Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / edac / edac_mc_sysfs.c
bloba75acea0f674ed7ca9101ca7ce8a65e5b0961905
1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 * The entire API were re-written, and ported to use struct device
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
22 #include "edac_core.h"
23 #include "edac_module.h"
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
34 return edac_mc_log_ue;
37 int edac_mc_get_log_ce(void)
39 return edac_mc_log_ce;
42 int edac_mc_get_panic_on_ue(void)
44 return edac_mc_panic_on_ue;
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
50 return edac_mc_poll_msec;
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
55 unsigned long l;
56 int ret;
58 if (!val)
59 return -EINVAL;
61 ret = kstrtoul(val, 0, &l);
62 if (ret)
63 return ret;
65 if (l < 1000)
66 return -EINVAL;
68 *((unsigned long *)kp->arg) = l;
70 /* notify edac_mc engine to reset the poll period */
71 edac_mc_reset_delay_period(l);
73 return 0;
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
89 static struct device *mci_pdev;
92 * various constants for Memory Controllers
94 static const char * const mem_types[] = {
95 [MEM_EMPTY] = "Empty",
96 [MEM_RESERVED] = "Reserved",
97 [MEM_UNKNOWN] = "Unknown",
98 [MEM_FPM] = "FPM",
99 [MEM_EDO] = "EDO",
100 [MEM_BEDO] = "BEDO",
101 [MEM_SDR] = "Unbuffered-SDR",
102 [MEM_RDR] = "Registered-SDR",
103 [MEM_DDR] = "Unbuffered-DDR",
104 [MEM_RDDR] = "Registered-DDR",
105 [MEM_RMBS] = "RMBS",
106 [MEM_DDR2] = "Unbuffered-DDR2",
107 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 [MEM_RDDR2] = "Registered-DDR2",
109 [MEM_XDR] = "XDR",
110 [MEM_DDR3] = "Unbuffered-DDR3",
111 [MEM_RDDR3] = "Registered-DDR3",
112 [MEM_DDR4] = "Unbuffered-DDR4",
113 [MEM_RDDR4] = "Registered-DDR4"
116 static const char * const dev_types[] = {
117 [DEV_UNKNOWN] = "Unknown",
118 [DEV_X1] = "x1",
119 [DEV_X2] = "x2",
120 [DEV_X4] = "x4",
121 [DEV_X8] = "x8",
122 [DEV_X16] = "x16",
123 [DEV_X32] = "x32",
124 [DEV_X64] = "x64"
127 static const char * const edac_caps[] = {
128 [EDAC_UNKNOWN] = "Unknown",
129 [EDAC_NONE] = "None",
130 [EDAC_RESERVED] = "Reserved",
131 [EDAC_PARITY] = "PARITY",
132 [EDAC_EC] = "EC",
133 [EDAC_SECDED] = "SECDED",
134 [EDAC_S2ECD2ED] = "S2ECD2ED",
135 [EDAC_S4ECD4ED] = "S4ECD4ED",
136 [EDAC_S8ECD8ED] = "S8ECD8ED",
137 [EDAC_S16ECD16ED] = "S16ECD16ED"
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
142 * EDAC sysfs CSROW data structures and methods
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
148 * We need it to avoid namespace conflicts between the legacy API
149 * and the per-dimm/per-rank one
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
154 struct dev_ch_attribute {
155 struct device_attribute attr;
156 int channel;
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160 static struct dev_ch_attribute dev_attr_legacy_##_name = \
161 { __ATTR(_name, _mode, _show, _store), (_var) }
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167 struct device_attribute *mattr, char *data)
169 struct csrow_info *csrow = to_csrow(dev);
171 return sprintf(data, "%u\n", csrow->ue_count);
174 static ssize_t csrow_ce_count_show(struct device *dev,
175 struct device_attribute *mattr, char *data)
177 struct csrow_info *csrow = to_csrow(dev);
179 return sprintf(data, "%u\n", csrow->ce_count);
182 static ssize_t csrow_size_show(struct device *dev,
183 struct device_attribute *mattr, char *data)
185 struct csrow_info *csrow = to_csrow(dev);
186 int i;
187 u32 nr_pages = 0;
189 for (i = 0; i < csrow->nr_channels; i++)
190 nr_pages += csrow->channels[i]->dimm->nr_pages;
191 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
194 static ssize_t csrow_mem_type_show(struct device *dev,
195 struct device_attribute *mattr, char *data)
197 struct csrow_info *csrow = to_csrow(dev);
199 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
202 static ssize_t csrow_dev_type_show(struct device *dev,
203 struct device_attribute *mattr, char *data)
205 struct csrow_info *csrow = to_csrow(dev);
207 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211 struct device_attribute *mattr,
212 char *data)
214 struct csrow_info *csrow = to_csrow(dev);
216 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221 struct device_attribute *mattr,
222 char *data)
224 struct csrow_info *csrow = to_csrow(dev);
225 unsigned chan = to_channel(mattr);
226 struct rank_info *rank = csrow->channels[chan];
228 /* if field has not been initialized, there is nothing to send */
229 if (!rank->dimm->label[0])
230 return 0;
232 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
233 rank->dimm->label);
236 static ssize_t channel_dimm_label_store(struct device *dev,
237 struct device_attribute *mattr,
238 const char *data, size_t count)
240 struct csrow_info *csrow = to_csrow(dev);
241 unsigned chan = to_channel(mattr);
242 struct rank_info *rank = csrow->channels[chan];
243 size_t copy_count = count;
245 if (count == 0)
246 return -EINVAL;
248 if (data[count - 1] == '\0' || data[count - 1] == '\n')
249 copy_count -= 1;
251 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
252 return -EINVAL;
254 strncpy(rank->dimm->label, data, copy_count);
255 rank->dimm->label[copy_count] = '\0';
257 return count;
260 /* show function for dynamic chX_ce_count attribute */
261 static ssize_t channel_ce_count_show(struct device *dev,
262 struct device_attribute *mattr, char *data)
264 struct csrow_info *csrow = to_csrow(dev);
265 unsigned chan = to_channel(mattr);
266 struct rank_info *rank = csrow->channels[chan];
268 return sprintf(data, "%u\n", rank->ce_count);
271 /* cwrow<id>/attribute files */
272 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
273 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
274 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
275 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
276 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
277 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
279 /* default attributes of the CSROW<id> object */
280 static struct attribute *csrow_attrs[] = {
281 &dev_attr_legacy_dev_type.attr,
282 &dev_attr_legacy_mem_type.attr,
283 &dev_attr_legacy_edac_mode.attr,
284 &dev_attr_legacy_size_mb.attr,
285 &dev_attr_legacy_ue_count.attr,
286 &dev_attr_legacy_ce_count.attr,
287 NULL,
290 static struct attribute_group csrow_attr_grp = {
291 .attrs = csrow_attrs,
294 static const struct attribute_group *csrow_attr_groups[] = {
295 &csrow_attr_grp,
296 NULL
299 static void csrow_attr_release(struct device *dev)
301 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
303 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
304 kfree(csrow);
307 static struct device_type csrow_attr_type = {
308 .groups = csrow_attr_groups,
309 .release = csrow_attr_release,
313 * possible dynamic channel DIMM Label attribute files
317 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
318 channel_dimm_label_show, channel_dimm_label_store, 0);
319 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
320 channel_dimm_label_show, channel_dimm_label_store, 1);
321 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
322 channel_dimm_label_show, channel_dimm_label_store, 2);
323 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
324 channel_dimm_label_show, channel_dimm_label_store, 3);
325 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
326 channel_dimm_label_show, channel_dimm_label_store, 4);
327 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
328 channel_dimm_label_show, channel_dimm_label_store, 5);
330 /* Total possible dynamic DIMM Label attribute file table */
331 static struct attribute *dynamic_csrow_dimm_attr[] = {
332 &dev_attr_legacy_ch0_dimm_label.attr.attr,
333 &dev_attr_legacy_ch1_dimm_label.attr.attr,
334 &dev_attr_legacy_ch2_dimm_label.attr.attr,
335 &dev_attr_legacy_ch3_dimm_label.attr.attr,
336 &dev_attr_legacy_ch4_dimm_label.attr.attr,
337 &dev_attr_legacy_ch5_dimm_label.attr.attr,
338 NULL
341 /* possible dynamic channel ce_count attribute files */
342 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
343 channel_ce_count_show, NULL, 0);
344 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
345 channel_ce_count_show, NULL, 1);
346 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
347 channel_ce_count_show, NULL, 2);
348 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
349 channel_ce_count_show, NULL, 3);
350 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
351 channel_ce_count_show, NULL, 4);
352 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
353 channel_ce_count_show, NULL, 5);
355 /* Total possible dynamic ce_count attribute file table */
356 static struct attribute *dynamic_csrow_ce_count_attr[] = {
357 &dev_attr_legacy_ch0_ce_count.attr.attr,
358 &dev_attr_legacy_ch1_ce_count.attr.attr,
359 &dev_attr_legacy_ch2_ce_count.attr.attr,
360 &dev_attr_legacy_ch3_ce_count.attr.attr,
361 &dev_attr_legacy_ch4_ce_count.attr.attr,
362 &dev_attr_legacy_ch5_ce_count.attr.attr,
363 NULL
366 static umode_t csrow_dev_is_visible(struct kobject *kobj,
367 struct attribute *attr, int idx)
369 struct device *dev = kobj_to_dev(kobj);
370 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
372 if (idx >= csrow->nr_channels)
373 return 0;
374 /* Only expose populated DIMMs */
375 if (!csrow->channels[idx]->dimm->nr_pages)
376 return 0;
377 return attr->mode;
381 static const struct attribute_group csrow_dev_dimm_group = {
382 .attrs = dynamic_csrow_dimm_attr,
383 .is_visible = csrow_dev_is_visible,
386 static const struct attribute_group csrow_dev_ce_count_group = {
387 .attrs = dynamic_csrow_ce_count_attr,
388 .is_visible = csrow_dev_is_visible,
391 static const struct attribute_group *csrow_dev_groups[] = {
392 &csrow_dev_dimm_group,
393 &csrow_dev_ce_count_group,
394 NULL
397 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
399 int chan, nr_pages = 0;
401 for (chan = 0; chan < csrow->nr_channels; chan++)
402 nr_pages += csrow->channels[chan]->dimm->nr_pages;
404 return nr_pages;
407 /* Create a CSROW object under specifed edac_mc_device */
408 static int edac_create_csrow_object(struct mem_ctl_info *mci,
409 struct csrow_info *csrow, int index)
411 csrow->dev.type = &csrow_attr_type;
412 csrow->dev.bus = mci->bus;
413 csrow->dev.groups = csrow_dev_groups;
414 device_initialize(&csrow->dev);
415 csrow->dev.parent = &mci->dev;
416 csrow->mci = mci;
417 dev_set_name(&csrow->dev, "csrow%d", index);
418 dev_set_drvdata(&csrow->dev, csrow);
420 edac_dbg(0, "creating (virtual) csrow node %s\n",
421 dev_name(&csrow->dev));
423 return device_add(&csrow->dev);
426 /* Create a CSROW object under specifed edac_mc_device */
427 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
429 int err, i;
430 struct csrow_info *csrow;
432 for (i = 0; i < mci->nr_csrows; i++) {
433 csrow = mci->csrows[i];
434 if (!nr_pages_per_csrow(csrow))
435 continue;
436 err = edac_create_csrow_object(mci, mci->csrows[i], i);
437 if (err < 0) {
438 edac_dbg(1,
439 "failure: create csrow objects for csrow %d\n",
441 goto error;
444 return 0;
446 error:
447 for (--i; i >= 0; i--) {
448 csrow = mci->csrows[i];
449 if (!nr_pages_per_csrow(csrow))
450 continue;
451 put_device(&mci->csrows[i]->dev);
454 return err;
457 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
459 int i;
460 struct csrow_info *csrow;
462 for (i = mci->nr_csrows - 1; i >= 0; i--) {
463 csrow = mci->csrows[i];
464 if (!nr_pages_per_csrow(csrow))
465 continue;
466 device_unregister(&mci->csrows[i]->dev);
469 #endif
472 * Per-dimm (or per-rank) devices
475 #define to_dimm(k) container_of(k, struct dimm_info, dev)
477 /* show/store functions for DIMM Label attributes */
478 static ssize_t dimmdev_location_show(struct device *dev,
479 struct device_attribute *mattr, char *data)
481 struct dimm_info *dimm = to_dimm(dev);
483 return edac_dimm_info_location(dimm, data, PAGE_SIZE);
486 static ssize_t dimmdev_label_show(struct device *dev,
487 struct device_attribute *mattr, char *data)
489 struct dimm_info *dimm = to_dimm(dev);
491 /* if field has not been initialized, there is nothing to send */
492 if (!dimm->label[0])
493 return 0;
495 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
498 static ssize_t dimmdev_label_store(struct device *dev,
499 struct device_attribute *mattr,
500 const char *data,
501 size_t count)
503 struct dimm_info *dimm = to_dimm(dev);
504 size_t copy_count = count;
506 if (count == 0)
507 return -EINVAL;
509 if (data[count - 1] == '\0' || data[count - 1] == '\n')
510 copy_count -= 1;
512 if (copy_count == 0 || copy_count >= sizeof(dimm->label))
513 return -EINVAL;
515 strncpy(dimm->label, data, copy_count);
516 dimm->label[copy_count] = '\0';
518 return count;
521 static ssize_t dimmdev_size_show(struct device *dev,
522 struct device_attribute *mattr, char *data)
524 struct dimm_info *dimm = to_dimm(dev);
526 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
529 static ssize_t dimmdev_mem_type_show(struct device *dev,
530 struct device_attribute *mattr, char *data)
532 struct dimm_info *dimm = to_dimm(dev);
534 return sprintf(data, "%s\n", mem_types[dimm->mtype]);
537 static ssize_t dimmdev_dev_type_show(struct device *dev,
538 struct device_attribute *mattr, char *data)
540 struct dimm_info *dimm = to_dimm(dev);
542 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
545 static ssize_t dimmdev_edac_mode_show(struct device *dev,
546 struct device_attribute *mattr,
547 char *data)
549 struct dimm_info *dimm = to_dimm(dev);
551 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
554 /* dimm/rank attribute files */
555 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
556 dimmdev_label_show, dimmdev_label_store);
557 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
558 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
559 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
560 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
561 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
563 /* attributes of the dimm<id>/rank<id> object */
564 static struct attribute *dimm_attrs[] = {
565 &dev_attr_dimm_label.attr,
566 &dev_attr_dimm_location.attr,
567 &dev_attr_size.attr,
568 &dev_attr_dimm_mem_type.attr,
569 &dev_attr_dimm_dev_type.attr,
570 &dev_attr_dimm_edac_mode.attr,
571 NULL,
574 static struct attribute_group dimm_attr_grp = {
575 .attrs = dimm_attrs,
578 static const struct attribute_group *dimm_attr_groups[] = {
579 &dimm_attr_grp,
580 NULL
583 static void dimm_attr_release(struct device *dev)
585 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
587 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
588 kfree(dimm);
591 static struct device_type dimm_attr_type = {
592 .groups = dimm_attr_groups,
593 .release = dimm_attr_release,
596 /* Create a DIMM object under specifed memory controller device */
597 static int edac_create_dimm_object(struct mem_ctl_info *mci,
598 struct dimm_info *dimm,
599 int index)
601 int err;
602 dimm->mci = mci;
604 dimm->dev.type = &dimm_attr_type;
605 dimm->dev.bus = mci->bus;
606 device_initialize(&dimm->dev);
608 dimm->dev.parent = &mci->dev;
609 if (mci->csbased)
610 dev_set_name(&dimm->dev, "rank%d", index);
611 else
612 dev_set_name(&dimm->dev, "dimm%d", index);
613 dev_set_drvdata(&dimm->dev, dimm);
614 pm_runtime_forbid(&mci->dev);
616 err = device_add(&dimm->dev);
618 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
620 return err;
624 * Memory controller device
627 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
629 static ssize_t mci_reset_counters_store(struct device *dev,
630 struct device_attribute *mattr,
631 const char *data, size_t count)
633 struct mem_ctl_info *mci = to_mci(dev);
634 int cnt, row, chan, i;
635 mci->ue_mc = 0;
636 mci->ce_mc = 0;
637 mci->ue_noinfo_count = 0;
638 mci->ce_noinfo_count = 0;
640 for (row = 0; row < mci->nr_csrows; row++) {
641 struct csrow_info *ri = mci->csrows[row];
643 ri->ue_count = 0;
644 ri->ce_count = 0;
646 for (chan = 0; chan < ri->nr_channels; chan++)
647 ri->channels[chan]->ce_count = 0;
650 cnt = 1;
651 for (i = 0; i < mci->n_layers; i++) {
652 cnt *= mci->layers[i].size;
653 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
654 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
657 mci->start_time = jiffies;
658 return count;
661 /* Memory scrubbing interface:
663 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
664 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
665 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
667 * Negative value still means that an error has occurred while setting
668 * the scrub rate.
670 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
671 struct device_attribute *mattr,
672 const char *data, size_t count)
674 struct mem_ctl_info *mci = to_mci(dev);
675 unsigned long bandwidth = 0;
676 int new_bw = 0;
678 if (kstrtoul(data, 10, &bandwidth) < 0)
679 return -EINVAL;
681 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
682 if (new_bw < 0) {
683 edac_printk(KERN_WARNING, EDAC_MC,
684 "Error setting scrub rate to: %lu\n", bandwidth);
685 return -EINVAL;
688 return count;
692 * ->get_sdram_scrub_rate() return value semantics same as above.
694 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
695 struct device_attribute *mattr,
696 char *data)
698 struct mem_ctl_info *mci = to_mci(dev);
699 int bandwidth = 0;
701 bandwidth = mci->get_sdram_scrub_rate(mci);
702 if (bandwidth < 0) {
703 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
704 return bandwidth;
707 return sprintf(data, "%d\n", bandwidth);
710 /* default attribute files for the MCI object */
711 static ssize_t mci_ue_count_show(struct device *dev,
712 struct device_attribute *mattr,
713 char *data)
715 struct mem_ctl_info *mci = to_mci(dev);
717 return sprintf(data, "%d\n", mci->ue_mc);
720 static ssize_t mci_ce_count_show(struct device *dev,
721 struct device_attribute *mattr,
722 char *data)
724 struct mem_ctl_info *mci = to_mci(dev);
726 return sprintf(data, "%d\n", mci->ce_mc);
729 static ssize_t mci_ce_noinfo_show(struct device *dev,
730 struct device_attribute *mattr,
731 char *data)
733 struct mem_ctl_info *mci = to_mci(dev);
735 return sprintf(data, "%d\n", mci->ce_noinfo_count);
738 static ssize_t mci_ue_noinfo_show(struct device *dev,
739 struct device_attribute *mattr,
740 char *data)
742 struct mem_ctl_info *mci = to_mci(dev);
744 return sprintf(data, "%d\n", mci->ue_noinfo_count);
747 static ssize_t mci_seconds_show(struct device *dev,
748 struct device_attribute *mattr,
749 char *data)
751 struct mem_ctl_info *mci = to_mci(dev);
753 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
756 static ssize_t mci_ctl_name_show(struct device *dev,
757 struct device_attribute *mattr,
758 char *data)
760 struct mem_ctl_info *mci = to_mci(dev);
762 return sprintf(data, "%s\n", mci->ctl_name);
765 static ssize_t mci_size_mb_show(struct device *dev,
766 struct device_attribute *mattr,
767 char *data)
769 struct mem_ctl_info *mci = to_mci(dev);
770 int total_pages = 0, csrow_idx, j;
772 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
773 struct csrow_info *csrow = mci->csrows[csrow_idx];
775 for (j = 0; j < csrow->nr_channels; j++) {
776 struct dimm_info *dimm = csrow->channels[j]->dimm;
778 total_pages += dimm->nr_pages;
782 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
785 static ssize_t mci_max_location_show(struct device *dev,
786 struct device_attribute *mattr,
787 char *data)
789 struct mem_ctl_info *mci = to_mci(dev);
790 int i;
791 char *p = data;
793 for (i = 0; i < mci->n_layers; i++) {
794 p += sprintf(p, "%s %d ",
795 edac_layer_name[mci->layers[i].type],
796 mci->layers[i].size - 1);
799 return p - data;
802 /* default Control file */
803 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
805 /* default Attribute files */
806 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
807 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
808 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
809 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
810 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
811 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
812 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
813 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
815 /* memory scrubber attribute file */
816 DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
817 mci_sdram_scrub_rate_store); /* umode set later in is_visible */
819 static struct attribute *mci_attrs[] = {
820 &dev_attr_reset_counters.attr,
821 &dev_attr_mc_name.attr,
822 &dev_attr_size_mb.attr,
823 &dev_attr_seconds_since_reset.attr,
824 &dev_attr_ue_noinfo_count.attr,
825 &dev_attr_ce_noinfo_count.attr,
826 &dev_attr_ue_count.attr,
827 &dev_attr_ce_count.attr,
828 &dev_attr_max_location.attr,
829 &dev_attr_sdram_scrub_rate.attr,
830 NULL
833 static umode_t mci_attr_is_visible(struct kobject *kobj,
834 struct attribute *attr, int idx)
836 struct device *dev = kobj_to_dev(kobj);
837 struct mem_ctl_info *mci = to_mci(dev);
838 umode_t mode = 0;
840 if (attr != &dev_attr_sdram_scrub_rate.attr)
841 return attr->mode;
842 if (mci->get_sdram_scrub_rate)
843 mode |= S_IRUGO;
844 if (mci->set_sdram_scrub_rate)
845 mode |= S_IWUSR;
846 return mode;
849 static struct attribute_group mci_attr_grp = {
850 .attrs = mci_attrs,
851 .is_visible = mci_attr_is_visible,
854 static const struct attribute_group *mci_attr_groups[] = {
855 &mci_attr_grp,
856 NULL
859 static void mci_attr_release(struct device *dev)
861 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
863 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
864 kfree(mci);
867 static struct device_type mci_attr_type = {
868 .groups = mci_attr_groups,
869 .release = mci_attr_release,
873 * Create a new Memory Controller kobject instance,
874 * mc<id> under the 'mc' directory
876 * Return:
877 * 0 Success
878 * !0 Failure
880 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
881 const struct attribute_group **groups)
883 int i, err;
886 * The memory controller needs its own bus, in order to avoid
887 * namespace conflicts at /sys/bus/edac.
889 mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
890 if (!mci->bus->name)
891 return -ENOMEM;
893 edac_dbg(0, "creating bus %s\n", mci->bus->name);
895 err = bus_register(mci->bus);
896 if (err < 0)
897 goto fail_free_name;
899 /* get the /sys/devices/system/edac subsys reference */
900 mci->dev.type = &mci_attr_type;
901 device_initialize(&mci->dev);
903 mci->dev.parent = mci_pdev;
904 mci->dev.bus = mci->bus;
905 mci->dev.groups = groups;
906 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
907 dev_set_drvdata(&mci->dev, mci);
908 pm_runtime_forbid(&mci->dev);
910 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
911 err = device_add(&mci->dev);
912 if (err < 0) {
913 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
914 goto fail_unregister_bus;
918 * Create the dimm/rank devices
920 for (i = 0; i < mci->tot_dimms; i++) {
921 struct dimm_info *dimm = mci->dimms[i];
922 /* Only expose populated DIMMs */
923 if (!dimm->nr_pages)
924 continue;
926 #ifdef CONFIG_EDAC_DEBUG
927 edac_dbg(1, "creating dimm%d, located at ", i);
928 if (edac_debug_level >= 1) {
929 int lay;
930 for (lay = 0; lay < mci->n_layers; lay++)
931 printk(KERN_CONT "%s %d ",
932 edac_layer_name[mci->layers[lay].type],
933 dimm->location[lay]);
934 printk(KERN_CONT "\n");
936 #endif
937 err = edac_create_dimm_object(mci, dimm, i);
938 if (err) {
939 edac_dbg(1, "failure: create dimm %d obj\n", i);
940 goto fail_unregister_dimm;
944 #ifdef CONFIG_EDAC_LEGACY_SYSFS
945 err = edac_create_csrow_objects(mci);
946 if (err < 0)
947 goto fail_unregister_dimm;
948 #endif
950 edac_create_debugfs_nodes(mci);
951 return 0;
953 fail_unregister_dimm:
954 for (i--; i >= 0; i--) {
955 struct dimm_info *dimm = mci->dimms[i];
956 if (!dimm->nr_pages)
957 continue;
959 device_unregister(&dimm->dev);
961 device_unregister(&mci->dev);
962 fail_unregister_bus:
963 bus_unregister(mci->bus);
964 fail_free_name:
965 kfree(mci->bus->name);
966 return err;
970 * remove a Memory Controller instance
972 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
974 int i;
976 edac_dbg(0, "\n");
978 #ifdef CONFIG_EDAC_DEBUG
979 edac_debugfs_remove_recursive(mci->debugfs);
980 #endif
981 #ifdef CONFIG_EDAC_LEGACY_SYSFS
982 edac_delete_csrow_objects(mci);
983 #endif
985 for (i = 0; i < mci->tot_dimms; i++) {
986 struct dimm_info *dimm = mci->dimms[i];
987 if (dimm->nr_pages == 0)
988 continue;
989 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
990 device_unregister(&dimm->dev);
994 void edac_unregister_sysfs(struct mem_ctl_info *mci)
996 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
997 device_unregister(&mci->dev);
998 bus_unregister(mci->bus);
999 kfree(mci->bus->name);
1002 static void mc_attr_release(struct device *dev)
1005 * There's no container structure here, as this is just the mci
1006 * parent device, used to create the /sys/devices/mc sysfs node.
1007 * So, there are no attributes on it.
1009 edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1010 kfree(dev);
1013 static struct device_type mc_attr_type = {
1014 .release = mc_attr_release,
1017 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1019 int __init edac_mc_sysfs_init(void)
1021 struct bus_type *edac_subsys;
1022 int err;
1024 /* get the /sys/devices/system/edac subsys reference */
1025 edac_subsys = edac_get_sysfs_subsys();
1026 if (edac_subsys == NULL) {
1027 edac_dbg(1, "no edac_subsys\n");
1028 err = -EINVAL;
1029 goto out;
1032 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1033 if (!mci_pdev) {
1034 err = -ENOMEM;
1035 goto out_put_sysfs;
1038 mci_pdev->bus = edac_subsys;
1039 mci_pdev->type = &mc_attr_type;
1040 device_initialize(mci_pdev);
1041 dev_set_name(mci_pdev, "mc");
1043 err = device_add(mci_pdev);
1044 if (err < 0)
1045 goto out_dev_free;
1047 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1049 return 0;
1051 out_dev_free:
1052 kfree(mci_pdev);
1053 out_put_sysfs:
1054 edac_put_sysfs_subsys();
1055 out:
1056 return err;
1059 void edac_mc_sysfs_exit(void)
1061 device_unregister(mci_pdev);
1062 edac_put_sysfs_subsys();