iwlwifi: introduce host commands callbacks
[linux/fpc-iii.git] / drivers / usb / mon / mon_bin.c
blob1774ba5c4c3bf8944118d7b13c944f07370a1529
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
4 * This is a binary format reader.
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
19 #include <asm/uaccess.h>
21 #include "usb_mon.h"
24 * Defined by USB 2.0 clause 9.3, table 9.2.
26 #define SETUP_LEN 8
28 /* ioctl macros */
29 #define MON_IOC_MAGIC 0x92
31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
39 #ifdef CONFIG_COMPAT
40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
42 #endif
45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
46 * But it's all right. Just use a simple way to make sure the chunk is never
47 * smaller than a page.
49 * N.B. An application does not know our chunk size.
51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
52 * page-sized chunks for the time being.
54 #define CHUNK_SIZE PAGE_SIZE
55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
58 * The magic limit was calculated so that it allows the monitoring
59 * application to pick data once in two ticks. This way, another application,
60 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
62 * enormous overhead built into the bus protocol, so we need about 1000 KB.
64 * This is still too much for most cases, where we just snoop a few
65 * descriptor fetches for enumeration. So, the default is a "reasonable"
66 * amount for systems with HZ=250 and incomplete bus saturation.
68 * XXX What about multi-megabyte URBs which take minutes to transfer?
70 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
71 #define BUFF_DFL CHUNK_ALIGN(300*1024)
72 #define BUFF_MIN CHUNK_ALIGN(8*1024)
75 * The per-event API header (2 per URB).
77 * This structure is seen in userland as defined by the documentation.
79 struct mon_bin_hdr {
80 u64 id; /* URB ID - from submission to callback */
81 unsigned char type; /* Same as in text API; extensible. */
82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
83 unsigned char epnum; /* Endpoint number and transfer direction */
84 unsigned char devnum; /* Device address */
85 unsigned short busnum; /* Bus number */
86 char flag_setup;
87 char flag_data;
88 s64 ts_sec; /* gettimeofday */
89 s32 ts_usec; /* gettimeofday */
90 int status;
91 unsigned int len_urb; /* Length of data (submitted or actual) */
92 unsigned int len_cap; /* Delivered length */
93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
96 /* per file statistic */
97 struct mon_bin_stats {
98 u32 queued;
99 u32 dropped;
102 struct mon_bin_get {
103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
104 void __user *data;
105 size_t alloc; /* Length of data (can be zero) */
108 struct mon_bin_mfetch {
109 u32 __user *offvec; /* Vector of events fetched */
110 u32 nfetch; /* Number of events to fetch (out: fetched) */
111 u32 nflush; /* Number of events to flush */
114 #ifdef CONFIG_COMPAT
115 struct mon_bin_get32 {
116 u32 hdr32;
117 u32 data32;
118 u32 alloc32;
121 struct mon_bin_mfetch32 {
122 u32 offvec32;
123 u32 nfetch32;
124 u32 nflush32;
126 #endif
128 /* Having these two values same prevents wrapping of the mon_bin_hdr */
129 #define PKT_ALIGN 64
130 #define PKT_SIZE 64
132 /* max number of USB bus supported */
133 #define MON_BIN_MAX_MINOR 128
136 * The buffer: map of used pages.
138 struct mon_pgmap {
139 struct page *pg;
140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
144 * This gets associated with an open file struct.
146 struct mon_reader_bin {
147 /* The buffer: one per open. */
148 spinlock_t b_lock; /* Protect b_cnt, b_in */
149 unsigned int b_size; /* Current size of the buffer - bytes */
150 unsigned int b_cnt; /* Bytes used */
151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
152 unsigned int b_read; /* Amount of read data in curr. pkt. */
153 struct mon_pgmap *b_vec; /* The map array */
154 wait_queue_head_t b_wait; /* Wait for data here */
156 struct mutex fetch_lock; /* Protect b_read, b_out */
157 int mmap_active;
159 /* A list of these is needed for "bus 0". Some time later. */
160 struct mon_reader r;
162 /* Stats */
163 unsigned int cnt_lost;
166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
167 unsigned int offset)
169 return (struct mon_bin_hdr *)
170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
175 static unsigned char xfer_to_pipe[4] = {
176 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
179 static struct class *mon_bin_class;
180 static dev_t mon_bin_dev0;
181 static struct cdev mon_bin_cdev;
183 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
184 unsigned int offset, unsigned int size);
185 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
186 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
187 static void mon_free_buff(struct mon_pgmap *map, int npages);
190 * This is a "chunked memcpy". It does not manipulate any counters.
191 * But it returns the new offset for repeated application.
193 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
194 unsigned int off, const unsigned char *from, unsigned int length)
196 unsigned int step_len;
197 unsigned char *buf;
198 unsigned int in_page;
200 while (length) {
202 * Determine step_len.
204 step_len = length;
205 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
206 if (in_page < step_len)
207 step_len = in_page;
210 * Copy data and advance pointers.
212 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
213 memcpy(buf, from, step_len);
214 if ((off += step_len) >= this->b_size) off = 0;
215 from += step_len;
216 length -= step_len;
218 return off;
222 * This is a little worse than the above because it's "chunked copy_to_user".
223 * The return value is an error code, not an offset.
225 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
226 char __user *to, int length)
228 unsigned int step_len;
229 unsigned char *buf;
230 unsigned int in_page;
232 while (length) {
234 * Determine step_len.
236 step_len = length;
237 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
238 if (in_page < step_len)
239 step_len = in_page;
242 * Copy data and advance pointers.
244 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
245 if (copy_to_user(to, buf, step_len))
246 return -EINVAL;
247 if ((off += step_len) >= this->b_size) off = 0;
248 to += step_len;
249 length -= step_len;
251 return 0;
255 * Allocate an (aligned) area in the buffer.
256 * This is called under b_lock.
257 * Returns ~0 on failure.
259 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
260 unsigned int size)
262 unsigned int offset;
264 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
265 if (rp->b_cnt + size > rp->b_size)
266 return ~0;
267 offset = rp->b_in;
268 rp->b_cnt += size;
269 if ((rp->b_in += size) >= rp->b_size)
270 rp->b_in -= rp->b_size;
271 return offset;
275 * This is the same thing as mon_buff_area_alloc, only it does not allow
276 * buffers to wrap. This is needed by applications which pass references
277 * into mmap-ed buffers up their stacks (libpcap can do that).
279 * Currently, we always have the header stuck with the data, although
280 * it is not strictly speaking necessary.
282 * When a buffer would wrap, we place a filler packet to mark the space.
284 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
285 unsigned int size)
287 unsigned int offset;
288 unsigned int fill_size;
290 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
291 if (rp->b_cnt + size > rp->b_size)
292 return ~0;
293 if (rp->b_in + size > rp->b_size) {
295 * This would wrap. Find if we still have space after
296 * skipping to the end of the buffer. If we do, place
297 * a filler packet and allocate a new packet.
299 fill_size = rp->b_size - rp->b_in;
300 if (rp->b_cnt + size + fill_size > rp->b_size)
301 return ~0;
302 mon_buff_area_fill(rp, rp->b_in, fill_size);
304 offset = 0;
305 rp->b_in = size;
306 rp->b_cnt += size + fill_size;
307 } else if (rp->b_in + size == rp->b_size) {
308 offset = rp->b_in;
309 rp->b_in = 0;
310 rp->b_cnt += size;
311 } else {
312 offset = rp->b_in;
313 rp->b_in += size;
314 rp->b_cnt += size;
316 return offset;
320 * Return a few (kilo-)bytes to the head of the buffer.
321 * This is used if a DMA fetch fails.
323 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
326 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
327 rp->b_cnt -= size;
328 if (rp->b_in < size)
329 rp->b_in += rp->b_size;
330 rp->b_in -= size;
334 * This has to be called under both b_lock and fetch_lock, because
335 * it accesses both b_cnt and b_out.
337 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
340 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
341 rp->b_cnt -= size;
342 if ((rp->b_out += size) >= rp->b_size)
343 rp->b_out -= rp->b_size;
346 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
347 unsigned int offset, unsigned int size)
349 struct mon_bin_hdr *ep;
351 ep = MON_OFF2HDR(rp, offset);
352 memset(ep, 0, PKT_SIZE);
353 ep->type = '@';
354 ep->len_cap = size - PKT_SIZE;
357 static inline char mon_bin_get_setup(unsigned char *setupb,
358 const struct urb *urb, char ev_type)
361 if (!usb_endpoint_xfer_control(&urb->ep->desc) || ev_type != 'S')
362 return '-';
364 if (urb->setup_packet == NULL)
365 return 'Z';
367 memcpy(setupb, urb->setup_packet, SETUP_LEN);
368 return 0;
371 static char mon_bin_get_data(const struct mon_reader_bin *rp,
372 unsigned int offset, struct urb *urb, unsigned int length)
375 if (urb->dev->bus->uses_dma &&
376 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
377 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
378 return 0;
381 if (urb->transfer_buffer == NULL)
382 return 'Z';
384 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
385 return 0;
388 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
389 char ev_type, int status)
391 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
392 unsigned long flags;
393 struct timeval ts;
394 unsigned int urb_length;
395 unsigned int offset;
396 unsigned int length;
397 unsigned char dir;
398 struct mon_bin_hdr *ep;
399 char data_tag = 0;
401 do_gettimeofday(&ts);
403 spin_lock_irqsave(&rp->b_lock, flags);
406 * Find the maximum allowable length, then allocate space.
408 urb_length = (ev_type == 'S') ?
409 urb->transfer_buffer_length : urb->actual_length;
410 length = urb_length;
412 if (length >= rp->b_size/5)
413 length = rp->b_size/5;
415 if (usb_urb_dir_in(urb)) {
416 if (ev_type == 'S') {
417 length = 0;
418 data_tag = '<';
420 /* Cannot rely on endpoint number in case of control ep.0 */
421 dir = USB_DIR_IN;
422 } else {
423 if (ev_type == 'C') {
424 length = 0;
425 data_tag = '>';
427 dir = 0;
430 if (rp->mmap_active)
431 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
432 else
433 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
434 if (offset == ~0) {
435 rp->cnt_lost++;
436 spin_unlock_irqrestore(&rp->b_lock, flags);
437 return;
440 ep = MON_OFF2HDR(rp, offset);
441 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
444 * Fill the allocated area.
446 memset(ep, 0, PKT_SIZE);
447 ep->type = ev_type;
448 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
449 ep->epnum = dir | usb_endpoint_num(epd);
450 ep->devnum = urb->dev->devnum;
451 ep->busnum = urb->dev->bus->busnum;
452 ep->id = (unsigned long) urb;
453 ep->ts_sec = ts.tv_sec;
454 ep->ts_usec = ts.tv_usec;
455 ep->status = status;
456 ep->len_urb = urb_length;
457 ep->len_cap = length;
459 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
460 if (length != 0) {
461 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
462 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
463 ep->len_cap = 0;
464 mon_buff_area_shrink(rp, length);
466 } else {
467 ep->flag_data = data_tag;
470 spin_unlock_irqrestore(&rp->b_lock, flags);
472 wake_up(&rp->b_wait);
475 static void mon_bin_submit(void *data, struct urb *urb)
477 struct mon_reader_bin *rp = data;
478 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
481 static void mon_bin_complete(void *data, struct urb *urb, int status)
483 struct mon_reader_bin *rp = data;
484 mon_bin_event(rp, urb, 'C', status);
487 static void mon_bin_error(void *data, struct urb *urb, int error)
489 struct mon_reader_bin *rp = data;
490 unsigned long flags;
491 unsigned int offset;
492 struct mon_bin_hdr *ep;
494 spin_lock_irqsave(&rp->b_lock, flags);
496 offset = mon_buff_area_alloc(rp, PKT_SIZE);
497 if (offset == ~0) {
498 /* Not incrementing cnt_lost. Just because. */
499 spin_unlock_irqrestore(&rp->b_lock, flags);
500 return;
503 ep = MON_OFF2HDR(rp, offset);
505 memset(ep, 0, PKT_SIZE);
506 ep->type = 'E';
507 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
508 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
509 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
510 ep->devnum = urb->dev->devnum;
511 ep->busnum = urb->dev->bus->busnum;
512 ep->id = (unsigned long) urb;
513 ep->status = error;
515 ep->flag_setup = '-';
516 ep->flag_data = 'E';
518 spin_unlock_irqrestore(&rp->b_lock, flags);
520 wake_up(&rp->b_wait);
523 static int mon_bin_open(struct inode *inode, struct file *file)
525 struct mon_bus *mbus;
526 struct mon_reader_bin *rp;
527 size_t size;
528 int rc;
530 mutex_lock(&mon_lock);
531 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
532 mutex_unlock(&mon_lock);
533 return -ENODEV;
535 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
536 printk(KERN_ERR TAG ": consistency error on open\n");
537 mutex_unlock(&mon_lock);
538 return -ENODEV;
541 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
542 if (rp == NULL) {
543 rc = -ENOMEM;
544 goto err_alloc;
546 spin_lock_init(&rp->b_lock);
547 init_waitqueue_head(&rp->b_wait);
548 mutex_init(&rp->fetch_lock);
550 rp->b_size = BUFF_DFL;
552 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
553 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
554 rc = -ENOMEM;
555 goto err_allocvec;
558 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
559 goto err_allocbuff;
561 rp->r.m_bus = mbus;
562 rp->r.r_data = rp;
563 rp->r.rnf_submit = mon_bin_submit;
564 rp->r.rnf_error = mon_bin_error;
565 rp->r.rnf_complete = mon_bin_complete;
567 mon_reader_add(mbus, &rp->r);
569 file->private_data = rp;
570 mutex_unlock(&mon_lock);
571 return 0;
573 err_allocbuff:
574 kfree(rp->b_vec);
575 err_allocvec:
576 kfree(rp);
577 err_alloc:
578 mutex_unlock(&mon_lock);
579 return rc;
583 * Extract an event from buffer and copy it to user space.
584 * Wait if there is no event ready.
585 * Returns zero or error.
587 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
588 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
590 unsigned long flags;
591 struct mon_bin_hdr *ep;
592 size_t step_len;
593 unsigned int offset;
594 int rc;
596 mutex_lock(&rp->fetch_lock);
598 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
599 mutex_unlock(&rp->fetch_lock);
600 return rc;
603 ep = MON_OFF2HDR(rp, rp->b_out);
605 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
606 mutex_unlock(&rp->fetch_lock);
607 return -EFAULT;
610 step_len = min(ep->len_cap, nbytes);
611 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
613 if (copy_from_buf(rp, offset, data, step_len)) {
614 mutex_unlock(&rp->fetch_lock);
615 return -EFAULT;
618 spin_lock_irqsave(&rp->b_lock, flags);
619 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
620 spin_unlock_irqrestore(&rp->b_lock, flags);
621 rp->b_read = 0;
623 mutex_unlock(&rp->fetch_lock);
624 return 0;
627 static int mon_bin_release(struct inode *inode, struct file *file)
629 struct mon_reader_bin *rp = file->private_data;
630 struct mon_bus* mbus = rp->r.m_bus;
632 mutex_lock(&mon_lock);
634 if (mbus->nreaders <= 0) {
635 printk(KERN_ERR TAG ": consistency error on close\n");
636 mutex_unlock(&mon_lock);
637 return 0;
639 mon_reader_del(mbus, &rp->r);
641 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
642 kfree(rp->b_vec);
643 kfree(rp);
645 mutex_unlock(&mon_lock);
646 return 0;
649 static ssize_t mon_bin_read(struct file *file, char __user *buf,
650 size_t nbytes, loff_t *ppos)
652 struct mon_reader_bin *rp = file->private_data;
653 unsigned long flags;
654 struct mon_bin_hdr *ep;
655 unsigned int offset;
656 size_t step_len;
657 char *ptr;
658 ssize_t done = 0;
659 int rc;
661 mutex_lock(&rp->fetch_lock);
663 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
664 mutex_unlock(&rp->fetch_lock);
665 return rc;
668 ep = MON_OFF2HDR(rp, rp->b_out);
670 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
671 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
672 ptr = ((char *)ep) + rp->b_read;
673 if (step_len && copy_to_user(buf, ptr, step_len)) {
674 mutex_unlock(&rp->fetch_lock);
675 return -EFAULT;
677 nbytes -= step_len;
678 buf += step_len;
679 rp->b_read += step_len;
680 done += step_len;
683 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
684 step_len = min(nbytes, (size_t)ep->len_cap);
685 offset = rp->b_out + PKT_SIZE;
686 offset += rp->b_read - sizeof(struct mon_bin_hdr);
687 if (offset >= rp->b_size)
688 offset -= rp->b_size;
689 if (copy_from_buf(rp, offset, buf, step_len)) {
690 mutex_unlock(&rp->fetch_lock);
691 return -EFAULT;
693 nbytes -= step_len;
694 buf += step_len;
695 rp->b_read += step_len;
696 done += step_len;
700 * Check if whole packet was read, and if so, jump to the next one.
702 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
703 spin_lock_irqsave(&rp->b_lock, flags);
704 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
705 spin_unlock_irqrestore(&rp->b_lock, flags);
706 rp->b_read = 0;
709 mutex_unlock(&rp->fetch_lock);
710 return done;
714 * Remove at most nevents from chunked buffer.
715 * Returns the number of removed events.
717 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
719 unsigned long flags;
720 struct mon_bin_hdr *ep;
721 int i;
723 mutex_lock(&rp->fetch_lock);
724 spin_lock_irqsave(&rp->b_lock, flags);
725 for (i = 0; i < nevents; ++i) {
726 if (MON_RING_EMPTY(rp))
727 break;
729 ep = MON_OFF2HDR(rp, rp->b_out);
730 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
732 spin_unlock_irqrestore(&rp->b_lock, flags);
733 rp->b_read = 0;
734 mutex_unlock(&rp->fetch_lock);
735 return i;
739 * Fetch at most max event offsets into the buffer and put them into vec.
740 * The events are usually freed later with mon_bin_flush.
741 * Return the effective number of events fetched.
743 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
744 u32 __user *vec, unsigned int max)
746 unsigned int cur_out;
747 unsigned int bytes, avail;
748 unsigned int size;
749 unsigned int nevents;
750 struct mon_bin_hdr *ep;
751 unsigned long flags;
752 int rc;
754 mutex_lock(&rp->fetch_lock);
756 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
757 mutex_unlock(&rp->fetch_lock);
758 return rc;
761 spin_lock_irqsave(&rp->b_lock, flags);
762 avail = rp->b_cnt;
763 spin_unlock_irqrestore(&rp->b_lock, flags);
765 cur_out = rp->b_out;
766 nevents = 0;
767 bytes = 0;
768 while (bytes < avail) {
769 if (nevents >= max)
770 break;
772 ep = MON_OFF2HDR(rp, cur_out);
773 if (put_user(cur_out, &vec[nevents])) {
774 mutex_unlock(&rp->fetch_lock);
775 return -EFAULT;
778 nevents++;
779 size = ep->len_cap + PKT_SIZE;
780 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
781 if ((cur_out += size) >= rp->b_size)
782 cur_out -= rp->b_size;
783 bytes += size;
786 mutex_unlock(&rp->fetch_lock);
787 return nevents;
791 * Count events. This is almost the same as the above mon_bin_fetch,
792 * only we do not store offsets into user vector, and we have no limit.
794 static int mon_bin_queued(struct mon_reader_bin *rp)
796 unsigned int cur_out;
797 unsigned int bytes, avail;
798 unsigned int size;
799 unsigned int nevents;
800 struct mon_bin_hdr *ep;
801 unsigned long flags;
803 mutex_lock(&rp->fetch_lock);
805 spin_lock_irqsave(&rp->b_lock, flags);
806 avail = rp->b_cnt;
807 spin_unlock_irqrestore(&rp->b_lock, flags);
809 cur_out = rp->b_out;
810 nevents = 0;
811 bytes = 0;
812 while (bytes < avail) {
813 ep = MON_OFF2HDR(rp, cur_out);
815 nevents++;
816 size = ep->len_cap + PKT_SIZE;
817 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
818 if ((cur_out += size) >= rp->b_size)
819 cur_out -= rp->b_size;
820 bytes += size;
823 mutex_unlock(&rp->fetch_lock);
824 return nevents;
829 static int mon_bin_ioctl(struct inode *inode, struct file *file,
830 unsigned int cmd, unsigned long arg)
832 struct mon_reader_bin *rp = file->private_data;
833 // struct mon_bus* mbus = rp->r.m_bus;
834 int ret = 0;
835 struct mon_bin_hdr *ep;
836 unsigned long flags;
838 switch (cmd) {
840 case MON_IOCQ_URB_LEN:
842 * N.B. This only returns the size of data, without the header.
844 spin_lock_irqsave(&rp->b_lock, flags);
845 if (!MON_RING_EMPTY(rp)) {
846 ep = MON_OFF2HDR(rp, rp->b_out);
847 ret = ep->len_cap;
849 spin_unlock_irqrestore(&rp->b_lock, flags);
850 break;
852 case MON_IOCQ_RING_SIZE:
853 ret = rp->b_size;
854 break;
856 case MON_IOCT_RING_SIZE:
858 * Changing the buffer size will flush it's contents; the new
859 * buffer is allocated before releasing the old one to be sure
860 * the device will stay functional also in case of memory
861 * pressure.
864 int size;
865 struct mon_pgmap *vec;
867 if (arg < BUFF_MIN || arg > BUFF_MAX)
868 return -EINVAL;
870 size = CHUNK_ALIGN(arg);
871 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
872 GFP_KERNEL)) == NULL) {
873 ret = -ENOMEM;
874 break;
877 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
878 if (ret < 0) {
879 kfree(vec);
880 break;
883 mutex_lock(&rp->fetch_lock);
884 spin_lock_irqsave(&rp->b_lock, flags);
885 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
886 kfree(rp->b_vec);
887 rp->b_vec = vec;
888 rp->b_size = size;
889 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
890 rp->cnt_lost = 0;
891 spin_unlock_irqrestore(&rp->b_lock, flags);
892 mutex_unlock(&rp->fetch_lock);
894 break;
896 case MON_IOCH_MFLUSH:
897 ret = mon_bin_flush(rp, arg);
898 break;
900 case MON_IOCX_GET:
902 struct mon_bin_get getb;
904 if (copy_from_user(&getb, (void __user *)arg,
905 sizeof(struct mon_bin_get)))
906 return -EFAULT;
908 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
909 return -EINVAL;
910 ret = mon_bin_get_event(file, rp,
911 getb.hdr, getb.data, (unsigned int)getb.alloc);
913 break;
915 #ifdef CONFIG_COMPAT
916 case MON_IOCX_GET32: {
917 struct mon_bin_get32 getb;
919 if (copy_from_user(&getb, (void __user *)arg,
920 sizeof(struct mon_bin_get32)))
921 return -EFAULT;
923 ret = mon_bin_get_event(file, rp,
924 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
925 getb.alloc32);
927 break;
928 #endif
930 case MON_IOCX_MFETCH:
932 struct mon_bin_mfetch mfetch;
933 struct mon_bin_mfetch __user *uptr;
935 uptr = (struct mon_bin_mfetch __user *)arg;
937 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
938 return -EFAULT;
940 if (mfetch.nflush) {
941 ret = mon_bin_flush(rp, mfetch.nflush);
942 if (ret < 0)
943 return ret;
944 if (put_user(ret, &uptr->nflush))
945 return -EFAULT;
947 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
948 if (ret < 0)
949 return ret;
950 if (put_user(ret, &uptr->nfetch))
951 return -EFAULT;
952 ret = 0;
954 break;
956 #ifdef CONFIG_COMPAT
957 case MON_IOCX_MFETCH32:
959 struct mon_bin_mfetch32 mfetch;
960 struct mon_bin_mfetch32 __user *uptr;
962 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
964 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
965 return -EFAULT;
967 if (mfetch.nflush32) {
968 ret = mon_bin_flush(rp, mfetch.nflush32);
969 if (ret < 0)
970 return ret;
971 if (put_user(ret, &uptr->nflush32))
972 return -EFAULT;
974 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
975 mfetch.nfetch32);
976 if (ret < 0)
977 return ret;
978 if (put_user(ret, &uptr->nfetch32))
979 return -EFAULT;
980 ret = 0;
982 break;
983 #endif
985 case MON_IOCG_STATS: {
986 struct mon_bin_stats __user *sp;
987 unsigned int nevents;
988 unsigned int ndropped;
990 spin_lock_irqsave(&rp->b_lock, flags);
991 ndropped = rp->cnt_lost;
992 rp->cnt_lost = 0;
993 spin_unlock_irqrestore(&rp->b_lock, flags);
994 nevents = mon_bin_queued(rp);
996 sp = (struct mon_bin_stats __user *)arg;
997 if (put_user(rp->cnt_lost, &sp->dropped))
998 return -EFAULT;
999 if (put_user(nevents, &sp->queued))
1000 return -EFAULT;
1003 break;
1005 default:
1006 return -ENOTTY;
1009 return ret;
1012 static unsigned int
1013 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1015 struct mon_reader_bin *rp = file->private_data;
1016 unsigned int mask = 0;
1017 unsigned long flags;
1019 if (file->f_mode & FMODE_READ)
1020 poll_wait(file, &rp->b_wait, wait);
1022 spin_lock_irqsave(&rp->b_lock, flags);
1023 if (!MON_RING_EMPTY(rp))
1024 mask |= POLLIN | POLLRDNORM; /* readable */
1025 spin_unlock_irqrestore(&rp->b_lock, flags);
1026 return mask;
1029 #if 0
1032 * open and close: just keep track of how many times the device is
1033 * mapped, to use the proper memory allocation function.
1035 static void mon_bin_vma_open(struct vm_area_struct *vma)
1037 struct mon_reader_bin *rp = vma->vm_private_data;
1038 rp->mmap_active++;
1041 static void mon_bin_vma_close(struct vm_area_struct *vma)
1043 struct mon_reader_bin *rp = vma->vm_private_data;
1044 rp->mmap_active--;
1048 * Map ring pages to user space.
1050 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1052 struct mon_reader_bin *rp = vma->vm_private_data;
1053 unsigned long offset, chunk_idx;
1054 struct page *pageptr;
1056 offset = vmf->pgoff << PAGE_SHIFT;
1057 if (offset >= rp->b_size)
1058 return VM_FAULT_SIGBUS;
1059 chunk_idx = offset / CHUNK_SIZE;
1060 pageptr = rp->b_vec[chunk_idx].pg;
1061 get_page(pageptr);
1062 vmf->page = pageptr;
1063 return 0;
1066 struct vm_operations_struct mon_bin_vm_ops = {
1067 .open = mon_bin_vma_open,
1068 .close = mon_bin_vma_close,
1069 .fault = mon_bin_vma_fault,
1072 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1074 /* don't do anything here: "fault" will set up page table entries */
1075 vma->vm_ops = &mon_bin_vm_ops;
1076 vma->vm_flags |= VM_RESERVED;
1077 vma->vm_private_data = filp->private_data;
1078 mon_bin_vma_open(vma);
1079 return 0;
1082 #endif /* 0 */
1084 static const struct file_operations mon_fops_binary = {
1085 .owner = THIS_MODULE,
1086 .open = mon_bin_open,
1087 .llseek = no_llseek,
1088 .read = mon_bin_read,
1089 /* .write = mon_text_write, */
1090 .poll = mon_bin_poll,
1091 .ioctl = mon_bin_ioctl,
1092 .release = mon_bin_release,
1095 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1097 DECLARE_WAITQUEUE(waita, current);
1098 unsigned long flags;
1100 add_wait_queue(&rp->b_wait, &waita);
1101 set_current_state(TASK_INTERRUPTIBLE);
1103 spin_lock_irqsave(&rp->b_lock, flags);
1104 while (MON_RING_EMPTY(rp)) {
1105 spin_unlock_irqrestore(&rp->b_lock, flags);
1107 if (file->f_flags & O_NONBLOCK) {
1108 set_current_state(TASK_RUNNING);
1109 remove_wait_queue(&rp->b_wait, &waita);
1110 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1112 schedule();
1113 if (signal_pending(current)) {
1114 remove_wait_queue(&rp->b_wait, &waita);
1115 return -EINTR;
1117 set_current_state(TASK_INTERRUPTIBLE);
1119 spin_lock_irqsave(&rp->b_lock, flags);
1121 spin_unlock_irqrestore(&rp->b_lock, flags);
1123 set_current_state(TASK_RUNNING);
1124 remove_wait_queue(&rp->b_wait, &waita);
1125 return 0;
1128 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1130 int n;
1131 unsigned long vaddr;
1133 for (n = 0; n < npages; n++) {
1134 vaddr = get_zeroed_page(GFP_KERNEL);
1135 if (vaddr == 0) {
1136 while (n-- != 0)
1137 free_page((unsigned long) map[n].ptr);
1138 return -ENOMEM;
1140 map[n].ptr = (unsigned char *) vaddr;
1141 map[n].pg = virt_to_page(vaddr);
1143 return 0;
1146 static void mon_free_buff(struct mon_pgmap *map, int npages)
1148 int n;
1150 for (n = 0; n < npages; n++)
1151 free_page((unsigned long) map[n].ptr);
1154 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1156 struct device *dev;
1157 unsigned minor = ubus? ubus->busnum: 0;
1159 if (minor >= MON_BIN_MAX_MINOR)
1160 return 0;
1162 dev = device_create(mon_bin_class, ubus? ubus->controller: NULL,
1163 MKDEV(MAJOR(mon_bin_dev0), minor), "usbmon%d", minor);
1164 if (IS_ERR(dev))
1165 return 0;
1167 mbus->classdev = dev;
1168 return 1;
1171 void mon_bin_del(struct mon_bus *mbus)
1173 device_destroy(mon_bin_class, mbus->classdev->devt);
1176 int __init mon_bin_init(void)
1178 int rc;
1180 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1181 if (IS_ERR(mon_bin_class)) {
1182 rc = PTR_ERR(mon_bin_class);
1183 goto err_class;
1186 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1187 if (rc < 0)
1188 goto err_dev;
1190 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1191 mon_bin_cdev.owner = THIS_MODULE;
1193 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1194 if (rc < 0)
1195 goto err_add;
1197 return 0;
1199 err_add:
1200 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1201 err_dev:
1202 class_destroy(mon_bin_class);
1203 err_class:
1204 return rc;
1207 void mon_bin_exit(void)
1209 cdev_del(&mon_bin_cdev);
1210 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1211 class_destroy(mon_bin_class);