iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / rtc / rtc-sh.c
blobc1d6a1880ccf45e4953c929422f89d878856b5e5
1 /*
2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006, 2007 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
7 * Based on the old arch/sh/kernel/cpu/rtc.c by:
9 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
10 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file "COPYING" in the main directory of this archive
14 * for more details.
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/bcd.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/seq_file.h>
23 #include <linux/interrupt.h>
24 #include <linux/spinlock.h>
25 #include <linux/io.h>
26 #include <asm/rtc.h>
28 #define DRV_NAME "sh-rtc"
29 #define DRV_VERSION "0.1.6"
31 #define RTC_REG(r) ((r) * rtc_reg_size)
33 #define R64CNT RTC_REG(0)
35 #define RSECCNT RTC_REG(1) /* RTC sec */
36 #define RMINCNT RTC_REG(2) /* RTC min */
37 #define RHRCNT RTC_REG(3) /* RTC hour */
38 #define RWKCNT RTC_REG(4) /* RTC week */
39 #define RDAYCNT RTC_REG(5) /* RTC day */
40 #define RMONCNT RTC_REG(6) /* RTC month */
41 #define RYRCNT RTC_REG(7) /* RTC year */
42 #define RSECAR RTC_REG(8) /* ALARM sec */
43 #define RMINAR RTC_REG(9) /* ALARM min */
44 #define RHRAR RTC_REG(10) /* ALARM hour */
45 #define RWKAR RTC_REG(11) /* ALARM week */
46 #define RDAYAR RTC_REG(12) /* ALARM day */
47 #define RMONAR RTC_REG(13) /* ALARM month */
48 #define RCR1 RTC_REG(14) /* Control */
49 #define RCR2 RTC_REG(15) /* Control */
52 * Note on RYRAR and RCR3: Up until this point most of the register
53 * definitions are consistent across all of the available parts. However,
54 * the placement of the optional RYRAR and RCR3 (the RYRAR control
55 * register used to control RYRCNT/RYRAR compare) varies considerably
56 * across various parts, occasionally being mapped in to a completely
57 * unrelated address space. For proper RYRAR support a separate resource
58 * would have to be handed off, but as this is purely optional in
59 * practice, we simply opt not to support it, thereby keeping the code
60 * quite a bit more simplified.
63 /* ALARM Bits - or with BCD encoded value */
64 #define AR_ENB 0x80 /* Enable for alarm cmp */
66 /* RCR1 Bits */
67 #define RCR1_CF 0x80 /* Carry Flag */
68 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
69 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
70 #define RCR1_AF 0x01 /* Alarm Flag */
72 /* RCR2 Bits */
73 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
74 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
75 #define RCR2_RTCEN 0x08 /* ENable RTC */
76 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
77 #define RCR2_RESET 0x02 /* Reset bit */
78 #define RCR2_START 0x01 /* Start bit */
80 struct sh_rtc {
81 void __iomem *regbase;
82 unsigned long regsize;
83 struct resource *res;
84 unsigned int alarm_irq, periodic_irq, carry_irq;
85 struct rtc_device *rtc_dev;
86 spinlock_t lock;
87 int rearm_aie;
88 unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */
91 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
93 struct platform_device *pdev = to_platform_device(dev_id);
94 struct sh_rtc *rtc = platform_get_drvdata(pdev);
95 unsigned int tmp, events = 0;
97 spin_lock(&rtc->lock);
99 tmp = readb(rtc->regbase + RCR1);
100 tmp &= ~RCR1_CF;
102 if (rtc->rearm_aie) {
103 if (tmp & RCR1_AF)
104 tmp &= ~RCR1_AF; /* try to clear AF again */
105 else {
106 tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */
107 rtc->rearm_aie = 0;
111 writeb(tmp, rtc->regbase + RCR1);
113 rtc_update_irq(rtc->rtc_dev, 1, events);
115 spin_unlock(&rtc->lock);
117 return IRQ_HANDLED;
120 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
122 struct platform_device *pdev = to_platform_device(dev_id);
123 struct sh_rtc *rtc = platform_get_drvdata(pdev);
124 unsigned int tmp, events = 0;
126 spin_lock(&rtc->lock);
128 tmp = readb(rtc->regbase + RCR1);
131 * If AF is set then the alarm has triggered. If we clear AF while
132 * the alarm time still matches the RTC time then AF will
133 * immediately be set again, and if AIE is enabled then the alarm
134 * interrupt will immediately be retrigger. So we clear AIE here
135 * and use rtc->rearm_aie so that the carry interrupt will keep
136 * trying to clear AF and once it stays cleared it'll re-enable
137 * AIE.
139 if (tmp & RCR1_AF) {
140 events |= RTC_AF | RTC_IRQF;
142 tmp &= ~(RCR1_AF|RCR1_AIE);
144 writeb(tmp, rtc->regbase + RCR1);
146 rtc->rearm_aie = 1;
148 rtc_update_irq(rtc->rtc_dev, 1, events);
151 spin_unlock(&rtc->lock);
152 return IRQ_HANDLED;
155 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
157 struct platform_device *pdev = to_platform_device(dev_id);
158 struct sh_rtc *rtc = platform_get_drvdata(pdev);
160 spin_lock(&rtc->lock);
162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
164 spin_unlock(&rtc->lock);
166 return IRQ_HANDLED;
169 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
171 struct sh_rtc *rtc = dev_get_drvdata(dev);
172 unsigned int tmp;
174 spin_lock_irq(&rtc->lock);
176 tmp = readb(rtc->regbase + RCR2);
178 if (enable) {
179 tmp &= ~RCR2_PESMASK;
180 tmp |= RCR2_PEF | (2 << 4);
181 } else
182 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
184 writeb(tmp, rtc->regbase + RCR2);
186 spin_unlock_irq(&rtc->lock);
189 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
191 struct sh_rtc *rtc = dev_get_drvdata(dev);
192 unsigned int tmp;
194 spin_lock_irq(&rtc->lock);
196 tmp = readb(rtc->regbase + RCR1);
198 if (!enable) {
199 tmp &= ~RCR1_AIE;
200 rtc->rearm_aie = 0;
201 } else if (rtc->rearm_aie == 0)
202 tmp |= RCR1_AIE;
204 writeb(tmp, rtc->regbase + RCR1);
206 spin_unlock_irq(&rtc->lock);
209 static int sh_rtc_open(struct device *dev)
211 struct sh_rtc *rtc = dev_get_drvdata(dev);
212 unsigned int tmp;
213 int ret;
215 tmp = readb(rtc->regbase + RCR1);
216 tmp &= ~RCR1_CF;
217 tmp |= RCR1_CIE;
218 writeb(tmp, rtc->regbase + RCR1);
220 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
221 "sh-rtc period", dev);
222 if (unlikely(ret)) {
223 dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
224 ret, rtc->periodic_irq);
225 return ret;
228 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
229 "sh-rtc carry", dev);
230 if (unlikely(ret)) {
231 dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
232 ret, rtc->carry_irq);
233 free_irq(rtc->periodic_irq, dev);
234 goto err_bad_carry;
237 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
238 "sh-rtc alarm", dev);
239 if (unlikely(ret)) {
240 dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
241 ret, rtc->alarm_irq);
242 goto err_bad_alarm;
245 return 0;
247 err_bad_alarm:
248 free_irq(rtc->carry_irq, dev);
249 err_bad_carry:
250 free_irq(rtc->periodic_irq, dev);
252 return ret;
255 static void sh_rtc_release(struct device *dev)
257 struct sh_rtc *rtc = dev_get_drvdata(dev);
259 sh_rtc_setpie(dev, 0);
260 sh_rtc_setaie(dev, 0);
262 free_irq(rtc->periodic_irq, dev);
263 free_irq(rtc->carry_irq, dev);
264 free_irq(rtc->alarm_irq, dev);
267 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
269 struct sh_rtc *rtc = dev_get_drvdata(dev);
270 unsigned int tmp;
272 tmp = readb(rtc->regbase + RCR1);
273 seq_printf(seq, "carry_IRQ\t: %s\n",
274 (tmp & RCR1_CIE) ? "yes" : "no");
276 tmp = readb(rtc->regbase + RCR2);
277 seq_printf(seq, "periodic_IRQ\t: %s\n",
278 (tmp & RCR2_PEF) ? "yes" : "no");
280 return 0;
283 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
285 unsigned int ret = -ENOIOCTLCMD;
287 switch (cmd) {
288 case RTC_PIE_OFF:
289 case RTC_PIE_ON:
290 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
291 ret = 0;
292 break;
293 case RTC_AIE_OFF:
294 case RTC_AIE_ON:
295 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
296 ret = 0;
297 break;
300 return ret;
303 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
305 struct platform_device *pdev = to_platform_device(dev);
306 struct sh_rtc *rtc = platform_get_drvdata(pdev);
307 unsigned int sec128, sec2, yr, yr100, cf_bit;
309 do {
310 unsigned int tmp;
312 spin_lock_irq(&rtc->lock);
314 tmp = readb(rtc->regbase + RCR1);
315 tmp &= ~RCR1_CF; /* Clear CF-bit */
316 tmp |= RCR1_CIE;
317 writeb(tmp, rtc->regbase + RCR1);
319 sec128 = readb(rtc->regbase + R64CNT);
321 tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT));
322 tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT));
323 tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT));
324 tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT));
325 tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT));
326 tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
328 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
329 yr = readw(rtc->regbase + RYRCNT);
330 yr100 = BCD2BIN(yr >> 8);
331 yr &= 0xff;
332 } else {
333 yr = readb(rtc->regbase + RYRCNT);
334 yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
337 tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
339 sec2 = readb(rtc->regbase + R64CNT);
340 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
342 spin_unlock_irq(&rtc->lock);
343 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
345 #if RTC_BIT_INVERTED != 0
346 if ((sec128 & RTC_BIT_INVERTED))
347 tm->tm_sec--;
348 #endif
350 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
351 "mday=%d, mon=%d, year=%d, wday=%d\n",
352 __FUNCTION__,
353 tm->tm_sec, tm->tm_min, tm->tm_hour,
354 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
356 if (rtc_valid_tm(tm) < 0) {
357 dev_err(dev, "invalid date\n");
358 rtc_time_to_tm(0, tm);
361 return 0;
364 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
366 struct platform_device *pdev = to_platform_device(dev);
367 struct sh_rtc *rtc = platform_get_drvdata(pdev);
368 unsigned int tmp;
369 int year;
371 spin_lock_irq(&rtc->lock);
373 /* Reset pre-scaler & stop RTC */
374 tmp = readb(rtc->regbase + RCR2);
375 tmp |= RCR2_RESET;
376 tmp &= ~RCR2_START;
377 writeb(tmp, rtc->regbase + RCR2);
379 writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT);
380 writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT);
381 writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
382 writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
383 writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
384 writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
386 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
387 year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
388 BIN2BCD(tm->tm_year % 100);
389 writew(year, rtc->regbase + RYRCNT);
390 } else {
391 year = tm->tm_year % 100;
392 writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
395 /* Start RTC */
396 tmp = readb(rtc->regbase + RCR2);
397 tmp &= ~RCR2_RESET;
398 tmp |= RCR2_RTCEN | RCR2_START;
399 writeb(tmp, rtc->regbase + RCR2);
401 spin_unlock_irq(&rtc->lock);
403 return 0;
406 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
408 unsigned int byte;
409 int value = 0xff; /* return 0xff for ignored values */
411 byte = readb(rtc->regbase + reg_off);
412 if (byte & AR_ENB) {
413 byte &= ~AR_ENB; /* strip the enable bit */
414 value = BCD2BIN(byte);
417 return value;
420 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
422 struct platform_device *pdev = to_platform_device(dev);
423 struct sh_rtc *rtc = platform_get_drvdata(pdev);
424 struct rtc_time* tm = &wkalrm->time;
426 spin_lock_irq(&rtc->lock);
428 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
429 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
430 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
431 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
432 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
433 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
434 if (tm->tm_mon > 0)
435 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
436 tm->tm_year = 0xffff;
438 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
440 spin_unlock_irq(&rtc->lock);
442 return 0;
445 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
446 int value, int reg_off)
448 /* < 0 for a value that is ignored */
449 if (value < 0)
450 writeb(0, rtc->regbase + reg_off);
451 else
452 writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off);
455 static int sh_rtc_check_alarm(struct rtc_time* tm)
458 * The original rtc says anything > 0xc0 is "don't care" or "match
459 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
460 * The original rtc doesn't support years - some things use -1 and
461 * some 0xffff. We use -1 to make out tests easier.
463 if (tm->tm_year == 0xffff)
464 tm->tm_year = -1;
465 if (tm->tm_mon >= 0xff)
466 tm->tm_mon = -1;
467 if (tm->tm_mday >= 0xff)
468 tm->tm_mday = -1;
469 if (tm->tm_wday >= 0xff)
470 tm->tm_wday = -1;
471 if (tm->tm_hour >= 0xff)
472 tm->tm_hour = -1;
473 if (tm->tm_min >= 0xff)
474 tm->tm_min = -1;
475 if (tm->tm_sec >= 0xff)
476 tm->tm_sec = -1;
478 if (tm->tm_year > 9999 ||
479 tm->tm_mon >= 12 ||
480 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
481 tm->tm_wday >= 7 ||
482 tm->tm_hour >= 24 ||
483 tm->tm_min >= 60 ||
484 tm->tm_sec >= 60)
485 return -EINVAL;
487 return 0;
490 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
492 struct platform_device *pdev = to_platform_device(dev);
493 struct sh_rtc *rtc = platform_get_drvdata(pdev);
494 unsigned int rcr1;
495 struct rtc_time *tm = &wkalrm->time;
496 int mon, err;
498 err = sh_rtc_check_alarm(tm);
499 if (unlikely(err < 0))
500 return err;
502 spin_lock_irq(&rtc->lock);
504 /* disable alarm interrupt and clear the alarm flag */
505 rcr1 = readb(rtc->regbase + RCR1);
506 rcr1 &= ~(RCR1_AF|RCR1_AIE);
507 writeb(rcr1, rtc->regbase + RCR1);
509 rtc->rearm_aie = 0;
511 /* set alarm time */
512 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
513 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
514 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
515 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
516 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
517 mon = tm->tm_mon;
518 if (mon >= 0)
519 mon += 1;
520 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
522 if (wkalrm->enabled) {
523 rcr1 |= RCR1_AIE;
524 writeb(rcr1, rtc->regbase + RCR1);
527 spin_unlock_irq(&rtc->lock);
529 return 0;
532 static struct rtc_class_ops sh_rtc_ops = {
533 .open = sh_rtc_open,
534 .release = sh_rtc_release,
535 .ioctl = sh_rtc_ioctl,
536 .read_time = sh_rtc_read_time,
537 .set_time = sh_rtc_set_time,
538 .read_alarm = sh_rtc_read_alarm,
539 .set_alarm = sh_rtc_set_alarm,
540 .proc = sh_rtc_proc,
543 static int __devinit sh_rtc_probe(struct platform_device *pdev)
545 struct sh_rtc *rtc;
546 struct resource *res;
547 int ret = -ENOENT;
549 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
550 if (unlikely(!rtc))
551 return -ENOMEM;
553 spin_lock_init(&rtc->lock);
555 rtc->periodic_irq = platform_get_irq(pdev, 0);
556 if (unlikely(rtc->periodic_irq < 0)) {
557 dev_err(&pdev->dev, "No IRQ for period\n");
558 goto err_badres;
561 rtc->carry_irq = platform_get_irq(pdev, 1);
562 if (unlikely(rtc->carry_irq < 0)) {
563 dev_err(&pdev->dev, "No IRQ for carry\n");
564 goto err_badres;
567 rtc->alarm_irq = platform_get_irq(pdev, 2);
568 if (unlikely(rtc->alarm_irq < 0)) {
569 dev_err(&pdev->dev, "No IRQ for alarm\n");
570 goto err_badres;
573 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
574 if (unlikely(res == NULL)) {
575 dev_err(&pdev->dev, "No IO resource\n");
576 goto err_badres;
579 rtc->regsize = res->end - res->start + 1;
581 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
582 if (unlikely(!rtc->res)) {
583 ret = -EBUSY;
584 goto err_badres;
587 rtc->regbase = (void __iomem *)rtc->res->start;
588 if (unlikely(!rtc->regbase)) {
589 ret = -EINVAL;
590 goto err_badmap;
593 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
594 &sh_rtc_ops, THIS_MODULE);
595 if (IS_ERR(rtc->rtc_dev)) {
596 ret = PTR_ERR(rtc->rtc_dev);
597 goto err_badmap;
600 rtc->capabilities = RTC_DEF_CAPABILITIES;
601 if (pdev->dev.platform_data) {
602 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
605 * Some CPUs have special capabilities in addition to the
606 * default set. Add those in here.
608 rtc->capabilities |= pinfo->capabilities;
611 platform_set_drvdata(pdev, rtc);
613 return 0;
615 err_badmap:
616 release_resource(rtc->res);
617 err_badres:
618 kfree(rtc);
620 return ret;
623 static int __devexit sh_rtc_remove(struct platform_device *pdev)
625 struct sh_rtc *rtc = platform_get_drvdata(pdev);
627 if (likely(rtc->rtc_dev))
628 rtc_device_unregister(rtc->rtc_dev);
630 sh_rtc_setpie(&pdev->dev, 0);
631 sh_rtc_setaie(&pdev->dev, 0);
633 release_resource(rtc->res);
635 platform_set_drvdata(pdev, NULL);
637 kfree(rtc);
639 return 0;
641 static struct platform_driver sh_rtc_platform_driver = {
642 .driver = {
643 .name = DRV_NAME,
644 .owner = THIS_MODULE,
646 .probe = sh_rtc_probe,
647 .remove = __devexit_p(sh_rtc_remove),
650 static int __init sh_rtc_init(void)
652 return platform_driver_register(&sh_rtc_platform_driver);
655 static void __exit sh_rtc_exit(void)
657 platform_driver_unregister(&sh_rtc_platform_driver);
660 module_init(sh_rtc_init);
661 module_exit(sh_rtc_exit);
663 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
664 MODULE_VERSION(DRV_VERSION);
665 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
666 MODULE_LICENSE("GPL");