Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / block / loop.c
blob423f4ca7d712dda6f012c32954f19c9ce3af9d9c
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
81 #include <asm/uaccess.h>
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
86 static int max_part;
87 static int part_shift;
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 loff_t loopsize;
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
159 return loopsize >> 9;
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane appplications should be PAGE_SIZE algined
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
203 if (lo->use_dio == use_dio)
204 return;
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 sector_t x = (sector_t)size;
228 struct block_device *bdev = lo->lo_device;
230 if (unlikely((loff_t)x != size))
231 return -EFBIG;
232 if (lo->lo_offset != offset)
233 lo->lo_offset = offset;
234 if (lo->lo_sizelimit != sizelimit)
235 lo->lo_sizelimit = sizelimit;
236 set_capacity(lo->lo_disk, x);
237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 return 0;
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 struct page *rpage, unsigned roffs,
246 struct page *lpage, unsigned loffs,
247 int size, sector_t rblock)
249 int ret;
251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 if (likely(!ret))
253 return 0;
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock << 9, size);
258 return ret;
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
263 struct iov_iter i;
264 ssize_t bw;
266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
268 file_start_write(file);
269 bw = vfs_iter_write(file, &i, ppos);
270 file_end_write(file);
272 if (likely(bw == bvec->bv_len))
273 return 0;
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos, bvec->bv_len);
278 if (bw >= 0)
279 bw = -EIO;
280 return bw;
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 loff_t pos)
286 struct bio_vec bvec;
287 struct req_iterator iter;
288 int ret = 0;
290 rq_for_each_segment(bvec, rq, iter) {
291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 if (ret < 0)
293 break;
294 cond_resched();
297 return ret;
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 loff_t pos)
308 struct bio_vec bvec, b;
309 struct req_iterator iter;
310 struct page *page;
311 int ret = 0;
313 page = alloc_page(GFP_NOIO);
314 if (unlikely(!page))
315 return -ENOMEM;
317 rq_for_each_segment(bvec, rq, iter) {
318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 bvec.bv_offset, bvec.bv_len, pos >> 9);
320 if (unlikely(ret))
321 break;
323 b.bv_page = page;
324 b.bv_offset = 0;
325 b.bv_len = bvec.bv_len;
326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 if (ret < 0)
328 break;
331 __free_page(page);
332 return ret;
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 loff_t pos)
338 struct bio_vec bvec;
339 struct req_iterator iter;
340 struct iov_iter i;
341 ssize_t len;
343 rq_for_each_segment(bvec, rq, iter) {
344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 if (len < 0)
347 return len;
349 flush_dcache_page(bvec.bv_page);
351 if (len != bvec.bv_len) {
352 struct bio *bio;
354 __rq_for_each_bio(bio, rq)
355 zero_fill_bio(bio);
356 break;
358 cond_resched();
361 return 0;
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 loff_t pos)
367 struct bio_vec bvec, b;
368 struct req_iterator iter;
369 struct iov_iter i;
370 struct page *page;
371 ssize_t len;
372 int ret = 0;
374 page = alloc_page(GFP_NOIO);
375 if (unlikely(!page))
376 return -ENOMEM;
378 rq_for_each_segment(bvec, rq, iter) {
379 loff_t offset = pos;
381 b.bv_page = page;
382 b.bv_offset = 0;
383 b.bv_len = bvec.bv_len;
385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 if (len < 0) {
388 ret = len;
389 goto out_free_page;
392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 bvec.bv_offset, len, offset >> 9);
394 if (ret)
395 goto out_free_page;
397 flush_dcache_page(bvec.bv_page);
399 if (len != bvec.bv_len) {
400 struct bio *bio;
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
408 ret = 0;
409 out_free_page:
410 __free_page(page);
411 return ret;
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
422 struct file *file = lo->lo_backing_file;
423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 int ret;
426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 ret = -EOPNOTSUPP;
428 goto out;
431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 ret = -EIO;
434 out:
435 return ret;
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
440 struct file *file = lo->lo_backing_file;
441 int ret = vfs_fsync(file, 0);
442 if (unlikely(ret && ret != -EINVAL))
443 ret = -EIO;
445 return ret;
448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
450 if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE))
451 return;
453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 struct bio *bio = cmd->rq->bio;
456 bio_advance(bio, bytes);
457 zero_fill_bio(bio);
461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 struct request *rq = cmd->rq;
466 handle_partial_read(cmd, ret);
468 if (ret > 0)
469 ret = 0;
470 else if (ret < 0)
471 ret = -EIO;
473 blk_mq_complete_request(rq, ret);
476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 loff_t pos, bool rw)
479 struct iov_iter iter;
480 struct bio_vec *bvec;
481 struct bio *bio = cmd->rq->bio;
482 struct file *file = lo->lo_backing_file;
483 int ret;
485 /* nomerge for loop request queue */
486 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
490 bio_segments(bio), blk_rq_bytes(cmd->rq));
492 cmd->iocb.ki_pos = pos;
493 cmd->iocb.ki_filp = file;
494 cmd->iocb.ki_complete = lo_rw_aio_complete;
495 cmd->iocb.ki_flags = IOCB_DIRECT;
497 if (rw == WRITE)
498 ret = file->f_op->write_iter(&cmd->iocb, &iter);
499 else
500 ret = file->f_op->read_iter(&cmd->iocb, &iter);
502 if (ret != -EIOCBQUEUED)
503 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
504 return 0;
508 static inline int lo_rw_simple(struct loop_device *lo,
509 struct request *rq, loff_t pos, bool rw)
511 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
513 if (cmd->use_aio)
514 return lo_rw_aio(lo, cmd, pos, rw);
517 * lo_write_simple and lo_read_simple should have been covered
518 * by io submit style function like lo_rw_aio(), one blocker
519 * is that lo_read_simple() need to call flush_dcache_page after
520 * the page is written from kernel, and it isn't easy to handle
521 * this in io submit style function which submits all segments
522 * of the req at one time. And direct read IO doesn't need to
523 * run flush_dcache_page().
525 if (rw == WRITE)
526 return lo_write_simple(lo, rq, pos);
527 else
528 return lo_read_simple(lo, rq, pos);
531 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
533 loff_t pos;
534 int ret;
536 pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
538 if (rq->cmd_flags & REQ_WRITE) {
539 if (rq->cmd_flags & REQ_FLUSH)
540 ret = lo_req_flush(lo, rq);
541 else if (rq->cmd_flags & REQ_DISCARD)
542 ret = lo_discard(lo, rq, pos);
543 else if (lo->transfer)
544 ret = lo_write_transfer(lo, rq, pos);
545 else
546 ret = lo_rw_simple(lo, rq, pos, WRITE);
548 } else {
549 if (lo->transfer)
550 ret = lo_read_transfer(lo, rq, pos);
551 else
552 ret = lo_rw_simple(lo, rq, pos, READ);
555 return ret;
558 struct switch_request {
559 struct file *file;
560 struct completion wait;
563 static inline void loop_update_dio(struct loop_device *lo)
565 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
566 lo->use_dio);
570 * Do the actual switch; called from the BIO completion routine
572 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
574 struct file *file = p->file;
575 struct file *old_file = lo->lo_backing_file;
576 struct address_space *mapping;
578 /* if no new file, only flush of queued bios requested */
579 if (!file)
580 return;
582 mapping = file->f_mapping;
583 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
584 lo->lo_backing_file = file;
585 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
586 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
587 lo->old_gfp_mask = mapping_gfp_mask(mapping);
588 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
589 loop_update_dio(lo);
593 * loop_switch performs the hard work of switching a backing store.
594 * First it needs to flush existing IO, it does this by sending a magic
595 * BIO down the pipe. The completion of this BIO does the actual switch.
597 static int loop_switch(struct loop_device *lo, struct file *file)
599 struct switch_request w;
601 w.file = file;
603 /* freeze queue and wait for completion of scheduled requests */
604 blk_mq_freeze_queue(lo->lo_queue);
606 /* do the switch action */
607 do_loop_switch(lo, &w);
609 /* unfreeze */
610 blk_mq_unfreeze_queue(lo->lo_queue);
612 return 0;
616 * Helper to flush the IOs in loop, but keeping loop thread running
618 static int loop_flush(struct loop_device *lo)
620 return loop_switch(lo, NULL);
623 static void loop_reread_partitions(struct loop_device *lo,
624 struct block_device *bdev)
626 int rc;
629 * bd_mutex has been held already in release path, so don't
630 * acquire it if this function is called in such case.
632 * If the reread partition isn't from release path, lo_refcnt
633 * must be at least one and it can only become zero when the
634 * current holder is released.
636 if (!atomic_read(&lo->lo_refcnt))
637 rc = __blkdev_reread_part(bdev);
638 else
639 rc = blkdev_reread_part(bdev);
640 if (rc)
641 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
642 __func__, lo->lo_number, lo->lo_file_name, rc);
646 * loop_change_fd switched the backing store of a loopback device to
647 * a new file. This is useful for operating system installers to free up
648 * the original file and in High Availability environments to switch to
649 * an alternative location for the content in case of server meltdown.
650 * This can only work if the loop device is used read-only, and if the
651 * new backing store is the same size and type as the old backing store.
653 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
654 unsigned int arg)
656 struct file *file, *old_file;
657 struct inode *inode;
658 int error;
660 error = -ENXIO;
661 if (lo->lo_state != Lo_bound)
662 goto out;
664 /* the loop device has to be read-only */
665 error = -EINVAL;
666 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
667 goto out;
669 error = -EBADF;
670 file = fget(arg);
671 if (!file)
672 goto out;
674 inode = file->f_mapping->host;
675 old_file = lo->lo_backing_file;
677 error = -EINVAL;
679 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
680 goto out_putf;
682 /* size of the new backing store needs to be the same */
683 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
684 goto out_putf;
686 /* and ... switch */
687 error = loop_switch(lo, file);
688 if (error)
689 goto out_putf;
691 fput(old_file);
692 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
693 loop_reread_partitions(lo, bdev);
694 return 0;
696 out_putf:
697 fput(file);
698 out:
699 return error;
702 static inline int is_loop_device(struct file *file)
704 struct inode *i = file->f_mapping->host;
706 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
709 /* loop sysfs attributes */
711 static ssize_t loop_attr_show(struct device *dev, char *page,
712 ssize_t (*callback)(struct loop_device *, char *))
714 struct gendisk *disk = dev_to_disk(dev);
715 struct loop_device *lo = disk->private_data;
717 return callback(lo, page);
720 #define LOOP_ATTR_RO(_name) \
721 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
722 static ssize_t loop_attr_do_show_##_name(struct device *d, \
723 struct device_attribute *attr, char *b) \
725 return loop_attr_show(d, b, loop_attr_##_name##_show); \
727 static struct device_attribute loop_attr_##_name = \
728 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
730 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
732 ssize_t ret;
733 char *p = NULL;
735 spin_lock_irq(&lo->lo_lock);
736 if (lo->lo_backing_file)
737 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
738 spin_unlock_irq(&lo->lo_lock);
740 if (IS_ERR_OR_NULL(p))
741 ret = PTR_ERR(p);
742 else {
743 ret = strlen(p);
744 memmove(buf, p, ret);
745 buf[ret++] = '\n';
746 buf[ret] = 0;
749 return ret;
752 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
754 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
757 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
759 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
762 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
764 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
766 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
769 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
771 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
773 return sprintf(buf, "%s\n", partscan ? "1" : "0");
776 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
778 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
780 return sprintf(buf, "%s\n", dio ? "1" : "0");
783 LOOP_ATTR_RO(backing_file);
784 LOOP_ATTR_RO(offset);
785 LOOP_ATTR_RO(sizelimit);
786 LOOP_ATTR_RO(autoclear);
787 LOOP_ATTR_RO(partscan);
788 LOOP_ATTR_RO(dio);
790 static struct attribute *loop_attrs[] = {
791 &loop_attr_backing_file.attr,
792 &loop_attr_offset.attr,
793 &loop_attr_sizelimit.attr,
794 &loop_attr_autoclear.attr,
795 &loop_attr_partscan.attr,
796 &loop_attr_dio.attr,
797 NULL,
800 static struct attribute_group loop_attribute_group = {
801 .name = "loop",
802 .attrs= loop_attrs,
805 static int loop_sysfs_init(struct loop_device *lo)
807 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
808 &loop_attribute_group);
811 static void loop_sysfs_exit(struct loop_device *lo)
813 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
814 &loop_attribute_group);
817 static void loop_config_discard(struct loop_device *lo)
819 struct file *file = lo->lo_backing_file;
820 struct inode *inode = file->f_mapping->host;
821 struct request_queue *q = lo->lo_queue;
824 * We use punch hole to reclaim the free space used by the
825 * image a.k.a. discard. However we do not support discard if
826 * encryption is enabled, because it may give an attacker
827 * useful information.
829 if ((!file->f_op->fallocate) ||
830 lo->lo_encrypt_key_size) {
831 q->limits.discard_granularity = 0;
832 q->limits.discard_alignment = 0;
833 blk_queue_max_discard_sectors(q, 0);
834 q->limits.discard_zeroes_data = 0;
835 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
836 return;
839 q->limits.discard_granularity = inode->i_sb->s_blocksize;
840 q->limits.discard_alignment = 0;
841 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
842 q->limits.discard_zeroes_data = 1;
843 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
846 static void loop_unprepare_queue(struct loop_device *lo)
848 flush_kthread_worker(&lo->worker);
849 kthread_stop(lo->worker_task);
852 static int loop_prepare_queue(struct loop_device *lo)
854 init_kthread_worker(&lo->worker);
855 lo->worker_task = kthread_run(kthread_worker_fn,
856 &lo->worker, "loop%d", lo->lo_number);
857 if (IS_ERR(lo->worker_task))
858 return -ENOMEM;
859 set_user_nice(lo->worker_task, MIN_NICE);
860 return 0;
863 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
864 struct block_device *bdev, unsigned int arg)
866 struct file *file, *f;
867 struct inode *inode;
868 struct address_space *mapping;
869 unsigned lo_blocksize;
870 int lo_flags = 0;
871 int error;
872 loff_t size;
874 /* This is safe, since we have a reference from open(). */
875 __module_get(THIS_MODULE);
877 error = -EBADF;
878 file = fget(arg);
879 if (!file)
880 goto out;
882 error = -EBUSY;
883 if (lo->lo_state != Lo_unbound)
884 goto out_putf;
886 /* Avoid recursion */
887 f = file;
888 while (is_loop_device(f)) {
889 struct loop_device *l;
891 if (f->f_mapping->host->i_bdev == bdev)
892 goto out_putf;
894 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
895 if (l->lo_state == Lo_unbound) {
896 error = -EINVAL;
897 goto out_putf;
899 f = l->lo_backing_file;
902 mapping = file->f_mapping;
903 inode = mapping->host;
905 error = -EINVAL;
906 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
907 goto out_putf;
909 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
910 !file->f_op->write_iter)
911 lo_flags |= LO_FLAGS_READ_ONLY;
913 lo_blocksize = S_ISBLK(inode->i_mode) ?
914 inode->i_bdev->bd_block_size : PAGE_SIZE;
916 error = -EFBIG;
917 size = get_loop_size(lo, file);
918 if ((loff_t)(sector_t)size != size)
919 goto out_putf;
920 error = loop_prepare_queue(lo);
921 if (error)
922 goto out_putf;
924 error = 0;
926 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
928 lo->use_dio = false;
929 lo->lo_blocksize = lo_blocksize;
930 lo->lo_device = bdev;
931 lo->lo_flags = lo_flags;
932 lo->lo_backing_file = file;
933 lo->transfer = NULL;
934 lo->ioctl = NULL;
935 lo->lo_sizelimit = 0;
936 lo->old_gfp_mask = mapping_gfp_mask(mapping);
937 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
939 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
940 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
942 loop_update_dio(lo);
943 set_capacity(lo->lo_disk, size);
944 bd_set_size(bdev, size << 9);
945 loop_sysfs_init(lo);
946 /* let user-space know about the new size */
947 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
949 set_blocksize(bdev, lo_blocksize);
951 lo->lo_state = Lo_bound;
952 if (part_shift)
953 lo->lo_flags |= LO_FLAGS_PARTSCAN;
954 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
955 loop_reread_partitions(lo, bdev);
957 /* Grab the block_device to prevent its destruction after we
958 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
960 bdgrab(bdev);
961 return 0;
963 out_putf:
964 fput(file);
965 out:
966 /* This is safe: open() is still holding a reference. */
967 module_put(THIS_MODULE);
968 return error;
971 static int
972 loop_release_xfer(struct loop_device *lo)
974 int err = 0;
975 struct loop_func_table *xfer = lo->lo_encryption;
977 if (xfer) {
978 if (xfer->release)
979 err = xfer->release(lo);
980 lo->transfer = NULL;
981 lo->lo_encryption = NULL;
982 module_put(xfer->owner);
984 return err;
987 static int
988 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
989 const struct loop_info64 *i)
991 int err = 0;
993 if (xfer) {
994 struct module *owner = xfer->owner;
996 if (!try_module_get(owner))
997 return -EINVAL;
998 if (xfer->init)
999 err = xfer->init(lo, i);
1000 if (err)
1001 module_put(owner);
1002 else
1003 lo->lo_encryption = xfer;
1005 return err;
1008 static int loop_clr_fd(struct loop_device *lo)
1010 struct file *filp = lo->lo_backing_file;
1011 gfp_t gfp = lo->old_gfp_mask;
1012 struct block_device *bdev = lo->lo_device;
1014 if (lo->lo_state != Lo_bound)
1015 return -ENXIO;
1018 * If we've explicitly asked to tear down the loop device,
1019 * and it has an elevated reference count, set it for auto-teardown when
1020 * the last reference goes away. This stops $!~#$@ udev from
1021 * preventing teardown because it decided that it needs to run blkid on
1022 * the loopback device whenever they appear. xfstests is notorious for
1023 * failing tests because blkid via udev races with a losetup
1024 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1025 * command to fail with EBUSY.
1027 if (atomic_read(&lo->lo_refcnt) > 1) {
1028 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1029 mutex_unlock(&lo->lo_ctl_mutex);
1030 return 0;
1033 if (filp == NULL)
1034 return -EINVAL;
1036 /* freeze request queue during the transition */
1037 blk_mq_freeze_queue(lo->lo_queue);
1039 spin_lock_irq(&lo->lo_lock);
1040 lo->lo_state = Lo_rundown;
1041 lo->lo_backing_file = NULL;
1042 spin_unlock_irq(&lo->lo_lock);
1044 loop_release_xfer(lo);
1045 lo->transfer = NULL;
1046 lo->ioctl = NULL;
1047 lo->lo_device = NULL;
1048 lo->lo_encryption = NULL;
1049 lo->lo_offset = 0;
1050 lo->lo_sizelimit = 0;
1051 lo->lo_encrypt_key_size = 0;
1052 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1053 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1054 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1055 if (bdev) {
1056 bdput(bdev);
1057 invalidate_bdev(bdev);
1059 set_capacity(lo->lo_disk, 0);
1060 loop_sysfs_exit(lo);
1061 if (bdev) {
1062 bd_set_size(bdev, 0);
1063 /* let user-space know about this change */
1064 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1066 mapping_set_gfp_mask(filp->f_mapping, gfp);
1067 lo->lo_state = Lo_unbound;
1068 /* This is safe: open() is still holding a reference. */
1069 module_put(THIS_MODULE);
1070 blk_mq_unfreeze_queue(lo->lo_queue);
1072 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1073 loop_reread_partitions(lo, bdev);
1074 lo->lo_flags = 0;
1075 if (!part_shift)
1076 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1077 loop_unprepare_queue(lo);
1078 mutex_unlock(&lo->lo_ctl_mutex);
1080 * Need not hold lo_ctl_mutex to fput backing file.
1081 * Calling fput holding lo_ctl_mutex triggers a circular
1082 * lock dependency possibility warning as fput can take
1083 * bd_mutex which is usually taken before lo_ctl_mutex.
1085 fput(filp);
1086 return 0;
1089 static int
1090 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1092 int err;
1093 struct loop_func_table *xfer;
1094 kuid_t uid = current_uid();
1096 if (lo->lo_encrypt_key_size &&
1097 !uid_eq(lo->lo_key_owner, uid) &&
1098 !capable(CAP_SYS_ADMIN))
1099 return -EPERM;
1100 if (lo->lo_state != Lo_bound)
1101 return -ENXIO;
1102 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1103 return -EINVAL;
1105 err = loop_release_xfer(lo);
1106 if (err)
1107 return err;
1109 if (info->lo_encrypt_type) {
1110 unsigned int type = info->lo_encrypt_type;
1112 if (type >= MAX_LO_CRYPT)
1113 return -EINVAL;
1114 xfer = xfer_funcs[type];
1115 if (xfer == NULL)
1116 return -EINVAL;
1117 } else
1118 xfer = NULL;
1120 err = loop_init_xfer(lo, xfer, info);
1121 if (err)
1122 return err;
1124 if (lo->lo_offset != info->lo_offset ||
1125 lo->lo_sizelimit != info->lo_sizelimit)
1126 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1127 return -EFBIG;
1129 loop_config_discard(lo);
1131 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1132 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1133 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1134 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1136 if (!xfer)
1137 xfer = &none_funcs;
1138 lo->transfer = xfer->transfer;
1139 lo->ioctl = xfer->ioctl;
1141 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1142 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1143 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1145 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1146 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1147 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1148 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1149 loop_reread_partitions(lo, lo->lo_device);
1152 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1153 lo->lo_init[0] = info->lo_init[0];
1154 lo->lo_init[1] = info->lo_init[1];
1155 if (info->lo_encrypt_key_size) {
1156 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1157 info->lo_encrypt_key_size);
1158 lo->lo_key_owner = uid;
1161 /* update dio if lo_offset or transfer is changed */
1162 __loop_update_dio(lo, lo->use_dio);
1164 return 0;
1167 static int
1168 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1170 struct file *file = lo->lo_backing_file;
1171 struct kstat stat;
1172 int error;
1174 if (lo->lo_state != Lo_bound)
1175 return -ENXIO;
1176 error = vfs_getattr(&file->f_path, &stat);
1177 if (error)
1178 return error;
1179 memset(info, 0, sizeof(*info));
1180 info->lo_number = lo->lo_number;
1181 info->lo_device = huge_encode_dev(stat.dev);
1182 info->lo_inode = stat.ino;
1183 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1184 info->lo_offset = lo->lo_offset;
1185 info->lo_sizelimit = lo->lo_sizelimit;
1186 info->lo_flags = lo->lo_flags;
1187 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1188 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1189 info->lo_encrypt_type =
1190 lo->lo_encryption ? lo->lo_encryption->number : 0;
1191 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1192 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1193 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1194 lo->lo_encrypt_key_size);
1196 return 0;
1199 static void
1200 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1202 memset(info64, 0, sizeof(*info64));
1203 info64->lo_number = info->lo_number;
1204 info64->lo_device = info->lo_device;
1205 info64->lo_inode = info->lo_inode;
1206 info64->lo_rdevice = info->lo_rdevice;
1207 info64->lo_offset = info->lo_offset;
1208 info64->lo_sizelimit = 0;
1209 info64->lo_encrypt_type = info->lo_encrypt_type;
1210 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1211 info64->lo_flags = info->lo_flags;
1212 info64->lo_init[0] = info->lo_init[0];
1213 info64->lo_init[1] = info->lo_init[1];
1214 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1215 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1216 else
1217 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1218 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1221 static int
1222 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1224 memset(info, 0, sizeof(*info));
1225 info->lo_number = info64->lo_number;
1226 info->lo_device = info64->lo_device;
1227 info->lo_inode = info64->lo_inode;
1228 info->lo_rdevice = info64->lo_rdevice;
1229 info->lo_offset = info64->lo_offset;
1230 info->lo_encrypt_type = info64->lo_encrypt_type;
1231 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1232 info->lo_flags = info64->lo_flags;
1233 info->lo_init[0] = info64->lo_init[0];
1234 info->lo_init[1] = info64->lo_init[1];
1235 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1236 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1237 else
1238 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1239 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1241 /* error in case values were truncated */
1242 if (info->lo_device != info64->lo_device ||
1243 info->lo_rdevice != info64->lo_rdevice ||
1244 info->lo_inode != info64->lo_inode ||
1245 info->lo_offset != info64->lo_offset)
1246 return -EOVERFLOW;
1248 return 0;
1251 static int
1252 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1254 struct loop_info info;
1255 struct loop_info64 info64;
1257 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1258 return -EFAULT;
1259 loop_info64_from_old(&info, &info64);
1260 return loop_set_status(lo, &info64);
1263 static int
1264 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1266 struct loop_info64 info64;
1268 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1269 return -EFAULT;
1270 return loop_set_status(lo, &info64);
1273 static int
1274 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1275 struct loop_info info;
1276 struct loop_info64 info64;
1277 int err = 0;
1279 if (!arg)
1280 err = -EINVAL;
1281 if (!err)
1282 err = loop_get_status(lo, &info64);
1283 if (!err)
1284 err = loop_info64_to_old(&info64, &info);
1285 if (!err && copy_to_user(arg, &info, sizeof(info)))
1286 err = -EFAULT;
1288 return err;
1291 static int
1292 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1293 struct loop_info64 info64;
1294 int err = 0;
1296 if (!arg)
1297 err = -EINVAL;
1298 if (!err)
1299 err = loop_get_status(lo, &info64);
1300 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1301 err = -EFAULT;
1303 return err;
1306 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1308 if (unlikely(lo->lo_state != Lo_bound))
1309 return -ENXIO;
1311 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1314 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1316 int error = -ENXIO;
1317 if (lo->lo_state != Lo_bound)
1318 goto out;
1320 __loop_update_dio(lo, !!arg);
1321 if (lo->use_dio == !!arg)
1322 return 0;
1323 error = -EINVAL;
1324 out:
1325 return error;
1328 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1329 unsigned int cmd, unsigned long arg)
1331 struct loop_device *lo = bdev->bd_disk->private_data;
1332 int err;
1334 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1335 switch (cmd) {
1336 case LOOP_SET_FD:
1337 err = loop_set_fd(lo, mode, bdev, arg);
1338 break;
1339 case LOOP_CHANGE_FD:
1340 err = loop_change_fd(lo, bdev, arg);
1341 break;
1342 case LOOP_CLR_FD:
1343 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1344 err = loop_clr_fd(lo);
1345 if (!err)
1346 goto out_unlocked;
1347 break;
1348 case LOOP_SET_STATUS:
1349 err = -EPERM;
1350 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1351 err = loop_set_status_old(lo,
1352 (struct loop_info __user *)arg);
1353 break;
1354 case LOOP_GET_STATUS:
1355 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1356 break;
1357 case LOOP_SET_STATUS64:
1358 err = -EPERM;
1359 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1360 err = loop_set_status64(lo,
1361 (struct loop_info64 __user *) arg);
1362 break;
1363 case LOOP_GET_STATUS64:
1364 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1365 break;
1366 case LOOP_SET_CAPACITY:
1367 err = -EPERM;
1368 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1369 err = loop_set_capacity(lo, bdev);
1370 break;
1371 case LOOP_SET_DIRECT_IO:
1372 err = -EPERM;
1373 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1374 err = loop_set_dio(lo, arg);
1375 break;
1376 default:
1377 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1379 mutex_unlock(&lo->lo_ctl_mutex);
1381 out_unlocked:
1382 return err;
1385 #ifdef CONFIG_COMPAT
1386 struct compat_loop_info {
1387 compat_int_t lo_number; /* ioctl r/o */
1388 compat_dev_t lo_device; /* ioctl r/o */
1389 compat_ulong_t lo_inode; /* ioctl r/o */
1390 compat_dev_t lo_rdevice; /* ioctl r/o */
1391 compat_int_t lo_offset;
1392 compat_int_t lo_encrypt_type;
1393 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1394 compat_int_t lo_flags; /* ioctl r/o */
1395 char lo_name[LO_NAME_SIZE];
1396 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1397 compat_ulong_t lo_init[2];
1398 char reserved[4];
1402 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1403 * - noinlined to reduce stack space usage in main part of driver
1405 static noinline int
1406 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1407 struct loop_info64 *info64)
1409 struct compat_loop_info info;
1411 if (copy_from_user(&info, arg, sizeof(info)))
1412 return -EFAULT;
1414 memset(info64, 0, sizeof(*info64));
1415 info64->lo_number = info.lo_number;
1416 info64->lo_device = info.lo_device;
1417 info64->lo_inode = info.lo_inode;
1418 info64->lo_rdevice = info.lo_rdevice;
1419 info64->lo_offset = info.lo_offset;
1420 info64->lo_sizelimit = 0;
1421 info64->lo_encrypt_type = info.lo_encrypt_type;
1422 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1423 info64->lo_flags = info.lo_flags;
1424 info64->lo_init[0] = info.lo_init[0];
1425 info64->lo_init[1] = info.lo_init[1];
1426 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1427 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1428 else
1429 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1430 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1431 return 0;
1435 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1436 * - noinlined to reduce stack space usage in main part of driver
1438 static noinline int
1439 loop_info64_to_compat(const struct loop_info64 *info64,
1440 struct compat_loop_info __user *arg)
1442 struct compat_loop_info info;
1444 memset(&info, 0, sizeof(info));
1445 info.lo_number = info64->lo_number;
1446 info.lo_device = info64->lo_device;
1447 info.lo_inode = info64->lo_inode;
1448 info.lo_rdevice = info64->lo_rdevice;
1449 info.lo_offset = info64->lo_offset;
1450 info.lo_encrypt_type = info64->lo_encrypt_type;
1451 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1452 info.lo_flags = info64->lo_flags;
1453 info.lo_init[0] = info64->lo_init[0];
1454 info.lo_init[1] = info64->lo_init[1];
1455 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1456 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1457 else
1458 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1459 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1461 /* error in case values were truncated */
1462 if (info.lo_device != info64->lo_device ||
1463 info.lo_rdevice != info64->lo_rdevice ||
1464 info.lo_inode != info64->lo_inode ||
1465 info.lo_offset != info64->lo_offset ||
1466 info.lo_init[0] != info64->lo_init[0] ||
1467 info.lo_init[1] != info64->lo_init[1])
1468 return -EOVERFLOW;
1470 if (copy_to_user(arg, &info, sizeof(info)))
1471 return -EFAULT;
1472 return 0;
1475 static int
1476 loop_set_status_compat(struct loop_device *lo,
1477 const struct compat_loop_info __user *arg)
1479 struct loop_info64 info64;
1480 int ret;
1482 ret = loop_info64_from_compat(arg, &info64);
1483 if (ret < 0)
1484 return ret;
1485 return loop_set_status(lo, &info64);
1488 static int
1489 loop_get_status_compat(struct loop_device *lo,
1490 struct compat_loop_info __user *arg)
1492 struct loop_info64 info64;
1493 int err = 0;
1495 if (!arg)
1496 err = -EINVAL;
1497 if (!err)
1498 err = loop_get_status(lo, &info64);
1499 if (!err)
1500 err = loop_info64_to_compat(&info64, arg);
1501 return err;
1504 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1505 unsigned int cmd, unsigned long arg)
1507 struct loop_device *lo = bdev->bd_disk->private_data;
1508 int err;
1510 switch(cmd) {
1511 case LOOP_SET_STATUS:
1512 mutex_lock(&lo->lo_ctl_mutex);
1513 err = loop_set_status_compat(
1514 lo, (const struct compat_loop_info __user *) arg);
1515 mutex_unlock(&lo->lo_ctl_mutex);
1516 break;
1517 case LOOP_GET_STATUS:
1518 mutex_lock(&lo->lo_ctl_mutex);
1519 err = loop_get_status_compat(
1520 lo, (struct compat_loop_info __user *) arg);
1521 mutex_unlock(&lo->lo_ctl_mutex);
1522 break;
1523 case LOOP_SET_CAPACITY:
1524 case LOOP_CLR_FD:
1525 case LOOP_GET_STATUS64:
1526 case LOOP_SET_STATUS64:
1527 arg = (unsigned long) compat_ptr(arg);
1528 case LOOP_SET_FD:
1529 case LOOP_CHANGE_FD:
1530 err = lo_ioctl(bdev, mode, cmd, arg);
1531 break;
1532 default:
1533 err = -ENOIOCTLCMD;
1534 break;
1536 return err;
1538 #endif
1540 static int lo_open(struct block_device *bdev, fmode_t mode)
1542 struct loop_device *lo;
1543 int err = 0;
1545 mutex_lock(&loop_index_mutex);
1546 lo = bdev->bd_disk->private_data;
1547 if (!lo) {
1548 err = -ENXIO;
1549 goto out;
1552 atomic_inc(&lo->lo_refcnt);
1553 out:
1554 mutex_unlock(&loop_index_mutex);
1555 return err;
1558 static void lo_release(struct gendisk *disk, fmode_t mode)
1560 struct loop_device *lo = disk->private_data;
1561 int err;
1563 if (atomic_dec_return(&lo->lo_refcnt))
1564 return;
1566 mutex_lock(&lo->lo_ctl_mutex);
1567 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1569 * In autoclear mode, stop the loop thread
1570 * and remove configuration after last close.
1572 err = loop_clr_fd(lo);
1573 if (!err)
1574 return;
1575 } else {
1577 * Otherwise keep thread (if running) and config,
1578 * but flush possible ongoing bios in thread.
1580 loop_flush(lo);
1583 mutex_unlock(&lo->lo_ctl_mutex);
1586 static const struct block_device_operations lo_fops = {
1587 .owner = THIS_MODULE,
1588 .open = lo_open,
1589 .release = lo_release,
1590 .ioctl = lo_ioctl,
1591 #ifdef CONFIG_COMPAT
1592 .compat_ioctl = lo_compat_ioctl,
1593 #endif
1597 * And now the modules code and kernel interface.
1599 static int max_loop;
1600 module_param(max_loop, int, S_IRUGO);
1601 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1602 module_param(max_part, int, S_IRUGO);
1603 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1604 MODULE_LICENSE("GPL");
1605 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1607 int loop_register_transfer(struct loop_func_table *funcs)
1609 unsigned int n = funcs->number;
1611 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1612 return -EINVAL;
1613 xfer_funcs[n] = funcs;
1614 return 0;
1617 static int unregister_transfer_cb(int id, void *ptr, void *data)
1619 struct loop_device *lo = ptr;
1620 struct loop_func_table *xfer = data;
1622 mutex_lock(&lo->lo_ctl_mutex);
1623 if (lo->lo_encryption == xfer)
1624 loop_release_xfer(lo);
1625 mutex_unlock(&lo->lo_ctl_mutex);
1626 return 0;
1629 int loop_unregister_transfer(int number)
1631 unsigned int n = number;
1632 struct loop_func_table *xfer;
1634 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1635 return -EINVAL;
1637 xfer_funcs[n] = NULL;
1638 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1639 return 0;
1642 EXPORT_SYMBOL(loop_register_transfer);
1643 EXPORT_SYMBOL(loop_unregister_transfer);
1645 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1646 const struct blk_mq_queue_data *bd)
1648 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1649 struct loop_device *lo = cmd->rq->q->queuedata;
1651 blk_mq_start_request(bd->rq);
1653 if (lo->lo_state != Lo_bound)
1654 return -EIO;
1656 if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH |
1657 REQ_DISCARD)))
1658 cmd->use_aio = true;
1659 else
1660 cmd->use_aio = false;
1662 queue_kthread_work(&lo->worker, &cmd->work);
1664 return BLK_MQ_RQ_QUEUE_OK;
1667 static void loop_handle_cmd(struct loop_cmd *cmd)
1669 const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1670 struct loop_device *lo = cmd->rq->q->queuedata;
1671 int ret = 0;
1673 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1674 ret = -EIO;
1675 goto failed;
1678 ret = do_req_filebacked(lo, cmd->rq);
1679 failed:
1680 /* complete non-aio request */
1681 if (!cmd->use_aio || ret)
1682 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1685 static void loop_queue_work(struct kthread_work *work)
1687 struct loop_cmd *cmd =
1688 container_of(work, struct loop_cmd, work);
1690 loop_handle_cmd(cmd);
1693 static int loop_init_request(void *data, struct request *rq,
1694 unsigned int hctx_idx, unsigned int request_idx,
1695 unsigned int numa_node)
1697 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1699 cmd->rq = rq;
1700 init_kthread_work(&cmd->work, loop_queue_work);
1702 return 0;
1705 static struct blk_mq_ops loop_mq_ops = {
1706 .queue_rq = loop_queue_rq,
1707 .map_queue = blk_mq_map_queue,
1708 .init_request = loop_init_request,
1711 static int loop_add(struct loop_device **l, int i)
1713 struct loop_device *lo;
1714 struct gendisk *disk;
1715 int err;
1717 err = -ENOMEM;
1718 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1719 if (!lo)
1720 goto out;
1722 lo->lo_state = Lo_unbound;
1724 /* allocate id, if @id >= 0, we're requesting that specific id */
1725 if (i >= 0) {
1726 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1727 if (err == -ENOSPC)
1728 err = -EEXIST;
1729 } else {
1730 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1732 if (err < 0)
1733 goto out_free_dev;
1734 i = err;
1736 err = -ENOMEM;
1737 lo->tag_set.ops = &loop_mq_ops;
1738 lo->tag_set.nr_hw_queues = 1;
1739 lo->tag_set.queue_depth = 128;
1740 lo->tag_set.numa_node = NUMA_NO_NODE;
1741 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1742 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1743 lo->tag_set.driver_data = lo;
1745 err = blk_mq_alloc_tag_set(&lo->tag_set);
1746 if (err)
1747 goto out_free_idr;
1749 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1750 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1751 err = PTR_ERR(lo->lo_queue);
1752 goto out_cleanup_tags;
1754 lo->lo_queue->queuedata = lo;
1757 * It doesn't make sense to enable merge because the I/O
1758 * submitted to backing file is handled page by page.
1760 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1762 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1763 if (!disk)
1764 goto out_free_queue;
1767 * Disable partition scanning by default. The in-kernel partition
1768 * scanning can be requested individually per-device during its
1769 * setup. Userspace can always add and remove partitions from all
1770 * devices. The needed partition minors are allocated from the
1771 * extended minor space, the main loop device numbers will continue
1772 * to match the loop minors, regardless of the number of partitions
1773 * used.
1775 * If max_part is given, partition scanning is globally enabled for
1776 * all loop devices. The minors for the main loop devices will be
1777 * multiples of max_part.
1779 * Note: Global-for-all-devices, set-only-at-init, read-only module
1780 * parameteters like 'max_loop' and 'max_part' make things needlessly
1781 * complicated, are too static, inflexible and may surprise
1782 * userspace tools. Parameters like this in general should be avoided.
1784 if (!part_shift)
1785 disk->flags |= GENHD_FL_NO_PART_SCAN;
1786 disk->flags |= GENHD_FL_EXT_DEVT;
1787 mutex_init(&lo->lo_ctl_mutex);
1788 atomic_set(&lo->lo_refcnt, 0);
1789 lo->lo_number = i;
1790 spin_lock_init(&lo->lo_lock);
1791 disk->major = LOOP_MAJOR;
1792 disk->first_minor = i << part_shift;
1793 disk->fops = &lo_fops;
1794 disk->private_data = lo;
1795 disk->queue = lo->lo_queue;
1796 sprintf(disk->disk_name, "loop%d", i);
1797 add_disk(disk);
1798 *l = lo;
1799 return lo->lo_number;
1801 out_free_queue:
1802 blk_cleanup_queue(lo->lo_queue);
1803 out_cleanup_tags:
1804 blk_mq_free_tag_set(&lo->tag_set);
1805 out_free_idr:
1806 idr_remove(&loop_index_idr, i);
1807 out_free_dev:
1808 kfree(lo);
1809 out:
1810 return err;
1813 static void loop_remove(struct loop_device *lo)
1815 blk_cleanup_queue(lo->lo_queue);
1816 del_gendisk(lo->lo_disk);
1817 blk_mq_free_tag_set(&lo->tag_set);
1818 put_disk(lo->lo_disk);
1819 kfree(lo);
1822 static int find_free_cb(int id, void *ptr, void *data)
1824 struct loop_device *lo = ptr;
1825 struct loop_device **l = data;
1827 if (lo->lo_state == Lo_unbound) {
1828 *l = lo;
1829 return 1;
1831 return 0;
1834 static int loop_lookup(struct loop_device **l, int i)
1836 struct loop_device *lo;
1837 int ret = -ENODEV;
1839 if (i < 0) {
1840 int err;
1842 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1843 if (err == 1) {
1844 *l = lo;
1845 ret = lo->lo_number;
1847 goto out;
1850 /* lookup and return a specific i */
1851 lo = idr_find(&loop_index_idr, i);
1852 if (lo) {
1853 *l = lo;
1854 ret = lo->lo_number;
1856 out:
1857 return ret;
1860 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1862 struct loop_device *lo;
1863 struct kobject *kobj;
1864 int err;
1866 mutex_lock(&loop_index_mutex);
1867 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1868 if (err < 0)
1869 err = loop_add(&lo, MINOR(dev) >> part_shift);
1870 if (err < 0)
1871 kobj = NULL;
1872 else
1873 kobj = get_disk(lo->lo_disk);
1874 mutex_unlock(&loop_index_mutex);
1876 *part = 0;
1877 return kobj;
1880 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1881 unsigned long parm)
1883 struct loop_device *lo;
1884 int ret = -ENOSYS;
1886 mutex_lock(&loop_index_mutex);
1887 switch (cmd) {
1888 case LOOP_CTL_ADD:
1889 ret = loop_lookup(&lo, parm);
1890 if (ret >= 0) {
1891 ret = -EEXIST;
1892 break;
1894 ret = loop_add(&lo, parm);
1895 break;
1896 case LOOP_CTL_REMOVE:
1897 ret = loop_lookup(&lo, parm);
1898 if (ret < 0)
1899 break;
1900 mutex_lock(&lo->lo_ctl_mutex);
1901 if (lo->lo_state != Lo_unbound) {
1902 ret = -EBUSY;
1903 mutex_unlock(&lo->lo_ctl_mutex);
1904 break;
1906 if (atomic_read(&lo->lo_refcnt) > 0) {
1907 ret = -EBUSY;
1908 mutex_unlock(&lo->lo_ctl_mutex);
1909 break;
1911 lo->lo_disk->private_data = NULL;
1912 mutex_unlock(&lo->lo_ctl_mutex);
1913 idr_remove(&loop_index_idr, lo->lo_number);
1914 loop_remove(lo);
1915 break;
1916 case LOOP_CTL_GET_FREE:
1917 ret = loop_lookup(&lo, -1);
1918 if (ret >= 0)
1919 break;
1920 ret = loop_add(&lo, -1);
1922 mutex_unlock(&loop_index_mutex);
1924 return ret;
1927 static const struct file_operations loop_ctl_fops = {
1928 .open = nonseekable_open,
1929 .unlocked_ioctl = loop_control_ioctl,
1930 .compat_ioctl = loop_control_ioctl,
1931 .owner = THIS_MODULE,
1932 .llseek = noop_llseek,
1935 static struct miscdevice loop_misc = {
1936 .minor = LOOP_CTRL_MINOR,
1937 .name = "loop-control",
1938 .fops = &loop_ctl_fops,
1941 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1942 MODULE_ALIAS("devname:loop-control");
1944 static int __init loop_init(void)
1946 int i, nr;
1947 unsigned long range;
1948 struct loop_device *lo;
1949 int err;
1951 err = misc_register(&loop_misc);
1952 if (err < 0)
1953 return err;
1955 part_shift = 0;
1956 if (max_part > 0) {
1957 part_shift = fls(max_part);
1960 * Adjust max_part according to part_shift as it is exported
1961 * to user space so that user can decide correct minor number
1962 * if [s]he want to create more devices.
1964 * Note that -1 is required because partition 0 is reserved
1965 * for the whole disk.
1967 max_part = (1UL << part_shift) - 1;
1970 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1971 err = -EINVAL;
1972 goto misc_out;
1975 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1976 err = -EINVAL;
1977 goto misc_out;
1981 * If max_loop is specified, create that many devices upfront.
1982 * This also becomes a hard limit. If max_loop is not specified,
1983 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1984 * init time. Loop devices can be requested on-demand with the
1985 * /dev/loop-control interface, or be instantiated by accessing
1986 * a 'dead' device node.
1988 if (max_loop) {
1989 nr = max_loop;
1990 range = max_loop << part_shift;
1991 } else {
1992 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1993 range = 1UL << MINORBITS;
1996 if (register_blkdev(LOOP_MAJOR, "loop")) {
1997 err = -EIO;
1998 goto misc_out;
2001 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2002 THIS_MODULE, loop_probe, NULL, NULL);
2004 /* pre-create number of devices given by config or max_loop */
2005 mutex_lock(&loop_index_mutex);
2006 for (i = 0; i < nr; i++)
2007 loop_add(&lo, i);
2008 mutex_unlock(&loop_index_mutex);
2010 printk(KERN_INFO "loop: module loaded\n");
2011 return 0;
2013 misc_out:
2014 misc_deregister(&loop_misc);
2015 return err;
2018 static int loop_exit_cb(int id, void *ptr, void *data)
2020 struct loop_device *lo = ptr;
2022 loop_remove(lo);
2023 return 0;
2026 static void __exit loop_exit(void)
2028 unsigned long range;
2030 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2032 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2033 idr_destroy(&loop_index_idr);
2035 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2036 unregister_blkdev(LOOP_MAJOR, "loop");
2038 misc_deregister(&loop_misc);
2041 module_init(loop_init);
2042 module_exit(loop_exit);
2044 #ifndef MODULE
2045 static int __init max_loop_setup(char *str)
2047 max_loop = simple_strtol(str, NULL, 0);
2048 return 1;
2051 __setup("max_loop=", max_loop_setup);
2052 #endif