2 * Copyright (C) 2015 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
10 * DOC: VC4 CRTC module
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "linux/component.h"
39 #include "linux/of_device.h"
45 const struct vc4_crtc_data
*data
;
48 /* Which HVS channel we're using for our CRTC. */
51 /* Pointer to the actual hardware display list memory for the
56 u32 dlist_size
; /* in dwords */
58 struct drm_pending_vblank_event
*event
;
61 static inline struct vc4_crtc
*
62 to_vc4_crtc(struct drm_crtc
*crtc
)
64 return (struct vc4_crtc
*)crtc
;
67 struct vc4_crtc_data
{
68 /* Which channel of the HVS this pixelvalve sources from. */
71 enum vc4_encoder_type encoder0_type
;
72 enum vc4_encoder_type encoder1_type
;
75 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
76 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
78 #define CRTC_REG(reg) { reg, #reg }
84 CRTC_REG(PV_V_CONTROL
),
90 CRTC_REG(PV_VERTA_EVEN
),
91 CRTC_REG(PV_VERTB_EVEN
),
95 CRTC_REG(PV_HACT_ACT
),
98 static void vc4_crtc_dump_regs(struct vc4_crtc
*vc4_crtc
)
102 for (i
= 0; i
< ARRAY_SIZE(crtc_regs
); i
++) {
103 DRM_INFO("0x%04x (%s): 0x%08x\n",
104 crtc_regs
[i
].reg
, crtc_regs
[i
].name
,
105 CRTC_READ(crtc_regs
[i
].reg
));
109 #ifdef CONFIG_DEBUG_FS
110 int vc4_crtc_debugfs_regs(struct seq_file
*m
, void *unused
)
112 struct drm_info_node
*node
= (struct drm_info_node
*)m
->private;
113 struct drm_device
*dev
= node
->minor
->dev
;
114 int crtc_index
= (uintptr_t)node
->info_ent
->data
;
115 struct drm_crtc
*crtc
;
116 struct vc4_crtc
*vc4_crtc
;
120 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
127 vc4_crtc
= to_vc4_crtc(crtc
);
129 for (i
= 0; i
< ARRAY_SIZE(crtc_regs
); i
++) {
130 seq_printf(m
, "%s (0x%04x): 0x%08x\n",
131 crtc_regs
[i
].name
, crtc_regs
[i
].reg
,
132 CRTC_READ(crtc_regs
[i
].reg
));
139 static void vc4_crtc_destroy(struct drm_crtc
*crtc
)
141 drm_crtc_cleanup(crtc
);
144 static u32
vc4_get_fifo_full_level(u32 format
)
146 static const u32 fifo_len_bytes
= 64;
147 static const u32 hvs_latency_pix
= 6;
150 case PV_CONTROL_FORMAT_DSIV_16
:
151 case PV_CONTROL_FORMAT_DSIC_16
:
152 return fifo_len_bytes
- 2 * hvs_latency_pix
;
153 case PV_CONTROL_FORMAT_DSIV_18
:
154 return fifo_len_bytes
- 14;
155 case PV_CONTROL_FORMAT_24
:
156 case PV_CONTROL_FORMAT_DSIV_24
:
158 return fifo_len_bytes
- 3 * hvs_latency_pix
;
163 * Returns the clock select bit for the connector attached to the
166 static int vc4_get_clock_select(struct drm_crtc
*crtc
)
168 struct drm_connector
*connector
;
170 drm_for_each_connector(connector
, crtc
->dev
) {
171 if (connector
->state
->crtc
== crtc
) {
172 struct drm_encoder
*encoder
= connector
->encoder
;
173 struct vc4_encoder
*vc4_encoder
=
174 to_vc4_encoder(encoder
);
176 return vc4_encoder
->clock_select
;
183 static void vc4_crtc_mode_set_nofb(struct drm_crtc
*crtc
)
185 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
186 struct drm_crtc_state
*state
= crtc
->state
;
187 struct drm_display_mode
*mode
= &state
->adjusted_mode
;
188 bool interlace
= mode
->flags
& DRM_MODE_FLAG_INTERLACE
;
189 u32 vactive
= (mode
->vdisplay
>> (interlace
? 1 : 0));
190 u32 format
= PV_CONTROL_FORMAT_24
;
191 bool debug_dump_regs
= false;
192 int clock_select
= vc4_get_clock_select(crtc
);
194 if (debug_dump_regs
) {
195 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc
));
196 vc4_crtc_dump_regs(vc4_crtc
);
199 /* Reset the PV fifo. */
200 CRTC_WRITE(PV_CONTROL
, 0);
201 CRTC_WRITE(PV_CONTROL
, PV_CONTROL_FIFO_CLR
| PV_CONTROL_EN
);
202 CRTC_WRITE(PV_CONTROL
, 0);
205 VC4_SET_FIELD(mode
->htotal
- mode
->hsync_end
,
207 VC4_SET_FIELD(mode
->hsync_end
- mode
->hsync_start
,
210 VC4_SET_FIELD(mode
->hsync_start
- mode
->hdisplay
,
212 VC4_SET_FIELD(mode
->hdisplay
, PV_HORZB_HACTIVE
));
215 CRTC_WRITE(PV_VERTA_EVEN
,
216 VC4_SET_FIELD(mode
->vtotal
- mode
->vsync_end
- 1,
218 VC4_SET_FIELD(mode
->vsync_end
- mode
->vsync_start
,
220 CRTC_WRITE(PV_VERTB_EVEN
,
221 VC4_SET_FIELD(mode
->vsync_start
- mode
->vdisplay
,
223 VC4_SET_FIELD(vactive
, PV_VERTB_VACTIVE
));
226 CRTC_WRITE(PV_HACT_ACT
, mode
->hdisplay
);
228 CRTC_WRITE(PV_V_CONTROL
,
229 PV_VCONTROL_CONTINUOUS
|
230 (interlace
? PV_VCONTROL_INTERLACE
: 0));
232 CRTC_WRITE(PV_CONTROL
,
233 VC4_SET_FIELD(format
, PV_CONTROL_FORMAT
) |
234 VC4_SET_FIELD(vc4_get_fifo_full_level(format
),
235 PV_CONTROL_FIFO_LEVEL
) |
236 PV_CONTROL_CLR_AT_START
|
237 PV_CONTROL_TRIGGER_UNDERFLOW
|
238 PV_CONTROL_WAIT_HSTART
|
239 VC4_SET_FIELD(clock_select
, PV_CONTROL_CLK_SELECT
) |
240 PV_CONTROL_FIFO_CLR
|
243 if (debug_dump_regs
) {
244 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc
));
245 vc4_crtc_dump_regs(vc4_crtc
);
249 static void require_hvs_enabled(struct drm_device
*dev
)
251 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
253 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL
) & SCALER_DISPCTRL_ENABLE
) !=
254 SCALER_DISPCTRL_ENABLE
);
257 static void vc4_crtc_disable(struct drm_crtc
*crtc
)
259 struct drm_device
*dev
= crtc
->dev
;
260 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
261 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
262 u32 chan
= vc4_crtc
->channel
;
264 require_hvs_enabled(dev
);
266 CRTC_WRITE(PV_V_CONTROL
,
267 CRTC_READ(PV_V_CONTROL
) & ~PV_VCONTROL_VIDEN
);
268 ret
= wait_for(!(CRTC_READ(PV_V_CONTROL
) & PV_VCONTROL_VIDEN
), 1);
269 WARN_ONCE(ret
, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
271 if (HVS_READ(SCALER_DISPCTRLX(chan
)) &
272 SCALER_DISPCTRLX_ENABLE
) {
273 HVS_WRITE(SCALER_DISPCTRLX(chan
),
274 SCALER_DISPCTRLX_RESET
);
276 /* While the docs say that reset is self-clearing, it
277 * seems it doesn't actually.
279 HVS_WRITE(SCALER_DISPCTRLX(chan
), 0);
282 /* Once we leave, the scaler should be disabled and its fifo empty. */
284 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan
)) & SCALER_DISPCTRLX_RESET
);
286 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan
)),
287 SCALER_DISPSTATX_MODE
) !=
288 SCALER_DISPSTATX_MODE_DISABLED
);
290 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan
)) &
291 (SCALER_DISPSTATX_FULL
| SCALER_DISPSTATX_EMPTY
)) !=
292 SCALER_DISPSTATX_EMPTY
);
295 static void vc4_crtc_enable(struct drm_crtc
*crtc
)
297 struct drm_device
*dev
= crtc
->dev
;
298 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
299 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
300 struct drm_crtc_state
*state
= crtc
->state
;
301 struct drm_display_mode
*mode
= &state
->adjusted_mode
;
303 require_hvs_enabled(dev
);
305 /* Turn on the scaler, which will wait for vstart to start
308 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc
->channel
),
309 VC4_SET_FIELD(mode
->hdisplay
, SCALER_DISPCTRLX_WIDTH
) |
310 VC4_SET_FIELD(mode
->vdisplay
, SCALER_DISPCTRLX_HEIGHT
) |
311 SCALER_DISPCTRLX_ENABLE
);
313 /* Turn on the pixel valve, which will emit the vstart signal. */
314 CRTC_WRITE(PV_V_CONTROL
,
315 CRTC_READ(PV_V_CONTROL
) | PV_VCONTROL_VIDEN
);
318 static int vc4_crtc_atomic_check(struct drm_crtc
*crtc
,
319 struct drm_crtc_state
*state
)
321 struct drm_device
*dev
= crtc
->dev
;
322 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
323 struct drm_plane
*plane
;
324 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
327 /* The pixelvalve can only feed one encoder (and encoders are
328 * 1:1 with connectors.)
330 if (drm_atomic_connectors_for_crtc(state
->state
, crtc
) > 1)
333 drm_atomic_crtc_state_for_each_plane(plane
, state
) {
334 struct drm_plane_state
*plane_state
=
335 state
->state
->plane_states
[drm_plane_index(plane
)];
337 /* plane might not have changed, in which case take
341 plane_state
= plane
->state
;
343 dlist_count
+= vc4_plane_dlist_size(plane_state
);
346 dlist_count
++; /* Account for SCALER_CTL0_END. */
348 if (!vc4_crtc
->dlist
|| dlist_count
> vc4_crtc
->dlist_size
) {
349 vc4_crtc
->dlist
= ((u32 __iomem
*)vc4
->hvs
->dlist
+
350 HVS_BOOTLOADER_DLIST_END
);
351 vc4_crtc
->dlist_size
= ((SCALER_DLIST_SIZE
>> 2) -
352 HVS_BOOTLOADER_DLIST_END
);
354 if (dlist_count
> vc4_crtc
->dlist_size
) {
355 DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n",
356 dlist_count
, vc4_crtc
->dlist_size
);
364 static void vc4_crtc_atomic_flush(struct drm_crtc
*crtc
,
365 struct drm_crtc_state
*old_state
)
367 struct drm_device
*dev
= crtc
->dev
;
368 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
369 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
370 struct drm_plane
*plane
;
371 bool debug_dump_regs
= false;
372 u32 __iomem
*dlist_next
= vc4_crtc
->dlist
;
374 if (debug_dump_regs
) {
375 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc
));
376 vc4_hvs_dump_state(dev
);
379 /* Copy all the active planes' dlist contents to the hardware dlist.
381 * XXX: If the new display list was large enough that it
382 * overlapped a currently-read display list, we need to do
383 * something like disable scanout before putting in the new
384 * list. For now, we're safe because we only have the two
387 drm_atomic_crtc_for_each_plane(plane
, crtc
) {
388 dlist_next
+= vc4_plane_write_dlist(plane
, dlist_next
);
391 if (dlist_next
== vc4_crtc
->dlist
) {
392 /* If no planes were enabled, use the SCALER_CTL0_END
393 * at the start of the display list memory (in the
394 * bootloader section). We'll rewrite that
395 * SCALER_CTL0_END, just in case, though.
397 writel(SCALER_CTL0_END
, vc4
->hvs
->dlist
);
398 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc
->channel
), 0);
400 writel(SCALER_CTL0_END
, dlist_next
);
403 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc
->channel
),
404 (u32 __iomem
*)vc4_crtc
->dlist
-
405 (u32 __iomem
*)vc4
->hvs
->dlist
);
407 /* Make the next display list start after ours. */
408 vc4_crtc
->dlist_size
-= (dlist_next
- vc4_crtc
->dlist
);
409 vc4_crtc
->dlist
= dlist_next
;
412 if (debug_dump_regs
) {
413 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc
));
414 vc4_hvs_dump_state(dev
);
417 if (crtc
->state
->event
) {
420 crtc
->state
->event
->pipe
= drm_crtc_index(crtc
);
422 WARN_ON(drm_crtc_vblank_get(crtc
) != 0);
424 spin_lock_irqsave(&dev
->event_lock
, flags
);
425 vc4_crtc
->event
= crtc
->state
->event
;
426 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
427 crtc
->state
->event
= NULL
;
431 int vc4_enable_vblank(struct drm_device
*dev
, unsigned int crtc_id
)
433 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
434 struct vc4_crtc
*vc4_crtc
= vc4
->crtc
[crtc_id
];
436 CRTC_WRITE(PV_INTEN
, PV_INT_VFP_START
);
441 void vc4_disable_vblank(struct drm_device
*dev
, unsigned int crtc_id
)
443 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
444 struct vc4_crtc
*vc4_crtc
= vc4
->crtc
[crtc_id
];
446 CRTC_WRITE(PV_INTEN
, 0);
449 static void vc4_crtc_handle_page_flip(struct vc4_crtc
*vc4_crtc
)
451 struct drm_crtc
*crtc
= &vc4_crtc
->base
;
452 struct drm_device
*dev
= crtc
->dev
;
455 spin_lock_irqsave(&dev
->event_lock
, flags
);
456 if (vc4_crtc
->event
) {
457 drm_crtc_send_vblank_event(crtc
, vc4_crtc
->event
);
458 vc4_crtc
->event
= NULL
;
460 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
463 static irqreturn_t
vc4_crtc_irq_handler(int irq
, void *data
)
465 struct vc4_crtc
*vc4_crtc
= data
;
466 u32 stat
= CRTC_READ(PV_INTSTAT
);
467 irqreturn_t ret
= IRQ_NONE
;
469 if (stat
& PV_INT_VFP_START
) {
470 CRTC_WRITE(PV_INTSTAT
, PV_INT_VFP_START
);
471 drm_crtc_handle_vblank(&vc4_crtc
->base
);
472 vc4_crtc_handle_page_flip(vc4_crtc
);
479 static const struct drm_crtc_funcs vc4_crtc_funcs
= {
480 .set_config
= drm_atomic_helper_set_config
,
481 .destroy
= vc4_crtc_destroy
,
482 .page_flip
= drm_atomic_helper_page_flip
,
483 .set_property
= NULL
,
484 .cursor_set
= NULL
, /* handled by drm_mode_cursor_universal */
485 .cursor_move
= NULL
, /* handled by drm_mode_cursor_universal */
486 .reset
= drm_atomic_helper_crtc_reset
,
487 .atomic_duplicate_state
= drm_atomic_helper_crtc_duplicate_state
,
488 .atomic_destroy_state
= drm_atomic_helper_crtc_destroy_state
,
491 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs
= {
492 .mode_set_nofb
= vc4_crtc_mode_set_nofb
,
493 .disable
= vc4_crtc_disable
,
494 .enable
= vc4_crtc_enable
,
495 .atomic_check
= vc4_crtc_atomic_check
,
496 .atomic_flush
= vc4_crtc_atomic_flush
,
499 /* Frees the page flip event when the DRM device is closed with the
500 * event still outstanding.
502 void vc4_cancel_page_flip(struct drm_crtc
*crtc
, struct drm_file
*file
)
504 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
505 struct drm_device
*dev
= crtc
->dev
;
508 spin_lock_irqsave(&dev
->event_lock
, flags
);
510 if (vc4_crtc
->event
&& vc4_crtc
->event
->base
.file_priv
== file
) {
511 vc4_crtc
->event
->base
.destroy(&vc4_crtc
->event
->base
);
512 drm_crtc_vblank_put(crtc
);
513 vc4_crtc
->event
= NULL
;
516 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
519 static const struct vc4_crtc_data pv0_data
= {
521 .encoder0_type
= VC4_ENCODER_TYPE_DSI0
,
522 .encoder1_type
= VC4_ENCODER_TYPE_DPI
,
525 static const struct vc4_crtc_data pv1_data
= {
527 .encoder0_type
= VC4_ENCODER_TYPE_DSI1
,
528 .encoder1_type
= VC4_ENCODER_TYPE_SMI
,
531 static const struct vc4_crtc_data pv2_data
= {
533 .encoder0_type
= VC4_ENCODER_TYPE_VEC
,
534 .encoder1_type
= VC4_ENCODER_TYPE_HDMI
,
537 static const struct of_device_id vc4_crtc_dt_match
[] = {
538 { .compatible
= "brcm,bcm2835-pixelvalve0", .data
= &pv0_data
},
539 { .compatible
= "brcm,bcm2835-pixelvalve1", .data
= &pv1_data
},
540 { .compatible
= "brcm,bcm2835-pixelvalve2", .data
= &pv2_data
},
544 static void vc4_set_crtc_possible_masks(struct drm_device
*drm
,
545 struct drm_crtc
*crtc
)
547 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
548 struct drm_encoder
*encoder
;
550 drm_for_each_encoder(encoder
, drm
) {
551 struct vc4_encoder
*vc4_encoder
= to_vc4_encoder(encoder
);
553 if (vc4_encoder
->type
== vc4_crtc
->data
->encoder0_type
) {
554 vc4_encoder
->clock_select
= 0;
555 encoder
->possible_crtcs
|= drm_crtc_mask(crtc
);
556 } else if (vc4_encoder
->type
== vc4_crtc
->data
->encoder1_type
) {
557 vc4_encoder
->clock_select
= 1;
558 encoder
->possible_crtcs
|= drm_crtc_mask(crtc
);
563 static int vc4_crtc_bind(struct device
*dev
, struct device
*master
, void *data
)
565 struct platform_device
*pdev
= to_platform_device(dev
);
566 struct drm_device
*drm
= dev_get_drvdata(master
);
567 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
568 struct vc4_crtc
*vc4_crtc
;
569 struct drm_crtc
*crtc
;
570 struct drm_plane
*primary_plane
, *cursor_plane
;
571 const struct of_device_id
*match
;
574 vc4_crtc
= devm_kzalloc(dev
, sizeof(*vc4_crtc
), GFP_KERNEL
);
577 crtc
= &vc4_crtc
->base
;
579 match
= of_match_device(vc4_crtc_dt_match
, dev
);
582 vc4_crtc
->data
= match
->data
;
584 vc4_crtc
->regs
= vc4_ioremap_regs(pdev
, 0);
585 if (IS_ERR(vc4_crtc
->regs
))
586 return PTR_ERR(vc4_crtc
->regs
);
588 /* For now, we create just the primary and the legacy cursor
589 * planes. We should be able to stack more planes on easily,
590 * but to do that we would need to compute the bandwidth
591 * requirement of the plane configuration, and reject ones
592 * that will take too much.
594 primary_plane
= vc4_plane_init(drm
, DRM_PLANE_TYPE_PRIMARY
);
595 if (IS_ERR(primary_plane
)) {
596 dev_err(dev
, "failed to construct primary plane\n");
597 ret
= PTR_ERR(primary_plane
);
601 cursor_plane
= vc4_plane_init(drm
, DRM_PLANE_TYPE_CURSOR
);
602 if (IS_ERR(cursor_plane
)) {
603 dev_err(dev
, "failed to construct cursor plane\n");
604 ret
= PTR_ERR(cursor_plane
);
608 drm_crtc_init_with_planes(drm
, crtc
, primary_plane
, cursor_plane
,
610 drm_crtc_helper_add(crtc
, &vc4_crtc_helper_funcs
);
611 primary_plane
->crtc
= crtc
;
612 cursor_plane
->crtc
= crtc
;
613 vc4
->crtc
[drm_crtc_index(crtc
)] = vc4_crtc
;
614 vc4_crtc
->channel
= vc4_crtc
->data
->hvs_channel
;
616 CRTC_WRITE(PV_INTEN
, 0);
617 CRTC_WRITE(PV_INTSTAT
, PV_INT_VFP_START
);
618 ret
= devm_request_irq(dev
, platform_get_irq(pdev
, 0),
619 vc4_crtc_irq_handler
, 0, "vc4 crtc", vc4_crtc
);
623 vc4_set_crtc_possible_masks(drm
, crtc
);
625 platform_set_drvdata(pdev
, vc4_crtc
);
630 cursor_plane
->funcs
->destroy(cursor_plane
);
632 primary_plane
->funcs
->destroy(primary_plane
);
637 static void vc4_crtc_unbind(struct device
*dev
, struct device
*master
,
640 struct platform_device
*pdev
= to_platform_device(dev
);
641 struct vc4_crtc
*vc4_crtc
= dev_get_drvdata(dev
);
643 vc4_crtc_destroy(&vc4_crtc
->base
);
645 CRTC_WRITE(PV_INTEN
, 0);
647 platform_set_drvdata(pdev
, NULL
);
650 static const struct component_ops vc4_crtc_ops
= {
651 .bind
= vc4_crtc_bind
,
652 .unbind
= vc4_crtc_unbind
,
655 static int vc4_crtc_dev_probe(struct platform_device
*pdev
)
657 return component_add(&pdev
->dev
, &vc4_crtc_ops
);
660 static int vc4_crtc_dev_remove(struct platform_device
*pdev
)
662 component_del(&pdev
->dev
, &vc4_crtc_ops
);
666 struct platform_driver vc4_crtc_driver
= {
667 .probe
= vc4_crtc_dev_probe
,
668 .remove
= vc4_crtc_dev_remove
,
671 .of_match_table
= vc4_crtc_dt_match
,