Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nouveau_bo.c
blob78f520d05de92ea627980c5e8f2bb8388715e6fe
1 /*
2 * Copyright 2007 Dave Airlied
3 * All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drm.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
42 * NV10-NV40 tiling helpers
45 static void
46 nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
47 u32 addr, u32 size, u32 pitch, u32 flags)
49 struct nouveau_drm *drm = nouveau_drm(dev);
50 int i = reg - drm->tile.reg;
51 struct nvkm_device *device = nvxx_device(&drm->device);
52 struct nvkm_fb *fb = device->fb;
53 struct nvkm_fb_tile *tile = &fb->tile.region[i];
55 nouveau_fence_unref(&reg->fence);
57 if (tile->pitch)
58 nvkm_fb_tile_fini(fb, i, tile);
60 if (pitch)
61 nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
63 nvkm_fb_tile_prog(fb, i, tile);
66 static struct nouveau_drm_tile *
67 nv10_bo_get_tile_region(struct drm_device *dev, int i)
69 struct nouveau_drm *drm = nouveau_drm(dev);
70 struct nouveau_drm_tile *tile = &drm->tile.reg[i];
72 spin_lock(&drm->tile.lock);
74 if (!tile->used &&
75 (!tile->fence || nouveau_fence_done(tile->fence)))
76 tile->used = true;
77 else
78 tile = NULL;
80 spin_unlock(&drm->tile.lock);
81 return tile;
84 static void
85 nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
86 struct fence *fence)
88 struct nouveau_drm *drm = nouveau_drm(dev);
90 if (tile) {
91 spin_lock(&drm->tile.lock);
92 tile->fence = (struct nouveau_fence *)fence_get(fence);
93 tile->used = false;
94 spin_unlock(&drm->tile.lock);
98 static struct nouveau_drm_tile *
99 nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
100 u32 size, u32 pitch, u32 flags)
102 struct nouveau_drm *drm = nouveau_drm(dev);
103 struct nvkm_fb *fb = nvxx_fb(&drm->device);
104 struct nouveau_drm_tile *tile, *found = NULL;
105 int i;
107 for (i = 0; i < fb->tile.regions; i++) {
108 tile = nv10_bo_get_tile_region(dev, i);
110 if (pitch && !found) {
111 found = tile;
112 continue;
114 } else if (tile && fb->tile.region[i].pitch) {
115 /* Kill an unused tile region. */
116 nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
119 nv10_bo_put_tile_region(dev, tile, NULL);
122 if (found)
123 nv10_bo_update_tile_region(dev, found, addr, size,
124 pitch, flags);
125 return found;
128 static void
129 nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
131 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
132 struct drm_device *dev = drm->dev;
133 struct nouveau_bo *nvbo = nouveau_bo(bo);
135 if (unlikely(nvbo->gem.filp))
136 DRM_ERROR("bo %p still attached to GEM object\n", bo);
137 WARN_ON(nvbo->pin_refcnt > 0);
138 nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
139 kfree(nvbo);
142 static void
143 nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
144 int *align, int *size)
146 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
147 struct nvif_device *device = &drm->device;
149 if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
150 if (nvbo->tile_mode) {
151 if (device->info.chipset >= 0x40) {
152 *align = 65536;
153 *size = roundup(*size, 64 * nvbo->tile_mode);
155 } else if (device->info.chipset >= 0x30) {
156 *align = 32768;
157 *size = roundup(*size, 64 * nvbo->tile_mode);
159 } else if (device->info.chipset >= 0x20) {
160 *align = 16384;
161 *size = roundup(*size, 64 * nvbo->tile_mode);
163 } else if (device->info.chipset >= 0x10) {
164 *align = 16384;
165 *size = roundup(*size, 32 * nvbo->tile_mode);
168 } else {
169 *size = roundup(*size, (1 << nvbo->page_shift));
170 *align = max((1 << nvbo->page_shift), *align);
173 *size = roundup(*size, PAGE_SIZE);
177 nouveau_bo_new(struct drm_device *dev, int size, int align,
178 uint32_t flags, uint32_t tile_mode, uint32_t tile_flags,
179 struct sg_table *sg, struct reservation_object *robj,
180 struct nouveau_bo **pnvbo)
182 struct nouveau_drm *drm = nouveau_drm(dev);
183 struct nouveau_bo *nvbo;
184 size_t acc_size;
185 int ret;
186 int type = ttm_bo_type_device;
187 int lpg_shift = 12;
188 int max_size;
190 if (drm->client.vm)
191 lpg_shift = drm->client.vm->mmu->lpg_shift;
192 max_size = INT_MAX & ~((1 << lpg_shift) - 1);
194 if (size <= 0 || size > max_size) {
195 NV_WARN(drm, "skipped size %x\n", (u32)size);
196 return -EINVAL;
199 if (sg)
200 type = ttm_bo_type_sg;
202 nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
203 if (!nvbo)
204 return -ENOMEM;
205 INIT_LIST_HEAD(&nvbo->head);
206 INIT_LIST_HEAD(&nvbo->entry);
207 INIT_LIST_HEAD(&nvbo->vma_list);
208 nvbo->tile_mode = tile_mode;
209 nvbo->tile_flags = tile_flags;
210 nvbo->bo.bdev = &drm->ttm.bdev;
212 if (!nvxx_device(&drm->device)->func->cpu_coherent)
213 nvbo->force_coherent = flags & TTM_PL_FLAG_UNCACHED;
215 nvbo->page_shift = 12;
216 if (drm->client.vm) {
217 if (!(flags & TTM_PL_FLAG_TT) && size > 256 * 1024)
218 nvbo->page_shift = drm->client.vm->mmu->lpg_shift;
221 nouveau_bo_fixup_align(nvbo, flags, &align, &size);
222 nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
223 nouveau_bo_placement_set(nvbo, flags, 0);
225 acc_size = ttm_bo_dma_acc_size(&drm->ttm.bdev, size,
226 sizeof(struct nouveau_bo));
228 ret = ttm_bo_init(&drm->ttm.bdev, &nvbo->bo, size,
229 type, &nvbo->placement,
230 align >> PAGE_SHIFT, false, NULL, acc_size, sg,
231 robj, nouveau_bo_del_ttm);
232 if (ret) {
233 /* ttm will call nouveau_bo_del_ttm if it fails.. */
234 return ret;
237 *pnvbo = nvbo;
238 return 0;
241 static void
242 set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t type, uint32_t flags)
244 *n = 0;
246 if (type & TTM_PL_FLAG_VRAM)
247 pl[(*n)++].flags = TTM_PL_FLAG_VRAM | flags;
248 if (type & TTM_PL_FLAG_TT)
249 pl[(*n)++].flags = TTM_PL_FLAG_TT | flags;
250 if (type & TTM_PL_FLAG_SYSTEM)
251 pl[(*n)++].flags = TTM_PL_FLAG_SYSTEM | flags;
254 static void
255 set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
257 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
258 u32 vram_pages = drm->device.info.ram_size >> PAGE_SHIFT;
259 unsigned i, fpfn, lpfn;
261 if (drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
262 nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) &&
263 nvbo->bo.mem.num_pages < vram_pages / 4) {
265 * Make sure that the color and depth buffers are handled
266 * by independent memory controller units. Up to a 9x
267 * speed up when alpha-blending and depth-test are enabled
268 * at the same time.
270 if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) {
271 fpfn = vram_pages / 2;
272 lpfn = ~0;
273 } else {
274 fpfn = 0;
275 lpfn = vram_pages / 2;
277 for (i = 0; i < nvbo->placement.num_placement; ++i) {
278 nvbo->placements[i].fpfn = fpfn;
279 nvbo->placements[i].lpfn = lpfn;
281 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
282 nvbo->busy_placements[i].fpfn = fpfn;
283 nvbo->busy_placements[i].lpfn = lpfn;
288 void
289 nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
291 struct ttm_placement *pl = &nvbo->placement;
292 uint32_t flags = (nvbo->force_coherent ? TTM_PL_FLAG_UNCACHED :
293 TTM_PL_MASK_CACHING) |
294 (nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
296 pl->placement = nvbo->placements;
297 set_placement_list(nvbo->placements, &pl->num_placement,
298 type, flags);
300 pl->busy_placement = nvbo->busy_placements;
301 set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
302 type | busy, flags);
304 set_placement_range(nvbo, type);
308 nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype, bool contig)
310 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
311 struct ttm_buffer_object *bo = &nvbo->bo;
312 bool force = false, evict = false;
313 int ret;
315 ret = ttm_bo_reserve(bo, false, false, false, NULL);
316 if (ret)
317 return ret;
319 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
320 memtype == TTM_PL_FLAG_VRAM && contig) {
321 if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG) {
322 if (bo->mem.mem_type == TTM_PL_VRAM) {
323 struct nvkm_mem *mem = bo->mem.mm_node;
324 if (!list_is_singular(&mem->regions))
325 evict = true;
327 nvbo->tile_flags &= ~NOUVEAU_GEM_TILE_NONCONTIG;
328 force = true;
332 if (nvbo->pin_refcnt) {
333 if (!(memtype & (1 << bo->mem.mem_type)) || evict) {
334 NV_ERROR(drm, "bo %p pinned elsewhere: "
335 "0x%08x vs 0x%08x\n", bo,
336 1 << bo->mem.mem_type, memtype);
337 ret = -EBUSY;
339 nvbo->pin_refcnt++;
340 goto out;
343 if (evict) {
344 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT, 0);
345 ret = nouveau_bo_validate(nvbo, false, false);
346 if (ret)
347 goto out;
350 nvbo->pin_refcnt++;
351 nouveau_bo_placement_set(nvbo, memtype, 0);
353 /* drop pin_refcnt temporarily, so we don't trip the assertion
354 * in nouveau_bo_move() that makes sure we're not trying to
355 * move a pinned buffer
357 nvbo->pin_refcnt--;
358 ret = nouveau_bo_validate(nvbo, false, false);
359 if (ret)
360 goto out;
361 nvbo->pin_refcnt++;
363 switch (bo->mem.mem_type) {
364 case TTM_PL_VRAM:
365 drm->gem.vram_available -= bo->mem.size;
366 break;
367 case TTM_PL_TT:
368 drm->gem.gart_available -= bo->mem.size;
369 break;
370 default:
371 break;
374 out:
375 if (force && ret)
376 nvbo->tile_flags |= NOUVEAU_GEM_TILE_NONCONTIG;
377 ttm_bo_unreserve(bo);
378 return ret;
382 nouveau_bo_unpin(struct nouveau_bo *nvbo)
384 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
385 struct ttm_buffer_object *bo = &nvbo->bo;
386 int ret, ref;
388 ret = ttm_bo_reserve(bo, false, false, false, NULL);
389 if (ret)
390 return ret;
392 ref = --nvbo->pin_refcnt;
393 WARN_ON_ONCE(ref < 0);
394 if (ref)
395 goto out;
397 nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
399 ret = nouveau_bo_validate(nvbo, false, false);
400 if (ret == 0) {
401 switch (bo->mem.mem_type) {
402 case TTM_PL_VRAM:
403 drm->gem.vram_available += bo->mem.size;
404 break;
405 case TTM_PL_TT:
406 drm->gem.gart_available += bo->mem.size;
407 break;
408 default:
409 break;
413 out:
414 ttm_bo_unreserve(bo);
415 return ret;
419 nouveau_bo_map(struct nouveau_bo *nvbo)
421 int ret;
423 ret = ttm_bo_reserve(&nvbo->bo, false, false, false, NULL);
424 if (ret)
425 return ret;
428 * TTM buffers allocated using the DMA API already have a mapping, let's
429 * use it instead.
431 if (!nvbo->force_coherent)
432 ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages,
433 &nvbo->kmap);
435 ttm_bo_unreserve(&nvbo->bo);
436 return ret;
439 void
440 nouveau_bo_unmap(struct nouveau_bo *nvbo)
442 if (!nvbo)
443 return;
446 * TTM buffers allocated using the DMA API already had a coherent
447 * mapping which we used, no need to unmap.
449 if (!nvbo->force_coherent)
450 ttm_bo_kunmap(&nvbo->kmap);
453 void
454 nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
456 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
457 struct nvkm_device *device = nvxx_device(&drm->device);
458 struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
459 int i;
461 if (!ttm_dma)
462 return;
464 /* Don't waste time looping if the object is coherent */
465 if (nvbo->force_coherent)
466 return;
468 for (i = 0; i < ttm_dma->ttm.num_pages; i++)
469 dma_sync_single_for_device(device->dev, ttm_dma->dma_address[i],
470 PAGE_SIZE, DMA_TO_DEVICE);
473 void
474 nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
476 struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
477 struct nvkm_device *device = nvxx_device(&drm->device);
478 struct ttm_dma_tt *ttm_dma = (struct ttm_dma_tt *)nvbo->bo.ttm;
479 int i;
481 if (!ttm_dma)
482 return;
484 /* Don't waste time looping if the object is coherent */
485 if (nvbo->force_coherent)
486 return;
488 for (i = 0; i < ttm_dma->ttm.num_pages; i++)
489 dma_sync_single_for_cpu(device->dev, ttm_dma->dma_address[i],
490 PAGE_SIZE, DMA_FROM_DEVICE);
494 nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
495 bool no_wait_gpu)
497 int ret;
499 ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement,
500 interruptible, no_wait_gpu);
501 if (ret)
502 return ret;
504 nouveau_bo_sync_for_device(nvbo);
506 return 0;
509 static inline void *
510 _nouveau_bo_mem_index(struct nouveau_bo *nvbo, unsigned index, void *mem, u8 sz)
512 struct ttm_dma_tt *dma_tt;
513 u8 *m = mem;
515 index *= sz;
517 if (m) {
518 /* kmap'd address, return the corresponding offset */
519 m += index;
520 } else {
521 /* DMA-API mapping, lookup the right address */
522 dma_tt = (struct ttm_dma_tt *)nvbo->bo.ttm;
523 m = dma_tt->cpu_address[index / PAGE_SIZE];
524 m += index % PAGE_SIZE;
527 return m;
529 #define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m))
531 void
532 nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
534 bool is_iomem;
535 u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
537 mem = nouveau_bo_mem_index(nvbo, index, mem);
539 if (is_iomem)
540 iowrite16_native(val, (void __force __iomem *)mem);
541 else
542 *mem = val;
546 nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
548 bool is_iomem;
549 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
551 mem = nouveau_bo_mem_index(nvbo, index, mem);
553 if (is_iomem)
554 return ioread32_native((void __force __iomem *)mem);
555 else
556 return *mem;
559 void
560 nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
562 bool is_iomem;
563 u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
565 mem = nouveau_bo_mem_index(nvbo, index, mem);
567 if (is_iomem)
568 iowrite32_native(val, (void __force __iomem *)mem);
569 else
570 *mem = val;
573 static struct ttm_tt *
574 nouveau_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
575 uint32_t page_flags, struct page *dummy_read)
577 #if IS_ENABLED(CONFIG_AGP)
578 struct nouveau_drm *drm = nouveau_bdev(bdev);
580 if (drm->agp.bridge) {
581 return ttm_agp_tt_create(bdev, drm->agp.bridge, size,
582 page_flags, dummy_read);
584 #endif
586 return nouveau_sgdma_create_ttm(bdev, size, page_flags, dummy_read);
589 static int
590 nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
592 /* We'll do this from user space. */
593 return 0;
596 static int
597 nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
598 struct ttm_mem_type_manager *man)
600 struct nouveau_drm *drm = nouveau_bdev(bdev);
602 switch (type) {
603 case TTM_PL_SYSTEM:
604 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
605 man->available_caching = TTM_PL_MASK_CACHING;
606 man->default_caching = TTM_PL_FLAG_CACHED;
607 break;
608 case TTM_PL_VRAM:
609 man->flags = TTM_MEMTYPE_FLAG_FIXED |
610 TTM_MEMTYPE_FLAG_MAPPABLE;
611 man->available_caching = TTM_PL_FLAG_UNCACHED |
612 TTM_PL_FLAG_WC;
613 man->default_caching = TTM_PL_FLAG_WC;
615 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
616 /* Some BARs do not support being ioremapped WC */
617 if (nvxx_bar(&drm->device)->iomap_uncached) {
618 man->available_caching = TTM_PL_FLAG_UNCACHED;
619 man->default_caching = TTM_PL_FLAG_UNCACHED;
622 man->func = &nouveau_vram_manager;
623 man->io_reserve_fastpath = false;
624 man->use_io_reserve_lru = true;
625 } else {
626 man->func = &ttm_bo_manager_func;
628 break;
629 case TTM_PL_TT:
630 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA)
631 man->func = &nouveau_gart_manager;
632 else
633 if (!drm->agp.bridge)
634 man->func = &nv04_gart_manager;
635 else
636 man->func = &ttm_bo_manager_func;
638 if (drm->agp.bridge) {
639 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
640 man->available_caching = TTM_PL_FLAG_UNCACHED |
641 TTM_PL_FLAG_WC;
642 man->default_caching = TTM_PL_FLAG_WC;
643 } else {
644 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
645 TTM_MEMTYPE_FLAG_CMA;
646 man->available_caching = TTM_PL_MASK_CACHING;
647 man->default_caching = TTM_PL_FLAG_CACHED;
650 break;
651 default:
652 return -EINVAL;
654 return 0;
657 static void
658 nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
660 struct nouveau_bo *nvbo = nouveau_bo(bo);
662 switch (bo->mem.mem_type) {
663 case TTM_PL_VRAM:
664 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
665 TTM_PL_FLAG_SYSTEM);
666 break;
667 default:
668 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
669 break;
672 *pl = nvbo->placement;
676 static int
677 nve0_bo_move_init(struct nouveau_channel *chan, u32 handle)
679 int ret = RING_SPACE(chan, 2);
680 if (ret == 0) {
681 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
682 OUT_RING (chan, handle & 0x0000ffff);
683 FIRE_RING (chan);
685 return ret;
688 static int
689 nve0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
690 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
692 struct nvkm_mem *node = old_mem->mm_node;
693 int ret = RING_SPACE(chan, 10);
694 if (ret == 0) {
695 BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
696 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
697 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
698 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
699 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
700 OUT_RING (chan, PAGE_SIZE);
701 OUT_RING (chan, PAGE_SIZE);
702 OUT_RING (chan, PAGE_SIZE);
703 OUT_RING (chan, new_mem->num_pages);
704 BEGIN_IMC0(chan, NvSubCopy, 0x0300, 0x0386);
706 return ret;
709 static int
710 nvc0_bo_move_init(struct nouveau_channel *chan, u32 handle)
712 int ret = RING_SPACE(chan, 2);
713 if (ret == 0) {
714 BEGIN_NVC0(chan, NvSubCopy, 0x0000, 1);
715 OUT_RING (chan, handle);
717 return ret;
720 static int
721 nvc0_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
722 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
724 struct nvkm_mem *node = old_mem->mm_node;
725 u64 src_offset = node->vma[0].offset;
726 u64 dst_offset = node->vma[1].offset;
727 u32 page_count = new_mem->num_pages;
728 int ret;
730 page_count = new_mem->num_pages;
731 while (page_count) {
732 int line_count = (page_count > 8191) ? 8191 : page_count;
734 ret = RING_SPACE(chan, 11);
735 if (ret)
736 return ret;
738 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 8);
739 OUT_RING (chan, upper_32_bits(src_offset));
740 OUT_RING (chan, lower_32_bits(src_offset));
741 OUT_RING (chan, upper_32_bits(dst_offset));
742 OUT_RING (chan, lower_32_bits(dst_offset));
743 OUT_RING (chan, PAGE_SIZE);
744 OUT_RING (chan, PAGE_SIZE);
745 OUT_RING (chan, PAGE_SIZE);
746 OUT_RING (chan, line_count);
747 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
748 OUT_RING (chan, 0x00000110);
750 page_count -= line_count;
751 src_offset += (PAGE_SIZE * line_count);
752 dst_offset += (PAGE_SIZE * line_count);
755 return 0;
758 static int
759 nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
760 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
762 struct nvkm_mem *node = old_mem->mm_node;
763 u64 src_offset = node->vma[0].offset;
764 u64 dst_offset = node->vma[1].offset;
765 u32 page_count = new_mem->num_pages;
766 int ret;
768 page_count = new_mem->num_pages;
769 while (page_count) {
770 int line_count = (page_count > 2047) ? 2047 : page_count;
772 ret = RING_SPACE(chan, 12);
773 if (ret)
774 return ret;
776 BEGIN_NVC0(chan, NvSubCopy, 0x0238, 2);
777 OUT_RING (chan, upper_32_bits(dst_offset));
778 OUT_RING (chan, lower_32_bits(dst_offset));
779 BEGIN_NVC0(chan, NvSubCopy, 0x030c, 6);
780 OUT_RING (chan, upper_32_bits(src_offset));
781 OUT_RING (chan, lower_32_bits(src_offset));
782 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
783 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
784 OUT_RING (chan, PAGE_SIZE); /* line_length */
785 OUT_RING (chan, line_count);
786 BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
787 OUT_RING (chan, 0x00100110);
789 page_count -= line_count;
790 src_offset += (PAGE_SIZE * line_count);
791 dst_offset += (PAGE_SIZE * line_count);
794 return 0;
797 static int
798 nva3_bo_move_copy(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
799 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
801 struct nvkm_mem *node = old_mem->mm_node;
802 u64 src_offset = node->vma[0].offset;
803 u64 dst_offset = node->vma[1].offset;
804 u32 page_count = new_mem->num_pages;
805 int ret;
807 page_count = new_mem->num_pages;
808 while (page_count) {
809 int line_count = (page_count > 8191) ? 8191 : page_count;
811 ret = RING_SPACE(chan, 11);
812 if (ret)
813 return ret;
815 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
816 OUT_RING (chan, upper_32_bits(src_offset));
817 OUT_RING (chan, lower_32_bits(src_offset));
818 OUT_RING (chan, upper_32_bits(dst_offset));
819 OUT_RING (chan, lower_32_bits(dst_offset));
820 OUT_RING (chan, PAGE_SIZE);
821 OUT_RING (chan, PAGE_SIZE);
822 OUT_RING (chan, PAGE_SIZE);
823 OUT_RING (chan, line_count);
824 BEGIN_NV04(chan, NvSubCopy, 0x0300, 1);
825 OUT_RING (chan, 0x00000110);
827 page_count -= line_count;
828 src_offset += (PAGE_SIZE * line_count);
829 dst_offset += (PAGE_SIZE * line_count);
832 return 0;
835 static int
836 nv98_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
837 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
839 struct nvkm_mem *node = old_mem->mm_node;
840 int ret = RING_SPACE(chan, 7);
841 if (ret == 0) {
842 BEGIN_NV04(chan, NvSubCopy, 0x0320, 6);
843 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
844 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
845 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
846 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
847 OUT_RING (chan, 0x00000000 /* COPY */);
848 OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
850 return ret;
853 static int
854 nv84_bo_move_exec(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
855 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
857 struct nvkm_mem *node = old_mem->mm_node;
858 int ret = RING_SPACE(chan, 7);
859 if (ret == 0) {
860 BEGIN_NV04(chan, NvSubCopy, 0x0304, 6);
861 OUT_RING (chan, new_mem->num_pages << PAGE_SHIFT);
862 OUT_RING (chan, upper_32_bits(node->vma[0].offset));
863 OUT_RING (chan, lower_32_bits(node->vma[0].offset));
864 OUT_RING (chan, upper_32_bits(node->vma[1].offset));
865 OUT_RING (chan, lower_32_bits(node->vma[1].offset));
866 OUT_RING (chan, 0x00000000 /* MODE_COPY, QUERY_NONE */);
868 return ret;
871 static int
872 nv50_bo_move_init(struct nouveau_channel *chan, u32 handle)
874 int ret = RING_SPACE(chan, 6);
875 if (ret == 0) {
876 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
877 OUT_RING (chan, handle);
878 BEGIN_NV04(chan, NvSubCopy, 0x0180, 3);
879 OUT_RING (chan, chan->drm->ntfy.handle);
880 OUT_RING (chan, chan->vram.handle);
881 OUT_RING (chan, chan->vram.handle);
884 return ret;
887 static int
888 nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
889 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
891 struct nvkm_mem *node = old_mem->mm_node;
892 u64 length = (new_mem->num_pages << PAGE_SHIFT);
893 u64 src_offset = node->vma[0].offset;
894 u64 dst_offset = node->vma[1].offset;
895 int src_tiled = !!node->memtype;
896 int dst_tiled = !!((struct nvkm_mem *)new_mem->mm_node)->memtype;
897 int ret;
899 while (length) {
900 u32 amount, stride, height;
902 ret = RING_SPACE(chan, 18 + 6 * (src_tiled + dst_tiled));
903 if (ret)
904 return ret;
906 amount = min(length, (u64)(4 * 1024 * 1024));
907 stride = 16 * 4;
908 height = amount / stride;
910 if (src_tiled) {
911 BEGIN_NV04(chan, NvSubCopy, 0x0200, 7);
912 OUT_RING (chan, 0);
913 OUT_RING (chan, 0);
914 OUT_RING (chan, stride);
915 OUT_RING (chan, height);
916 OUT_RING (chan, 1);
917 OUT_RING (chan, 0);
918 OUT_RING (chan, 0);
919 } else {
920 BEGIN_NV04(chan, NvSubCopy, 0x0200, 1);
921 OUT_RING (chan, 1);
923 if (dst_tiled) {
924 BEGIN_NV04(chan, NvSubCopy, 0x021c, 7);
925 OUT_RING (chan, 0);
926 OUT_RING (chan, 0);
927 OUT_RING (chan, stride);
928 OUT_RING (chan, height);
929 OUT_RING (chan, 1);
930 OUT_RING (chan, 0);
931 OUT_RING (chan, 0);
932 } else {
933 BEGIN_NV04(chan, NvSubCopy, 0x021c, 1);
934 OUT_RING (chan, 1);
937 BEGIN_NV04(chan, NvSubCopy, 0x0238, 2);
938 OUT_RING (chan, upper_32_bits(src_offset));
939 OUT_RING (chan, upper_32_bits(dst_offset));
940 BEGIN_NV04(chan, NvSubCopy, 0x030c, 8);
941 OUT_RING (chan, lower_32_bits(src_offset));
942 OUT_RING (chan, lower_32_bits(dst_offset));
943 OUT_RING (chan, stride);
944 OUT_RING (chan, stride);
945 OUT_RING (chan, stride);
946 OUT_RING (chan, height);
947 OUT_RING (chan, 0x00000101);
948 OUT_RING (chan, 0x00000000);
949 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
950 OUT_RING (chan, 0);
952 length -= amount;
953 src_offset += amount;
954 dst_offset += amount;
957 return 0;
960 static int
961 nv04_bo_move_init(struct nouveau_channel *chan, u32 handle)
963 int ret = RING_SPACE(chan, 4);
964 if (ret == 0) {
965 BEGIN_NV04(chan, NvSubCopy, 0x0000, 1);
966 OUT_RING (chan, handle);
967 BEGIN_NV04(chan, NvSubCopy, 0x0180, 1);
968 OUT_RING (chan, chan->drm->ntfy.handle);
971 return ret;
974 static inline uint32_t
975 nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
976 struct nouveau_channel *chan, struct ttm_mem_reg *mem)
978 if (mem->mem_type == TTM_PL_TT)
979 return NvDmaTT;
980 return chan->vram.handle;
983 static int
984 nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
985 struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
987 u32 src_offset = old_mem->start << PAGE_SHIFT;
988 u32 dst_offset = new_mem->start << PAGE_SHIFT;
989 u32 page_count = new_mem->num_pages;
990 int ret;
992 ret = RING_SPACE(chan, 3);
993 if (ret)
994 return ret;
996 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
997 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem));
998 OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem));
1000 page_count = new_mem->num_pages;
1001 while (page_count) {
1002 int line_count = (page_count > 2047) ? 2047 : page_count;
1004 ret = RING_SPACE(chan, 11);
1005 if (ret)
1006 return ret;
1008 BEGIN_NV04(chan, NvSubCopy,
1009 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
1010 OUT_RING (chan, src_offset);
1011 OUT_RING (chan, dst_offset);
1012 OUT_RING (chan, PAGE_SIZE); /* src_pitch */
1013 OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
1014 OUT_RING (chan, PAGE_SIZE); /* line_length */
1015 OUT_RING (chan, line_count);
1016 OUT_RING (chan, 0x00000101);
1017 OUT_RING (chan, 0x00000000);
1018 BEGIN_NV04(chan, NvSubCopy, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
1019 OUT_RING (chan, 0);
1021 page_count -= line_count;
1022 src_offset += (PAGE_SIZE * line_count);
1023 dst_offset += (PAGE_SIZE * line_count);
1026 return 0;
1029 static int
1030 nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
1031 struct ttm_mem_reg *mem)
1033 struct nvkm_mem *old_node = bo->mem.mm_node;
1034 struct nvkm_mem *new_node = mem->mm_node;
1035 u64 size = (u64)mem->num_pages << PAGE_SHIFT;
1036 int ret;
1038 ret = nvkm_vm_get(drm->client.vm, size, old_node->page_shift,
1039 NV_MEM_ACCESS_RW, &old_node->vma[0]);
1040 if (ret)
1041 return ret;
1043 ret = nvkm_vm_get(drm->client.vm, size, new_node->page_shift,
1044 NV_MEM_ACCESS_RW, &old_node->vma[1]);
1045 if (ret) {
1046 nvkm_vm_put(&old_node->vma[0]);
1047 return ret;
1050 nvkm_vm_map(&old_node->vma[0], old_node);
1051 nvkm_vm_map(&old_node->vma[1], new_node);
1052 return 0;
1055 static int
1056 nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
1057 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1059 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1060 struct nouveau_channel *chan = drm->ttm.chan;
1061 struct nouveau_cli *cli = (void *)chan->user.client;
1062 struct nouveau_fence *fence;
1063 int ret;
1065 /* create temporary vmas for the transfer and attach them to the
1066 * old nvkm_mem node, these will get cleaned up after ttm has
1067 * destroyed the ttm_mem_reg
1069 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1070 ret = nouveau_bo_move_prep(drm, bo, new_mem);
1071 if (ret)
1072 return ret;
1075 mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
1076 ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, intr);
1077 if (ret == 0) {
1078 ret = drm->ttm.move(chan, bo, &bo->mem, new_mem);
1079 if (ret == 0) {
1080 ret = nouveau_fence_new(chan, false, &fence);
1081 if (ret == 0) {
1082 ret = ttm_bo_move_accel_cleanup(bo,
1083 &fence->base,
1084 evict,
1085 no_wait_gpu,
1086 new_mem);
1087 nouveau_fence_unref(&fence);
1091 mutex_unlock(&cli->mutex);
1092 return ret;
1095 void
1096 nouveau_bo_move_init(struct nouveau_drm *drm)
1098 static const struct {
1099 const char *name;
1100 int engine;
1101 s32 oclass;
1102 int (*exec)(struct nouveau_channel *,
1103 struct ttm_buffer_object *,
1104 struct ttm_mem_reg *, struct ttm_mem_reg *);
1105 int (*init)(struct nouveau_channel *, u32 handle);
1106 } _methods[] = {
1107 { "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
1108 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1109 { "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
1110 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
1111 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
1112 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
1113 { "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
1114 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
1115 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
1116 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
1117 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
1119 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec, nv50_bo_move_init },
1120 }, *mthd = _methods;
1121 const char *name = "CPU";
1122 int ret;
1124 do {
1125 struct nouveau_channel *chan;
1127 if (mthd->engine)
1128 chan = drm->cechan;
1129 else
1130 chan = drm->channel;
1131 if (chan == NULL)
1132 continue;
1134 ret = nvif_object_init(&chan->user,
1135 mthd->oclass | (mthd->engine << 16),
1136 mthd->oclass, NULL, 0,
1137 &drm->ttm.copy);
1138 if (ret == 0) {
1139 ret = mthd->init(chan, drm->ttm.copy.handle);
1140 if (ret) {
1141 nvif_object_fini(&drm->ttm.copy);
1142 continue;
1145 drm->ttm.move = mthd->exec;
1146 drm->ttm.chan = chan;
1147 name = mthd->name;
1148 break;
1150 } while ((++mthd)->exec);
1152 NV_INFO(drm, "MM: using %s for buffer copies\n", name);
1155 static int
1156 nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
1157 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1159 struct ttm_place placement_memtype = {
1160 .fpfn = 0,
1161 .lpfn = 0,
1162 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1164 struct ttm_placement placement;
1165 struct ttm_mem_reg tmp_mem;
1166 int ret;
1168 placement.num_placement = placement.num_busy_placement = 1;
1169 placement.placement = placement.busy_placement = &placement_memtype;
1171 tmp_mem = *new_mem;
1172 tmp_mem.mm_node = NULL;
1173 ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1174 if (ret)
1175 return ret;
1177 ret = ttm_tt_bind(bo->ttm, &tmp_mem);
1178 if (ret)
1179 goto out;
1181 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, &tmp_mem);
1182 if (ret)
1183 goto out;
1185 ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem);
1186 out:
1187 ttm_bo_mem_put(bo, &tmp_mem);
1188 return ret;
1191 static int
1192 nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
1193 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1195 struct ttm_place placement_memtype = {
1196 .fpfn = 0,
1197 .lpfn = 0,
1198 .flags = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING
1200 struct ttm_placement placement;
1201 struct ttm_mem_reg tmp_mem;
1202 int ret;
1204 placement.num_placement = placement.num_busy_placement = 1;
1205 placement.placement = placement.busy_placement = &placement_memtype;
1207 tmp_mem = *new_mem;
1208 tmp_mem.mm_node = NULL;
1209 ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_gpu);
1210 if (ret)
1211 return ret;
1213 ret = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem);
1214 if (ret)
1215 goto out;
1217 ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_gpu, new_mem);
1218 if (ret)
1219 goto out;
1221 out:
1222 ttm_bo_mem_put(bo, &tmp_mem);
1223 return ret;
1226 static void
1227 nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem)
1229 struct nouveau_bo *nvbo = nouveau_bo(bo);
1230 struct nvkm_vma *vma;
1232 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1233 if (bo->destroy != nouveau_bo_del_ttm)
1234 return;
1236 list_for_each_entry(vma, &nvbo->vma_list, head) {
1237 if (new_mem && new_mem->mem_type != TTM_PL_SYSTEM &&
1238 (new_mem->mem_type == TTM_PL_VRAM ||
1239 nvbo->page_shift != vma->vm->mmu->lpg_shift)) {
1240 nvkm_vm_map(vma, new_mem->mm_node);
1241 } else {
1242 nvkm_vm_unmap(vma);
1247 static int
1248 nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem,
1249 struct nouveau_drm_tile **new_tile)
1251 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1252 struct drm_device *dev = drm->dev;
1253 struct nouveau_bo *nvbo = nouveau_bo(bo);
1254 u64 offset = new_mem->start << PAGE_SHIFT;
1256 *new_tile = NULL;
1257 if (new_mem->mem_type != TTM_PL_VRAM)
1258 return 0;
1260 if (drm->device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
1261 *new_tile = nv10_bo_set_tiling(dev, offset, new_mem->size,
1262 nvbo->tile_mode,
1263 nvbo->tile_flags);
1266 return 0;
1269 static void
1270 nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
1271 struct nouveau_drm_tile *new_tile,
1272 struct nouveau_drm_tile **old_tile)
1274 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1275 struct drm_device *dev = drm->dev;
1276 struct fence *fence = reservation_object_get_excl(bo->resv);
1278 nv10_bo_put_tile_region(dev, *old_tile, fence);
1279 *old_tile = new_tile;
1282 static int
1283 nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
1284 bool no_wait_gpu, struct ttm_mem_reg *new_mem)
1286 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1287 struct nouveau_bo *nvbo = nouveau_bo(bo);
1288 struct ttm_mem_reg *old_mem = &bo->mem;
1289 struct nouveau_drm_tile *new_tile = NULL;
1290 int ret = 0;
1292 if (nvbo->pin_refcnt)
1293 NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
1295 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1296 ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile);
1297 if (ret)
1298 return ret;
1301 /* Fake bo copy. */
1302 if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
1303 BUG_ON(bo->mem.mm_node != NULL);
1304 bo->mem = *new_mem;
1305 new_mem->mm_node = NULL;
1306 goto out;
1309 /* Hardware assisted copy. */
1310 if (drm->ttm.move) {
1311 if (new_mem->mem_type == TTM_PL_SYSTEM)
1312 ret = nouveau_bo_move_flipd(bo, evict, intr,
1313 no_wait_gpu, new_mem);
1314 else if (old_mem->mem_type == TTM_PL_SYSTEM)
1315 ret = nouveau_bo_move_flips(bo, evict, intr,
1316 no_wait_gpu, new_mem);
1317 else
1318 ret = nouveau_bo_move_m2mf(bo, evict, intr,
1319 no_wait_gpu, new_mem);
1320 if (!ret)
1321 goto out;
1324 /* Fallback to software copy. */
1325 ret = ttm_bo_wait(bo, true, intr, no_wait_gpu);
1326 if (ret == 0)
1327 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem);
1329 out:
1330 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
1331 if (ret)
1332 nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
1333 else
1334 nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
1337 return ret;
1340 static int
1341 nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
1343 struct nouveau_bo *nvbo = nouveau_bo(bo);
1345 return drm_vma_node_verify_access(&nvbo->gem.vma_node, filp);
1348 static int
1349 nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1351 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1352 struct nouveau_drm *drm = nouveau_bdev(bdev);
1353 struct nvkm_device *device = nvxx_device(&drm->device);
1354 struct nvkm_mem *node = mem->mm_node;
1355 int ret;
1357 mem->bus.addr = NULL;
1358 mem->bus.offset = 0;
1359 mem->bus.size = mem->num_pages << PAGE_SHIFT;
1360 mem->bus.base = 0;
1361 mem->bus.is_iomem = false;
1362 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1363 return -EINVAL;
1364 switch (mem->mem_type) {
1365 case TTM_PL_SYSTEM:
1366 /* System memory */
1367 return 0;
1368 case TTM_PL_TT:
1369 #if IS_ENABLED(CONFIG_AGP)
1370 if (drm->agp.bridge) {
1371 mem->bus.offset = mem->start << PAGE_SHIFT;
1372 mem->bus.base = drm->agp.base;
1373 mem->bus.is_iomem = !drm->agp.cma;
1375 #endif
1376 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA || !node->memtype)
1377 /* untiled */
1378 break;
1379 /* fallthrough, tiled memory */
1380 case TTM_PL_VRAM:
1381 mem->bus.offset = mem->start << PAGE_SHIFT;
1382 mem->bus.base = device->func->resource_addr(device, 1);
1383 mem->bus.is_iomem = true;
1384 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
1385 struct nvkm_bar *bar = nvxx_bar(&drm->device);
1386 int page_shift = 12;
1387 if (drm->device.info.family >= NV_DEVICE_INFO_V0_FERMI)
1388 page_shift = node->page_shift;
1390 ret = nvkm_bar_umap(bar, node->size << 12, page_shift,
1391 &node->bar_vma);
1392 if (ret)
1393 return ret;
1395 nvkm_vm_map(&node->bar_vma, node);
1396 mem->bus.offset = node->bar_vma.offset;
1398 break;
1399 default:
1400 return -EINVAL;
1402 return 0;
1405 static void
1406 nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1408 struct nvkm_mem *node = mem->mm_node;
1410 if (!node->bar_vma.node)
1411 return;
1413 nvkm_vm_unmap(&node->bar_vma);
1414 nvkm_vm_put(&node->bar_vma);
1417 static int
1418 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
1420 struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
1421 struct nouveau_bo *nvbo = nouveau_bo(bo);
1422 struct nvkm_device *device = nvxx_device(&drm->device);
1423 u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
1424 int i, ret;
1426 /* as long as the bo isn't in vram, and isn't tiled, we've got
1427 * nothing to do here.
1429 if (bo->mem.mem_type != TTM_PL_VRAM) {
1430 if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA ||
1431 !nouveau_bo_tile_layout(nvbo))
1432 return 0;
1434 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1435 nouveau_bo_placement_set(nvbo, TTM_PL_TT, 0);
1437 ret = nouveau_bo_validate(nvbo, false, false);
1438 if (ret)
1439 return ret;
1441 return 0;
1444 /* make sure bo is in mappable vram */
1445 if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
1446 bo->mem.start + bo->mem.num_pages < mappable)
1447 return 0;
1449 for (i = 0; i < nvbo->placement.num_placement; ++i) {
1450 nvbo->placements[i].fpfn = 0;
1451 nvbo->placements[i].lpfn = mappable;
1454 for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
1455 nvbo->busy_placements[i].fpfn = 0;
1456 nvbo->busy_placements[i].lpfn = mappable;
1459 nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_VRAM, 0);
1460 return nouveau_bo_validate(nvbo, false, false);
1463 static int
1464 nouveau_ttm_tt_populate(struct ttm_tt *ttm)
1466 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1467 struct nouveau_drm *drm;
1468 struct nvkm_device *device;
1469 struct drm_device *dev;
1470 struct device *pdev;
1471 unsigned i;
1472 int r;
1473 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1475 if (ttm->state != tt_unpopulated)
1476 return 0;
1478 if (slave && ttm->sg) {
1479 /* make userspace faulting work */
1480 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1481 ttm_dma->dma_address, ttm->num_pages);
1482 ttm->state = tt_unbound;
1483 return 0;
1486 drm = nouveau_bdev(ttm->bdev);
1487 device = nvxx_device(&drm->device);
1488 dev = drm->dev;
1489 pdev = device->dev;
1492 * Objects matching this condition have been marked as force_coherent,
1493 * so use the DMA API for them.
1495 if (!nvxx_device(&drm->device)->func->cpu_coherent &&
1496 ttm->caching_state == tt_uncached)
1497 return ttm_dma_populate(ttm_dma, dev->dev);
1499 #if IS_ENABLED(CONFIG_AGP)
1500 if (drm->agp.bridge) {
1501 return ttm_agp_tt_populate(ttm);
1503 #endif
1505 #ifdef CONFIG_SWIOTLB
1506 if (swiotlb_nr_tbl()) {
1507 return ttm_dma_populate((void *)ttm, dev->dev);
1509 #endif
1511 r = ttm_pool_populate(ttm);
1512 if (r) {
1513 return r;
1516 for (i = 0; i < ttm->num_pages; i++) {
1517 dma_addr_t addr;
1519 addr = dma_map_page(pdev, ttm->pages[i], 0, PAGE_SIZE,
1520 DMA_BIDIRECTIONAL);
1522 if (dma_mapping_error(pdev, addr)) {
1523 while (--i) {
1524 dma_unmap_page(pdev, ttm_dma->dma_address[i],
1525 PAGE_SIZE, DMA_BIDIRECTIONAL);
1526 ttm_dma->dma_address[i] = 0;
1528 ttm_pool_unpopulate(ttm);
1529 return -EFAULT;
1532 ttm_dma->dma_address[i] = addr;
1534 return 0;
1537 static void
1538 nouveau_ttm_tt_unpopulate(struct ttm_tt *ttm)
1540 struct ttm_dma_tt *ttm_dma = (void *)ttm;
1541 struct nouveau_drm *drm;
1542 struct nvkm_device *device;
1543 struct drm_device *dev;
1544 struct device *pdev;
1545 unsigned i;
1546 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1548 if (slave)
1549 return;
1551 drm = nouveau_bdev(ttm->bdev);
1552 device = nvxx_device(&drm->device);
1553 dev = drm->dev;
1554 pdev = device->dev;
1557 * Objects matching this condition have been marked as force_coherent,
1558 * so use the DMA API for them.
1560 if (!nvxx_device(&drm->device)->func->cpu_coherent &&
1561 ttm->caching_state == tt_uncached) {
1562 ttm_dma_unpopulate(ttm_dma, dev->dev);
1563 return;
1566 #if IS_ENABLED(CONFIG_AGP)
1567 if (drm->agp.bridge) {
1568 ttm_agp_tt_unpopulate(ttm);
1569 return;
1571 #endif
1573 #ifdef CONFIG_SWIOTLB
1574 if (swiotlb_nr_tbl()) {
1575 ttm_dma_unpopulate((void *)ttm, dev->dev);
1576 return;
1578 #endif
1580 for (i = 0; i < ttm->num_pages; i++) {
1581 if (ttm_dma->dma_address[i]) {
1582 dma_unmap_page(pdev, ttm_dma->dma_address[i], PAGE_SIZE,
1583 DMA_BIDIRECTIONAL);
1587 ttm_pool_unpopulate(ttm);
1590 void
1591 nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
1593 struct reservation_object *resv = nvbo->bo.resv;
1595 if (exclusive)
1596 reservation_object_add_excl_fence(resv, &fence->base);
1597 else if (fence)
1598 reservation_object_add_shared_fence(resv, &fence->base);
1601 struct ttm_bo_driver nouveau_bo_driver = {
1602 .ttm_tt_create = &nouveau_ttm_tt_create,
1603 .ttm_tt_populate = &nouveau_ttm_tt_populate,
1604 .ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
1605 .invalidate_caches = nouveau_bo_invalidate_caches,
1606 .init_mem_type = nouveau_bo_init_mem_type,
1607 .evict_flags = nouveau_bo_evict_flags,
1608 .move_notify = nouveau_bo_move_ntfy,
1609 .move = nouveau_bo_move,
1610 .verify_access = nouveau_bo_verify_access,
1611 .fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
1612 .io_mem_reserve = &nouveau_ttm_io_mem_reserve,
1613 .io_mem_free = &nouveau_ttm_io_mem_free,
1616 struct nvkm_vma *
1617 nouveau_bo_vma_find(struct nouveau_bo *nvbo, struct nvkm_vm *vm)
1619 struct nvkm_vma *vma;
1620 list_for_each_entry(vma, &nvbo->vma_list, head) {
1621 if (vma->vm == vm)
1622 return vma;
1625 return NULL;
1629 nouveau_bo_vma_add(struct nouveau_bo *nvbo, struct nvkm_vm *vm,
1630 struct nvkm_vma *vma)
1632 const u32 size = nvbo->bo.mem.num_pages << PAGE_SHIFT;
1633 int ret;
1635 ret = nvkm_vm_get(vm, size, nvbo->page_shift,
1636 NV_MEM_ACCESS_RW, vma);
1637 if (ret)
1638 return ret;
1640 if ( nvbo->bo.mem.mem_type != TTM_PL_SYSTEM &&
1641 (nvbo->bo.mem.mem_type == TTM_PL_VRAM ||
1642 nvbo->page_shift != vma->vm->mmu->lpg_shift))
1643 nvkm_vm_map(vma, nvbo->bo.mem.mm_node);
1645 list_add_tail(&vma->head, &nvbo->vma_list);
1646 vma->refcount = 1;
1647 return 0;
1650 void
1651 nouveau_bo_vma_del(struct nouveau_bo *nvbo, struct nvkm_vma *vma)
1653 if (vma->node) {
1654 if (nvbo->bo.mem.mem_type != TTM_PL_SYSTEM)
1655 nvkm_vm_unmap(vma);
1656 nvkm_vm_put(vma);
1657 list_del(&vma->head);