handlers.
1112 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1114 int retval = -ENOMEM;
1117 * Make room for rt2x00_intf inside the per-interface
1118 * structure ieee80211_vif.
1120 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1123 * Let the driver probe the device to detect the capabilities.
1125 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1126 if (retval) {
1127 ERROR(rt2x00dev, "Failed to allocate device.\n");
1128 goto exit;
1132 * Initialize configuration work.
1134 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1135 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1136 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1139 * Allocate queue array.
1141 retval = rt2x00queue_allocate(rt2x00dev);
1142 if (retval)
1143 goto exit;
1146 * Initialize ieee80211 structure.
1148 retval = rt2x00lib_probe_hw(rt2x00dev);
1149 if (retval) {
1150 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1151 goto exit;
1155 * Register extra components.
1157 rt2x00leds_register(rt2x00dev);
1158 rt2x00rfkill_allocate(rt2x00dev);
1159 rt2x00debug_register(rt2x00dev);
1161 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1163 return 0;
1165 exit:
1166 rt2x00lib_remove_dev(rt2x00dev);
1168 return retval;
1170 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1172 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1174 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1177 * Disable radio.
1179 rt2x00lib_disable_radio(rt2x00dev);
1182 * Uninitialize device.
1184 rt2x00lib_uninitialize(rt2x00dev);
1187 * Free extra components
1189 rt2x00debug_deregister(rt2x00dev);
1190 rt2x00rfkill_free(rt2x00dev);
1191 rt2x00leds_unregister(rt2x00dev);
1194 * Free ieee80211_hw memory.
1196 rt2x00lib_remove_hw(rt2x00dev);
1199 * Free firmware image.
1201 rt2x00lib_free_firmware(rt2x00dev);
1204 * Free queue structures.
1206 rt2x00queue_free(rt2x00dev);
1208 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1211 * Device state handlers
1213 #ifdef CONFIG_PM
1214 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1216 int retval;
1218 NOTICE(rt2x00dev, "Going to sleep.\n");
1219 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1222 * Only continue if mac80211 has open interfaces.
1224 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1225 goto exit;
1226 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1229 * Disable radio.
1231 rt2x00lib_stop(rt2x00dev);
1232 rt2x00lib_uninitialize(rt2x00dev);
1235 * Suspend/disable extra components.
1237 rt2x00leds_suspend(rt2x00dev);
1238 rt2x00rfkill_suspend(rt2x00dev);
1239 rt2x00debug_deregister(rt2x00dev);
1241 exit:
1243 * Set device mode to sleep for power management,
1244 * on some hardware this call seems to consistently fail.
1245 * From the specifications it is hard to tell why it fails,
1246 * and if this is a "bad thing".
1247 * Overall it is safe to just ignore the failure and
1248 * continue suspending. The only downside is that the
1249 * device will not be in optimal power save mode, but with
1250 * the radio and the other components already disabled the
1251 * device is as good as disabled.
1253 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1254 if (retval)
1255 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1256 "continue suspending.\n");
1258 return 0;
1260 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1262 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1263 struct ieee80211_vif *vif)
1265 struct rt2x00_dev *rt2x00dev = data;
1266 struct rt2x00_intf *intf = vif_to_intf(vif);
1268 spin_lock(&intf->lock);
1270 rt2x00lib_config_intf(rt2x00dev, intf,
1271 vif->type, intf->mac, intf->bssid);
1275 * Master or Ad-hoc mode require a new beacon update.
1277 if (vif->type == IEEE80211_IF_TYPE_AP ||
1278 vif->type == IEEE80211_IF_TYPE_IBSS)
1279 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1281 spin_unlock(&intf->lock);
1284 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1286 int retval;
1288 NOTICE(rt2x00dev, "Waking up.\n");
1291 * Restore/enable extra components.
1293 rt2x00debug_register(rt2x00dev);
1294 rt2x00rfkill_resume(rt2x00dev);
1295 rt2x00leds_resume(rt2x00dev);
1298 * Only continue if mac80211 had open interfaces.
1300 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1301 return 0;
1304 * Reinitialize device and all active interfaces.
1306 retval = rt2x00lib_start(rt2x00dev);
1307 if (retval)
1308 goto exit;
1311 * Reconfigure device.
1313 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1314 if (!rt2x00dev->hw->conf.radio_enabled)
1315 rt2x00lib_disable_radio(rt2x00dev);
1318 * Iterator over each active interface to
1319 * reconfigure the hardware.
1321 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1322 rt2x00lib_resume_intf, rt2x00dev);
1325 * We are ready again to receive requests from mac80211.
1327 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1330 * It is possible that during that mac80211 has attempted
1331 * to send frames while we were suspending or resuming.
1332 * In that case we have disabled the TX queue and should
1333 * now enable it again
1335 ieee80211_start_queues(rt2x00dev->hw);
1338 * During interface iteration we might have changed the
1339 * delayed_flags, time to handles the event by calling
1340 * the work handler directly.
1342 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1344 return 0;
1346 exit:
1347 rt2x00lib_disable_radio(rt2x00dev);
1348 rt2x00lib_uninitialize(rt2x00dev);
1349 rt2x00debug_deregister(rt2x00dev);
1351 return retval;
1353 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1354 #endif /* CONFIG_PM */
1357 * rt2x00lib module information.
1359 MODULE_AUTHOR(DRV_PROJECT);
1360 MODULE_VERSION(DRV_VERSION);
1361 MODULE_DESCRIPTION("rt2x00 library");
1362 MODULE_LICENSE("GPL");