2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
37 #include "rt2x00pci.h"
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
51 static u32
rt61pci_bbp_check(struct rt2x00_dev
*rt2x00dev
)
56 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
57 rt2x00pci_register_read(rt2x00dev
, PHY_CSR3
, ®
);
58 if (!rt2x00_get_field32(reg
, PHY_CSR3_BUSY
))
60 udelay(REGISTER_BUSY_DELAY
);
66 static void rt61pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
67 const unsigned int word
, const u8 value
)
72 * Wait until the BBP becomes ready.
74 reg
= rt61pci_bbp_check(rt2x00dev
);
75 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
76 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Write failed.\n");
81 * Write the data into the BBP.
84 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
85 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
86 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
87 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
89 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
92 static void rt61pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
93 const unsigned int word
, u8
*value
)
98 * Wait until the BBP becomes ready.
100 reg
= rt61pci_bbp_check(rt2x00dev
);
101 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
102 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Read failed.\n");
107 * Write the request into the BBP.
110 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
111 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
112 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
114 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
117 * Wait until the BBP becomes ready.
119 reg
= rt61pci_bbp_check(rt2x00dev
);
120 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
121 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Read failed.\n");
126 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
129 static void rt61pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
130 const unsigned int word
, const u32 value
)
138 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
139 rt2x00pci_register_read(rt2x00dev
, PHY_CSR4
, ®
);
140 if (!rt2x00_get_field32(reg
, PHY_CSR4_BUSY
))
142 udelay(REGISTER_BUSY_DELAY
);
145 ERROR(rt2x00dev
, "PHY_CSR4 register busy. Write failed.\n");
150 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
151 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
, 21);
152 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
153 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
155 rt2x00pci_register_write(rt2x00dev
, PHY_CSR4
, reg
);
156 rt2x00_rf_write(rt2x00dev
, word
, value
);
159 #ifdef CONFIG_RT61PCI_LEDS
161 * This function is only called from rt61pci_led_brightness()
162 * make gcc happy by placing this function inside the
163 * same ifdef statement as the caller.
165 static void rt61pci_mcu_request(struct rt2x00_dev
*rt2x00dev
,
166 const u8 command
, const u8 token
,
167 const u8 arg0
, const u8 arg1
)
171 rt2x00pci_register_read(rt2x00dev
, H2M_MAILBOX_CSR
, ®
);
173 if (rt2x00_get_field32(reg
, H2M_MAILBOX_CSR_OWNER
)) {
174 ERROR(rt2x00dev
, "mcu request error. "
175 "Request 0x%02x failed for token 0x%02x.\n",
180 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
181 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
182 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
183 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
184 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
186 rt2x00pci_register_read(rt2x00dev
, HOST_CMD_CSR
, ®
);
187 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
188 rt2x00_set_field32(®
, HOST_CMD_CSR_INTERRUPT_MCU
, 1);
189 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, reg
);
191 #endif /* CONFIG_RT61PCI_LEDS */
193 static void rt61pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
195 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
198 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
200 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
201 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
202 eeprom
->reg_data_clock
=
203 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
204 eeprom
->reg_chip_select
=
205 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
208 static void rt61pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
210 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
213 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
214 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
215 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
216 !!eeprom
->reg_data_clock
);
217 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
218 !!eeprom
->reg_chip_select
);
220 rt2x00pci_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
223 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
224 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
226 static void rt61pci_read_csr(struct rt2x00_dev
*rt2x00dev
,
227 const unsigned int word
, u32
*data
)
229 rt2x00pci_register_read(rt2x00dev
, CSR_OFFSET(word
), data
);
232 static void rt61pci_write_csr(struct rt2x00_dev
*rt2x00dev
,
233 const unsigned int word
, u32 data
)
235 rt2x00pci_register_write(rt2x00dev
, CSR_OFFSET(word
), data
);
238 static const struct rt2x00debug rt61pci_rt2x00debug
= {
239 .owner
= THIS_MODULE
,
241 .read
= rt61pci_read_csr
,
242 .write
= rt61pci_write_csr
,
243 .word_size
= sizeof(u32
),
244 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
247 .read
= rt2x00_eeprom_read
,
248 .write
= rt2x00_eeprom_write
,
249 .word_size
= sizeof(u16
),
250 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
253 .read
= rt61pci_bbp_read
,
254 .write
= rt61pci_bbp_write
,
255 .word_size
= sizeof(u8
),
256 .word_count
= BBP_SIZE
/ sizeof(u8
),
259 .read
= rt2x00_rf_read
,
260 .write
= rt61pci_rf_write
,
261 .word_size
= sizeof(u32
),
262 .word_count
= RF_SIZE
/ sizeof(u32
),
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
267 #ifdef CONFIG_RT61PCI_RFKILL
268 static int rt61pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
272 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
273 return rt2x00_get_field32(reg
, MAC_CSR13_BIT5
);
276 #define rt61pci_rfkill_poll NULL
277 #endif /* CONFIG_RT61PCI_RFKILL */
279 #ifdef CONFIG_RT61PCI_LEDS
280 static void rt61pci_brightness_set(struct led_classdev
*led_cdev
,
281 enum led_brightness brightness
)
283 struct rt2x00_led
*led
=
284 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
285 unsigned int enabled
= brightness
!= LED_OFF
;
286 unsigned int a_mode
=
287 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
288 unsigned int bg_mode
=
289 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
291 if (led
->type
== LED_TYPE_RADIO
) {
292 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
293 MCU_LEDCS_RADIO_STATUS
, enabled
);
295 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
296 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
297 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
298 } else if (led
->type
== LED_TYPE_ASSOC
) {
299 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
300 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
301 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
302 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
304 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
305 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
306 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
307 } else if (led
->type
== LED_TYPE_QUALITY
) {
309 * The brightness is divided into 6 levels (0 - 5),
310 * this means we need to convert the brightness
311 * argument into the matching level within that range.
313 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED_STRENGTH
, 0xff,
314 brightness
/ (LED_FULL
/ 6), 0);
318 static int rt61pci_blink_set(struct led_classdev
*led_cdev
,
319 unsigned long *delay_on
,
320 unsigned long *delay_off
)
322 struct rt2x00_led
*led
=
323 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
326 rt2x00pci_register_read(led
->rt2x00dev
, MAC_CSR14
, ®
);
327 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
328 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
329 rt2x00pci_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
333 #endif /* CONFIG_RT61PCI_LEDS */
336 * Configuration handlers.
338 static void rt61pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
339 const unsigned int filter_flags
)
344 * Start configuration steps.
345 * Note that the version error will always be dropped
346 * and broadcast frames will always be accepted since
347 * there is no filter for it at this time.
349 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
350 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
351 !(filter_flags
& FIF_FCSFAIL
));
352 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
353 !(filter_flags
& FIF_PLCPFAIL
));
354 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
355 !(filter_flags
& FIF_CONTROL
));
356 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
357 !(filter_flags
& FIF_PROMISC_IN_BSS
));
358 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
359 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
360 !rt2x00dev
->intf_ap_count
);
361 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
362 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
363 !(filter_flags
& FIF_ALLMULTI
));
364 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
365 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
366 !(filter_flags
& FIF_CONTROL
));
367 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
370 static void rt61pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
371 struct rt2x00_intf
*intf
,
372 struct rt2x00intf_conf
*conf
,
373 const unsigned int flags
)
375 unsigned int beacon_base
;
378 if (flags
& CONFIG_UPDATE_TYPE
) {
380 * Clear current synchronisation setup.
381 * For the Beacon base registers we only need to clear
382 * the first byte since that byte contains the VALID and OWNER
383 * bits which (when set to 0) will invalidate the entire beacon.
385 beacon_base
= HW_BEACON_OFFSET(intf
->beacon
->entry_idx
);
386 rt2x00pci_register_write(rt2x00dev
, beacon_base
, 0);
389 * Enable synchronisation.
391 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
392 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
393 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
394 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
395 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
398 if (flags
& CONFIG_UPDATE_MAC
) {
399 reg
= le32_to_cpu(conf
->mac
[1]);
400 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
401 conf
->mac
[1] = cpu_to_le32(reg
);
403 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR2
,
404 conf
->mac
, sizeof(conf
->mac
));
407 if (flags
& CONFIG_UPDATE_BSSID
) {
408 reg
= le32_to_cpu(conf
->bssid
[1]);
409 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
410 conf
->bssid
[1] = cpu_to_le32(reg
);
412 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR4
,
413 conf
->bssid
, sizeof(conf
->bssid
));
417 static void rt61pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
418 struct rt2x00lib_erp
*erp
)
422 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
423 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, erp
->ack_timeout
);
424 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
426 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
427 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
428 !!erp
->short_preamble
);
429 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
432 static void rt61pci_config_phymode(struct rt2x00_dev
*rt2x00dev
,
433 const int basic_rate_mask
)
435 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR5
, basic_rate_mask
);
438 static void rt61pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
439 struct rf_channel
*rf
, const int txpower
)
445 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
446 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
448 smart
= !(rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
449 rt2x00_rf(&rt2x00dev
->chip
, RF2527
));
451 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
452 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
453 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
456 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
457 r94
+= txpower
- MAX_TXPOWER
;
458 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
460 rt61pci_bbp_write(rt2x00dev
, 94, r94
);
462 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
463 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
464 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
465 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
469 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
470 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
471 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
472 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
476 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
477 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
478 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
479 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
484 static void rt61pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
487 struct rf_channel rf
;
489 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
490 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
491 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
492 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
494 rt61pci_config_channel(rt2x00dev
, &rf
, txpower
);
497 static void rt61pci_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
498 struct antenna_setup
*ant
)
504 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
505 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
506 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
508 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
,
509 rt2x00_rf(&rt2x00dev
->chip
, RF5325
));
512 * Configure the RX antenna.
515 case ANTENNA_HW_DIVERSITY
:
516 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
517 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
518 (rt2x00dev
->curr_band
!= IEEE80211_BAND_5GHZ
));
521 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
522 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
523 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
524 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
526 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
530 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
531 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
532 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
533 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
535 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
539 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
540 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
541 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
544 static void rt61pci_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
545 struct antenna_setup
*ant
)
551 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
552 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
553 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
555 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
,
556 rt2x00_rf(&rt2x00dev
->chip
, RF2529
));
557 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
558 !test_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
));
561 * Configure the RX antenna.
564 case ANTENNA_HW_DIVERSITY
:
565 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
568 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
569 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
573 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
574 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
578 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
579 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
580 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
583 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev
*rt2x00dev
,
584 const int p1
, const int p2
)
588 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
590 rt2x00_set_field32(®
, MAC_CSR13_BIT4
, p1
);
591 rt2x00_set_field32(®
, MAC_CSR13_BIT12
, 0);
593 rt2x00_set_field32(®
, MAC_CSR13_BIT3
, !p2
);
594 rt2x00_set_field32(®
, MAC_CSR13_BIT11
, 0);
596 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, reg
);
599 static void rt61pci_config_antenna_2529(struct rt2x00_dev
*rt2x00dev
,
600 struct antenna_setup
*ant
)
606 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
607 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
608 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
611 * Configure the RX antenna.
615 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
616 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
617 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
619 case ANTENNA_HW_DIVERSITY
:
621 * FIXME: Antenna selection for the rf 2529 is very confusing
622 * in the legacy driver. Just default to antenna B until the
623 * legacy code can be properly translated into rt2x00 code.
627 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
628 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
629 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
633 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
634 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
635 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
641 * value[0] -> non-LNA
647 static const struct antenna_sel antenna_sel_a
[] = {
648 { 96, { 0x58, 0x78 } },
649 { 104, { 0x38, 0x48 } },
650 { 75, { 0xfe, 0x80 } },
651 { 86, { 0xfe, 0x80 } },
652 { 88, { 0xfe, 0x80 } },
653 { 35, { 0x60, 0x60 } },
654 { 97, { 0x58, 0x58 } },
655 { 98, { 0x58, 0x58 } },
658 static const struct antenna_sel antenna_sel_bg
[] = {
659 { 96, { 0x48, 0x68 } },
660 { 104, { 0x2c, 0x3c } },
661 { 75, { 0xfe, 0x80 } },
662 { 86, { 0xfe, 0x80 } },
663 { 88, { 0xfe, 0x80 } },
664 { 35, { 0x50, 0x50 } },
665 { 97, { 0x48, 0x48 } },
666 { 98, { 0x48, 0x48 } },
669 static void rt61pci_config_antenna(struct rt2x00_dev
*rt2x00dev
,
670 struct antenna_setup
*ant
)
672 const struct antenna_sel
*sel
;
678 * We should never come here because rt2x00lib is supposed
679 * to catch this and send us the correct antenna explicitely.
681 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
682 ant
->tx
== ANTENNA_SW_DIVERSITY
);
684 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
686 lna
= test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
688 sel
= antenna_sel_bg
;
689 lna
= test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
692 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
693 rt61pci_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
695 rt2x00pci_register_read(rt2x00dev
, PHY_CSR0
, ®
);
697 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
698 rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
699 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
700 rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
702 rt2x00pci_register_write(rt2x00dev
, PHY_CSR0
, reg
);
704 if (rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
705 rt2x00_rf(&rt2x00dev
->chip
, RF5325
))
706 rt61pci_config_antenna_5x(rt2x00dev
, ant
);
707 else if (rt2x00_rf(&rt2x00dev
->chip
, RF2527
))
708 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
709 else if (rt2x00_rf(&rt2x00dev
->chip
, RF2529
)) {
710 if (test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
))
711 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
713 rt61pci_config_antenna_2529(rt2x00dev
, ant
);
717 static void rt61pci_config_duration(struct rt2x00_dev
*rt2x00dev
,
718 struct rt2x00lib_conf
*libconf
)
722 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
723 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, libconf
->slot_time
);
724 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
726 rt2x00pci_register_read(rt2x00dev
, MAC_CSR8
, ®
);
727 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, libconf
->sifs
);
728 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
729 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, libconf
->eifs
);
730 rt2x00pci_register_write(rt2x00dev
, MAC_CSR8
, reg
);
732 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
733 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
734 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
736 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
737 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
738 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
740 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
741 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
742 libconf
->conf
->beacon_int
* 16);
743 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
746 static void rt61pci_config(struct rt2x00_dev
*rt2x00dev
,
747 struct rt2x00lib_conf
*libconf
,
748 const unsigned int flags
)
750 if (flags
& CONFIG_UPDATE_PHYMODE
)
751 rt61pci_config_phymode(rt2x00dev
, libconf
->basic_rates
);
752 if (flags
& CONFIG_UPDATE_CHANNEL
)
753 rt61pci_config_channel(rt2x00dev
, &libconf
->rf
,
754 libconf
->conf
->power_level
);
755 if ((flags
& CONFIG_UPDATE_TXPOWER
) && !(flags
& CONFIG_UPDATE_CHANNEL
))
756 rt61pci_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
757 if (flags
& CONFIG_UPDATE_ANTENNA
)
758 rt61pci_config_antenna(rt2x00dev
, &libconf
->ant
);
759 if (flags
& (CONFIG_UPDATE_SLOT_TIME
| CONFIG_UPDATE_BEACON_INT
))
760 rt61pci_config_duration(rt2x00dev
, libconf
);
766 static void rt61pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
767 struct link_qual
*qual
)
772 * Update FCS error count from register.
774 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
775 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
778 * Update False CCA count from register.
780 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
781 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
784 static void rt61pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
)
786 rt61pci_bbp_write(rt2x00dev
, 17, 0x20);
787 rt2x00dev
->link
.vgc_level
= 0x20;
790 static void rt61pci_link_tuner(struct rt2x00_dev
*rt2x00dev
)
792 int rssi
= rt2x00_get_link_rssi(&rt2x00dev
->link
);
797 rt61pci_bbp_read(rt2x00dev
, 17, &r17
);
800 * Determine r17 bounds.
802 if (rt2x00dev
->rx_status
.band
== IEEE80211_BAND_5GHZ
) {
805 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
)) {
812 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
)) {
819 * If we are not associated, we should go straight to the
820 * dynamic CCA tuning.
822 if (!rt2x00dev
->intf_associated
)
823 goto dynamic_cca_tune
;
826 * Special big-R17 for very short distance
830 rt61pci_bbp_write(rt2x00dev
, 17, 0x60);
835 * Special big-R17 for short distance
839 rt61pci_bbp_write(rt2x00dev
, 17, up_bound
);
844 * Special big-R17 for middle-short distance
848 if (r17
!= low_bound
)
849 rt61pci_bbp_write(rt2x00dev
, 17, low_bound
);
854 * Special mid-R17 for middle distance
858 if (r17
!= low_bound
)
859 rt61pci_bbp_write(rt2x00dev
, 17, low_bound
);
864 * Special case: Change up_bound based on the rssi.
865 * Lower up_bound when rssi is weaker then -74 dBm.
867 up_bound
-= 2 * (-74 - rssi
);
868 if (low_bound
> up_bound
)
869 up_bound
= low_bound
;
871 if (r17
> up_bound
) {
872 rt61pci_bbp_write(rt2x00dev
, 17, up_bound
);
879 * r17 does not yet exceed upper limit, continue and base
880 * the r17 tuning on the false CCA count.
882 if (rt2x00dev
->link
.qual
.false_cca
> 512 && r17
< up_bound
) {
883 if (++r17
> up_bound
)
885 rt61pci_bbp_write(rt2x00dev
, 17, r17
);
886 } else if (rt2x00dev
->link
.qual
.false_cca
< 100 && r17
> low_bound
) {
887 if (--r17
< low_bound
)
889 rt61pci_bbp_write(rt2x00dev
, 17, r17
);
896 static char *rt61pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
900 switch (rt2x00dev
->chip
.rt
) {
902 fw_name
= FIRMWARE_RT2561
;
905 fw_name
= FIRMWARE_RT2561s
;
908 fw_name
= FIRMWARE_RT2661
;
918 static u16
rt61pci_get_firmware_crc(void *data
, const size_t len
)
923 * Use the crc itu-t algorithm.
924 * The last 2 bytes in the firmware array are the crc checksum itself,
925 * this means that we should never pass those 2 bytes to the crc
928 crc
= crc_itu_t(0, data
, len
- 2);
929 crc
= crc_itu_t_byte(crc
, 0);
930 crc
= crc_itu_t_byte(crc
, 0);
935 static int rt61pci_load_firmware(struct rt2x00_dev
*rt2x00dev
, void *data
,
942 * Wait for stable hardware.
944 for (i
= 0; i
< 100; i
++) {
945 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
952 ERROR(rt2x00dev
, "Unstable hardware.\n");
957 * Prepare MCU and mailbox for firmware loading.
960 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
961 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
962 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
963 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
964 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, 0);
967 * Write firmware to device.
970 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
971 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 1);
972 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
974 rt2x00pci_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
977 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 0);
978 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
980 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 0);
981 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
983 for (i
= 0; i
< 100; i
++) {
984 rt2x00pci_register_read(rt2x00dev
, MCU_CNTL_CSR
, ®
);
985 if (rt2x00_get_field32(reg
, MCU_CNTL_CSR_READY
))
991 ERROR(rt2x00dev
, "MCU Control register not ready.\n");
996 * Reset MAC and BBP registers.
999 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1000 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1001 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1003 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1004 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1005 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1006 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1008 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1009 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1010 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1016 * Initialization functions.
1018 static void rt61pci_init_rxentry(struct rt2x00_dev
*rt2x00dev
,
1019 struct queue_entry
*entry
)
1021 struct queue_entry_priv_pci_rx
*priv_rx
= entry
->priv_data
;
1024 rt2x00_desc_read(priv_rx
->desc
, 5, &word
);
1025 rt2x00_set_field32(&word
, RXD_W5_BUFFER_PHYSICAL_ADDRESS
,
1027 rt2x00_desc_write(priv_rx
->desc
, 5, word
);
1029 rt2x00_desc_read(priv_rx
->desc
, 0, &word
);
1030 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
1031 rt2x00_desc_write(priv_rx
->desc
, 0, word
);
1034 static void rt61pci_init_txentry(struct rt2x00_dev
*rt2x00dev
,
1035 struct queue_entry
*entry
)
1037 struct queue_entry_priv_pci_tx
*priv_tx
= entry
->priv_data
;
1040 rt2x00_desc_read(priv_tx
->desc
, 1, &word
);
1041 rt2x00_set_field32(&word
, TXD_W1_BUFFER_COUNT
, 1);
1042 rt2x00_desc_write(priv_tx
->desc
, 1, word
);
1044 rt2x00_desc_read(priv_tx
->desc
, 5, &word
);
1045 rt2x00_set_field32(&word
, TXD_W5_PID_TYPE
, entry
->queue
->qid
);
1046 rt2x00_set_field32(&word
, TXD_W5_PID_SUBTYPE
, entry
->entry_idx
);
1047 rt2x00_desc_write(priv_tx
->desc
, 5, word
);
1049 rt2x00_desc_read(priv_tx
->desc
, 6, &word
);
1050 rt2x00_set_field32(&word
, TXD_W6_BUFFER_PHYSICAL_ADDRESS
,
1052 rt2x00_desc_write(priv_tx
->desc
, 6, word
);
1054 rt2x00_desc_read(priv_tx
->desc
, 0, &word
);
1055 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1056 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
1057 rt2x00_desc_write(priv_tx
->desc
, 0, word
);
1060 static int rt61pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
1062 struct queue_entry_priv_pci_rx
*priv_rx
;
1063 struct queue_entry_priv_pci_tx
*priv_tx
;
1067 * Initialize registers.
1069 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR0
, ®
);
1070 rt2x00_set_field32(®
, TX_RING_CSR0_AC0_RING_SIZE
,
1071 rt2x00dev
->tx
[0].limit
);
1072 rt2x00_set_field32(®
, TX_RING_CSR0_AC1_RING_SIZE
,
1073 rt2x00dev
->tx
[1].limit
);
1074 rt2x00_set_field32(®
, TX_RING_CSR0_AC2_RING_SIZE
,
1075 rt2x00dev
->tx
[2].limit
);
1076 rt2x00_set_field32(®
, TX_RING_CSR0_AC3_RING_SIZE
,
1077 rt2x00dev
->tx
[3].limit
);
1078 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR0
, reg
);
1080 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR1
, ®
);
1081 rt2x00_set_field32(®
, TX_RING_CSR1_TXD_SIZE
,
1082 rt2x00dev
->tx
[0].desc_size
/ 4);
1083 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR1
, reg
);
1085 priv_tx
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
1086 rt2x00pci_register_read(rt2x00dev
, AC0_BASE_CSR
, ®
);
1087 rt2x00_set_field32(®
, AC0_BASE_CSR_RING_REGISTER
,
1089 rt2x00pci_register_write(rt2x00dev
, AC0_BASE_CSR
, reg
);
1091 priv_tx
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
1092 rt2x00pci_register_read(rt2x00dev
, AC1_BASE_CSR
, ®
);
1093 rt2x00_set_field32(®
, AC1_BASE_CSR_RING_REGISTER
,
1095 rt2x00pci_register_write(rt2x00dev
, AC1_BASE_CSR
, reg
);
1097 priv_tx
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
1098 rt2x00pci_register_read(rt2x00dev
, AC2_BASE_CSR
, ®
);
1099 rt2x00_set_field32(®
, AC2_BASE_CSR_RING_REGISTER
,
1101 rt2x00pci_register_write(rt2x00dev
, AC2_BASE_CSR
, reg
);
1103 priv_tx
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
1104 rt2x00pci_register_read(rt2x00dev
, AC3_BASE_CSR
, ®
);
1105 rt2x00_set_field32(®
, AC3_BASE_CSR_RING_REGISTER
,
1107 rt2x00pci_register_write(rt2x00dev
, AC3_BASE_CSR
, reg
);
1109 rt2x00pci_register_read(rt2x00dev
, RX_RING_CSR
, ®
);
1110 rt2x00_set_field32(®
, RX_RING_CSR_RING_SIZE
, rt2x00dev
->rx
->limit
);
1111 rt2x00_set_field32(®
, RX_RING_CSR_RXD_SIZE
,
1112 rt2x00dev
->rx
->desc_size
/ 4);
1113 rt2x00_set_field32(®
, RX_RING_CSR_RXD_WRITEBACK_SIZE
, 4);
1114 rt2x00pci_register_write(rt2x00dev
, RX_RING_CSR
, reg
);
1116 priv_rx
= rt2x00dev
->rx
->entries
[0].priv_data
;
1117 rt2x00pci_register_read(rt2x00dev
, RX_BASE_CSR
, ®
);
1118 rt2x00_set_field32(®
, RX_BASE_CSR_RING_REGISTER
,
1120 rt2x00pci_register_write(rt2x00dev
, RX_BASE_CSR
, reg
);
1122 rt2x00pci_register_read(rt2x00dev
, TX_DMA_DST_CSR
, ®
);
1123 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC0
, 2);
1124 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC1
, 2);
1125 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC2
, 2);
1126 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC3
, 2);
1127 rt2x00pci_register_write(rt2x00dev
, TX_DMA_DST_CSR
, reg
);
1129 rt2x00pci_register_read(rt2x00dev
, LOAD_TX_RING_CSR
, ®
);
1130 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC0
, 1);
1131 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC1
, 1);
1132 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC2
, 1);
1133 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC3
, 1);
1134 rt2x00pci_register_write(rt2x00dev
, LOAD_TX_RING_CSR
, reg
);
1136 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1137 rt2x00_set_field32(®
, RX_CNTL_CSR_LOAD_RXD
, 1);
1138 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1143 static int rt61pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
1147 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1148 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1149 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1150 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1151 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1153 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1154 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1155 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1156 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1157 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1158 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1159 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1160 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1161 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1162 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1165 * CCK TXD BBP registers
1167 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1168 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1169 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1170 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1171 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1172 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1173 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1174 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1175 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1176 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1179 * OFDM TXD BBP registers
1181 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1182 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1183 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1184 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1185 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1186 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1187 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1188 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1190 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1191 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1192 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1193 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1194 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1195 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1197 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1198 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1199 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1200 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1201 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1202 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1204 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1206 rt2x00pci_register_write(rt2x00dev
, MAC_CSR6
, 0x00000fff);
1208 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1209 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1210 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1212 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x0000071c);
1214 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1217 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, 0x0000e000);
1220 * Invalidate all Shared Keys (SEC_CSR0),
1221 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1223 rt2x00pci_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1224 rt2x00pci_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1225 rt2x00pci_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1227 rt2x00pci_register_write(rt2x00dev
, PHY_CSR1
, 0x000023b0);
1228 rt2x00pci_register_write(rt2x00dev
, PHY_CSR5
, 0x060a100c);
1229 rt2x00pci_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1230 rt2x00pci_register_write(rt2x00dev
, PHY_CSR7
, 0x00000a08);
1232 rt2x00pci_register_write(rt2x00dev
, PCI_CFG_CSR
, 0x28ca4404);
1234 rt2x00pci_register_write(rt2x00dev
, TEST_MODE_CSR
, 0x00000200);
1236 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1238 rt2x00pci_register_read(rt2x00dev
, AC_TXOP_CSR0
, ®
);
1239 rt2x00_set_field32(®
, AC_TXOP_CSR0_AC0_TX_OP
, 0);
1240 rt2x00_set_field32(®
, AC_TXOP_CSR0_AC1_TX_OP
, 0);
1241 rt2x00pci_register_write(rt2x00dev
, AC_TXOP_CSR0
, reg
);
1243 rt2x00pci_register_read(rt2x00dev
, AC_TXOP_CSR1
, ®
);
1244 rt2x00_set_field32(®
, AC_TXOP_CSR1_AC2_TX_OP
, 192);
1245 rt2x00_set_field32(®
, AC_TXOP_CSR1_AC3_TX_OP
, 48);
1246 rt2x00pci_register_write(rt2x00dev
, AC_TXOP_CSR1
, reg
);
1250 * For the Beacon base registers we only need to clear
1251 * the first byte since that byte contains the VALID and OWNER
1252 * bits which (when set to 0) will invalidate the entire beacon.
1254 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1255 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1256 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1257 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1260 * We must clear the error counters.
1261 * These registers are cleared on read,
1262 * so we may pass a useless variable to store the value.
1264 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
1265 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
1266 rt2x00pci_register_read(rt2x00dev
, STA_CSR2
, ®
);
1269 * Reset MAC and BBP registers.
1271 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1272 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1273 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1274 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1276 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1277 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1278 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1279 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1281 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1282 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1283 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1288 static int rt61pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1295 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1296 rt61pci_bbp_read(rt2x00dev
, 0, &value
);
1297 if ((value
!= 0xff) && (value
!= 0x00))
1298 goto continue_csr_init
;
1299 NOTICE(rt2x00dev
, "Waiting for BBP register.\n");
1300 udelay(REGISTER_BUSY_DELAY
);
1303 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
1307 rt61pci_bbp_write(rt2x00dev
, 3, 0x00);
1308 rt61pci_bbp_write(rt2x00dev
, 15, 0x30);
1309 rt61pci_bbp_write(rt2x00dev
, 21, 0xc8);
1310 rt61pci_bbp_write(rt2x00dev
, 22, 0x38);
1311 rt61pci_bbp_write(rt2x00dev
, 23, 0x06);
1312 rt61pci_bbp_write(rt2x00dev
, 24, 0xfe);
1313 rt61pci_bbp_write(rt2x00dev
, 25, 0x0a);
1314 rt61pci_bbp_write(rt2x00dev
, 26, 0x0d);
1315 rt61pci_bbp_write(rt2x00dev
, 34, 0x12);
1316 rt61pci_bbp_write(rt2x00dev
, 37, 0x07);
1317 rt61pci_bbp_write(rt2x00dev
, 39, 0xf8);
1318 rt61pci_bbp_write(rt2x00dev
, 41, 0x60);
1319 rt61pci_bbp_write(rt2x00dev
, 53, 0x10);
1320 rt61pci_bbp_write(rt2x00dev
, 54, 0x18);
1321 rt61pci_bbp_write(rt2x00dev
, 60, 0x10);
1322 rt61pci_bbp_write(rt2x00dev
, 61, 0x04);
1323 rt61pci_bbp_write(rt2x00dev
, 62, 0x04);
1324 rt61pci_bbp_write(rt2x00dev
, 75, 0xfe);
1325 rt61pci_bbp_write(rt2x00dev
, 86, 0xfe);
1326 rt61pci_bbp_write(rt2x00dev
, 88, 0xfe);
1327 rt61pci_bbp_write(rt2x00dev
, 90, 0x0f);
1328 rt61pci_bbp_write(rt2x00dev
, 99, 0x00);
1329 rt61pci_bbp_write(rt2x00dev
, 102, 0x16);
1330 rt61pci_bbp_write(rt2x00dev
, 107, 0x04);
1332 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1333 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1335 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1336 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1337 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1338 rt61pci_bbp_write(rt2x00dev
, reg_id
, value
);
1346 * Device state switch handlers.
1348 static void rt61pci_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
1349 enum dev_state state
)
1353 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1354 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
,
1355 state
== STATE_RADIO_RX_OFF
);
1356 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1359 static void rt61pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1360 enum dev_state state
)
1362 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1366 * When interrupts are being enabled, the interrupt registers
1367 * should clear the register to assure a clean state.
1369 if (state
== STATE_RADIO_IRQ_ON
) {
1370 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1371 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1373 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®
);
1374 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg
);
1378 * Only toggle the interrupts bits we are going to use.
1379 * Non-checked interrupt bits are disabled by default.
1381 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
1382 rt2x00_set_field32(®
, INT_MASK_CSR_TXDONE
, mask
);
1383 rt2x00_set_field32(®
, INT_MASK_CSR_RXDONE
, mask
);
1384 rt2x00_set_field32(®
, INT_MASK_CSR_ENABLE_MITIGATION
, mask
);
1385 rt2x00_set_field32(®
, INT_MASK_CSR_MITIGATION_PERIOD
, 0xff);
1386 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1388 rt2x00pci_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
1389 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_0
, mask
);
1390 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_1
, mask
);
1391 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_2
, mask
);
1392 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_3
, mask
);
1393 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_4
, mask
);
1394 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_5
, mask
);
1395 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_6
, mask
);
1396 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_7
, mask
);
1397 rt2x00pci_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
1400 static int rt61pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1405 * Initialize all registers.
1407 if (rt61pci_init_queues(rt2x00dev
) ||
1408 rt61pci_init_registers(rt2x00dev
) ||
1409 rt61pci_init_bbp(rt2x00dev
)) {
1410 ERROR(rt2x00dev
, "Register initialization failed.\n");
1415 * Enable interrupts.
1417 rt61pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_ON
);
1422 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1423 rt2x00_set_field32(®
, RX_CNTL_CSR_ENABLE_RX_DMA
, 1);
1424 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1429 static void rt61pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1433 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1436 * Disable synchronisation.
1438 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, 0);
1443 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1444 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC0
, 1);
1445 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC1
, 1);
1446 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC2
, 1);
1447 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC3
, 1);
1448 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1451 * Disable interrupts.
1453 rt61pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
1456 static int rt61pci_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1463 put_to_sleep
= (state
!= STATE_AWAKE
);
1465 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1466 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1467 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1468 rt2x00pci_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1471 * Device is not guaranteed to be in the requested state yet.
1472 * We must wait until the register indicates that the
1473 * device has entered the correct state.
1475 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1476 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1478 rt2x00_get_field32(reg
, MAC_CSR12_BBP_CURRENT_STATE
);
1479 if (current_state
== !put_to_sleep
)
1484 NOTICE(rt2x00dev
, "Device failed to enter state %d, "
1485 "current device state %d.\n", !put_to_sleep
, current_state
);
1490 static int rt61pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1491 enum dev_state state
)
1496 case STATE_RADIO_ON
:
1497 retval
= rt61pci_enable_radio(rt2x00dev
);
1499 case STATE_RADIO_OFF
:
1500 rt61pci_disable_radio(rt2x00dev
);
1502 case STATE_RADIO_RX_ON
:
1503 case STATE_RADIO_RX_ON_LINK
:
1504 rt61pci_toggle_rx(rt2x00dev
, STATE_RADIO_RX_ON
);
1506 case STATE_RADIO_RX_OFF
:
1507 case STATE_RADIO_RX_OFF_LINK
:
1508 rt61pci_toggle_rx(rt2x00dev
, STATE_RADIO_RX_OFF
);
1510 case STATE_DEEP_SLEEP
:
1514 retval
= rt61pci_set_state(rt2x00dev
, state
);
1525 * TX descriptor initialization
1527 static void rt61pci_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1528 struct sk_buff
*skb
,
1529 struct txentry_desc
*txdesc
,
1530 struct ieee80211_tx_control
*control
)
1532 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1533 __le32
*txd
= skbdesc
->desc
;
1537 * Start writing the descriptor words.
1539 rt2x00_desc_read(txd
, 1, &word
);
1540 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, txdesc
->queue
);
1541 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, txdesc
->aifs
);
1542 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, txdesc
->cw_min
);
1543 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, txdesc
->cw_max
);
1544 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, IEEE80211_HEADER
);
1545 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
, 1);
1546 rt2x00_desc_write(txd
, 1, word
);
1548 rt2x00_desc_read(txd
, 2, &word
);
1549 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->signal
);
1550 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->service
);
1551 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1552 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1553 rt2x00_desc_write(txd
, 2, word
);
1555 rt2x00_desc_read(txd
, 5, &word
);
1556 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1557 TXPOWER_TO_DEV(rt2x00dev
->tx_power
));
1558 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1559 rt2x00_desc_write(txd
, 5, word
);
1561 if (skbdesc
->desc_len
> TXINFO_SIZE
) {
1562 rt2x00_desc_read(txd
, 11, &word
);
1563 rt2x00_set_field32(&word
, TXD_W11_BUFFER_LENGTH0
, skbdesc
->data_len
);
1564 rt2x00_desc_write(txd
, 11, word
);
1567 rt2x00_desc_read(txd
, 0, &word
);
1568 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1569 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1570 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1571 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1572 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1573 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1574 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1575 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1576 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1577 test_bit(ENTRY_TXD_OFDM_RATE
, &txdesc
->flags
));
1578 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1579 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1581 IEEE80211_TXCTL_LONG_RETRY_LIMIT
));
1582 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
, 0);
1583 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skbdesc
->data_len
);
1584 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1585 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1586 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1587 rt2x00_desc_write(txd
, 0, word
);
1591 * TX data initialization
1593 static void rt61pci_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1594 const unsigned int queue
)
1598 if (queue
== RT2X00_BCN_QUEUE_BEACON
) {
1600 * For Wi-Fi faily generated beacons between participating
1601 * stations. Set TBTT phase adaptive adjustment step to 8us.
1603 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1605 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1606 if (!rt2x00_get_field32(reg
, TXRX_CSR9_BEACON_GEN
)) {
1607 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1608 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1609 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1610 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1615 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1616 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC0
,
1617 (queue
== IEEE80211_TX_QUEUE_DATA0
));
1618 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC1
,
1619 (queue
== IEEE80211_TX_QUEUE_DATA1
));
1620 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC2
,
1621 (queue
== IEEE80211_TX_QUEUE_DATA2
));
1622 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC3
,
1623 (queue
== IEEE80211_TX_QUEUE_DATA3
));
1624 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1628 * RX control handlers
1630 static int rt61pci_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1636 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1651 if (rt2x00dev
->rx_status
.band
== IEEE80211_BAND_5GHZ
) {
1652 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
))
1655 if (lna
== 3 || lna
== 2)
1658 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
1659 offset
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
1661 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
))
1664 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
1665 offset
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
1668 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
1671 static void rt61pci_fill_rxdone(struct queue_entry
*entry
,
1672 struct rxdone_entry_desc
*rxdesc
)
1674 struct queue_entry_priv_pci_rx
*priv_rx
= entry
->priv_data
;
1678 rt2x00_desc_read(priv_rx
->desc
, 0, &word0
);
1679 rt2x00_desc_read(priv_rx
->desc
, 1, &word1
);
1682 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1683 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1686 * Obtain the status about this packet.
1687 * When frame was received with an OFDM bitrate,
1688 * the signal is the PLCP value. If it was received with
1689 * a CCK bitrate the signal is the rate in 100kbit/s.
1691 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1692 rxdesc
->rssi
= rt61pci_agc_to_rssi(entry
->queue
->rt2x00dev
, word1
);
1693 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1695 rxdesc
->dev_flags
= 0;
1696 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1697 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1698 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1699 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1703 * Interrupt functions.
1705 static void rt61pci_txdone(struct rt2x00_dev
*rt2x00dev
)
1707 struct data_queue
*queue
;
1708 struct queue_entry
*entry
;
1709 struct queue_entry
*entry_done
;
1710 struct queue_entry_priv_pci_tx
*priv_tx
;
1711 struct txdone_entry_desc txdesc
;
1719 * During each loop we will compare the freshly read
1720 * STA_CSR4 register value with the value read from
1721 * the previous loop. If the 2 values are equal then
1722 * we should stop processing because the chance it
1723 * quite big that the device has been unplugged and
1724 * we risk going into an endless loop.
1729 rt2x00pci_register_read(rt2x00dev
, STA_CSR4
, ®
);
1730 if (!rt2x00_get_field32(reg
, STA_CSR4_VALID
))
1738 * Skip this entry when it contains an invalid
1739 * queue identication number.
1741 type
= rt2x00_get_field32(reg
, STA_CSR4_PID_TYPE
);
1742 queue
= rt2x00queue_get_queue(rt2x00dev
, type
);
1743 if (unlikely(!queue
))
1747 * Skip this entry when it contains an invalid
1750 index
= rt2x00_get_field32(reg
, STA_CSR4_PID_SUBTYPE
);
1751 if (unlikely(index
>= queue
->limit
))
1754 entry
= &queue
->entries
[index
];
1755 priv_tx
= entry
->priv_data
;
1756 rt2x00_desc_read(priv_tx
->desc
, 0, &word
);
1758 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1759 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1762 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1763 while (entry
!= entry_done
) {
1765 * Just report any entries we missed as failed.
1768 "TX status report missed for entry %d\n",
1769 entry_done
->entry_idx
);
1771 txdesc
.status
= TX_FAIL_OTHER
;
1774 rt2x00pci_txdone(rt2x00dev
, entry_done
, &txdesc
);
1775 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1779 * Obtain the status about this packet.
1781 txdesc
.status
= rt2x00_get_field32(reg
, STA_CSR4_TX_RESULT
);
1782 txdesc
.retry
= rt2x00_get_field32(reg
, STA_CSR4_RETRY_COUNT
);
1784 rt2x00pci_txdone(rt2x00dev
, entry
, &txdesc
);
1788 static irqreturn_t
rt61pci_interrupt(int irq
, void *dev_instance
)
1790 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1795 * Get the interrupt sources & saved to local variable.
1796 * Write register value back to clear pending interrupts.
1798 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®_mcu
);
1799 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg_mcu
);
1801 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1802 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1804 if (!reg
&& !reg_mcu
)
1807 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1811 * Handle interrupts, walk through all bits
1812 * and run the tasks, the bits are checked in order of
1817 * 1 - Rx ring done interrupt.
1819 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RXDONE
))
1820 rt2x00pci_rxdone(rt2x00dev
);
1823 * 2 - Tx ring done interrupt.
1825 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TXDONE
))
1826 rt61pci_txdone(rt2x00dev
);
1829 * 3 - Handle MCU command done.
1832 rt2x00pci_register_write(rt2x00dev
,
1833 M2H_CMD_DONE_CSR
, 0xffffffff);
1839 * Device probe functions.
1841 static int rt61pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1843 struct eeprom_93cx6 eeprom
;
1849 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
1851 eeprom
.data
= rt2x00dev
;
1852 eeprom
.register_read
= rt61pci_eepromregister_read
;
1853 eeprom
.register_write
= rt61pci_eepromregister_write
;
1854 eeprom
.width
= rt2x00_get_field32(reg
, E2PROM_CSR_TYPE_93C46
) ?
1855 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1856 eeprom
.reg_data_in
= 0;
1857 eeprom
.reg_data_out
= 0;
1858 eeprom
.reg_data_clock
= 0;
1859 eeprom
.reg_chip_select
= 0;
1861 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1862 EEPROM_SIZE
/ sizeof(u16
));
1865 * Start validation of the data that has been read.
1867 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1868 if (!is_valid_ether_addr(mac
)) {
1869 DECLARE_MAC_BUF(macbuf
);
1871 random_ether_addr(mac
);
1872 EEPROM(rt2x00dev
, "MAC: %s\n", print_mac(macbuf
, mac
));
1875 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1876 if (word
== 0xffff) {
1877 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1878 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1880 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1882 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
1883 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1884 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1885 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5225
);
1886 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1887 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1890 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1891 if (word
== 0xffff) {
1892 rt2x00_set_field16(&word
, EEPROM_NIC_ENABLE_DIVERSITY
, 0);
1893 rt2x00_set_field16(&word
, EEPROM_NIC_TX_DIVERSITY
, 0);
1894 rt2x00_set_field16(&word
, EEPROM_NIC_TX_RX_FIXED
, 0);
1895 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_BG
, 0);
1896 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1897 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_A
, 0);
1898 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1899 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1902 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
1903 if (word
== 0xffff) {
1904 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
1906 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
1907 EEPROM(rt2x00dev
, "Led: 0x%04x\n", word
);
1910 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
1911 if (word
== 0xffff) {
1912 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
1913 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
1914 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
1915 EEPROM(rt2x00dev
, "Freq: 0x%04x\n", word
);
1918 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
1919 if (word
== 0xffff) {
1920 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1921 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1922 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1923 EEPROM(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1925 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
1926 if (value
< -10 || value
> 10)
1927 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1928 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
1929 if (value
< -10 || value
> 10)
1930 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1931 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1934 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
1935 if (word
== 0xffff) {
1936 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1937 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1938 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1939 EEPROM(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
1941 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
1942 if (value
< -10 || value
> 10)
1943 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1944 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
1945 if (value
< -10 || value
> 10)
1946 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1947 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1953 static int rt61pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1961 * Read EEPROM word for configuration.
1963 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1966 * Identify RF chipset.
1967 * To determine the RT chip we have to read the
1968 * PCI header of the device.
1970 pci_read_config_word(rt2x00dev_pci(rt2x00dev
),
1971 PCI_CONFIG_HEADER_DEVICE
, &device
);
1972 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1973 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1974 rt2x00_set_chip(rt2x00dev
, device
, value
, reg
);
1976 if (!rt2x00_rf(&rt2x00dev
->chip
, RF5225
) &&
1977 !rt2x00_rf(&rt2x00dev
->chip
, RF5325
) &&
1978 !rt2x00_rf(&rt2x00dev
->chip
, RF2527
) &&
1979 !rt2x00_rf(&rt2x00dev
->chip
, RF2529
)) {
1980 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1985 * Determine number of antenna's.
1987 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_NUM
) == 2)
1988 __set_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
);
1991 * Identify default antenna configuration.
1993 rt2x00dev
->default_ant
.tx
=
1994 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1995 rt2x00dev
->default_ant
.rx
=
1996 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1999 * Read the Frame type.
2001 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
2002 __set_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
);
2005 * Detect if this device has an hardware controlled radio.
2007 #ifdef CONFIG_RT61PCI_RFKILL
2008 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
2009 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
2010 #endif /* CONFIG_RT61PCI_RFKILL */
2013 * Read frequency offset and RF programming sequence.
2015 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
2016 if (rt2x00_get_field16(eeprom
, EEPROM_FREQ_SEQ
))
2017 __set_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
);
2019 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
2022 * Read external LNA informations.
2024 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
2026 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_A
))
2027 __set_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
2028 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_BG
))
2029 __set_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
2032 * When working with a RF2529 chip without double antenna
2033 * the antenna settings should be gathered from the NIC
2036 if (rt2x00_rf(&rt2x00dev
->chip
, RF2529
) &&
2037 !test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
)) {
2038 switch (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_RX_FIXED
)) {
2040 rt2x00dev
->default_ant
.tx
= ANTENNA_B
;
2041 rt2x00dev
->default_ant
.rx
= ANTENNA_A
;
2044 rt2x00dev
->default_ant
.tx
= ANTENNA_B
;
2045 rt2x00dev
->default_ant
.rx
= ANTENNA_B
;
2048 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
2049 rt2x00dev
->default_ant
.rx
= ANTENNA_A
;
2052 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
2053 rt2x00dev
->default_ant
.rx
= ANTENNA_B
;
2057 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
))
2058 rt2x00dev
->default_ant
.tx
= ANTENNA_SW_DIVERSITY
;
2059 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
))
2060 rt2x00dev
->default_ant
.rx
= ANTENNA_SW_DIVERSITY
;
2064 * Store led settings, for correct led behaviour.
2065 * If the eeprom value is invalid,
2066 * switch to default led mode.
2068 #ifdef CONFIG_RT61PCI_LEDS
2069 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
2070 value
= rt2x00_get_field16(eeprom
, EEPROM_LED_LED_MODE
);
2072 rt2x00dev
->led_radio
.rt2x00dev
= rt2x00dev
;
2073 rt2x00dev
->led_radio
.type
= LED_TYPE_RADIO
;
2074 rt2x00dev
->led_radio
.led_dev
.brightness_set
=
2075 rt61pci_brightness_set
;
2076 rt2x00dev
->led_radio
.led_dev
.blink_set
=
2078 rt2x00dev
->led_radio
.flags
= LED_INITIALIZED
;
2080 rt2x00dev
->led_assoc
.rt2x00dev
= rt2x00dev
;
2081 rt2x00dev
->led_assoc
.type
= LED_TYPE_ASSOC
;
2082 rt2x00dev
->led_assoc
.led_dev
.brightness_set
=
2083 rt61pci_brightness_set
;
2084 rt2x00dev
->led_assoc
.led_dev
.blink_set
=
2086 rt2x00dev
->led_assoc
.flags
= LED_INITIALIZED
;
2088 if (value
== LED_MODE_SIGNAL_STRENGTH
) {
2089 rt2x00dev
->led_qual
.rt2x00dev
= rt2x00dev
;
2090 rt2x00dev
->led_radio
.type
= LED_TYPE_QUALITY
;
2091 rt2x00dev
->led_qual
.led_dev
.brightness_set
=
2092 rt61pci_brightness_set
;
2093 rt2x00dev
->led_qual
.led_dev
.blink_set
=
2095 rt2x00dev
->led_qual
.flags
= LED_INITIALIZED
;
2098 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
2099 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
2100 rt2x00_get_field16(eeprom
,
2101 EEPROM_LED_POLARITY_GPIO_0
));
2102 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
2103 rt2x00_get_field16(eeprom
,
2104 EEPROM_LED_POLARITY_GPIO_1
));
2105 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
2106 rt2x00_get_field16(eeprom
,
2107 EEPROM_LED_POLARITY_GPIO_2
));
2108 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
2109 rt2x00_get_field16(eeprom
,
2110 EEPROM_LED_POLARITY_GPIO_3
));
2111 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
2112 rt2x00_get_field16(eeprom
,
2113 EEPROM_LED_POLARITY_GPIO_4
));
2114 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
2115 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
2116 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
2117 rt2x00_get_field16(eeprom
,
2118 EEPROM_LED_POLARITY_RDY_G
));
2119 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
2120 rt2x00_get_field16(eeprom
,
2121 EEPROM_LED_POLARITY_RDY_A
));
2122 #endif /* CONFIG_RT61PCI_LEDS */
2128 * RF value list for RF5225 & RF5325
2129 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2131 static const struct rf_channel rf_vals_noseq
[] = {
2132 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2133 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2134 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2135 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2136 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2137 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2138 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2139 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2140 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2141 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2142 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2143 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2144 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2145 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2147 /* 802.11 UNI / HyperLan 2 */
2148 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2149 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2150 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2151 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2152 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2153 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2154 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2155 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2157 /* 802.11 HyperLan 2 */
2158 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2159 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2160 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2161 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2162 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2163 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2164 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2165 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2166 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2167 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2170 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2171 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2172 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2173 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2174 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2175 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2177 /* MMAC(Japan)J52 ch 34,38,42,46 */
2178 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2179 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2180 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2181 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2185 * RF value list for RF5225 & RF5325
2186 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2188 static const struct rf_channel rf_vals_seq
[] = {
2189 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2190 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2191 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2192 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2193 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2194 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2195 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2196 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2197 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2198 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2199 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2200 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2201 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2202 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2204 /* 802.11 UNI / HyperLan 2 */
2205 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2206 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2207 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2208 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2209 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2210 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2211 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2212 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2214 /* 802.11 HyperLan 2 */
2215 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2216 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2217 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2218 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2219 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2220 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2221 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2222 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2223 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2224 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2227 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2228 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2229 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2230 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2231 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2232 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2234 /* MMAC(Japan)J52 ch 34,38,42,46 */
2235 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2236 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2237 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2238 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2241 static void rt61pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2243 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2248 * Initialize all hw fields.
2250 rt2x00dev
->hw
->flags
=
2251 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE
|
2252 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
2253 rt2x00dev
->hw
->extra_tx_headroom
= 0;
2254 rt2x00dev
->hw
->max_signal
= MAX_SIGNAL
;
2255 rt2x00dev
->hw
->max_rssi
= MAX_RX_SSI
;
2256 rt2x00dev
->hw
->queues
= 4;
2258 SET_IEEE80211_DEV(rt2x00dev
->hw
, &rt2x00dev_pci(rt2x00dev
)->dev
);
2259 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2260 rt2x00_eeprom_addr(rt2x00dev
,
2261 EEPROM_MAC_ADDR_0
));
2264 * Convert tx_power array in eeprom.
2266 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2267 for (i
= 0; i
< 14; i
++)
2268 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
2271 * Initialize hw_mode information.
2273 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2274 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2275 spec
->tx_power_a
= NULL
;
2276 spec
->tx_power_bg
= txpower
;
2277 spec
->tx_power_default
= DEFAULT_TXPOWER
;
2279 if (!test_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
)) {
2280 spec
->num_channels
= 14;
2281 spec
->channels
= rf_vals_noseq
;
2283 spec
->num_channels
= 14;
2284 spec
->channels
= rf_vals_seq
;
2287 if (rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
2288 rt2x00_rf(&rt2x00dev
->chip
, RF5325
)) {
2289 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2290 spec
->num_channels
= ARRAY_SIZE(rf_vals_seq
);
2292 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2293 for (i
= 0; i
< 14; i
++)
2294 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
2296 spec
->tx_power_a
= txpower
;
2300 static int rt61pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2305 * Allocate eeprom data.
2307 retval
= rt61pci_validate_eeprom(rt2x00dev
);
2311 retval
= rt61pci_init_eeprom(rt2x00dev
);
2316 * Initialize hw specifications.
2318 rt61pci_probe_hw_mode(rt2x00dev
);
2321 * This device requires firmware.
2323 __set_bit(DRIVER_REQUIRE_FIRMWARE
, &rt2x00dev
->flags
);
2326 * Set the rssi offset.
2328 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2334 * IEEE80211 stack callback functions.
2336 static int rt61pci_set_retry_limit(struct ieee80211_hw
*hw
,
2337 u32 short_retry
, u32 long_retry
)
2339 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2342 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
2343 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
, long_retry
);
2344 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
, short_retry
);
2345 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
2350 static u64
rt61pci_get_tsf(struct ieee80211_hw
*hw
)
2352 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2356 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2357 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2358 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2359 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2364 static int rt61pci_beacon_update(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2365 struct ieee80211_tx_control
*control
)
2367 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2368 struct rt2x00_intf
*intf
= vif_to_intf(control
->vif
);
2369 struct skb_frame_desc
*skbdesc
;
2370 unsigned int beacon_base
;
2373 if (unlikely(!intf
->beacon
))
2377 * We need to append the descriptor in front of the
2380 if (skb_headroom(skb
) < intf
->beacon
->queue
->desc_size
) {
2381 if (pskb_expand_head(skb
, intf
->beacon
->queue
->desc_size
,
2387 * Add the descriptor in front of the skb.
2389 skb_push(skb
, intf
->beacon
->queue
->desc_size
);
2390 memset(skb
->data
, 0, intf
->beacon
->queue
->desc_size
);
2393 * Fill in skb descriptor
2395 skbdesc
= get_skb_frame_desc(skb
);
2396 memset(skbdesc
, 0, sizeof(*skbdesc
));
2397 skbdesc
->flags
|= FRAME_DESC_DRIVER_GENERATED
;
2398 skbdesc
->data
= skb
->data
+ intf
->beacon
->queue
->desc_size
;
2399 skbdesc
->data_len
= skb
->len
- intf
->beacon
->queue
->desc_size
;
2400 skbdesc
->desc
= skb
->data
;
2401 skbdesc
->desc_len
= intf
->beacon
->queue
->desc_size
;
2402 skbdesc
->entry
= intf
->beacon
;
2405 * Disable beaconing while we are reloading the beacon data,
2406 * otherwise we might be sending out invalid data.
2408 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
2409 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
2410 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
2411 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
2412 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
2415 * mac80211 doesn't provide the control->queue variable
2416 * for beacons. Set our own queue identification so
2417 * it can be used during descriptor initialization.
2419 control
->queue
= RT2X00_BCN_QUEUE_BEACON
;
2420 rt2x00lib_write_tx_desc(rt2x00dev
, skb
, control
);
2423 * Write entire beacon with descriptor to register,
2424 * and kick the beacon generator.
2426 beacon_base
= HW_BEACON_OFFSET(intf
->beacon
->entry_idx
);
2427 rt2x00pci_register_multiwrite(rt2x00dev
, beacon_base
,
2428 skb
->data
, skb
->len
);
2429 rt61pci_kick_tx_queue(rt2x00dev
, control
->queue
);
2434 static const struct ieee80211_ops rt61pci_mac80211_ops
= {
2436 .start
= rt2x00mac_start
,
2437 .stop
= rt2x00mac_stop
,
2438 .add_interface
= rt2x00mac_add_interface
,
2439 .remove_interface
= rt2x00mac_remove_interface
,
2440 .config
= rt2x00mac_config
,
2441 .config_interface
= rt2x00mac_config_interface
,
2442 .configure_filter
= rt2x00mac_configure_filter
,
2443 .get_stats
= rt2x00mac_get_stats
,
2444 .set_retry_limit
= rt61pci_set_retry_limit
,
2445 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2446 .conf_tx
= rt2x00mac_conf_tx
,
2447 .get_tx_stats
= rt2x00mac_get_tx_stats
,
2448 .get_tsf
= rt61pci_get_tsf
,
2449 .beacon_update
= rt61pci_beacon_update
,
2452 static const struct rt2x00lib_ops rt61pci_rt2x00_ops
= {
2453 .irq_handler
= rt61pci_interrupt
,
2454 .probe_hw
= rt61pci_probe_hw
,
2455 .get_firmware_name
= rt61pci_get_firmware_name
,
2456 .get_firmware_crc
= rt61pci_get_firmware_crc
,
2457 .load_firmware
= rt61pci_load_firmware
,
2458 .initialize
= rt2x00pci_initialize
,
2459 .uninitialize
= rt2x00pci_uninitialize
,
2460 .init_rxentry
= rt61pci_init_rxentry
,
2461 .init_txentry
= rt61pci_init_txentry
,
2462 .set_device_state
= rt61pci_set_device_state
,
2463 .rfkill_poll
= rt61pci_rfkill_poll
,
2464 .link_stats
= rt61pci_link_stats
,
2465 .reset_tuner
= rt61pci_reset_tuner
,
2466 .link_tuner
= rt61pci_link_tuner
,
2467 .write_tx_desc
= rt61pci_write_tx_desc
,
2468 .write_tx_data
= rt2x00pci_write_tx_data
,
2469 .kick_tx_queue
= rt61pci_kick_tx_queue
,
2470 .fill_rxdone
= rt61pci_fill_rxdone
,
2471 .config_filter
= rt61pci_config_filter
,
2472 .config_intf
= rt61pci_config_intf
,
2473 .config_erp
= rt61pci_config_erp
,
2474 .config
= rt61pci_config
,
2477 static const struct data_queue_desc rt61pci_queue_rx
= {
2478 .entry_num
= RX_ENTRIES
,
2479 .data_size
= DATA_FRAME_SIZE
,
2480 .desc_size
= RXD_DESC_SIZE
,
2481 .priv_size
= sizeof(struct queue_entry_priv_pci_rx
),
2484 static const struct data_queue_desc rt61pci_queue_tx
= {
2485 .entry_num
= TX_ENTRIES
,
2486 .data_size
= DATA_FRAME_SIZE
,
2487 .desc_size
= TXD_DESC_SIZE
,
2488 .priv_size
= sizeof(struct queue_entry_priv_pci_tx
),
2491 static const struct data_queue_desc rt61pci_queue_bcn
= {
2492 .entry_num
= 4 * BEACON_ENTRIES
,
2493 .data_size
= MGMT_FRAME_SIZE
,
2494 .desc_size
= TXINFO_SIZE
,
2495 .priv_size
= sizeof(struct queue_entry_priv_pci_tx
),
2498 static const struct rt2x00_ops rt61pci_ops
= {
2499 .name
= KBUILD_MODNAME
,
2502 .eeprom_size
= EEPROM_SIZE
,
2504 .rx
= &rt61pci_queue_rx
,
2505 .tx
= &rt61pci_queue_tx
,
2506 .bcn
= &rt61pci_queue_bcn
,
2507 .lib
= &rt61pci_rt2x00_ops
,
2508 .hw
= &rt61pci_mac80211_ops
,
2509 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2510 .debugfs
= &rt61pci_rt2x00debug
,
2511 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2515 * RT61pci module information.
2517 static struct pci_device_id rt61pci_device_table
[] = {
2519 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops
) },
2521 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops
) },
2523 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops
) },
2527 MODULE_AUTHOR(DRV_PROJECT
);
2528 MODULE_VERSION(DRV_VERSION
);
2529 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2530 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2531 "PCI & PCMCIA chipset based cards");
2532 MODULE_DEVICE_TABLE(pci
, rt61pci_device_table
);
2533 MODULE_FIRMWARE(FIRMWARE_RT2561
);
2534 MODULE_FIRMWARE(FIRMWARE_RT2561s
);
2535 MODULE_FIRMWARE(FIRMWARE_RT2661
);
2536 MODULE_LICENSE("GPL");
2538 static struct pci_driver rt61pci_driver
= {
2539 .name
= KBUILD_MODNAME
,
2540 .id_table
= rt61pci_device_table
,
2541 .probe
= rt2x00pci_probe
,
2542 .remove
= __devexit_p(rt2x00pci_remove
),
2543 .suspend
= rt2x00pci_suspend
,
2544 .resume
= rt2x00pci_resume
,
2547 static int __init
rt61pci_init(void)
2549 return pci_register_driver(&rt61pci_driver
);
2552 static void __exit
rt61pci_exit(void)
2554 pci_unregister_driver(&rt61pci_driver
);
2557 module_init(rt61pci_init
);
2558 module_exit(rt61pci_exit
);