1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
33 #define DRV_MODULE_NAME "n2_crypto"
34 #define DRV_MODULE_VERSION "0.2"
35 #define DRV_MODULE_RELDATE "July 28, 2011"
37 static const char version
[] =
38 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION
);
45 #define N2_CRA_PRIORITY 200
47 static DEFINE_MUTEX(spu_lock
);
51 unsigned long qhandle
;
58 struct list_head jobs
;
65 struct list_head list
;
69 struct spu_queue
*queue
;
73 static struct spu_queue
**cpu_to_cwq
;
74 static struct spu_queue
**cpu_to_mau
;
76 static unsigned long spu_next_offset(struct spu_queue
*q
, unsigned long off
)
78 if (q
->q_type
== HV_NCS_QTYPE_MAU
) {
79 off
+= MAU_ENTRY_SIZE
;
80 if (off
== (MAU_ENTRY_SIZE
* MAU_NUM_ENTRIES
))
83 off
+= CWQ_ENTRY_SIZE
;
84 if (off
== (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
))
90 struct n2_request_common
{
91 struct list_head entry
;
94 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
96 /* An async job request records the final tail value it used in
97 * n2_request_common->offset, test to see if that offset is in
98 * the range old_head, new_head, inclusive.
100 static inline bool job_finished(struct spu_queue
*q
, unsigned int offset
,
101 unsigned long old_head
, unsigned long new_head
)
103 if (old_head
<= new_head
) {
104 if (offset
> old_head
&& offset
<= new_head
)
107 if (offset
> old_head
|| offset
<= new_head
)
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114 * a virtual device INO interrupt. We should process the
115 * completed CWQ entries and adjust the HEAD marker to clear
118 static irqreturn_t
cwq_intr(int irq
, void *dev_id
)
120 unsigned long off
, new_head
, hv_ret
;
121 struct spu_queue
*q
= dev_id
;
123 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 smp_processor_id(), q
->qhandle
);
128 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &new_head
);
130 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 smp_processor_id(), new_head
, hv_ret
);
133 for (off
= q
->head
; off
!= new_head
; off
= spu_next_offset(q
, off
)) {
137 hv_ret
= sun4v_ncs_sethead_marker(q
->qhandle
, new_head
);
138 if (hv_ret
== HV_EOK
)
141 spin_unlock(&q
->lock
);
146 static irqreturn_t
mau_intr(int irq
, void *dev_id
)
148 struct spu_queue
*q
= dev_id
;
149 unsigned long head
, hv_ret
;
153 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 smp_processor_id(), q
->qhandle
);
156 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &head
);
158 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 smp_processor_id(), head
, hv_ret
);
161 sun4v_ncs_sethead_marker(q
->qhandle
, head
);
163 spin_unlock(&q
->lock
);
168 static void *spu_queue_next(struct spu_queue
*q
, void *cur
)
170 return q
->q
+ spu_next_offset(q
, cur
- q
->q
);
173 static int spu_queue_num_free(struct spu_queue
*q
)
175 unsigned long head
= q
->head
;
176 unsigned long tail
= q
->tail
;
177 unsigned long end
= (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
);
183 diff
= (end
- tail
) + head
;
185 return (diff
/ CWQ_ENTRY_SIZE
) - 1;
188 static void *spu_queue_alloc(struct spu_queue
*q
, int num_entries
)
190 int avail
= spu_queue_num_free(q
);
192 if (avail
>= num_entries
)
193 return q
->q
+ q
->tail
;
198 static unsigned long spu_queue_submit(struct spu_queue
*q
, void *last
)
200 unsigned long hv_ret
, new_tail
;
202 new_tail
= spu_next_offset(q
, last
- q
->q
);
204 hv_ret
= sun4v_ncs_settail(q
->qhandle
, new_tail
);
205 if (hv_ret
== HV_EOK
)
210 static u64
control_word_base(unsigned int len
, unsigned int hmac_key_len
,
211 int enc_type
, int auth_type
,
212 unsigned int hash_len
,
213 bool sfas
, bool sob
, bool eob
, bool encrypt
,
216 u64 word
= (len
- 1) & CONTROL_LEN
;
218 word
|= ((u64
) opcode
<< CONTROL_OPCODE_SHIFT
);
219 word
|= ((u64
) enc_type
<< CONTROL_ENC_TYPE_SHIFT
);
220 word
|= ((u64
) auth_type
<< CONTROL_AUTH_TYPE_SHIFT
);
222 word
|= CONTROL_STORE_FINAL_AUTH_STATE
;
224 word
|= CONTROL_START_OF_BLOCK
;
226 word
|= CONTROL_END_OF_BLOCK
;
228 word
|= CONTROL_ENCRYPT
;
230 word
|= ((u64
) (hmac_key_len
- 1)) << CONTROL_HMAC_KEY_LEN_SHIFT
;
232 word
|= ((u64
) (hash_len
- 1)) << CONTROL_HASH_LEN_SHIFT
;
238 static inline bool n2_should_run_async(struct spu_queue
*qp
, int this_len
)
240 if (this_len
>= 64 ||
241 qp
->head
!= qp
->tail
)
247 struct n2_ahash_alg
{
248 struct list_head entry
;
250 const u32
*hash_init
;
255 struct ahash_alg alg
;
258 static inline struct n2_ahash_alg
*n2_ahash_alg(struct crypto_tfm
*tfm
)
260 struct crypto_alg
*alg
= tfm
->__crt_alg
;
261 struct ahash_alg
*ahash_alg
;
263 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
265 return container_of(ahash_alg
, struct n2_ahash_alg
, alg
);
269 const char *child_alg
;
270 struct n2_ahash_alg derived
;
273 static inline struct n2_hmac_alg
*n2_hmac_alg(struct crypto_tfm
*tfm
)
275 struct crypto_alg
*alg
= tfm
->__crt_alg
;
276 struct ahash_alg
*ahash_alg
;
278 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
280 return container_of(ahash_alg
, struct n2_hmac_alg
, derived
.alg
);
284 struct crypto_ahash
*fallback_tfm
;
287 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
290 struct n2_hash_ctx base
;
292 struct crypto_shash
*child_shash
;
295 unsigned char hash_key
[N2_HASH_KEY_MAX
];
298 struct n2_hash_req_ctx
{
300 struct md5_state md5
;
301 struct sha1_state sha1
;
302 struct sha256_state sha256
;
305 struct ahash_request fallback_req
;
308 static int n2_hash_async_init(struct ahash_request
*req
)
310 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
311 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
312 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
314 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
315 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
317 return crypto_ahash_init(&rctx
->fallback_req
);
320 static int n2_hash_async_update(struct ahash_request
*req
)
322 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
323 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
324 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
326 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
327 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
328 rctx
->fallback_req
.nbytes
= req
->nbytes
;
329 rctx
->fallback_req
.src
= req
->src
;
331 return crypto_ahash_update(&rctx
->fallback_req
);
334 static int n2_hash_async_final(struct ahash_request
*req
)
336 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
337 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
338 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
340 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
341 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
342 rctx
->fallback_req
.result
= req
->result
;
344 return crypto_ahash_final(&rctx
->fallback_req
);
347 static int n2_hash_async_finup(struct ahash_request
*req
)
349 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
350 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
351 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
353 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
354 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
355 rctx
->fallback_req
.nbytes
= req
->nbytes
;
356 rctx
->fallback_req
.src
= req
->src
;
357 rctx
->fallback_req
.result
= req
->result
;
359 return crypto_ahash_finup(&rctx
->fallback_req
);
362 static int n2_hash_async_noimport(struct ahash_request
*req
, const void *in
)
367 static int n2_hash_async_noexport(struct ahash_request
*req
, void *out
)
372 static int n2_hash_cra_init(struct crypto_tfm
*tfm
)
374 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
375 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
376 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
377 struct crypto_ahash
*fallback_tfm
;
380 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
381 CRYPTO_ALG_NEED_FALLBACK
);
382 if (IS_ERR(fallback_tfm
)) {
383 pr_warning("Fallback driver '%s' could not be loaded!\n",
384 fallback_driver_name
);
385 err
= PTR_ERR(fallback_tfm
);
389 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
390 crypto_ahash_reqsize(fallback_tfm
)));
392 ctx
->fallback_tfm
= fallback_tfm
;
399 static void n2_hash_cra_exit(struct crypto_tfm
*tfm
)
401 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
402 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
404 crypto_free_ahash(ctx
->fallback_tfm
);
407 static int n2_hmac_cra_init(struct crypto_tfm
*tfm
)
409 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
410 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
411 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
412 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(tfm
);
413 struct crypto_ahash
*fallback_tfm
;
414 struct crypto_shash
*child_shash
;
417 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
418 CRYPTO_ALG_NEED_FALLBACK
);
419 if (IS_ERR(fallback_tfm
)) {
420 pr_warning("Fallback driver '%s' could not be loaded!\n",
421 fallback_driver_name
);
422 err
= PTR_ERR(fallback_tfm
);
426 child_shash
= crypto_alloc_shash(n2alg
->child_alg
, 0, 0);
427 if (IS_ERR(child_shash
)) {
428 pr_warning("Child shash '%s' could not be loaded!\n",
430 err
= PTR_ERR(child_shash
);
431 goto out_free_fallback
;
434 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
435 crypto_ahash_reqsize(fallback_tfm
)));
437 ctx
->child_shash
= child_shash
;
438 ctx
->base
.fallback_tfm
= fallback_tfm
;
442 crypto_free_ahash(fallback_tfm
);
448 static void n2_hmac_cra_exit(struct crypto_tfm
*tfm
)
450 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
451 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
453 crypto_free_ahash(ctx
->base
.fallback_tfm
);
454 crypto_free_shash(ctx
->child_shash
);
457 static int n2_hmac_async_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
460 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
461 struct crypto_shash
*child_shash
= ctx
->child_shash
;
462 struct crypto_ahash
*fallback_tfm
;
463 SHASH_DESC_ON_STACK(shash
, child_shash
);
466 fallback_tfm
= ctx
->base
.fallback_tfm
;
467 err
= crypto_ahash_setkey(fallback_tfm
, key
, keylen
);
471 shash
->tfm
= child_shash
;
472 shash
->flags
= crypto_ahash_get_flags(tfm
) &
473 CRYPTO_TFM_REQ_MAY_SLEEP
;
475 bs
= crypto_shash_blocksize(child_shash
);
476 ds
= crypto_shash_digestsize(child_shash
);
477 BUG_ON(ds
> N2_HASH_KEY_MAX
);
479 err
= crypto_shash_digest(shash
, key
, keylen
,
484 } else if (keylen
<= N2_HASH_KEY_MAX
)
485 memcpy(ctx
->hash_key
, key
, keylen
);
487 ctx
->hash_key_len
= keylen
;
492 static unsigned long wait_for_tail(struct spu_queue
*qp
)
494 unsigned long head
, hv_ret
;
497 hv_ret
= sun4v_ncs_gethead(qp
->qhandle
, &head
);
498 if (hv_ret
!= HV_EOK
) {
499 pr_err("Hypervisor error on gethead\n");
502 if (head
== qp
->tail
) {
510 static unsigned long submit_and_wait_for_tail(struct spu_queue
*qp
,
511 struct cwq_initial_entry
*ent
)
513 unsigned long hv_ret
= spu_queue_submit(qp
, ent
);
515 if (hv_ret
== HV_EOK
)
516 hv_ret
= wait_for_tail(qp
);
521 static int n2_do_async_digest(struct ahash_request
*req
,
522 unsigned int auth_type
, unsigned int digest_size
,
523 unsigned int result_size
, void *hash_loc
,
524 unsigned long auth_key
, unsigned int auth_key_len
)
526 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
527 struct cwq_initial_entry
*ent
;
528 struct crypto_hash_walk walk
;
529 struct spu_queue
*qp
;
534 /* The total effective length of the operation may not
537 if (unlikely(req
->nbytes
> (1 << 16))) {
538 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
539 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
541 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
542 rctx
->fallback_req
.base
.flags
=
543 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
544 rctx
->fallback_req
.nbytes
= req
->nbytes
;
545 rctx
->fallback_req
.src
= req
->src
;
546 rctx
->fallback_req
.result
= req
->result
;
548 return crypto_ahash_digest(&rctx
->fallback_req
);
551 nbytes
= crypto_hash_walk_first(req
, &walk
);
554 qp
= cpu_to_cwq
[cpu
];
558 spin_lock_irqsave(&qp
->lock
, flags
);
560 /* XXX can do better, improve this later by doing a by-hand scatterlist
563 ent
= qp
->q
+ qp
->tail
;
565 ent
->control
= control_word_base(nbytes
, auth_key_len
, 0,
566 auth_type
, digest_size
,
567 false, true, false, false,
570 ent
->src_addr
= __pa(walk
.data
);
571 ent
->auth_key_addr
= auth_key
;
572 ent
->auth_iv_addr
= __pa(hash_loc
);
573 ent
->final_auth_state_addr
= 0UL;
574 ent
->enc_key_addr
= 0UL;
575 ent
->enc_iv_addr
= 0UL;
576 ent
->dest_addr
= __pa(hash_loc
);
578 nbytes
= crypto_hash_walk_done(&walk
, 0);
580 ent
= spu_queue_next(qp
, ent
);
582 ent
->control
= (nbytes
- 1);
583 ent
->src_addr
= __pa(walk
.data
);
584 ent
->auth_key_addr
= 0UL;
585 ent
->auth_iv_addr
= 0UL;
586 ent
->final_auth_state_addr
= 0UL;
587 ent
->enc_key_addr
= 0UL;
588 ent
->enc_iv_addr
= 0UL;
589 ent
->dest_addr
= 0UL;
591 nbytes
= crypto_hash_walk_done(&walk
, 0);
593 ent
->control
|= CONTROL_END_OF_BLOCK
;
595 if (submit_and_wait_for_tail(qp
, ent
) != HV_EOK
)
600 spin_unlock_irqrestore(&qp
->lock
, flags
);
603 memcpy(req
->result
, hash_loc
, result_size
);
610 static int n2_hash_async_digest(struct ahash_request
*req
)
612 struct n2_ahash_alg
*n2alg
= n2_ahash_alg(req
->base
.tfm
);
613 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
616 ds
= n2alg
->digest_size
;
617 if (unlikely(req
->nbytes
== 0)) {
618 memcpy(req
->result
, n2alg
->hash_zero
, ds
);
621 memcpy(&rctx
->u
, n2alg
->hash_init
, n2alg
->hw_op_hashsz
);
623 return n2_do_async_digest(req
, n2alg
->auth_type
,
624 n2alg
->hw_op_hashsz
, ds
,
628 static int n2_hmac_async_digest(struct ahash_request
*req
)
630 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(req
->base
.tfm
);
631 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
632 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
633 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
636 ds
= n2alg
->derived
.digest_size
;
637 if (unlikely(req
->nbytes
== 0) ||
638 unlikely(ctx
->hash_key_len
> N2_HASH_KEY_MAX
)) {
639 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
640 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
642 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
643 rctx
->fallback_req
.base
.flags
=
644 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
645 rctx
->fallback_req
.nbytes
= req
->nbytes
;
646 rctx
->fallback_req
.src
= req
->src
;
647 rctx
->fallback_req
.result
= req
->result
;
649 return crypto_ahash_digest(&rctx
->fallback_req
);
651 memcpy(&rctx
->u
, n2alg
->derived
.hash_init
,
652 n2alg
->derived
.hw_op_hashsz
);
654 return n2_do_async_digest(req
, n2alg
->derived
.hmac_type
,
655 n2alg
->derived
.hw_op_hashsz
, ds
,
657 __pa(&ctx
->hash_key
),
661 struct n2_cipher_context
{
665 u8 aes
[AES_MAX_KEY_SIZE
];
666 u8 des
[DES_KEY_SIZE
];
667 u8 des3
[3 * DES_KEY_SIZE
];
668 u8 arc4
[258]; /* S-box, X, Y */
672 #define N2_CHUNK_ARR_LEN 16
674 struct n2_crypto_chunk
{
675 struct list_head entry
;
676 unsigned long iv_paddr
: 44;
677 unsigned long arr_len
: 20;
678 unsigned long dest_paddr
;
679 unsigned long dest_final
;
681 unsigned long src_paddr
: 44;
682 unsigned long src_len
: 20;
683 } arr
[N2_CHUNK_ARR_LEN
];
686 struct n2_request_context
{
687 struct ablkcipher_walk walk
;
688 struct list_head chunk_list
;
689 struct n2_crypto_chunk chunk
;
693 /* The SPU allows some level of flexibility for partial cipher blocks
694 * being specified in a descriptor.
696 * It merely requires that every descriptor's length field is at least
697 * as large as the cipher block size. This means that a cipher block
698 * can span at most 2 descriptors. However, this does not allow a
699 * partial block to span into the final descriptor as that would
700 * violate the rule (since every descriptor's length must be at lest
701 * the block size). So, for example, assuming an 8 byte block size:
703 * 0xe --> 0xa --> 0x8
705 * is a valid length sequence, whereas:
707 * 0xe --> 0xb --> 0x7
709 * is not a valid sequence.
712 struct n2_cipher_alg
{
713 struct list_head entry
;
715 struct crypto_alg alg
;
718 static inline struct n2_cipher_alg
*n2_cipher_alg(struct crypto_tfm
*tfm
)
720 struct crypto_alg
*alg
= tfm
->__crt_alg
;
722 return container_of(alg
, struct n2_cipher_alg
, alg
);
725 struct n2_cipher_request_context
{
726 struct ablkcipher_walk walk
;
729 static int n2_aes_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
732 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
733 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
734 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
736 ctx
->enc_type
= (n2alg
->enc_type
& ENC_TYPE_CHAINING_MASK
);
739 case AES_KEYSIZE_128
:
740 ctx
->enc_type
|= ENC_TYPE_ALG_AES128
;
742 case AES_KEYSIZE_192
:
743 ctx
->enc_type
|= ENC_TYPE_ALG_AES192
;
745 case AES_KEYSIZE_256
:
746 ctx
->enc_type
|= ENC_TYPE_ALG_AES256
;
749 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
753 ctx
->key_len
= keylen
;
754 memcpy(ctx
->key
.aes
, key
, keylen
);
758 static int n2_des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
761 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
762 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
763 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
764 u32 tmp
[DES_EXPKEY_WORDS
];
767 ctx
->enc_type
= n2alg
->enc_type
;
769 if (keylen
!= DES_KEY_SIZE
) {
770 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
774 err
= des_ekey(tmp
, key
);
775 if (err
== 0 && (tfm
->crt_flags
& CRYPTO_TFM_REQ_WEAK_KEY
)) {
776 tfm
->crt_flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
780 ctx
->key_len
= keylen
;
781 memcpy(ctx
->key
.des
, key
, keylen
);
785 static int n2_3des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
788 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
789 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
790 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
792 ctx
->enc_type
= n2alg
->enc_type
;
794 if (keylen
!= (3 * DES_KEY_SIZE
)) {
795 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
798 ctx
->key_len
= keylen
;
799 memcpy(ctx
->key
.des3
, key
, keylen
);
803 static int n2_arc4_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
806 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
807 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
808 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
809 u8
*s
= ctx
->key
.arc4
;
814 ctx
->enc_type
= n2alg
->enc_type
;
819 for (i
= 0; i
< 256; i
++)
821 for (i
= 0; i
< 256; i
++) {
823 j
= (j
+ key
[k
] + a
) & 0xff;
833 static inline int cipher_descriptor_len(int nbytes
, unsigned int block_size
)
835 int this_len
= nbytes
;
837 this_len
-= (nbytes
& (block_size
- 1));
838 return this_len
> (1 << 16) ? (1 << 16) : this_len
;
841 static int __n2_crypt_chunk(struct crypto_tfm
*tfm
, struct n2_crypto_chunk
*cp
,
842 struct spu_queue
*qp
, bool encrypt
)
844 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
845 struct cwq_initial_entry
*ent
;
849 ent
= spu_queue_alloc(qp
, cp
->arr_len
);
851 pr_info("queue_alloc() of %d fails\n",
856 in_place
= (cp
->dest_paddr
== cp
->arr
[0].src_paddr
);
858 ent
->control
= control_word_base(cp
->arr
[0].src_len
,
859 0, ctx
->enc_type
, 0, 0,
860 false, true, false, encrypt
,
862 (in_place
? OPCODE_INPLACE_BIT
: 0));
863 ent
->src_addr
= cp
->arr
[0].src_paddr
;
864 ent
->auth_key_addr
= 0UL;
865 ent
->auth_iv_addr
= 0UL;
866 ent
->final_auth_state_addr
= 0UL;
867 ent
->enc_key_addr
= __pa(&ctx
->key
);
868 ent
->enc_iv_addr
= cp
->iv_paddr
;
869 ent
->dest_addr
= (in_place
? 0UL : cp
->dest_paddr
);
871 for (i
= 1; i
< cp
->arr_len
; i
++) {
872 ent
= spu_queue_next(qp
, ent
);
874 ent
->control
= cp
->arr
[i
].src_len
- 1;
875 ent
->src_addr
= cp
->arr
[i
].src_paddr
;
876 ent
->auth_key_addr
= 0UL;
877 ent
->auth_iv_addr
= 0UL;
878 ent
->final_auth_state_addr
= 0UL;
879 ent
->enc_key_addr
= 0UL;
880 ent
->enc_iv_addr
= 0UL;
881 ent
->dest_addr
= 0UL;
883 ent
->control
|= CONTROL_END_OF_BLOCK
;
885 return (spu_queue_submit(qp
, ent
) != HV_EOK
) ? -EINVAL
: 0;
888 static int n2_compute_chunks(struct ablkcipher_request
*req
)
890 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
891 struct ablkcipher_walk
*walk
= &rctx
->walk
;
892 struct n2_crypto_chunk
*chunk
;
893 unsigned long dest_prev
;
894 unsigned int tot_len
;
898 ablkcipher_walk_init(walk
, req
->dst
, req
->src
, req
->nbytes
);
899 err
= ablkcipher_walk_phys(req
, walk
);
903 INIT_LIST_HEAD(&rctx
->chunk_list
);
905 chunk
= &rctx
->chunk
;
906 INIT_LIST_HEAD(&chunk
->entry
);
908 chunk
->iv_paddr
= 0UL;
910 chunk
->dest_paddr
= 0UL;
912 prev_in_place
= false;
916 while ((nbytes
= walk
->nbytes
) != 0) {
917 unsigned long dest_paddr
, src_paddr
;
921 src_paddr
= (page_to_phys(walk
->src
.page
) +
923 dest_paddr
= (page_to_phys(walk
->dst
.page
) +
925 in_place
= (src_paddr
== dest_paddr
);
926 this_len
= cipher_descriptor_len(nbytes
, walk
->blocksize
);
928 if (chunk
->arr_len
!= 0) {
929 if (in_place
!= prev_in_place
||
931 dest_paddr
!= dest_prev
) ||
932 chunk
->arr_len
== N2_CHUNK_ARR_LEN
||
933 tot_len
+ this_len
> (1 << 16)) {
934 chunk
->dest_final
= dest_prev
;
935 list_add_tail(&chunk
->entry
,
937 chunk
= kzalloc(sizeof(*chunk
), GFP_ATOMIC
);
942 INIT_LIST_HEAD(&chunk
->entry
);
945 if (chunk
->arr_len
== 0) {
946 chunk
->dest_paddr
= dest_paddr
;
949 chunk
->arr
[chunk
->arr_len
].src_paddr
= src_paddr
;
950 chunk
->arr
[chunk
->arr_len
].src_len
= this_len
;
953 dest_prev
= dest_paddr
+ this_len
;
954 prev_in_place
= in_place
;
957 err
= ablkcipher_walk_done(req
, walk
, nbytes
- this_len
);
961 if (!err
&& chunk
->arr_len
!= 0) {
962 chunk
->dest_final
= dest_prev
;
963 list_add_tail(&chunk
->entry
, &rctx
->chunk_list
);
969 static void n2_chunk_complete(struct ablkcipher_request
*req
, void *final_iv
)
971 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
972 struct n2_crypto_chunk
*c
, *tmp
;
975 memcpy(rctx
->walk
.iv
, final_iv
, rctx
->walk
.blocksize
);
977 ablkcipher_walk_complete(&rctx
->walk
);
978 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
980 if (unlikely(c
!= &rctx
->chunk
))
986 static int n2_do_ecb(struct ablkcipher_request
*req
, bool encrypt
)
988 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
989 struct crypto_tfm
*tfm
= req
->base
.tfm
;
990 int err
= n2_compute_chunks(req
);
991 struct n2_crypto_chunk
*c
, *tmp
;
992 unsigned long flags
, hv_ret
;
993 struct spu_queue
*qp
;
998 qp
= cpu_to_cwq
[get_cpu()];
1003 spin_lock_irqsave(&qp
->lock
, flags
);
1005 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
1006 err
= __n2_crypt_chunk(tfm
, c
, qp
, encrypt
);
1009 list_del(&c
->entry
);
1010 if (unlikely(c
!= &rctx
->chunk
))
1014 hv_ret
= wait_for_tail(qp
);
1015 if (hv_ret
!= HV_EOK
)
1019 spin_unlock_irqrestore(&qp
->lock
, flags
);
1024 n2_chunk_complete(req
, NULL
);
1028 static int n2_encrypt_ecb(struct ablkcipher_request
*req
)
1030 return n2_do_ecb(req
, true);
1033 static int n2_decrypt_ecb(struct ablkcipher_request
*req
)
1035 return n2_do_ecb(req
, false);
1038 static int n2_do_chaining(struct ablkcipher_request
*req
, bool encrypt
)
1040 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
1041 struct crypto_tfm
*tfm
= req
->base
.tfm
;
1042 unsigned long flags
, hv_ret
, iv_paddr
;
1043 int err
= n2_compute_chunks(req
);
1044 struct n2_crypto_chunk
*c
, *tmp
;
1045 struct spu_queue
*qp
;
1046 void *final_iv_addr
;
1048 final_iv_addr
= NULL
;
1053 qp
= cpu_to_cwq
[get_cpu()];
1058 spin_lock_irqsave(&qp
->lock
, flags
);
1061 iv_paddr
= __pa(rctx
->walk
.iv
);
1062 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
,
1064 c
->iv_paddr
= iv_paddr
;
1065 err
= __n2_crypt_chunk(tfm
, c
, qp
, true);
1068 iv_paddr
= c
->dest_final
- rctx
->walk
.blocksize
;
1069 list_del(&c
->entry
);
1070 if (unlikely(c
!= &rctx
->chunk
))
1073 final_iv_addr
= __va(iv_paddr
);
1075 list_for_each_entry_safe_reverse(c
, tmp
, &rctx
->chunk_list
,
1077 if (c
== &rctx
->chunk
) {
1078 iv_paddr
= __pa(rctx
->walk
.iv
);
1080 iv_paddr
= (tmp
->arr
[tmp
->arr_len
-1].src_paddr
+
1081 tmp
->arr
[tmp
->arr_len
-1].src_len
-
1082 rctx
->walk
.blocksize
);
1084 if (!final_iv_addr
) {
1087 pa
= (c
->arr
[c
->arr_len
-1].src_paddr
+
1088 c
->arr
[c
->arr_len
-1].src_len
-
1089 rctx
->walk
.blocksize
);
1090 final_iv_addr
= rctx
->temp_iv
;
1091 memcpy(rctx
->temp_iv
, __va(pa
),
1092 rctx
->walk
.blocksize
);
1094 c
->iv_paddr
= iv_paddr
;
1095 err
= __n2_crypt_chunk(tfm
, c
, qp
, false);
1098 list_del(&c
->entry
);
1099 if (unlikely(c
!= &rctx
->chunk
))
1104 hv_ret
= wait_for_tail(qp
);
1105 if (hv_ret
!= HV_EOK
)
1109 spin_unlock_irqrestore(&qp
->lock
, flags
);
1114 n2_chunk_complete(req
, err
? NULL
: final_iv_addr
);
1118 static int n2_encrypt_chaining(struct ablkcipher_request
*req
)
1120 return n2_do_chaining(req
, true);
1123 static int n2_decrypt_chaining(struct ablkcipher_request
*req
)
1125 return n2_do_chaining(req
, false);
1128 struct n2_cipher_tmpl
{
1130 const char *drv_name
;
1133 struct ablkcipher_alg ablkcipher
;
1136 static const struct n2_cipher_tmpl cipher_tmpls
[] = {
1137 /* ARC4: only ECB is supported (chaining bits ignored) */
1138 { .name
= "ecb(arc4)",
1139 .drv_name
= "ecb-arc4",
1141 .enc_type
= (ENC_TYPE_ALG_RC4_STREAM
|
1142 ENC_TYPE_CHAINING_ECB
),
1146 .setkey
= n2_arc4_setkey
,
1147 .encrypt
= n2_encrypt_ecb
,
1148 .decrypt
= n2_decrypt_ecb
,
1152 /* DES: ECB CBC and CFB are supported */
1153 { .name
= "ecb(des)",
1154 .drv_name
= "ecb-des",
1155 .block_size
= DES_BLOCK_SIZE
,
1156 .enc_type
= (ENC_TYPE_ALG_DES
|
1157 ENC_TYPE_CHAINING_ECB
),
1159 .min_keysize
= DES_KEY_SIZE
,
1160 .max_keysize
= DES_KEY_SIZE
,
1161 .setkey
= n2_des_setkey
,
1162 .encrypt
= n2_encrypt_ecb
,
1163 .decrypt
= n2_decrypt_ecb
,
1166 { .name
= "cbc(des)",
1167 .drv_name
= "cbc-des",
1168 .block_size
= DES_BLOCK_SIZE
,
1169 .enc_type
= (ENC_TYPE_ALG_DES
|
1170 ENC_TYPE_CHAINING_CBC
),
1172 .ivsize
= DES_BLOCK_SIZE
,
1173 .min_keysize
= DES_KEY_SIZE
,
1174 .max_keysize
= DES_KEY_SIZE
,
1175 .setkey
= n2_des_setkey
,
1176 .encrypt
= n2_encrypt_chaining
,
1177 .decrypt
= n2_decrypt_chaining
,
1180 { .name
= "cfb(des)",
1181 .drv_name
= "cfb-des",
1182 .block_size
= DES_BLOCK_SIZE
,
1183 .enc_type
= (ENC_TYPE_ALG_DES
|
1184 ENC_TYPE_CHAINING_CFB
),
1186 .min_keysize
= DES_KEY_SIZE
,
1187 .max_keysize
= DES_KEY_SIZE
,
1188 .setkey
= n2_des_setkey
,
1189 .encrypt
= n2_encrypt_chaining
,
1190 .decrypt
= n2_decrypt_chaining
,
1194 /* 3DES: ECB CBC and CFB are supported */
1195 { .name
= "ecb(des3_ede)",
1196 .drv_name
= "ecb-3des",
1197 .block_size
= DES_BLOCK_SIZE
,
1198 .enc_type
= (ENC_TYPE_ALG_3DES
|
1199 ENC_TYPE_CHAINING_ECB
),
1201 .min_keysize
= 3 * DES_KEY_SIZE
,
1202 .max_keysize
= 3 * DES_KEY_SIZE
,
1203 .setkey
= n2_3des_setkey
,
1204 .encrypt
= n2_encrypt_ecb
,
1205 .decrypt
= n2_decrypt_ecb
,
1208 { .name
= "cbc(des3_ede)",
1209 .drv_name
= "cbc-3des",
1210 .block_size
= DES_BLOCK_SIZE
,
1211 .enc_type
= (ENC_TYPE_ALG_3DES
|
1212 ENC_TYPE_CHAINING_CBC
),
1214 .ivsize
= DES_BLOCK_SIZE
,
1215 .min_keysize
= 3 * DES_KEY_SIZE
,
1216 .max_keysize
= 3 * DES_KEY_SIZE
,
1217 .setkey
= n2_3des_setkey
,
1218 .encrypt
= n2_encrypt_chaining
,
1219 .decrypt
= n2_decrypt_chaining
,
1222 { .name
= "cfb(des3_ede)",
1223 .drv_name
= "cfb-3des",
1224 .block_size
= DES_BLOCK_SIZE
,
1225 .enc_type
= (ENC_TYPE_ALG_3DES
|
1226 ENC_TYPE_CHAINING_CFB
),
1228 .min_keysize
= 3 * DES_KEY_SIZE
,
1229 .max_keysize
= 3 * DES_KEY_SIZE
,
1230 .setkey
= n2_3des_setkey
,
1231 .encrypt
= n2_encrypt_chaining
,
1232 .decrypt
= n2_decrypt_chaining
,
1235 /* AES: ECB CBC and CTR are supported */
1236 { .name
= "ecb(aes)",
1237 .drv_name
= "ecb-aes",
1238 .block_size
= AES_BLOCK_SIZE
,
1239 .enc_type
= (ENC_TYPE_ALG_AES128
|
1240 ENC_TYPE_CHAINING_ECB
),
1242 .min_keysize
= AES_MIN_KEY_SIZE
,
1243 .max_keysize
= AES_MAX_KEY_SIZE
,
1244 .setkey
= n2_aes_setkey
,
1245 .encrypt
= n2_encrypt_ecb
,
1246 .decrypt
= n2_decrypt_ecb
,
1249 { .name
= "cbc(aes)",
1250 .drv_name
= "cbc-aes",
1251 .block_size
= AES_BLOCK_SIZE
,
1252 .enc_type
= (ENC_TYPE_ALG_AES128
|
1253 ENC_TYPE_CHAINING_CBC
),
1255 .ivsize
= AES_BLOCK_SIZE
,
1256 .min_keysize
= AES_MIN_KEY_SIZE
,
1257 .max_keysize
= AES_MAX_KEY_SIZE
,
1258 .setkey
= n2_aes_setkey
,
1259 .encrypt
= n2_encrypt_chaining
,
1260 .decrypt
= n2_decrypt_chaining
,
1263 { .name
= "ctr(aes)",
1264 .drv_name
= "ctr-aes",
1265 .block_size
= AES_BLOCK_SIZE
,
1266 .enc_type
= (ENC_TYPE_ALG_AES128
|
1267 ENC_TYPE_CHAINING_COUNTER
),
1269 .ivsize
= AES_BLOCK_SIZE
,
1270 .min_keysize
= AES_MIN_KEY_SIZE
,
1271 .max_keysize
= AES_MAX_KEY_SIZE
,
1272 .setkey
= n2_aes_setkey
,
1273 .encrypt
= n2_encrypt_chaining
,
1274 .decrypt
= n2_encrypt_chaining
,
1279 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1281 static LIST_HEAD(cipher_algs
);
1283 struct n2_hash_tmpl
{
1285 const u8
*hash_zero
;
1286 const u32
*hash_init
;
1294 static const u32 md5_init
[MD5_HASH_WORDS
] = {
1295 cpu_to_le32(MD5_H0
),
1296 cpu_to_le32(MD5_H1
),
1297 cpu_to_le32(MD5_H2
),
1298 cpu_to_le32(MD5_H3
),
1300 static const u32 sha1_init
[SHA1_DIGEST_SIZE
/ 4] = {
1301 SHA1_H0
, SHA1_H1
, SHA1_H2
, SHA1_H3
, SHA1_H4
,
1303 static const u32 sha256_init
[SHA256_DIGEST_SIZE
/ 4] = {
1304 SHA256_H0
, SHA256_H1
, SHA256_H2
, SHA256_H3
,
1305 SHA256_H4
, SHA256_H5
, SHA256_H6
, SHA256_H7
,
1307 static const u32 sha224_init
[SHA256_DIGEST_SIZE
/ 4] = {
1308 SHA224_H0
, SHA224_H1
, SHA224_H2
, SHA224_H3
,
1309 SHA224_H4
, SHA224_H5
, SHA224_H6
, SHA224_H7
,
1312 static const struct n2_hash_tmpl hash_tmpls
[] = {
1314 .hash_zero
= md5_zero_message_hash
,
1315 .hash_init
= md5_init
,
1316 .auth_type
= AUTH_TYPE_MD5
,
1317 .hmac_type
= AUTH_TYPE_HMAC_MD5
,
1318 .hw_op_hashsz
= MD5_DIGEST_SIZE
,
1319 .digest_size
= MD5_DIGEST_SIZE
,
1320 .block_size
= MD5_HMAC_BLOCK_SIZE
},
1322 .hash_zero
= sha1_zero_message_hash
,
1323 .hash_init
= sha1_init
,
1324 .auth_type
= AUTH_TYPE_SHA1
,
1325 .hmac_type
= AUTH_TYPE_HMAC_SHA1
,
1326 .hw_op_hashsz
= SHA1_DIGEST_SIZE
,
1327 .digest_size
= SHA1_DIGEST_SIZE
,
1328 .block_size
= SHA1_BLOCK_SIZE
},
1330 .hash_zero
= sha256_zero_message_hash
,
1331 .hash_init
= sha256_init
,
1332 .auth_type
= AUTH_TYPE_SHA256
,
1333 .hmac_type
= AUTH_TYPE_HMAC_SHA256
,
1334 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1335 .digest_size
= SHA256_DIGEST_SIZE
,
1336 .block_size
= SHA256_BLOCK_SIZE
},
1338 .hash_zero
= sha224_zero_message_hash
,
1339 .hash_init
= sha224_init
,
1340 .auth_type
= AUTH_TYPE_SHA256
,
1341 .hmac_type
= AUTH_TYPE_RESERVED
,
1342 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1343 .digest_size
= SHA224_DIGEST_SIZE
,
1344 .block_size
= SHA224_BLOCK_SIZE
},
1346 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1348 static LIST_HEAD(ahash_algs
);
1349 static LIST_HEAD(hmac_algs
);
1351 static int algs_registered
;
1353 static void __n2_unregister_algs(void)
1355 struct n2_cipher_alg
*cipher
, *cipher_tmp
;
1356 struct n2_ahash_alg
*alg
, *alg_tmp
;
1357 struct n2_hmac_alg
*hmac
, *hmac_tmp
;
1359 list_for_each_entry_safe(cipher
, cipher_tmp
, &cipher_algs
, entry
) {
1360 crypto_unregister_alg(&cipher
->alg
);
1361 list_del(&cipher
->entry
);
1364 list_for_each_entry_safe(hmac
, hmac_tmp
, &hmac_algs
, derived
.entry
) {
1365 crypto_unregister_ahash(&hmac
->derived
.alg
);
1366 list_del(&hmac
->derived
.entry
);
1369 list_for_each_entry_safe(alg
, alg_tmp
, &ahash_algs
, entry
) {
1370 crypto_unregister_ahash(&alg
->alg
);
1371 list_del(&alg
->entry
);
1376 static int n2_cipher_cra_init(struct crypto_tfm
*tfm
)
1378 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct n2_request_context
);
1382 static int __n2_register_one_cipher(const struct n2_cipher_tmpl
*tmpl
)
1384 struct n2_cipher_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1385 struct crypto_alg
*alg
;
1393 snprintf(alg
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1394 snprintf(alg
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->drv_name
);
1395 alg
->cra_priority
= N2_CRA_PRIORITY
;
1396 alg
->cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1397 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
;
1398 alg
->cra_blocksize
= tmpl
->block_size
;
1399 p
->enc_type
= tmpl
->enc_type
;
1400 alg
->cra_ctxsize
= sizeof(struct n2_cipher_context
);
1401 alg
->cra_type
= &crypto_ablkcipher_type
;
1402 alg
->cra_u
.ablkcipher
= tmpl
->ablkcipher
;
1403 alg
->cra_init
= n2_cipher_cra_init
;
1404 alg
->cra_module
= THIS_MODULE
;
1406 list_add(&p
->entry
, &cipher_algs
);
1407 err
= crypto_register_alg(alg
);
1409 pr_err("%s alg registration failed\n", alg
->cra_name
);
1410 list_del(&p
->entry
);
1413 pr_info("%s alg registered\n", alg
->cra_name
);
1418 static int __n2_register_one_hmac(struct n2_ahash_alg
*n2ahash
)
1420 struct n2_hmac_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1421 struct ahash_alg
*ahash
;
1422 struct crypto_alg
*base
;
1428 p
->child_alg
= n2ahash
->alg
.halg
.base
.cra_name
;
1429 memcpy(&p
->derived
, n2ahash
, sizeof(struct n2_ahash_alg
));
1430 INIT_LIST_HEAD(&p
->derived
.entry
);
1432 ahash
= &p
->derived
.alg
;
1433 ahash
->digest
= n2_hmac_async_digest
;
1434 ahash
->setkey
= n2_hmac_async_setkey
;
1436 base
= &ahash
->halg
.base
;
1437 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "hmac(%s)", p
->child_alg
);
1438 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "hmac-%s-n2", p
->child_alg
);
1440 base
->cra_ctxsize
= sizeof(struct n2_hmac_ctx
);
1441 base
->cra_init
= n2_hmac_cra_init
;
1442 base
->cra_exit
= n2_hmac_cra_exit
;
1444 list_add(&p
->derived
.entry
, &hmac_algs
);
1445 err
= crypto_register_ahash(ahash
);
1447 pr_err("%s alg registration failed\n", base
->cra_name
);
1448 list_del(&p
->derived
.entry
);
1451 pr_info("%s alg registered\n", base
->cra_name
);
1456 static int __n2_register_one_ahash(const struct n2_hash_tmpl
*tmpl
)
1458 struct n2_ahash_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1459 struct hash_alg_common
*halg
;
1460 struct crypto_alg
*base
;
1461 struct ahash_alg
*ahash
;
1467 p
->hash_zero
= tmpl
->hash_zero
;
1468 p
->hash_init
= tmpl
->hash_init
;
1469 p
->auth_type
= tmpl
->auth_type
;
1470 p
->hmac_type
= tmpl
->hmac_type
;
1471 p
->hw_op_hashsz
= tmpl
->hw_op_hashsz
;
1472 p
->digest_size
= tmpl
->digest_size
;
1475 ahash
->init
= n2_hash_async_init
;
1476 ahash
->update
= n2_hash_async_update
;
1477 ahash
->final
= n2_hash_async_final
;
1478 ahash
->finup
= n2_hash_async_finup
;
1479 ahash
->digest
= n2_hash_async_digest
;
1480 ahash
->export
= n2_hash_async_noexport
;
1481 ahash
->import
= n2_hash_async_noimport
;
1483 halg
= &ahash
->halg
;
1484 halg
->digestsize
= tmpl
->digest_size
;
1487 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1488 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->name
);
1489 base
->cra_priority
= N2_CRA_PRIORITY
;
1490 base
->cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1491 CRYPTO_ALG_NEED_FALLBACK
;
1492 base
->cra_blocksize
= tmpl
->block_size
;
1493 base
->cra_ctxsize
= sizeof(struct n2_hash_ctx
);
1494 base
->cra_module
= THIS_MODULE
;
1495 base
->cra_init
= n2_hash_cra_init
;
1496 base
->cra_exit
= n2_hash_cra_exit
;
1498 list_add(&p
->entry
, &ahash_algs
);
1499 err
= crypto_register_ahash(ahash
);
1501 pr_err("%s alg registration failed\n", base
->cra_name
);
1502 list_del(&p
->entry
);
1505 pr_info("%s alg registered\n", base
->cra_name
);
1507 if (!err
&& p
->hmac_type
!= AUTH_TYPE_RESERVED
)
1508 err
= __n2_register_one_hmac(p
);
1512 static int n2_register_algs(void)
1516 mutex_lock(&spu_lock
);
1517 if (algs_registered
++)
1520 for (i
= 0; i
< NUM_HASH_TMPLS
; i
++) {
1521 err
= __n2_register_one_ahash(&hash_tmpls
[i
]);
1523 __n2_unregister_algs();
1527 for (i
= 0; i
< NUM_CIPHER_TMPLS
; i
++) {
1528 err
= __n2_register_one_cipher(&cipher_tmpls
[i
]);
1530 __n2_unregister_algs();
1536 mutex_unlock(&spu_lock
);
1540 static void n2_unregister_algs(void)
1542 mutex_lock(&spu_lock
);
1543 if (!--algs_registered
)
1544 __n2_unregister_algs();
1545 mutex_unlock(&spu_lock
);
1548 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1549 * a devino. This isn't very useful to us because all of the
1550 * interrupts listed in the device_node have been translated to
1551 * Linux virtual IRQ cookie numbers.
1553 * So we have to back-translate, going through the 'intr' and 'ino'
1554 * property tables of the n2cp MDESC node, matching it with the OF
1555 * 'interrupts' property entries, in order to to figure out which
1556 * devino goes to which already-translated IRQ.
1558 static int find_devino_index(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1559 unsigned long dev_ino
)
1561 const unsigned int *dev_intrs
;
1565 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1566 if (ip
->ino_table
[i
].ino
== dev_ino
)
1569 if (i
== ip
->num_intrs
)
1572 intr
= ip
->ino_table
[i
].intr
;
1574 dev_intrs
= of_get_property(dev
->dev
.of_node
, "interrupts", NULL
);
1578 for (i
= 0; i
< dev
->archdata
.num_irqs
; i
++) {
1579 if (dev_intrs
[i
] == intr
)
1586 static int spu_map_ino(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1587 const char *irq_name
, struct spu_queue
*p
,
1588 irq_handler_t handler
)
1593 herr
= sun4v_ncs_qhandle_to_devino(p
->qhandle
, &p
->devino
);
1597 index
= find_devino_index(dev
, ip
, p
->devino
);
1601 p
->irq
= dev
->archdata
.irqs
[index
];
1603 sprintf(p
->irq_name
, "%s-%d", irq_name
, index
);
1605 return request_irq(p
->irq
, handler
, 0, p
->irq_name
, p
);
1608 static struct kmem_cache
*queue_cache
[2];
1610 static void *new_queue(unsigned long q_type
)
1612 return kmem_cache_zalloc(queue_cache
[q_type
- 1], GFP_KERNEL
);
1615 static void free_queue(void *p
, unsigned long q_type
)
1617 kmem_cache_free(queue_cache
[q_type
- 1], p
);
1620 static int queue_cache_init(void)
1622 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1623 queue_cache
[HV_NCS_QTYPE_MAU
- 1] =
1624 kmem_cache_create("mau_queue",
1627 MAU_ENTRY_SIZE
, 0, NULL
);
1628 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1631 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1])
1632 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] =
1633 kmem_cache_create("cwq_queue",
1636 CWQ_ENTRY_SIZE
, 0, NULL
);
1637 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1]) {
1638 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1639 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1645 static void queue_cache_destroy(void)
1647 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1648 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_CWQ
- 1]);
1649 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1650 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] = NULL
;
1653 static long spu_queue_register_workfn(void *arg
)
1655 struct spu_qreg
*qr
= arg
;
1656 struct spu_queue
*p
= qr
->queue
;
1657 unsigned long q_type
= qr
->type
;
1658 unsigned long hv_ret
;
1660 hv_ret
= sun4v_ncs_qconf(q_type
, __pa(p
->q
),
1661 CWQ_NUM_ENTRIES
, &p
->qhandle
);
1663 sun4v_ncs_sethead_marker(p
->qhandle
, 0);
1665 return hv_ret
? -EINVAL
: 0;
1668 static int spu_queue_register(struct spu_queue
*p
, unsigned long q_type
)
1670 int cpu
= cpumask_any_and(&p
->sharing
, cpu_online_mask
);
1671 struct spu_qreg qr
= { .queue
= p
, .type
= q_type
};
1673 return work_on_cpu_safe(cpu
, spu_queue_register_workfn
, &qr
);
1676 static int spu_queue_setup(struct spu_queue
*p
)
1680 p
->q
= new_queue(p
->q_type
);
1684 err
= spu_queue_register(p
, p
->q_type
);
1686 free_queue(p
->q
, p
->q_type
);
1693 static void spu_queue_destroy(struct spu_queue
*p
)
1695 unsigned long hv_ret
;
1700 hv_ret
= sun4v_ncs_qconf(p
->q_type
, p
->qhandle
, 0, &p
->qhandle
);
1703 free_queue(p
->q
, p
->q_type
);
1706 static void spu_list_destroy(struct list_head
*list
)
1708 struct spu_queue
*p
, *n
;
1710 list_for_each_entry_safe(p
, n
, list
, list
) {
1713 for (i
= 0; i
< NR_CPUS
; i
++) {
1714 if (cpu_to_cwq
[i
] == p
)
1715 cpu_to_cwq
[i
] = NULL
;
1719 free_irq(p
->irq
, p
);
1722 spu_queue_destroy(p
);
1728 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1729 * gathering cpu membership information.
1731 static int spu_mdesc_walk_arcs(struct mdesc_handle
*mdesc
,
1732 struct platform_device
*dev
,
1733 u64 node
, struct spu_queue
*p
,
1734 struct spu_queue
**table
)
1738 mdesc_for_each_arc(arc
, mdesc
, node
, MDESC_ARC_TYPE_BACK
) {
1739 u64 tgt
= mdesc_arc_target(mdesc
, arc
);
1740 const char *name
= mdesc_node_name(mdesc
, tgt
);
1743 if (strcmp(name
, "cpu"))
1745 id
= mdesc_get_property(mdesc
, tgt
, "id", NULL
);
1746 if (table
[*id
] != NULL
) {
1747 dev_err(&dev
->dev
, "%pOF: SPU cpu slot already set.\n",
1751 cpumask_set_cpu(*id
, &p
->sharing
);
1757 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1758 static int handle_exec_unit(struct spu_mdesc_info
*ip
, struct list_head
*list
,
1759 struct platform_device
*dev
, struct mdesc_handle
*mdesc
,
1760 u64 node
, const char *iname
, unsigned long q_type
,
1761 irq_handler_t handler
, struct spu_queue
**table
)
1763 struct spu_queue
*p
;
1766 p
= kzalloc(sizeof(struct spu_queue
), GFP_KERNEL
);
1768 dev_err(&dev
->dev
, "%pOF: Could not allocate SPU queue.\n",
1773 cpumask_clear(&p
->sharing
);
1774 spin_lock_init(&p
->lock
);
1776 INIT_LIST_HEAD(&p
->jobs
);
1777 list_add(&p
->list
, list
);
1779 err
= spu_mdesc_walk_arcs(mdesc
, dev
, node
, p
, table
);
1783 err
= spu_queue_setup(p
);
1787 return spu_map_ino(dev
, ip
, iname
, p
, handler
);
1790 static int spu_mdesc_scan(struct mdesc_handle
*mdesc
, struct platform_device
*dev
,
1791 struct spu_mdesc_info
*ip
, struct list_head
*list
,
1792 const char *exec_name
, unsigned long q_type
,
1793 irq_handler_t handler
, struct spu_queue
**table
)
1798 mdesc_for_each_node_by_name(mdesc
, node
, "exec-unit") {
1801 type
= mdesc_get_property(mdesc
, node
, "type", NULL
);
1802 if (!type
|| strcmp(type
, exec_name
))
1805 err
= handle_exec_unit(ip
, list
, dev
, mdesc
, node
,
1806 exec_name
, q_type
, handler
, table
);
1808 spu_list_destroy(list
);
1816 static int get_irq_props(struct mdesc_handle
*mdesc
, u64 node
,
1817 struct spu_mdesc_info
*ip
)
1823 ino
= mdesc_get_property(mdesc
, node
, "ino", &ino_len
);
1825 printk("NO 'ino'\n");
1829 ip
->num_intrs
= ino_len
/ sizeof(u64
);
1830 ip
->ino_table
= kzalloc((sizeof(struct ino_blob
) *
1836 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1837 struct ino_blob
*b
= &ip
->ino_table
[i
];
1845 static int grab_mdesc_irq_props(struct mdesc_handle
*mdesc
,
1846 struct platform_device
*dev
,
1847 struct spu_mdesc_info
*ip
,
1848 const char *node_name
)
1850 const unsigned int *reg
;
1853 reg
= of_get_property(dev
->dev
.of_node
, "reg", NULL
);
1857 mdesc_for_each_node_by_name(mdesc
, node
, "virtual-device") {
1861 name
= mdesc_get_property(mdesc
, node
, "name", NULL
);
1862 if (!name
|| strcmp(name
, node_name
))
1864 chdl
= mdesc_get_property(mdesc
, node
, "cfg-handle", NULL
);
1865 if (!chdl
|| (*chdl
!= *reg
))
1867 ip
->cfg_handle
= *chdl
;
1868 return get_irq_props(mdesc
, node
, ip
);
1874 static unsigned long n2_spu_hvapi_major
;
1875 static unsigned long n2_spu_hvapi_minor
;
1877 static int n2_spu_hvapi_register(void)
1881 n2_spu_hvapi_major
= 2;
1882 n2_spu_hvapi_minor
= 0;
1884 err
= sun4v_hvapi_register(HV_GRP_NCS
,
1886 &n2_spu_hvapi_minor
);
1889 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1891 n2_spu_hvapi_minor
);
1896 static void n2_spu_hvapi_unregister(void)
1898 sun4v_hvapi_unregister(HV_GRP_NCS
);
1901 static int global_ref
;
1903 static int grab_global_resources(void)
1907 mutex_lock(&spu_lock
);
1912 err
= n2_spu_hvapi_register();
1916 err
= queue_cache_init();
1918 goto out_hvapi_release
;
1921 cpu_to_cwq
= kcalloc(NR_CPUS
, sizeof(struct spu_queue
*),
1924 goto out_queue_cache_destroy
;
1926 cpu_to_mau
= kcalloc(NR_CPUS
, sizeof(struct spu_queue
*),
1929 goto out_free_cwq_table
;
1936 mutex_unlock(&spu_lock
);
1943 out_queue_cache_destroy
:
1944 queue_cache_destroy();
1947 n2_spu_hvapi_unregister();
1951 static void release_global_resources(void)
1953 mutex_lock(&spu_lock
);
1954 if (!--global_ref
) {
1961 queue_cache_destroy();
1962 n2_spu_hvapi_unregister();
1964 mutex_unlock(&spu_lock
);
1967 static struct n2_crypto
*alloc_n2cp(void)
1969 struct n2_crypto
*np
= kzalloc(sizeof(struct n2_crypto
), GFP_KERNEL
);
1972 INIT_LIST_HEAD(&np
->cwq_list
);
1977 static void free_n2cp(struct n2_crypto
*np
)
1979 kfree(np
->cwq_info
.ino_table
);
1980 np
->cwq_info
.ino_table
= NULL
;
1985 static void n2_spu_driver_version(void)
1987 static int n2_spu_version_printed
;
1989 if (n2_spu_version_printed
++ == 0)
1990 pr_info("%s", version
);
1993 static int n2_crypto_probe(struct platform_device
*dev
)
1995 struct mdesc_handle
*mdesc
;
1996 struct n2_crypto
*np
;
1999 n2_spu_driver_version();
2001 pr_info("Found N2CP at %pOF\n", dev
->dev
.of_node
);
2005 dev_err(&dev
->dev
, "%pOF: Unable to allocate n2cp.\n",
2010 err
= grab_global_resources();
2012 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
2017 mdesc
= mdesc_grab();
2020 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
2023 goto out_free_global
;
2025 err
= grab_mdesc_irq_props(mdesc
, dev
, &np
->cwq_info
, "n2cp");
2027 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
2029 mdesc_release(mdesc
);
2030 goto out_free_global
;
2033 err
= spu_mdesc_scan(mdesc
, dev
, &np
->cwq_info
, &np
->cwq_list
,
2034 "cwq", HV_NCS_QTYPE_CWQ
, cwq_intr
,
2036 mdesc_release(mdesc
);
2039 dev_err(&dev
->dev
, "%pOF: CWQ MDESC scan failed.\n",
2041 goto out_free_global
;
2044 err
= n2_register_algs();
2046 dev_err(&dev
->dev
, "%pOF: Unable to register algorithms.\n",
2048 goto out_free_spu_list
;
2051 dev_set_drvdata(&dev
->dev
, np
);
2056 spu_list_destroy(&np
->cwq_list
);
2059 release_global_resources();
2067 static int n2_crypto_remove(struct platform_device
*dev
)
2069 struct n2_crypto
*np
= dev_get_drvdata(&dev
->dev
);
2071 n2_unregister_algs();
2073 spu_list_destroy(&np
->cwq_list
);
2075 release_global_resources();
2082 static struct n2_mau
*alloc_ncp(void)
2084 struct n2_mau
*mp
= kzalloc(sizeof(struct n2_mau
), GFP_KERNEL
);
2087 INIT_LIST_HEAD(&mp
->mau_list
);
2092 static void free_ncp(struct n2_mau
*mp
)
2094 kfree(mp
->mau_info
.ino_table
);
2095 mp
->mau_info
.ino_table
= NULL
;
2100 static int n2_mau_probe(struct platform_device
*dev
)
2102 struct mdesc_handle
*mdesc
;
2106 n2_spu_driver_version();
2108 pr_info("Found NCP at %pOF\n", dev
->dev
.of_node
);
2112 dev_err(&dev
->dev
, "%pOF: Unable to allocate ncp.\n",
2117 err
= grab_global_resources();
2119 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
2124 mdesc
= mdesc_grab();
2127 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
2130 goto out_free_global
;
2133 err
= grab_mdesc_irq_props(mdesc
, dev
, &mp
->mau_info
, "ncp");
2135 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
2137 mdesc_release(mdesc
);
2138 goto out_free_global
;
2141 err
= spu_mdesc_scan(mdesc
, dev
, &mp
->mau_info
, &mp
->mau_list
,
2142 "mau", HV_NCS_QTYPE_MAU
, mau_intr
,
2144 mdesc_release(mdesc
);
2147 dev_err(&dev
->dev
, "%pOF: MAU MDESC scan failed.\n",
2149 goto out_free_global
;
2152 dev_set_drvdata(&dev
->dev
, mp
);
2157 release_global_resources();
2165 static int n2_mau_remove(struct platform_device
*dev
)
2167 struct n2_mau
*mp
= dev_get_drvdata(&dev
->dev
);
2169 spu_list_destroy(&mp
->mau_list
);
2171 release_global_resources();
2178 static const struct of_device_id n2_crypto_match
[] = {
2181 .compatible
= "SUNW,n2-cwq",
2185 .compatible
= "SUNW,vf-cwq",
2189 .compatible
= "SUNW,kt-cwq",
2194 MODULE_DEVICE_TABLE(of
, n2_crypto_match
);
2196 static struct platform_driver n2_crypto_driver
= {
2199 .of_match_table
= n2_crypto_match
,
2201 .probe
= n2_crypto_probe
,
2202 .remove
= n2_crypto_remove
,
2205 static const struct of_device_id n2_mau_match
[] = {
2208 .compatible
= "SUNW,n2-mau",
2212 .compatible
= "SUNW,vf-mau",
2216 .compatible
= "SUNW,kt-mau",
2221 MODULE_DEVICE_TABLE(of
, n2_mau_match
);
2223 static struct platform_driver n2_mau_driver
= {
2226 .of_match_table
= n2_mau_match
,
2228 .probe
= n2_mau_probe
,
2229 .remove
= n2_mau_remove
,
2232 static struct platform_driver
* const drivers
[] = {
2237 static int __init
n2_init(void)
2239 return platform_register_drivers(drivers
, ARRAY_SIZE(drivers
));
2242 static void __exit
n2_exit(void)
2244 platform_unregister_drivers(drivers
, ARRAY_SIZE(drivers
));
2247 module_init(n2_init
);
2248 module_exit(n2_exit
);