2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/phy.h>
52 #include <linux/fec.h>
54 #include <linux/of_device.h>
55 #include <linux/of_gpio.h>
56 #include <linux/of_mdio.h>
57 #include <linux/of_net.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/if_vlan.h>
60 #include <linux/pinctrl/consumer.h>
61 #include <linux/prefetch.h>
63 #include <asm/cacheflush.h>
67 static void set_multicast_list(struct net_device
*ndev
);
68 static void fec_enet_itr_coal_init(struct net_device
*ndev
);
70 #define DRIVER_NAME "fec"
72 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE (1 << 5)
76 #define FEC_ENET_RSEM_V 0x84
77 #define FEC_ENET_RSFL_V 16
78 #define FEC_ENET_RAEM_V 0x8
79 #define FEC_ENET_RAFL_V 0x8
80 #define FEC_ENET_OPD_V 0xFFF0
81 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
83 static struct platform_device_id fec_devtype
[] = {
85 /* keep it for coldfire */
90 .driver_data
= FEC_QUIRK_USE_GASKET
| FEC_QUIRK_HAS_RACC
,
93 .driver_data
= FEC_QUIRK_HAS_RACC
,
96 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
|
97 FEC_QUIRK_SINGLE_MDIO
| FEC_QUIRK_HAS_RACC
,
100 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
101 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
102 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_ERR006358
|
105 .name
= "mvf600-fec",
106 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_RACC
,
108 .name
= "imx6sx-fec",
109 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
|
110 FEC_QUIRK_HAS_BUFDESC_EX
| FEC_QUIRK_HAS_CSUM
|
111 FEC_QUIRK_HAS_VLAN
| FEC_QUIRK_HAS_AVB
|
112 FEC_QUIRK_ERR007885
| FEC_QUIRK_BUG_CAPTURE
|
118 MODULE_DEVICE_TABLE(platform
, fec_devtype
);
121 IMX25_FEC
= 1, /* runs on i.mx25/50/53 */
122 IMX27_FEC
, /* runs on i.mx27/35/51 */
129 static const struct of_device_id fec_dt_ids
[] = {
130 { .compatible
= "fsl,imx25-fec", .data
= &fec_devtype
[IMX25_FEC
], },
131 { .compatible
= "fsl,imx27-fec", .data
= &fec_devtype
[IMX27_FEC
], },
132 { .compatible
= "fsl,imx28-fec", .data
= &fec_devtype
[IMX28_FEC
], },
133 { .compatible
= "fsl,imx6q-fec", .data
= &fec_devtype
[IMX6Q_FEC
], },
134 { .compatible
= "fsl,mvf600-fec", .data
= &fec_devtype
[MVF600_FEC
], },
135 { .compatible
= "fsl,imx6sx-fec", .data
= &fec_devtype
[IMX6SX_FEC
], },
138 MODULE_DEVICE_TABLE(of
, fec_dt_ids
);
140 static unsigned char macaddr
[ETH_ALEN
];
141 module_param_array(macaddr
, byte
, NULL
, 0);
142 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
144 #if defined(CONFIG_M5272)
146 * Some hardware gets it MAC address out of local flash memory.
147 * if this is non-zero then assume it is the address to get MAC from.
149 #if defined(CONFIG_NETtel)
150 #define FEC_FLASHMAC 0xf0006006
151 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
152 #define FEC_FLASHMAC 0xf0006000
153 #elif defined(CONFIG_CANCam)
154 #define FEC_FLASHMAC 0xf0020000
155 #elif defined (CONFIG_M5272C3)
156 #define FEC_FLASHMAC (0xffe04000 + 4)
157 #elif defined(CONFIG_MOD5272)
158 #define FEC_FLASHMAC 0xffc0406b
160 #define FEC_FLASHMAC 0
162 #endif /* CONFIG_M5272 */
164 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
166 #define PKT_MAXBUF_SIZE 1522
167 #define PKT_MINBUF_SIZE 64
168 #define PKT_MAXBLR_SIZE 1536
170 /* FEC receive acceleration */
171 #define FEC_RACC_IPDIS (1 << 1)
172 #define FEC_RACC_PRODIS (1 << 2)
173 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
176 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
177 * size bits. Other FEC hardware does not, so we need to take that into
178 * account when setting it.
180 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
181 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
182 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
184 #define OPT_FRAME_SIZE 0
187 /* FEC MII MMFR bits definition */
188 #define FEC_MMFR_ST (1 << 30)
189 #define FEC_MMFR_OP_READ (2 << 28)
190 #define FEC_MMFR_OP_WRITE (1 << 28)
191 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
192 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
193 #define FEC_MMFR_TA (2 << 16)
194 #define FEC_MMFR_DATA(v) (v & 0xffff)
195 /* FEC ECR bits definition */
196 #define FEC_ECR_MAGICEN (1 << 2)
197 #define FEC_ECR_SLEEP (1 << 3)
199 #define FEC_MII_TIMEOUT 30000 /* us */
201 /* Transmitter timeout */
202 #define TX_TIMEOUT (2 * HZ)
204 #define FEC_PAUSE_FLAG_AUTONEG 0x1
205 #define FEC_PAUSE_FLAG_ENABLE 0x2
206 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
207 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
208 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
210 #define COPYBREAK_DEFAULT 256
212 #define TSO_HEADER_SIZE 128
213 /* Max number of allowed TCP segments for software TSO */
214 #define FEC_MAX_TSO_SEGS 100
215 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
217 #define IS_TSO_HEADER(txq, addr) \
218 ((addr >= txq->tso_hdrs_dma) && \
219 (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
224 struct bufdesc
*fec_enet_get_nextdesc(struct bufdesc
*bdp
,
225 struct fec_enet_private
*fep
,
228 struct bufdesc
*new_bd
= bdp
+ 1;
229 struct bufdesc_ex
*ex_new_bd
= (struct bufdesc_ex
*)bdp
+ 1;
230 struct fec_enet_priv_tx_q
*txq
= fep
->tx_queue
[queue_id
];
231 struct fec_enet_priv_rx_q
*rxq
= fep
->rx_queue
[queue_id
];
232 struct bufdesc_ex
*ex_base
;
233 struct bufdesc
*base
;
236 if (bdp
>= txq
->tx_bd_base
) {
237 base
= txq
->tx_bd_base
;
238 ring_size
= txq
->tx_ring_size
;
239 ex_base
= (struct bufdesc_ex
*)txq
->tx_bd_base
;
241 base
= rxq
->rx_bd_base
;
242 ring_size
= rxq
->rx_ring_size
;
243 ex_base
= (struct bufdesc_ex
*)rxq
->rx_bd_base
;
247 return (struct bufdesc
*)((ex_new_bd
>= (ex_base
+ ring_size
)) ?
248 ex_base
: ex_new_bd
);
250 return (new_bd
>= (base
+ ring_size
)) ?
255 struct bufdesc
*fec_enet_get_prevdesc(struct bufdesc
*bdp
,
256 struct fec_enet_private
*fep
,
259 struct bufdesc
*new_bd
= bdp
- 1;
260 struct bufdesc_ex
*ex_new_bd
= (struct bufdesc_ex
*)bdp
- 1;
261 struct fec_enet_priv_tx_q
*txq
= fep
->tx_queue
[queue_id
];
262 struct fec_enet_priv_rx_q
*rxq
= fep
->rx_queue
[queue_id
];
263 struct bufdesc_ex
*ex_base
;
264 struct bufdesc
*base
;
267 if (bdp
>= txq
->tx_bd_base
) {
268 base
= txq
->tx_bd_base
;
269 ring_size
= txq
->tx_ring_size
;
270 ex_base
= (struct bufdesc_ex
*)txq
->tx_bd_base
;
272 base
= rxq
->rx_bd_base
;
273 ring_size
= rxq
->rx_ring_size
;
274 ex_base
= (struct bufdesc_ex
*)rxq
->rx_bd_base
;
278 return (struct bufdesc
*)((ex_new_bd
< ex_base
) ?
279 (ex_new_bd
+ ring_size
) : ex_new_bd
);
281 return (new_bd
< base
) ? (new_bd
+ ring_size
) : new_bd
;
284 static int fec_enet_get_bd_index(struct bufdesc
*base
, struct bufdesc
*bdp
,
285 struct fec_enet_private
*fep
)
287 return ((const char *)bdp
- (const char *)base
) / fep
->bufdesc_size
;
290 static int fec_enet_get_free_txdesc_num(struct fec_enet_private
*fep
,
291 struct fec_enet_priv_tx_q
*txq
)
295 entries
= ((const char *)txq
->dirty_tx
-
296 (const char *)txq
->cur_tx
) / fep
->bufdesc_size
- 1;
298 return entries
> 0 ? entries
: entries
+ txq
->tx_ring_size
;
301 static void swap_buffer(void *bufaddr
, int len
)
304 unsigned int *buf
= bufaddr
;
306 for (i
= 0; i
< len
; i
+= 4, buf
++)
310 static void swap_buffer2(void *dst_buf
, void *src_buf
, int len
)
313 unsigned int *src
= src_buf
;
314 unsigned int *dst
= dst_buf
;
316 for (i
= 0; i
< len
; i
+= 4, src
++, dst
++)
320 static void fec_dump(struct net_device
*ndev
)
322 struct fec_enet_private
*fep
= netdev_priv(ndev
);
324 struct fec_enet_priv_tx_q
*txq
;
327 netdev_info(ndev
, "TX ring dump\n");
328 pr_info("Nr SC addr len SKB\n");
330 txq
= fep
->tx_queue
[0];
331 bdp
= txq
->tx_bd_base
;
334 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
336 bdp
== txq
->cur_tx
? 'S' : ' ',
337 bdp
== txq
->dirty_tx
? 'H' : ' ',
338 bdp
->cbd_sc
, bdp
->cbd_bufaddr
, bdp
->cbd_datlen
,
339 txq
->tx_skbuff
[index
]);
340 bdp
= fec_enet_get_nextdesc(bdp
, fep
, 0);
342 } while (bdp
!= txq
->tx_bd_base
);
345 static inline bool is_ipv4_pkt(struct sk_buff
*skb
)
347 return skb
->protocol
== htons(ETH_P_IP
) && ip_hdr(skb
)->version
== 4;
351 fec_enet_clear_csum(struct sk_buff
*skb
, struct net_device
*ndev
)
353 /* Only run for packets requiring a checksum. */
354 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
357 if (unlikely(skb_cow_head(skb
, 0)))
360 if (is_ipv4_pkt(skb
))
361 ip_hdr(skb
)->check
= 0;
362 *(__sum16
*)(skb
->head
+ skb
->csum_start
+ skb
->csum_offset
) = 0;
367 static struct bufdesc
*
368 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q
*txq
,
370 struct net_device
*ndev
)
372 struct fec_enet_private
*fep
= netdev_priv(ndev
);
373 struct bufdesc
*bdp
= txq
->cur_tx
;
374 struct bufdesc_ex
*ebdp
;
375 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
376 unsigned short queue
= skb_get_queue_mapping(skb
);
378 unsigned short status
;
379 unsigned int estatus
= 0;
380 skb_frag_t
*this_frag
;
386 for (frag
= 0; frag
< nr_frags
; frag
++) {
387 this_frag
= &skb_shinfo(skb
)->frags
[frag
];
388 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue
);
389 ebdp
= (struct bufdesc_ex
*)bdp
;
391 status
= bdp
->cbd_sc
;
392 status
&= ~BD_ENET_TX_STATS
;
393 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
394 frag_len
= skb_shinfo(skb
)->frags
[frag
].size
;
396 /* Handle the last BD specially */
397 if (frag
== nr_frags
- 1) {
398 status
|= (BD_ENET_TX_INTR
| BD_ENET_TX_LAST
);
399 if (fep
->bufdesc_ex
) {
400 estatus
|= BD_ENET_TX_INT
;
401 if (unlikely(skb_shinfo(skb
)->tx_flags
&
402 SKBTX_HW_TSTAMP
&& fep
->hwts_tx_en
))
403 estatus
|= BD_ENET_TX_TS
;
407 if (fep
->bufdesc_ex
) {
408 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
409 estatus
|= FEC_TX_BD_FTYPE(queue
);
410 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
411 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
413 ebdp
->cbd_esc
= estatus
;
416 bufaddr
= page_address(this_frag
->page
.p
) + this_frag
->page_offset
;
418 index
= fec_enet_get_bd_index(txq
->tx_bd_base
, bdp
, fep
);
419 if (((unsigned long) bufaddr
) & fep
->tx_align
||
420 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
421 memcpy(txq
->tx_bounce
[index
], bufaddr
, frag_len
);
422 bufaddr
= txq
->tx_bounce
[index
];
424 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
425 swap_buffer(bufaddr
, frag_len
);
428 addr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
, frag_len
,
430 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
431 dev_kfree_skb_any(skb
);
433 netdev_err(ndev
, "Tx DMA memory map failed\n");
434 goto dma_mapping_error
;
437 bdp
->cbd_bufaddr
= addr
;
438 bdp
->cbd_datlen
= frag_len
;
439 bdp
->cbd_sc
= status
;
445 for (i
= 0; i
< frag
; i
++) {
446 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue
);
447 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
448 bdp
->cbd_datlen
, DMA_TO_DEVICE
);
450 return ERR_PTR(-ENOMEM
);
453 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q
*txq
,
454 struct sk_buff
*skb
, struct net_device
*ndev
)
456 struct fec_enet_private
*fep
= netdev_priv(ndev
);
457 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
458 struct bufdesc
*bdp
, *last_bdp
;
461 unsigned short status
;
462 unsigned short buflen
;
463 unsigned short queue
;
464 unsigned int estatus
= 0;
468 entries_free
= fec_enet_get_free_txdesc_num(fep
, txq
);
469 if (entries_free
< MAX_SKB_FRAGS
+ 1) {
470 dev_kfree_skb_any(skb
);
472 netdev_err(ndev
, "NOT enough BD for SG!\n");
476 /* Protocol checksum off-load for TCP and UDP. */
477 if (fec_enet_clear_csum(skb
, ndev
)) {
478 dev_kfree_skb_any(skb
);
482 /* Fill in a Tx ring entry */
485 status
= bdp
->cbd_sc
;
486 status
&= ~BD_ENET_TX_STATS
;
488 /* Set buffer length and buffer pointer */
490 buflen
= skb_headlen(skb
);
492 queue
= skb_get_queue_mapping(skb
);
493 index
= fec_enet_get_bd_index(txq
->tx_bd_base
, bdp
, fep
);
494 if (((unsigned long) bufaddr
) & fep
->tx_align
||
495 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
496 memcpy(txq
->tx_bounce
[index
], skb
->data
, buflen
);
497 bufaddr
= txq
->tx_bounce
[index
];
499 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
500 swap_buffer(bufaddr
, buflen
);
503 /* Push the data cache so the CPM does not get stale memory data. */
504 addr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
, buflen
, DMA_TO_DEVICE
);
505 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
506 dev_kfree_skb_any(skb
);
508 netdev_err(ndev
, "Tx DMA memory map failed\n");
513 last_bdp
= fec_enet_txq_submit_frag_skb(txq
, skb
, ndev
);
514 if (IS_ERR(last_bdp
))
517 status
|= (BD_ENET_TX_INTR
| BD_ENET_TX_LAST
);
518 if (fep
->bufdesc_ex
) {
519 estatus
= BD_ENET_TX_INT
;
520 if (unlikely(skb_shinfo(skb
)->tx_flags
&
521 SKBTX_HW_TSTAMP
&& fep
->hwts_tx_en
))
522 estatus
|= BD_ENET_TX_TS
;
526 if (fep
->bufdesc_ex
) {
528 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
530 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
532 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
534 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
535 estatus
|= FEC_TX_BD_FTYPE(queue
);
537 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
538 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
541 ebdp
->cbd_esc
= estatus
;
544 index
= fec_enet_get_bd_index(txq
->tx_bd_base
, last_bdp
, fep
);
545 /* Save skb pointer */
546 txq
->tx_skbuff
[index
] = skb
;
548 bdp
->cbd_datlen
= buflen
;
549 bdp
->cbd_bufaddr
= addr
;
551 /* Send it on its way. Tell FEC it's ready, interrupt when done,
552 * it's the last BD of the frame, and to put the CRC on the end.
554 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_TC
);
555 bdp
->cbd_sc
= status
;
557 /* If this was the last BD in the ring, start at the beginning again. */
558 bdp
= fec_enet_get_nextdesc(last_bdp
, fep
, queue
);
560 skb_tx_timestamp(skb
);
562 /* Make sure the update to bdp and tx_skbuff are performed before
568 /* Trigger transmission start */
569 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE(queue
));
575 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q
*txq
, struct sk_buff
*skb
,
576 struct net_device
*ndev
,
577 struct bufdesc
*bdp
, int index
, char *data
,
578 int size
, bool last_tcp
, bool is_last
)
580 struct fec_enet_private
*fep
= netdev_priv(ndev
);
581 struct bufdesc_ex
*ebdp
= container_of(bdp
, struct bufdesc_ex
, desc
);
582 unsigned short queue
= skb_get_queue_mapping(skb
);
583 unsigned short status
;
584 unsigned int estatus
= 0;
587 status
= bdp
->cbd_sc
;
588 status
&= ~BD_ENET_TX_STATS
;
590 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
592 if (((unsigned long) data
) & fep
->tx_align
||
593 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
594 memcpy(txq
->tx_bounce
[index
], data
, size
);
595 data
= txq
->tx_bounce
[index
];
597 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
598 swap_buffer(data
, size
);
601 addr
= dma_map_single(&fep
->pdev
->dev
, data
, size
, DMA_TO_DEVICE
);
602 if (dma_mapping_error(&fep
->pdev
->dev
, addr
)) {
603 dev_kfree_skb_any(skb
);
605 netdev_err(ndev
, "Tx DMA memory map failed\n");
606 return NETDEV_TX_BUSY
;
609 bdp
->cbd_datlen
= size
;
610 bdp
->cbd_bufaddr
= addr
;
612 if (fep
->bufdesc_ex
) {
613 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
614 estatus
|= FEC_TX_BD_FTYPE(queue
);
615 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
616 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
618 ebdp
->cbd_esc
= estatus
;
621 /* Handle the last BD specially */
623 status
|= (BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
625 status
|= BD_ENET_TX_INTR
;
627 ebdp
->cbd_esc
|= BD_ENET_TX_INT
;
630 bdp
->cbd_sc
= status
;
636 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q
*txq
,
637 struct sk_buff
*skb
, struct net_device
*ndev
,
638 struct bufdesc
*bdp
, int index
)
640 struct fec_enet_private
*fep
= netdev_priv(ndev
);
641 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
642 struct bufdesc_ex
*ebdp
= container_of(bdp
, struct bufdesc_ex
, desc
);
643 unsigned short queue
= skb_get_queue_mapping(skb
);
645 unsigned long dmabuf
;
646 unsigned short status
;
647 unsigned int estatus
= 0;
649 status
= bdp
->cbd_sc
;
650 status
&= ~BD_ENET_TX_STATS
;
651 status
|= (BD_ENET_TX_TC
| BD_ENET_TX_READY
);
653 bufaddr
= txq
->tso_hdrs
+ index
* TSO_HEADER_SIZE
;
654 dmabuf
= txq
->tso_hdrs_dma
+ index
* TSO_HEADER_SIZE
;
655 if (((unsigned long)bufaddr
) & fep
->tx_align
||
656 fep
->quirks
& FEC_QUIRK_SWAP_FRAME
) {
657 memcpy(txq
->tx_bounce
[index
], skb
->data
, hdr_len
);
658 bufaddr
= txq
->tx_bounce
[index
];
660 if (fep
->quirks
& FEC_QUIRK_SWAP_FRAME
)
661 swap_buffer(bufaddr
, hdr_len
);
663 dmabuf
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
664 hdr_len
, DMA_TO_DEVICE
);
665 if (dma_mapping_error(&fep
->pdev
->dev
, dmabuf
)) {
666 dev_kfree_skb_any(skb
);
668 netdev_err(ndev
, "Tx DMA memory map failed\n");
669 return NETDEV_TX_BUSY
;
673 bdp
->cbd_bufaddr
= dmabuf
;
674 bdp
->cbd_datlen
= hdr_len
;
676 if (fep
->bufdesc_ex
) {
677 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
)
678 estatus
|= FEC_TX_BD_FTYPE(queue
);
679 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
680 estatus
|= BD_ENET_TX_PINS
| BD_ENET_TX_IINS
;
682 ebdp
->cbd_esc
= estatus
;
685 bdp
->cbd_sc
= status
;
690 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q
*txq
,
692 struct net_device
*ndev
)
694 struct fec_enet_private
*fep
= netdev_priv(ndev
);
695 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
696 int total_len
, data_left
;
697 struct bufdesc
*bdp
= txq
->cur_tx
;
698 unsigned short queue
= skb_get_queue_mapping(skb
);
700 unsigned int index
= 0;
703 if (tso_count_descs(skb
) >= fec_enet_get_free_txdesc_num(fep
, txq
)) {
704 dev_kfree_skb_any(skb
);
706 netdev_err(ndev
, "NOT enough BD for TSO!\n");
710 /* Protocol checksum off-load for TCP and UDP. */
711 if (fec_enet_clear_csum(skb
, ndev
)) {
712 dev_kfree_skb_any(skb
);
716 /* Initialize the TSO handler, and prepare the first payload */
717 tso_start(skb
, &tso
);
719 total_len
= skb
->len
- hdr_len
;
720 while (total_len
> 0) {
723 index
= fec_enet_get_bd_index(txq
->tx_bd_base
, bdp
, fep
);
724 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
725 total_len
-= data_left
;
727 /* prepare packet headers: MAC + IP + TCP */
728 hdr
= txq
->tso_hdrs
+ index
* TSO_HEADER_SIZE
;
729 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
730 ret
= fec_enet_txq_put_hdr_tso(txq
, skb
, ndev
, bdp
, index
);
734 while (data_left
> 0) {
737 size
= min_t(int, tso
.size
, data_left
);
738 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue
);
739 index
= fec_enet_get_bd_index(txq
->tx_bd_base
,
741 ret
= fec_enet_txq_put_data_tso(txq
, skb
, ndev
,
750 tso_build_data(skb
, &tso
, size
);
753 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue
);
756 /* Save skb pointer */
757 txq
->tx_skbuff
[index
] = skb
;
759 skb_tx_timestamp(skb
);
762 /* Trigger transmission start */
763 if (!(fep
->quirks
& FEC_QUIRK_ERR007885
) ||
764 !readl(fep
->hwp
+ FEC_X_DES_ACTIVE(queue
)) ||
765 !readl(fep
->hwp
+ FEC_X_DES_ACTIVE(queue
)) ||
766 !readl(fep
->hwp
+ FEC_X_DES_ACTIVE(queue
)) ||
767 !readl(fep
->hwp
+ FEC_X_DES_ACTIVE(queue
)))
768 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE(queue
));
773 /* TODO: Release all used data descriptors for TSO */
778 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
780 struct fec_enet_private
*fep
= netdev_priv(ndev
);
782 unsigned short queue
;
783 struct fec_enet_priv_tx_q
*txq
;
784 struct netdev_queue
*nq
;
787 queue
= skb_get_queue_mapping(skb
);
788 txq
= fep
->tx_queue
[queue
];
789 nq
= netdev_get_tx_queue(ndev
, queue
);
792 ret
= fec_enet_txq_submit_tso(txq
, skb
, ndev
);
794 ret
= fec_enet_txq_submit_skb(txq
, skb
, ndev
);
798 entries_free
= fec_enet_get_free_txdesc_num(fep
, txq
);
799 if (entries_free
<= txq
->tx_stop_threshold
)
800 netif_tx_stop_queue(nq
);
805 /* Init RX & TX buffer descriptors
807 static void fec_enet_bd_init(struct net_device
*dev
)
809 struct fec_enet_private
*fep
= netdev_priv(dev
);
810 struct fec_enet_priv_tx_q
*txq
;
811 struct fec_enet_priv_rx_q
*rxq
;
816 for (q
= 0; q
< fep
->num_rx_queues
; q
++) {
817 /* Initialize the receive buffer descriptors. */
818 rxq
= fep
->rx_queue
[q
];
819 bdp
= rxq
->rx_bd_base
;
821 for (i
= 0; i
< rxq
->rx_ring_size
; i
++) {
823 /* Initialize the BD for every fragment in the page. */
824 if (bdp
->cbd_bufaddr
)
825 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
828 bdp
= fec_enet_get_nextdesc(bdp
, fep
, q
);
831 /* Set the last buffer to wrap */
832 bdp
= fec_enet_get_prevdesc(bdp
, fep
, q
);
833 bdp
->cbd_sc
|= BD_SC_WRAP
;
835 rxq
->cur_rx
= rxq
->rx_bd_base
;
838 for (q
= 0; q
< fep
->num_tx_queues
; q
++) {
839 /* ...and the same for transmit */
840 txq
= fep
->tx_queue
[q
];
841 bdp
= txq
->tx_bd_base
;
844 for (i
= 0; i
< txq
->tx_ring_size
; i
++) {
845 /* Initialize the BD for every fragment in the page. */
847 if (txq
->tx_skbuff
[i
]) {
848 dev_kfree_skb_any(txq
->tx_skbuff
[i
]);
849 txq
->tx_skbuff
[i
] = NULL
;
851 bdp
->cbd_bufaddr
= 0;
852 bdp
= fec_enet_get_nextdesc(bdp
, fep
, q
);
855 /* Set the last buffer to wrap */
856 bdp
= fec_enet_get_prevdesc(bdp
, fep
, q
);
857 bdp
->cbd_sc
|= BD_SC_WRAP
;
862 static void fec_enet_active_rxring(struct net_device
*ndev
)
864 struct fec_enet_private
*fep
= netdev_priv(ndev
);
867 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
868 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE(i
));
871 static void fec_enet_enable_ring(struct net_device
*ndev
)
873 struct fec_enet_private
*fep
= netdev_priv(ndev
);
874 struct fec_enet_priv_tx_q
*txq
;
875 struct fec_enet_priv_rx_q
*rxq
;
878 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
879 rxq
= fep
->rx_queue
[i
];
880 writel(rxq
->bd_dma
, fep
->hwp
+ FEC_R_DES_START(i
));
881 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE(i
));
885 writel(RCMR_MATCHEN
| RCMR_CMP(i
),
886 fep
->hwp
+ FEC_RCMR(i
));
889 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
890 txq
= fep
->tx_queue
[i
];
891 writel(txq
->bd_dma
, fep
->hwp
+ FEC_X_DES_START(i
));
895 writel(DMA_CLASS_EN
| IDLE_SLOPE(i
),
896 fep
->hwp
+ FEC_DMA_CFG(i
));
900 static void fec_enet_reset_skb(struct net_device
*ndev
)
902 struct fec_enet_private
*fep
= netdev_priv(ndev
);
903 struct fec_enet_priv_tx_q
*txq
;
906 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
907 txq
= fep
->tx_queue
[i
];
909 for (j
= 0; j
< txq
->tx_ring_size
; j
++) {
910 if (txq
->tx_skbuff
[j
]) {
911 dev_kfree_skb_any(txq
->tx_skbuff
[j
]);
912 txq
->tx_skbuff
[j
] = NULL
;
919 * This function is called to start or restart the FEC during a link
920 * change, transmit timeout, or to reconfigure the FEC. The network
921 * packet processing for this device must be stopped before this call.
924 fec_restart(struct net_device
*ndev
)
926 struct fec_enet_private
*fep
= netdev_priv(ndev
);
929 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
930 u32 ecntl
= 0x2; /* ETHEREN */
932 /* Whack a reset. We should wait for this.
933 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
934 * instead of reset MAC itself.
936 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
937 writel(0, fep
->hwp
+ FEC_ECNTRL
);
939 writel(1, fep
->hwp
+ FEC_ECNTRL
);
944 * enet-mac reset will reset mac address registers too,
945 * so need to reconfigure it.
947 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
948 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
949 writel(cpu_to_be32(temp_mac
[0]), fep
->hwp
+ FEC_ADDR_LOW
);
950 writel(cpu_to_be32(temp_mac
[1]), fep
->hwp
+ FEC_ADDR_HIGH
);
953 /* Clear any outstanding interrupt. */
954 writel(0xffffffff, fep
->hwp
+ FEC_IEVENT
);
956 fec_enet_bd_init(ndev
);
958 fec_enet_enable_ring(ndev
);
960 /* Reset tx SKB buffers. */
961 fec_enet_reset_skb(ndev
);
963 /* Enable MII mode */
964 if (fep
->full_duplex
== DUPLEX_FULL
) {
966 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
970 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
974 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
976 #if !defined(CONFIG_M5272)
977 if (fep
->quirks
& FEC_QUIRK_HAS_RACC
) {
978 /* set RX checksum */
979 val
= readl(fep
->hwp
+ FEC_RACC
);
980 if (fep
->csum_flags
& FLAG_RX_CSUM_ENABLED
)
981 val
|= FEC_RACC_OPTIONS
;
983 val
&= ~FEC_RACC_OPTIONS
;
984 writel(val
, fep
->hwp
+ FEC_RACC
);
989 * The phy interface and speed need to get configured
990 * differently on enet-mac.
992 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
993 /* Enable flow control and length check */
994 rcntl
|= 0x40000000 | 0x00000020;
996 /* RGMII, RMII or MII */
997 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII
||
998 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_ID
||
999 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_RXID
||
1000 fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII_TXID
)
1002 else if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
1007 /* 1G, 100M or 10M */
1009 if (fep
->phy_dev
->speed
== SPEED_1000
)
1011 else if (fep
->phy_dev
->speed
== SPEED_100
)
1017 #ifdef FEC_MIIGSK_ENR
1018 if (fep
->quirks
& FEC_QUIRK_USE_GASKET
) {
1020 /* disable the gasket and wait */
1021 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
1022 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
1026 * configure the gasket:
1027 * RMII, 50 MHz, no loopback, no echo
1028 * MII, 25 MHz, no loopback, no echo
1030 cfgr
= (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
1031 ? BM_MIIGSK_CFGR_RMII
: BM_MIIGSK_CFGR_MII
;
1032 if (fep
->phy_dev
&& fep
->phy_dev
->speed
== SPEED_10
)
1033 cfgr
|= BM_MIIGSK_CFGR_FRCONT_10M
;
1034 writel(cfgr
, fep
->hwp
+ FEC_MIIGSK_CFGR
);
1036 /* re-enable the gasket */
1037 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
1042 #if !defined(CONFIG_M5272)
1043 /* enable pause frame*/
1044 if ((fep
->pause_flag
& FEC_PAUSE_FLAG_ENABLE
) ||
1045 ((fep
->pause_flag
& FEC_PAUSE_FLAG_AUTONEG
) &&
1046 fep
->phy_dev
&& fep
->phy_dev
->pause
)) {
1047 rcntl
|= FEC_ENET_FCE
;
1049 /* set FIFO threshold parameter to reduce overrun */
1050 writel(FEC_ENET_RSEM_V
, fep
->hwp
+ FEC_R_FIFO_RSEM
);
1051 writel(FEC_ENET_RSFL_V
, fep
->hwp
+ FEC_R_FIFO_RSFL
);
1052 writel(FEC_ENET_RAEM_V
, fep
->hwp
+ FEC_R_FIFO_RAEM
);
1053 writel(FEC_ENET_RAFL_V
, fep
->hwp
+ FEC_R_FIFO_RAFL
);
1056 writel(FEC_ENET_OPD_V
, fep
->hwp
+ FEC_OPD
);
1058 rcntl
&= ~FEC_ENET_FCE
;
1060 #endif /* !defined(CONFIG_M5272) */
1062 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
1064 /* Setup multicast filter. */
1065 set_multicast_list(ndev
);
1066 #ifndef CONFIG_M5272
1067 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
1068 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
1071 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
) {
1072 /* enable ENET endian swap */
1074 /* enable ENET store and forward mode */
1075 writel(1 << 8, fep
->hwp
+ FEC_X_WMRK
);
1078 if (fep
->bufdesc_ex
)
1081 #ifndef CONFIG_M5272
1082 /* Enable the MIB statistic event counters */
1083 writel(0 << 31, fep
->hwp
+ FEC_MIB_CTRLSTAT
);
1086 /* And last, enable the transmit and receive processing */
1087 writel(ecntl
, fep
->hwp
+ FEC_ECNTRL
);
1088 fec_enet_active_rxring(ndev
);
1090 if (fep
->bufdesc_ex
)
1091 fec_ptp_start_cyclecounter(ndev
);
1093 /* Enable interrupts we wish to service */
1095 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1097 writel(FEC_ENET_MII
, fep
->hwp
+ FEC_IMASK
);
1099 /* Init the interrupt coalescing */
1100 fec_enet_itr_coal_init(ndev
);
1105 fec_stop(struct net_device
*ndev
)
1107 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1108 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
1109 u32 rmii_mode
= readl(fep
->hwp
+ FEC_R_CNTRL
) & (1 << 8);
1112 /* We cannot expect a graceful transmit stop without link !!! */
1114 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
1116 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
1117 netdev_err(ndev
, "Graceful transmit stop did not complete!\n");
1120 /* Whack a reset. We should wait for this.
1121 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1122 * instead of reset MAC itself.
1124 if (!(fep
->wol_flag
& FEC_WOL_FLAG_SLEEP_ON
)) {
1125 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
1126 writel(0, fep
->hwp
+ FEC_ECNTRL
);
1128 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1131 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1133 writel(FEC_DEFAULT_IMASK
| FEC_ENET_WAKEUP
, fep
->hwp
+ FEC_IMASK
);
1134 val
= readl(fep
->hwp
+ FEC_ECNTRL
);
1135 val
|= (FEC_ECR_MAGICEN
| FEC_ECR_SLEEP
);
1136 writel(val
, fep
->hwp
+ FEC_ECNTRL
);
1138 if (pdata
&& pdata
->sleep_mode_enable
)
1139 pdata
->sleep_mode_enable(true);
1141 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1143 /* We have to keep ENET enabled to have MII interrupt stay working */
1144 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
&&
1145 !(fep
->wol_flag
& FEC_WOL_FLAG_SLEEP_ON
)) {
1146 writel(2, fep
->hwp
+ FEC_ECNTRL
);
1147 writel(rmii_mode
, fep
->hwp
+ FEC_R_CNTRL
);
1153 fec_timeout(struct net_device
*ndev
)
1155 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1159 ndev
->stats
.tx_errors
++;
1161 schedule_work(&fep
->tx_timeout_work
);
1164 static void fec_enet_timeout_work(struct work_struct
*work
)
1166 struct fec_enet_private
*fep
=
1167 container_of(work
, struct fec_enet_private
, tx_timeout_work
);
1168 struct net_device
*ndev
= fep
->netdev
;
1171 if (netif_device_present(ndev
) || netif_running(ndev
)) {
1172 napi_disable(&fep
->napi
);
1173 netif_tx_lock_bh(ndev
);
1175 netif_wake_queue(ndev
);
1176 netif_tx_unlock_bh(ndev
);
1177 napi_enable(&fep
->napi
);
1183 fec_enet_hwtstamp(struct fec_enet_private
*fep
, unsigned ts
,
1184 struct skb_shared_hwtstamps
*hwtstamps
)
1186 unsigned long flags
;
1189 spin_lock_irqsave(&fep
->tmreg_lock
, flags
);
1190 ns
= timecounter_cyc2time(&fep
->tc
, ts
);
1191 spin_unlock_irqrestore(&fep
->tmreg_lock
, flags
);
1193 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
1194 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
1198 fec_enet_tx_queue(struct net_device
*ndev
, u16 queue_id
)
1200 struct fec_enet_private
*fep
;
1201 struct bufdesc
*bdp
;
1202 unsigned short status
;
1203 struct sk_buff
*skb
;
1204 struct fec_enet_priv_tx_q
*txq
;
1205 struct netdev_queue
*nq
;
1209 fep
= netdev_priv(ndev
);
1211 queue_id
= FEC_ENET_GET_QUQUE(queue_id
);
1213 txq
= fep
->tx_queue
[queue_id
];
1214 /* get next bdp of dirty_tx */
1215 nq
= netdev_get_tx_queue(ndev
, queue_id
);
1216 bdp
= txq
->dirty_tx
;
1218 /* get next bdp of dirty_tx */
1219 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue_id
);
1221 while (bdp
!= READ_ONCE(txq
->cur_tx
)) {
1222 /* Order the load of cur_tx and cbd_sc */
1224 status
= READ_ONCE(bdp
->cbd_sc
);
1225 if (status
& BD_ENET_TX_READY
)
1228 index
= fec_enet_get_bd_index(txq
->tx_bd_base
, bdp
, fep
);
1230 skb
= txq
->tx_skbuff
[index
];
1231 txq
->tx_skbuff
[index
] = NULL
;
1232 if (!IS_TSO_HEADER(txq
, bdp
->cbd_bufaddr
))
1233 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1234 bdp
->cbd_datlen
, DMA_TO_DEVICE
);
1235 bdp
->cbd_bufaddr
= 0;
1237 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue_id
);
1241 /* Check for errors. */
1242 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
1243 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
1245 ndev
->stats
.tx_errors
++;
1246 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
1247 ndev
->stats
.tx_heartbeat_errors
++;
1248 if (status
& BD_ENET_TX_LC
) /* Late collision */
1249 ndev
->stats
.tx_window_errors
++;
1250 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
1251 ndev
->stats
.tx_aborted_errors
++;
1252 if (status
& BD_ENET_TX_UN
) /* Underrun */
1253 ndev
->stats
.tx_fifo_errors
++;
1254 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
1255 ndev
->stats
.tx_carrier_errors
++;
1257 ndev
->stats
.tx_packets
++;
1258 ndev
->stats
.tx_bytes
+= skb
->len
;
1261 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
) &&
1263 struct skb_shared_hwtstamps shhwtstamps
;
1264 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
1266 fec_enet_hwtstamp(fep
, ebdp
->ts
, &shhwtstamps
);
1267 skb_tstamp_tx(skb
, &shhwtstamps
);
1270 /* Deferred means some collisions occurred during transmit,
1271 * but we eventually sent the packet OK.
1273 if (status
& BD_ENET_TX_DEF
)
1274 ndev
->stats
.collisions
++;
1276 /* Free the sk buffer associated with this last transmit */
1277 dev_kfree_skb_any(skb
);
1279 /* Make sure the update to bdp and tx_skbuff are performed
1283 txq
->dirty_tx
= bdp
;
1285 /* Update pointer to next buffer descriptor to be transmitted */
1286 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue_id
);
1288 /* Since we have freed up a buffer, the ring is no longer full
1290 if (netif_queue_stopped(ndev
)) {
1291 entries_free
= fec_enet_get_free_txdesc_num(fep
, txq
);
1292 if (entries_free
>= txq
->tx_wake_threshold
)
1293 netif_tx_wake_queue(nq
);
1297 /* ERR006538: Keep the transmitter going */
1298 if (bdp
!= txq
->cur_tx
&&
1299 readl(fep
->hwp
+ FEC_X_DES_ACTIVE(queue_id
)) == 0)
1300 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE(queue_id
));
1304 fec_enet_tx(struct net_device
*ndev
)
1306 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1308 /* First process class A queue, then Class B and Best Effort queue */
1309 for_each_set_bit(queue_id
, &fep
->work_tx
, FEC_ENET_MAX_TX_QS
) {
1310 clear_bit(queue_id
, &fep
->work_tx
);
1311 fec_enet_tx_queue(ndev
, queue_id
);
1317 fec_enet_new_rxbdp(struct net_device
*ndev
, struct bufdesc
*bdp
, struct sk_buff
*skb
)
1319 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1322 off
= ((unsigned long)skb
->data
) & fep
->rx_align
;
1324 skb_reserve(skb
, fep
->rx_align
+ 1 - off
);
1326 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, skb
->data
,
1327 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1329 if (dma_mapping_error(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
)) {
1330 if (net_ratelimit())
1331 netdev_err(ndev
, "Rx DMA memory map failed\n");
1338 static bool fec_enet_copybreak(struct net_device
*ndev
, struct sk_buff
**skb
,
1339 struct bufdesc
*bdp
, u32 length
, bool swap
)
1341 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1342 struct sk_buff
*new_skb
;
1344 if (length
> fep
->rx_copybreak
)
1347 new_skb
= netdev_alloc_skb(ndev
, length
);
1351 dma_sync_single_for_cpu(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1352 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1355 memcpy(new_skb
->data
, (*skb
)->data
, length
);
1357 swap_buffer2(new_skb
->data
, (*skb
)->data
, length
);
1363 /* During a receive, the cur_rx points to the current incoming buffer.
1364 * When we update through the ring, if the next incoming buffer has
1365 * not been given to the system, we just set the empty indicator,
1366 * effectively tossing the packet.
1369 fec_enet_rx_queue(struct net_device
*ndev
, int budget
, u16 queue_id
)
1371 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1372 struct fec_enet_priv_rx_q
*rxq
;
1373 struct bufdesc
*bdp
;
1374 unsigned short status
;
1375 struct sk_buff
*skb_new
= NULL
;
1376 struct sk_buff
*skb
;
1379 int pkt_received
= 0;
1380 struct bufdesc_ex
*ebdp
= NULL
;
1381 bool vlan_packet_rcvd
= false;
1385 bool need_swap
= fep
->quirks
& FEC_QUIRK_SWAP_FRAME
;
1390 queue_id
= FEC_ENET_GET_QUQUE(queue_id
);
1391 rxq
= fep
->rx_queue
[queue_id
];
1393 /* First, grab all of the stats for the incoming packet.
1394 * These get messed up if we get called due to a busy condition.
1398 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
1400 if (pkt_received
>= budget
)
1404 /* Since we have allocated space to hold a complete frame,
1405 * the last indicator should be set.
1407 if ((status
& BD_ENET_RX_LAST
) == 0)
1408 netdev_err(ndev
, "rcv is not +last\n");
1410 writel(FEC_ENET_RXF
, fep
->hwp
+ FEC_IEVENT
);
1412 /* Check for errors. */
1413 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
1414 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
1415 ndev
->stats
.rx_errors
++;
1416 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
1417 /* Frame too long or too short. */
1418 ndev
->stats
.rx_length_errors
++;
1420 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
1421 ndev
->stats
.rx_frame_errors
++;
1422 if (status
& BD_ENET_RX_CR
) /* CRC Error */
1423 ndev
->stats
.rx_crc_errors
++;
1424 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
1425 ndev
->stats
.rx_fifo_errors
++;
1428 /* Report late collisions as a frame error.
1429 * On this error, the BD is closed, but we don't know what we
1430 * have in the buffer. So, just drop this frame on the floor.
1432 if (status
& BD_ENET_RX_CL
) {
1433 ndev
->stats
.rx_errors
++;
1434 ndev
->stats
.rx_frame_errors
++;
1435 goto rx_processing_done
;
1438 /* Process the incoming frame. */
1439 ndev
->stats
.rx_packets
++;
1440 pkt_len
= bdp
->cbd_datlen
;
1441 ndev
->stats
.rx_bytes
+= pkt_len
;
1443 index
= fec_enet_get_bd_index(rxq
->rx_bd_base
, bdp
, fep
);
1444 skb
= rxq
->rx_skbuff
[index
];
1446 /* The packet length includes FCS, but we don't want to
1447 * include that when passing upstream as it messes up
1448 * bridging applications.
1450 is_copybreak
= fec_enet_copybreak(ndev
, &skb
, bdp
, pkt_len
- 4,
1452 if (!is_copybreak
) {
1453 skb_new
= netdev_alloc_skb(ndev
, FEC_ENET_RX_FRSIZE
);
1454 if (unlikely(!skb_new
)) {
1455 ndev
->stats
.rx_dropped
++;
1456 goto rx_processing_done
;
1458 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1459 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1463 prefetch(skb
->data
- NET_IP_ALIGN
);
1464 skb_put(skb
, pkt_len
- 4);
1466 if (!is_copybreak
&& need_swap
)
1467 swap_buffer(data
, pkt_len
);
1469 /* Extract the enhanced buffer descriptor */
1471 if (fep
->bufdesc_ex
)
1472 ebdp
= (struct bufdesc_ex
*)bdp
;
1474 /* If this is a VLAN packet remove the VLAN Tag */
1475 vlan_packet_rcvd
= false;
1476 if ((ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
1477 fep
->bufdesc_ex
&& (ebdp
->cbd_esc
& BD_ENET_RX_VLAN
)) {
1478 /* Push and remove the vlan tag */
1479 struct vlan_hdr
*vlan_header
=
1480 (struct vlan_hdr
*) (data
+ ETH_HLEN
);
1481 vlan_tag
= ntohs(vlan_header
->h_vlan_TCI
);
1483 vlan_packet_rcvd
= true;
1485 memmove(skb
->data
+ VLAN_HLEN
, data
, ETH_ALEN
* 2);
1486 skb_pull(skb
, VLAN_HLEN
);
1489 skb
->protocol
= eth_type_trans(skb
, ndev
);
1491 /* Get receive timestamp from the skb */
1492 if (fep
->hwts_rx_en
&& fep
->bufdesc_ex
)
1493 fec_enet_hwtstamp(fep
, ebdp
->ts
,
1494 skb_hwtstamps(skb
));
1496 if (fep
->bufdesc_ex
&&
1497 (fep
->csum_flags
& FLAG_RX_CSUM_ENABLED
)) {
1498 if (!(ebdp
->cbd_esc
& FLAG_RX_CSUM_ERROR
)) {
1499 /* don't check it */
1500 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1502 skb_checksum_none_assert(skb
);
1506 /* Handle received VLAN packets */
1507 if (vlan_packet_rcvd
)
1508 __vlan_hwaccel_put_tag(skb
,
1512 napi_gro_receive(&fep
->napi
, skb
);
1515 dma_sync_single_for_device(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1516 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
1519 rxq
->rx_skbuff
[index
] = skb_new
;
1520 fec_enet_new_rxbdp(ndev
, bdp
, skb_new
);
1524 /* Clear the status flags for this buffer */
1525 status
&= ~BD_ENET_RX_STATS
;
1527 /* Mark the buffer empty */
1528 status
|= BD_ENET_RX_EMPTY
;
1529 bdp
->cbd_sc
= status
;
1531 if (fep
->bufdesc_ex
) {
1532 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
1534 ebdp
->cbd_esc
= BD_ENET_RX_INT
;
1539 /* Update BD pointer to next entry */
1540 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue_id
);
1542 /* Doing this here will keep the FEC running while we process
1543 * incoming frames. On a heavily loaded network, we should be
1544 * able to keep up at the expense of system resources.
1546 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE(queue_id
));
1549 return pkt_received
;
1553 fec_enet_rx(struct net_device
*ndev
, int budget
)
1555 int pkt_received
= 0;
1557 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1559 for_each_set_bit(queue_id
, &fep
->work_rx
, FEC_ENET_MAX_RX_QS
) {
1560 clear_bit(queue_id
, &fep
->work_rx
);
1561 pkt_received
+= fec_enet_rx_queue(ndev
,
1562 budget
- pkt_received
, queue_id
);
1564 return pkt_received
;
1568 fec_enet_collect_events(struct fec_enet_private
*fep
, uint int_events
)
1570 if (int_events
== 0)
1573 if (int_events
& FEC_ENET_RXF
)
1574 fep
->work_rx
|= (1 << 2);
1575 if (int_events
& FEC_ENET_RXF_1
)
1576 fep
->work_rx
|= (1 << 0);
1577 if (int_events
& FEC_ENET_RXF_2
)
1578 fep
->work_rx
|= (1 << 1);
1580 if (int_events
& FEC_ENET_TXF
)
1581 fep
->work_tx
|= (1 << 2);
1582 if (int_events
& FEC_ENET_TXF_1
)
1583 fep
->work_tx
|= (1 << 0);
1584 if (int_events
& FEC_ENET_TXF_2
)
1585 fep
->work_tx
|= (1 << 1);
1591 fec_enet_interrupt(int irq
, void *dev_id
)
1593 struct net_device
*ndev
= dev_id
;
1594 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1596 irqreturn_t ret
= IRQ_NONE
;
1598 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
1599 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
1600 fec_enet_collect_events(fep
, int_events
);
1602 if ((fep
->work_tx
|| fep
->work_rx
) && fep
->link
) {
1605 if (napi_schedule_prep(&fep
->napi
)) {
1606 /* Disable the NAPI interrupts */
1607 writel(FEC_ENET_MII
, fep
->hwp
+ FEC_IMASK
);
1608 __napi_schedule(&fep
->napi
);
1612 if (int_events
& FEC_ENET_MII
) {
1614 complete(&fep
->mdio_done
);
1618 fec_ptp_check_pps_event(fep
);
1623 static int fec_enet_rx_napi(struct napi_struct
*napi
, int budget
)
1625 struct net_device
*ndev
= napi
->dev
;
1626 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1629 pkts
= fec_enet_rx(ndev
, budget
);
1633 if (pkts
< budget
) {
1634 napi_complete(napi
);
1635 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1640 /* ------------------------------------------------------------------------- */
1641 static void fec_get_mac(struct net_device
*ndev
)
1643 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1644 struct fec_platform_data
*pdata
= dev_get_platdata(&fep
->pdev
->dev
);
1645 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1648 * try to get mac address in following order:
1650 * 1) module parameter via kernel command line in form
1651 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1656 * 2) from device tree data
1658 if (!is_valid_ether_addr(iap
)) {
1659 struct device_node
*np
= fep
->pdev
->dev
.of_node
;
1661 const char *mac
= of_get_mac_address(np
);
1663 iap
= (unsigned char *) mac
;
1668 * 3) from flash or fuse (via platform data)
1670 if (!is_valid_ether_addr(iap
)) {
1673 iap
= (unsigned char *)FEC_FLASHMAC
;
1676 iap
= (unsigned char *)&pdata
->mac
;
1681 * 4) FEC mac registers set by bootloader
1683 if (!is_valid_ether_addr(iap
)) {
1684 *((__be32
*) &tmpaddr
[0]) =
1685 cpu_to_be32(readl(fep
->hwp
+ FEC_ADDR_LOW
));
1686 *((__be16
*) &tmpaddr
[4]) =
1687 cpu_to_be16(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
1692 * 5) random mac address
1694 if (!is_valid_ether_addr(iap
)) {
1695 /* Report it and use a random ethernet address instead */
1696 netdev_err(ndev
, "Invalid MAC address: %pM\n", iap
);
1697 eth_hw_addr_random(ndev
);
1698 netdev_info(ndev
, "Using random MAC address: %pM\n",
1703 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
1705 /* Adjust MAC if using macaddr */
1707 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->dev_id
;
1710 /* ------------------------------------------------------------------------- */
1715 static void fec_enet_adjust_link(struct net_device
*ndev
)
1717 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1718 struct phy_device
*phy_dev
= fep
->phy_dev
;
1719 int status_change
= 0;
1721 /* Prevent a state halted on mii error */
1722 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
1723 phy_dev
->state
= PHY_RESUMING
;
1728 * If the netdev is down, or is going down, we're not interested
1729 * in link state events, so just mark our idea of the link as down
1730 * and ignore the event.
1732 if (!netif_running(ndev
) || !netif_device_present(ndev
)) {
1734 } else if (phy_dev
->link
) {
1736 fep
->link
= phy_dev
->link
;
1740 if (fep
->full_duplex
!= phy_dev
->duplex
) {
1741 fep
->full_duplex
= phy_dev
->duplex
;
1745 if (phy_dev
->speed
!= fep
->speed
) {
1746 fep
->speed
= phy_dev
->speed
;
1750 /* if any of the above changed restart the FEC */
1751 if (status_change
) {
1752 napi_disable(&fep
->napi
);
1753 netif_tx_lock_bh(ndev
);
1755 netif_wake_queue(ndev
);
1756 netif_tx_unlock_bh(ndev
);
1757 napi_enable(&fep
->napi
);
1761 napi_disable(&fep
->napi
);
1762 netif_tx_lock_bh(ndev
);
1764 netif_tx_unlock_bh(ndev
);
1765 napi_enable(&fep
->napi
);
1766 fep
->link
= phy_dev
->link
;
1772 phy_print_status(phy_dev
);
1775 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
1777 struct fec_enet_private
*fep
= bus
->priv
;
1778 struct device
*dev
= &fep
->pdev
->dev
;
1779 unsigned long time_left
;
1782 ret
= pm_runtime_get_sync(dev
);
1786 fep
->mii_timeout
= 0;
1787 reinit_completion(&fep
->mdio_done
);
1789 /* start a read op */
1790 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
1791 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
1792 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
1794 /* wait for end of transfer */
1795 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
1796 usecs_to_jiffies(FEC_MII_TIMEOUT
));
1797 if (time_left
== 0) {
1798 fep
->mii_timeout
= 1;
1799 netdev_err(fep
->netdev
, "MDIO read timeout\n");
1804 ret
= FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
1807 pm_runtime_mark_last_busy(dev
);
1808 pm_runtime_put_autosuspend(dev
);
1813 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
1816 struct fec_enet_private
*fep
= bus
->priv
;
1817 struct device
*dev
= &fep
->pdev
->dev
;
1818 unsigned long time_left
;
1821 ret
= pm_runtime_get_sync(dev
);
1827 fep
->mii_timeout
= 0;
1828 reinit_completion(&fep
->mdio_done
);
1830 /* start a write op */
1831 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
1832 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
1833 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
1834 fep
->hwp
+ FEC_MII_DATA
);
1836 /* wait for end of transfer */
1837 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
1838 usecs_to_jiffies(FEC_MII_TIMEOUT
));
1839 if (time_left
== 0) {
1840 fep
->mii_timeout
= 1;
1841 netdev_err(fep
->netdev
, "MDIO write timeout\n");
1845 pm_runtime_mark_last_busy(dev
);
1846 pm_runtime_put_autosuspend(dev
);
1851 static int fec_enet_clk_enable(struct net_device
*ndev
, bool enable
)
1853 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1857 ret
= clk_prepare_enable(fep
->clk_ahb
);
1860 if (fep
->clk_enet_out
) {
1861 ret
= clk_prepare_enable(fep
->clk_enet_out
);
1863 goto failed_clk_enet_out
;
1866 mutex_lock(&fep
->ptp_clk_mutex
);
1867 ret
= clk_prepare_enable(fep
->clk_ptp
);
1869 mutex_unlock(&fep
->ptp_clk_mutex
);
1870 goto failed_clk_ptp
;
1872 fep
->ptp_clk_on
= true;
1874 mutex_unlock(&fep
->ptp_clk_mutex
);
1877 ret
= clk_prepare_enable(fep
->clk_ref
);
1879 goto failed_clk_ref
;
1882 clk_disable_unprepare(fep
->clk_ahb
);
1883 if (fep
->clk_enet_out
)
1884 clk_disable_unprepare(fep
->clk_enet_out
);
1886 mutex_lock(&fep
->ptp_clk_mutex
);
1887 clk_disable_unprepare(fep
->clk_ptp
);
1888 fep
->ptp_clk_on
= false;
1889 mutex_unlock(&fep
->ptp_clk_mutex
);
1892 clk_disable_unprepare(fep
->clk_ref
);
1899 clk_disable_unprepare(fep
->clk_ref
);
1901 if (fep
->clk_enet_out
)
1902 clk_disable_unprepare(fep
->clk_enet_out
);
1903 failed_clk_enet_out
:
1904 clk_disable_unprepare(fep
->clk_ahb
);
1909 static int fec_enet_mii_probe(struct net_device
*ndev
)
1911 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1912 struct phy_device
*phy_dev
= NULL
;
1913 char mdio_bus_id
[MII_BUS_ID_SIZE
];
1914 char phy_name
[MII_BUS_ID_SIZE
+ 3];
1916 int dev_id
= fep
->dev_id
;
1918 fep
->phy_dev
= NULL
;
1920 if (fep
->phy_node
) {
1921 phy_dev
= of_phy_connect(ndev
, fep
->phy_node
,
1922 &fec_enet_adjust_link
, 0,
1923 fep
->phy_interface
);
1927 /* check for attached phy */
1928 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
1929 if ((fep
->mii_bus
->phy_mask
& (1 << phy_id
)))
1931 if (fep
->mii_bus
->phy_map
[phy_id
] == NULL
)
1933 if (fep
->mii_bus
->phy_map
[phy_id
]->phy_id
== 0)
1937 strlcpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
1941 if (phy_id
>= PHY_MAX_ADDR
) {
1942 netdev_info(ndev
, "no PHY, assuming direct connection to switch\n");
1943 strlcpy(mdio_bus_id
, "fixed-0", MII_BUS_ID_SIZE
);
1947 snprintf(phy_name
, sizeof(phy_name
),
1948 PHY_ID_FMT
, mdio_bus_id
, phy_id
);
1949 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
,
1950 fep
->phy_interface
);
1953 if (IS_ERR(phy_dev
)) {
1954 netdev_err(ndev
, "could not attach to PHY\n");
1955 return PTR_ERR(phy_dev
);
1958 /* mask with MAC supported features */
1959 if (fep
->quirks
& FEC_QUIRK_HAS_GBIT
) {
1960 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
1961 phy_dev
->supported
&= ~SUPPORTED_1000baseT_Half
;
1962 #if !defined(CONFIG_M5272)
1963 phy_dev
->supported
|= SUPPORTED_Pause
;
1967 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
1969 phy_dev
->advertising
= phy_dev
->supported
;
1971 fep
->phy_dev
= phy_dev
;
1973 fep
->full_duplex
= 0;
1975 netdev_info(ndev
, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1976 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
1982 static int fec_enet_mii_init(struct platform_device
*pdev
)
1984 static struct mii_bus
*fec0_mii_bus
;
1985 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1986 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1987 struct device_node
*node
;
1988 int err
= -ENXIO
, i
;
1989 u32 mii_speed
, holdtime
;
1992 * The i.MX28 dual fec interfaces are not equal.
1993 * Here are the differences:
1995 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1996 * - fec0 acts as the 1588 time master while fec1 is slave
1997 * - external phys can only be configured by fec0
1999 * That is to say fec1 can not work independently. It only works
2000 * when fec0 is working. The reason behind this design is that the
2001 * second interface is added primarily for Switch mode.
2003 * Because of the last point above, both phys are attached on fec0
2004 * mdio interface in board design, and need to be configured by
2007 if ((fep
->quirks
& FEC_QUIRK_SINGLE_MDIO
) && fep
->dev_id
> 0) {
2008 /* fec1 uses fec0 mii_bus */
2009 if (mii_cnt
&& fec0_mii_bus
) {
2010 fep
->mii_bus
= fec0_mii_bus
;
2017 fep
->mii_timeout
= 0;
2020 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2022 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2023 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2024 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2027 mii_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk_ipg
), 5000000);
2028 if (fep
->quirks
& FEC_QUIRK_ENET_MAC
)
2030 if (mii_speed
> 63) {
2032 "fec clock (%lu) to fast to get right mii speed\n",
2033 clk_get_rate(fep
->clk_ipg
));
2039 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2040 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2041 * versions are RAZ there, so just ignore the difference and write the
2043 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2044 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2046 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2047 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2048 * holdtime cannot result in a value greater than 3.
2050 holdtime
= DIV_ROUND_UP(clk_get_rate(fep
->clk_ipg
), 100000000) - 1;
2052 fep
->phy_speed
= mii_speed
<< 1 | holdtime
<< 8;
2054 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
2056 fep
->mii_bus
= mdiobus_alloc();
2057 if (fep
->mii_bus
== NULL
) {
2062 fep
->mii_bus
->name
= "fec_enet_mii_bus";
2063 fep
->mii_bus
->read
= fec_enet_mdio_read
;
2064 fep
->mii_bus
->write
= fec_enet_mdio_write
;
2065 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
2066 pdev
->name
, fep
->dev_id
+ 1);
2067 fep
->mii_bus
->priv
= fep
;
2068 fep
->mii_bus
->parent
= &pdev
->dev
;
2070 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
2071 if (!fep
->mii_bus
->irq
) {
2073 goto err_out_free_mdiobus
;
2076 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
2077 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
2079 node
= of_get_child_by_name(pdev
->dev
.of_node
, "mdio");
2081 err
= of_mdiobus_register(fep
->mii_bus
, node
);
2084 err
= mdiobus_register(fep
->mii_bus
);
2088 goto err_out_free_mdio_irq
;
2092 /* save fec0 mii_bus */
2093 if (fep
->quirks
& FEC_QUIRK_SINGLE_MDIO
)
2094 fec0_mii_bus
= fep
->mii_bus
;
2098 err_out_free_mdio_irq
:
2099 kfree(fep
->mii_bus
->irq
);
2100 err_out_free_mdiobus
:
2101 mdiobus_free(fep
->mii_bus
);
2106 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
2108 if (--mii_cnt
== 0) {
2109 mdiobus_unregister(fep
->mii_bus
);
2110 kfree(fep
->mii_bus
->irq
);
2111 mdiobus_free(fep
->mii_bus
);
2115 static int fec_enet_get_settings(struct net_device
*ndev
,
2116 struct ethtool_cmd
*cmd
)
2118 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2119 struct phy_device
*phydev
= fep
->phy_dev
;
2124 return phy_ethtool_gset(phydev
, cmd
);
2127 static int fec_enet_set_settings(struct net_device
*ndev
,
2128 struct ethtool_cmd
*cmd
)
2130 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2131 struct phy_device
*phydev
= fep
->phy_dev
;
2136 return phy_ethtool_sset(phydev
, cmd
);
2139 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
2140 struct ethtool_drvinfo
*info
)
2142 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2144 strlcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
,
2145 sizeof(info
->driver
));
2146 strlcpy(info
->version
, "Revision: 1.0", sizeof(info
->version
));
2147 strlcpy(info
->bus_info
, dev_name(&ndev
->dev
), sizeof(info
->bus_info
));
2150 static int fec_enet_get_regs_len(struct net_device
*ndev
)
2152 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2156 r
= platform_get_resource(fep
->pdev
, IORESOURCE_MEM
, 0);
2158 s
= resource_size(r
);
2163 /* List of registers that can be safety be read to dump them with ethtool */
2164 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2165 defined(CONFIG_M520x) || defined(CONFIG_M532x) || \
2166 defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2167 static u32 fec_enet_register_offset
[] = {
2168 FEC_IEVENT
, FEC_IMASK
, FEC_R_DES_ACTIVE_0
, FEC_X_DES_ACTIVE_0
,
2169 FEC_ECNTRL
, FEC_MII_DATA
, FEC_MII_SPEED
, FEC_MIB_CTRLSTAT
, FEC_R_CNTRL
,
2170 FEC_X_CNTRL
, FEC_ADDR_LOW
, FEC_ADDR_HIGH
, FEC_OPD
, FEC_TXIC0
, FEC_TXIC1
,
2171 FEC_TXIC2
, FEC_RXIC0
, FEC_RXIC1
, FEC_RXIC2
, FEC_HASH_TABLE_HIGH
,
2172 FEC_HASH_TABLE_LOW
, FEC_GRP_HASH_TABLE_HIGH
, FEC_GRP_HASH_TABLE_LOW
,
2173 FEC_X_WMRK
, FEC_R_BOUND
, FEC_R_FSTART
, FEC_R_DES_START_1
,
2174 FEC_X_DES_START_1
, FEC_R_BUFF_SIZE_1
, FEC_R_DES_START_2
,
2175 FEC_X_DES_START_2
, FEC_R_BUFF_SIZE_2
, FEC_R_DES_START_0
,
2176 FEC_X_DES_START_0
, FEC_R_BUFF_SIZE_0
, FEC_R_FIFO_RSFL
, FEC_R_FIFO_RSEM
,
2177 FEC_R_FIFO_RAEM
, FEC_R_FIFO_RAFL
, FEC_RACC
, FEC_RCMR_1
, FEC_RCMR_2
,
2178 FEC_DMA_CFG_1
, FEC_DMA_CFG_2
, FEC_R_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_1
,
2179 FEC_R_DES_ACTIVE_2
, FEC_X_DES_ACTIVE_2
, FEC_QOS_SCHEME
,
2180 RMON_T_DROP
, RMON_T_PACKETS
, RMON_T_BC_PKT
, RMON_T_MC_PKT
,
2181 RMON_T_CRC_ALIGN
, RMON_T_UNDERSIZE
, RMON_T_OVERSIZE
, RMON_T_FRAG
,
2182 RMON_T_JAB
, RMON_T_COL
, RMON_T_P64
, RMON_T_P65TO127
, RMON_T_P128TO255
,
2183 RMON_T_P256TO511
, RMON_T_P512TO1023
, RMON_T_P1024TO2047
,
2184 RMON_T_P_GTE2048
, RMON_T_OCTETS
,
2185 IEEE_T_DROP
, IEEE_T_FRAME_OK
, IEEE_T_1COL
, IEEE_T_MCOL
, IEEE_T_DEF
,
2186 IEEE_T_LCOL
, IEEE_T_EXCOL
, IEEE_T_MACERR
, IEEE_T_CSERR
, IEEE_T_SQE
,
2187 IEEE_T_FDXFC
, IEEE_T_OCTETS_OK
,
2188 RMON_R_PACKETS
, RMON_R_BC_PKT
, RMON_R_MC_PKT
, RMON_R_CRC_ALIGN
,
2189 RMON_R_UNDERSIZE
, RMON_R_OVERSIZE
, RMON_R_FRAG
, RMON_R_JAB
,
2190 RMON_R_RESVD_O
, RMON_R_P64
, RMON_R_P65TO127
, RMON_R_P128TO255
,
2191 RMON_R_P256TO511
, RMON_R_P512TO1023
, RMON_R_P1024TO2047
,
2192 RMON_R_P_GTE2048
, RMON_R_OCTETS
,
2193 IEEE_R_DROP
, IEEE_R_FRAME_OK
, IEEE_R_CRC
, IEEE_R_ALIGN
, IEEE_R_MACERR
,
2194 IEEE_R_FDXFC
, IEEE_R_OCTETS_OK
2197 static u32 fec_enet_register_offset
[] = {
2198 FEC_ECNTRL
, FEC_IEVENT
, FEC_IMASK
, FEC_IVEC
, FEC_R_DES_ACTIVE_0
,
2199 FEC_R_DES_ACTIVE_1
, FEC_R_DES_ACTIVE_2
, FEC_X_DES_ACTIVE_0
,
2200 FEC_X_DES_ACTIVE_1
, FEC_X_DES_ACTIVE_2
, FEC_MII_DATA
, FEC_MII_SPEED
,
2201 FEC_R_BOUND
, FEC_R_FSTART
, FEC_X_WMRK
, FEC_X_FSTART
, FEC_R_CNTRL
,
2202 FEC_MAX_FRM_LEN
, FEC_X_CNTRL
, FEC_ADDR_LOW
, FEC_ADDR_HIGH
,
2203 FEC_GRP_HASH_TABLE_HIGH
, FEC_GRP_HASH_TABLE_LOW
, FEC_R_DES_START_0
,
2204 FEC_R_DES_START_1
, FEC_R_DES_START_2
, FEC_X_DES_START_0
,
2205 FEC_X_DES_START_1
, FEC_X_DES_START_2
, FEC_R_BUFF_SIZE_0
,
2206 FEC_R_BUFF_SIZE_1
, FEC_R_BUFF_SIZE_2
2210 static void fec_enet_get_regs(struct net_device
*ndev
,
2211 struct ethtool_regs
*regs
, void *regbuf
)
2213 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2214 u32 __iomem
*theregs
= (u32 __iomem
*)fep
->hwp
;
2215 u32
*buf
= (u32
*)regbuf
;
2218 memset(buf
, 0, regs
->len
);
2220 for (i
= 0; i
< ARRAY_SIZE(fec_enet_register_offset
); i
++) {
2221 off
= fec_enet_register_offset
[i
] / 4;
2222 buf
[off
] = readl(&theregs
[off
]);
2226 static int fec_enet_get_ts_info(struct net_device
*ndev
,
2227 struct ethtool_ts_info
*info
)
2229 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2231 if (fep
->bufdesc_ex
) {
2233 info
->so_timestamping
= SOF_TIMESTAMPING_TX_SOFTWARE
|
2234 SOF_TIMESTAMPING_RX_SOFTWARE
|
2235 SOF_TIMESTAMPING_SOFTWARE
|
2236 SOF_TIMESTAMPING_TX_HARDWARE
|
2237 SOF_TIMESTAMPING_RX_HARDWARE
|
2238 SOF_TIMESTAMPING_RAW_HARDWARE
;
2240 info
->phc_index
= ptp_clock_index(fep
->ptp_clock
);
2242 info
->phc_index
= -1;
2244 info
->tx_types
= (1 << HWTSTAMP_TX_OFF
) |
2245 (1 << HWTSTAMP_TX_ON
);
2247 info
->rx_filters
= (1 << HWTSTAMP_FILTER_NONE
) |
2248 (1 << HWTSTAMP_FILTER_ALL
);
2251 return ethtool_op_get_ts_info(ndev
, info
);
2255 #if !defined(CONFIG_M5272)
2257 static void fec_enet_get_pauseparam(struct net_device
*ndev
,
2258 struct ethtool_pauseparam
*pause
)
2260 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2262 pause
->autoneg
= (fep
->pause_flag
& FEC_PAUSE_FLAG_AUTONEG
) != 0;
2263 pause
->tx_pause
= (fep
->pause_flag
& FEC_PAUSE_FLAG_ENABLE
) != 0;
2264 pause
->rx_pause
= pause
->tx_pause
;
2267 static int fec_enet_set_pauseparam(struct net_device
*ndev
,
2268 struct ethtool_pauseparam
*pause
)
2270 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2275 if (pause
->tx_pause
!= pause
->rx_pause
) {
2277 "hardware only support enable/disable both tx and rx");
2281 fep
->pause_flag
= 0;
2283 /* tx pause must be same as rx pause */
2284 fep
->pause_flag
|= pause
->rx_pause
? FEC_PAUSE_FLAG_ENABLE
: 0;
2285 fep
->pause_flag
|= pause
->autoneg
? FEC_PAUSE_FLAG_AUTONEG
: 0;
2287 if (pause
->rx_pause
|| pause
->autoneg
) {
2288 fep
->phy_dev
->supported
|= ADVERTISED_Pause
;
2289 fep
->phy_dev
->advertising
|= ADVERTISED_Pause
;
2291 fep
->phy_dev
->supported
&= ~ADVERTISED_Pause
;
2292 fep
->phy_dev
->advertising
&= ~ADVERTISED_Pause
;
2295 if (pause
->autoneg
) {
2296 if (netif_running(ndev
))
2298 phy_start_aneg(fep
->phy_dev
);
2300 if (netif_running(ndev
)) {
2301 napi_disable(&fep
->napi
);
2302 netif_tx_lock_bh(ndev
);
2304 netif_wake_queue(ndev
);
2305 netif_tx_unlock_bh(ndev
);
2306 napi_enable(&fep
->napi
);
2312 static const struct fec_stat
{
2313 char name
[ETH_GSTRING_LEN
];
2317 { "tx_dropped", RMON_T_DROP
},
2318 { "tx_packets", RMON_T_PACKETS
},
2319 { "tx_broadcast", RMON_T_BC_PKT
},
2320 { "tx_multicast", RMON_T_MC_PKT
},
2321 { "tx_crc_errors", RMON_T_CRC_ALIGN
},
2322 { "tx_undersize", RMON_T_UNDERSIZE
},
2323 { "tx_oversize", RMON_T_OVERSIZE
},
2324 { "tx_fragment", RMON_T_FRAG
},
2325 { "tx_jabber", RMON_T_JAB
},
2326 { "tx_collision", RMON_T_COL
},
2327 { "tx_64byte", RMON_T_P64
},
2328 { "tx_65to127byte", RMON_T_P65TO127
},
2329 { "tx_128to255byte", RMON_T_P128TO255
},
2330 { "tx_256to511byte", RMON_T_P256TO511
},
2331 { "tx_512to1023byte", RMON_T_P512TO1023
},
2332 { "tx_1024to2047byte", RMON_T_P1024TO2047
},
2333 { "tx_GTE2048byte", RMON_T_P_GTE2048
},
2334 { "tx_octets", RMON_T_OCTETS
},
2337 { "IEEE_tx_drop", IEEE_T_DROP
},
2338 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK
},
2339 { "IEEE_tx_1col", IEEE_T_1COL
},
2340 { "IEEE_tx_mcol", IEEE_T_MCOL
},
2341 { "IEEE_tx_def", IEEE_T_DEF
},
2342 { "IEEE_tx_lcol", IEEE_T_LCOL
},
2343 { "IEEE_tx_excol", IEEE_T_EXCOL
},
2344 { "IEEE_tx_macerr", IEEE_T_MACERR
},
2345 { "IEEE_tx_cserr", IEEE_T_CSERR
},
2346 { "IEEE_tx_sqe", IEEE_T_SQE
},
2347 { "IEEE_tx_fdxfc", IEEE_T_FDXFC
},
2348 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK
},
2351 { "rx_packets", RMON_R_PACKETS
},
2352 { "rx_broadcast", RMON_R_BC_PKT
},
2353 { "rx_multicast", RMON_R_MC_PKT
},
2354 { "rx_crc_errors", RMON_R_CRC_ALIGN
},
2355 { "rx_undersize", RMON_R_UNDERSIZE
},
2356 { "rx_oversize", RMON_R_OVERSIZE
},
2357 { "rx_fragment", RMON_R_FRAG
},
2358 { "rx_jabber", RMON_R_JAB
},
2359 { "rx_64byte", RMON_R_P64
},
2360 { "rx_65to127byte", RMON_R_P65TO127
},
2361 { "rx_128to255byte", RMON_R_P128TO255
},
2362 { "rx_256to511byte", RMON_R_P256TO511
},
2363 { "rx_512to1023byte", RMON_R_P512TO1023
},
2364 { "rx_1024to2047byte", RMON_R_P1024TO2047
},
2365 { "rx_GTE2048byte", RMON_R_P_GTE2048
},
2366 { "rx_octets", RMON_R_OCTETS
},
2369 { "IEEE_rx_drop", IEEE_R_DROP
},
2370 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK
},
2371 { "IEEE_rx_crc", IEEE_R_CRC
},
2372 { "IEEE_rx_align", IEEE_R_ALIGN
},
2373 { "IEEE_rx_macerr", IEEE_R_MACERR
},
2374 { "IEEE_rx_fdxfc", IEEE_R_FDXFC
},
2375 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK
},
2378 static void fec_enet_get_ethtool_stats(struct net_device
*dev
,
2379 struct ethtool_stats
*stats
, u64
*data
)
2381 struct fec_enet_private
*fep
= netdev_priv(dev
);
2384 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2385 data
[i
] = readl(fep
->hwp
+ fec_stats
[i
].offset
);
2388 static void fec_enet_get_strings(struct net_device
*netdev
,
2389 u32 stringset
, u8
*data
)
2392 switch (stringset
) {
2394 for (i
= 0; i
< ARRAY_SIZE(fec_stats
); i
++)
2395 memcpy(data
+ i
* ETH_GSTRING_LEN
,
2396 fec_stats
[i
].name
, ETH_GSTRING_LEN
);
2401 static int fec_enet_get_sset_count(struct net_device
*dev
, int sset
)
2405 return ARRAY_SIZE(fec_stats
);
2410 #endif /* !defined(CONFIG_M5272) */
2412 static int fec_enet_nway_reset(struct net_device
*dev
)
2414 struct fec_enet_private
*fep
= netdev_priv(dev
);
2415 struct phy_device
*phydev
= fep
->phy_dev
;
2420 return genphy_restart_aneg(phydev
);
2423 /* ITR clock source is enet system clock (clk_ahb).
2424 * TCTT unit is cycle_ns * 64 cycle
2425 * So, the ICTT value = X us / (cycle_ns * 64)
2427 static int fec_enet_us_to_itr_clock(struct net_device
*ndev
, int us
)
2429 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2431 return us
* (fep
->itr_clk_rate
/ 64000) / 1000;
2434 /* Set threshold for interrupt coalescing */
2435 static void fec_enet_itr_coal_set(struct net_device
*ndev
)
2437 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2440 if (!(fep
->quirks
& FEC_QUIRK_HAS_AVB
))
2443 /* Must be greater than zero to avoid unpredictable behavior */
2444 if (!fep
->rx_time_itr
|| !fep
->rx_pkts_itr
||
2445 !fep
->tx_time_itr
|| !fep
->tx_pkts_itr
)
2448 /* Select enet system clock as Interrupt Coalescing
2449 * timer Clock Source
2451 rx_itr
= FEC_ITR_CLK_SEL
;
2452 tx_itr
= FEC_ITR_CLK_SEL
;
2454 /* set ICFT and ICTT */
2455 rx_itr
|= FEC_ITR_ICFT(fep
->rx_pkts_itr
);
2456 rx_itr
|= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev
, fep
->rx_time_itr
));
2457 tx_itr
|= FEC_ITR_ICFT(fep
->tx_pkts_itr
);
2458 tx_itr
|= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev
, fep
->tx_time_itr
));
2460 rx_itr
|= FEC_ITR_EN
;
2461 tx_itr
|= FEC_ITR_EN
;
2463 writel(tx_itr
, fep
->hwp
+ FEC_TXIC0
);
2464 writel(rx_itr
, fep
->hwp
+ FEC_RXIC0
);
2465 writel(tx_itr
, fep
->hwp
+ FEC_TXIC1
);
2466 writel(rx_itr
, fep
->hwp
+ FEC_RXIC1
);
2467 writel(tx_itr
, fep
->hwp
+ FEC_TXIC2
);
2468 writel(rx_itr
, fep
->hwp
+ FEC_RXIC2
);
2472 fec_enet_get_coalesce(struct net_device
*ndev
, struct ethtool_coalesce
*ec
)
2474 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2476 if (!(fep
->quirks
& FEC_QUIRK_HAS_AVB
))
2479 ec
->rx_coalesce_usecs
= fep
->rx_time_itr
;
2480 ec
->rx_max_coalesced_frames
= fep
->rx_pkts_itr
;
2482 ec
->tx_coalesce_usecs
= fep
->tx_time_itr
;
2483 ec
->tx_max_coalesced_frames
= fep
->tx_pkts_itr
;
2489 fec_enet_set_coalesce(struct net_device
*ndev
, struct ethtool_coalesce
*ec
)
2491 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2494 if (!(fep
->quirks
& FEC_QUIRK_HAS_AVB
))
2497 if (ec
->rx_max_coalesced_frames
> 255) {
2498 pr_err("Rx coalesced frames exceed hardware limiation");
2502 if (ec
->tx_max_coalesced_frames
> 255) {
2503 pr_err("Tx coalesced frame exceed hardware limiation");
2507 cycle
= fec_enet_us_to_itr_clock(ndev
, fep
->rx_time_itr
);
2508 if (cycle
> 0xFFFF) {
2509 pr_err("Rx coalesed usec exceeed hardware limiation");
2513 cycle
= fec_enet_us_to_itr_clock(ndev
, fep
->tx_time_itr
);
2514 if (cycle
> 0xFFFF) {
2515 pr_err("Rx coalesed usec exceeed hardware limiation");
2519 fep
->rx_time_itr
= ec
->rx_coalesce_usecs
;
2520 fep
->rx_pkts_itr
= ec
->rx_max_coalesced_frames
;
2522 fep
->tx_time_itr
= ec
->tx_coalesce_usecs
;
2523 fep
->tx_pkts_itr
= ec
->tx_max_coalesced_frames
;
2525 fec_enet_itr_coal_set(ndev
);
2530 static void fec_enet_itr_coal_init(struct net_device
*ndev
)
2532 struct ethtool_coalesce ec
;
2534 ec
.rx_coalesce_usecs
= FEC_ITR_ICTT_DEFAULT
;
2535 ec
.rx_max_coalesced_frames
= FEC_ITR_ICFT_DEFAULT
;
2537 ec
.tx_coalesce_usecs
= FEC_ITR_ICTT_DEFAULT
;
2538 ec
.tx_max_coalesced_frames
= FEC_ITR_ICFT_DEFAULT
;
2540 fec_enet_set_coalesce(ndev
, &ec
);
2543 static int fec_enet_get_tunable(struct net_device
*netdev
,
2544 const struct ethtool_tunable
*tuna
,
2547 struct fec_enet_private
*fep
= netdev_priv(netdev
);
2551 case ETHTOOL_RX_COPYBREAK
:
2552 *(u32
*)data
= fep
->rx_copybreak
;
2562 static int fec_enet_set_tunable(struct net_device
*netdev
,
2563 const struct ethtool_tunable
*tuna
,
2566 struct fec_enet_private
*fep
= netdev_priv(netdev
);
2570 case ETHTOOL_RX_COPYBREAK
:
2571 fep
->rx_copybreak
= *(u32
*)data
;
2582 fec_enet_get_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2584 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2586 if (fep
->wol_flag
& FEC_WOL_HAS_MAGIC_PACKET
) {
2587 wol
->supported
= WAKE_MAGIC
;
2588 wol
->wolopts
= fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
? WAKE_MAGIC
: 0;
2590 wol
->supported
= wol
->wolopts
= 0;
2595 fec_enet_set_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2597 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2599 if (!(fep
->wol_flag
& FEC_WOL_HAS_MAGIC_PACKET
))
2602 if (wol
->wolopts
& ~WAKE_MAGIC
)
2605 device_set_wakeup_enable(&ndev
->dev
, wol
->wolopts
& WAKE_MAGIC
);
2606 if (device_may_wakeup(&ndev
->dev
)) {
2607 fep
->wol_flag
|= FEC_WOL_FLAG_ENABLE
;
2608 if (fep
->irq
[0] > 0)
2609 enable_irq_wake(fep
->irq
[0]);
2611 fep
->wol_flag
&= (~FEC_WOL_FLAG_ENABLE
);
2612 if (fep
->irq
[0] > 0)
2613 disable_irq_wake(fep
->irq
[0]);
2619 static const struct ethtool_ops fec_enet_ethtool_ops
= {
2620 .get_settings
= fec_enet_get_settings
,
2621 .set_settings
= fec_enet_set_settings
,
2622 .get_drvinfo
= fec_enet_get_drvinfo
,
2623 .get_regs_len
= fec_enet_get_regs_len
,
2624 .get_regs
= fec_enet_get_regs
,
2625 .nway_reset
= fec_enet_nway_reset
,
2626 .get_link
= ethtool_op_get_link
,
2627 .get_coalesce
= fec_enet_get_coalesce
,
2628 .set_coalesce
= fec_enet_set_coalesce
,
2629 #ifndef CONFIG_M5272
2630 .get_pauseparam
= fec_enet_get_pauseparam
,
2631 .set_pauseparam
= fec_enet_set_pauseparam
,
2632 .get_strings
= fec_enet_get_strings
,
2633 .get_ethtool_stats
= fec_enet_get_ethtool_stats
,
2634 .get_sset_count
= fec_enet_get_sset_count
,
2636 .get_ts_info
= fec_enet_get_ts_info
,
2637 .get_tunable
= fec_enet_get_tunable
,
2638 .set_tunable
= fec_enet_set_tunable
,
2639 .get_wol
= fec_enet_get_wol
,
2640 .set_wol
= fec_enet_set_wol
,
2643 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
2645 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2646 struct phy_device
*phydev
= fep
->phy_dev
;
2648 if (!netif_running(ndev
))
2654 if (fep
->bufdesc_ex
) {
2655 if (cmd
== SIOCSHWTSTAMP
)
2656 return fec_ptp_set(ndev
, rq
);
2657 if (cmd
== SIOCGHWTSTAMP
)
2658 return fec_ptp_get(ndev
, rq
);
2661 return phy_mii_ioctl(phydev
, rq
, cmd
);
2664 static void fec_enet_free_buffers(struct net_device
*ndev
)
2666 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2668 struct sk_buff
*skb
;
2669 struct bufdesc
*bdp
;
2670 struct fec_enet_priv_tx_q
*txq
;
2671 struct fec_enet_priv_rx_q
*rxq
;
2674 for (q
= 0; q
< fep
->num_rx_queues
; q
++) {
2675 rxq
= fep
->rx_queue
[q
];
2676 bdp
= rxq
->rx_bd_base
;
2677 for (i
= 0; i
< rxq
->rx_ring_size
; i
++) {
2678 skb
= rxq
->rx_skbuff
[i
];
2679 rxq
->rx_skbuff
[i
] = NULL
;
2681 dma_unmap_single(&fep
->pdev
->dev
,
2683 FEC_ENET_RX_FRSIZE
- fep
->rx_align
,
2687 bdp
= fec_enet_get_nextdesc(bdp
, fep
, q
);
2691 for (q
= 0; q
< fep
->num_tx_queues
; q
++) {
2692 txq
= fep
->tx_queue
[q
];
2693 bdp
= txq
->tx_bd_base
;
2694 for (i
= 0; i
< txq
->tx_ring_size
; i
++) {
2695 kfree(txq
->tx_bounce
[i
]);
2696 txq
->tx_bounce
[i
] = NULL
;
2697 skb
= txq
->tx_skbuff
[i
];
2698 txq
->tx_skbuff
[i
] = NULL
;
2704 static void fec_enet_free_queue(struct net_device
*ndev
)
2706 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2708 struct fec_enet_priv_tx_q
*txq
;
2710 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2711 if (fep
->tx_queue
[i
] && fep
->tx_queue
[i
]->tso_hdrs
) {
2712 txq
= fep
->tx_queue
[i
];
2713 dma_free_coherent(NULL
,
2714 txq
->tx_ring_size
* TSO_HEADER_SIZE
,
2719 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
2720 kfree(fep
->rx_queue
[i
]);
2721 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2722 kfree(fep
->tx_queue
[i
]);
2725 static int fec_enet_alloc_queue(struct net_device
*ndev
)
2727 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2730 struct fec_enet_priv_tx_q
*txq
;
2732 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
2733 txq
= kzalloc(sizeof(*txq
), GFP_KERNEL
);
2739 fep
->tx_queue
[i
] = txq
;
2740 txq
->tx_ring_size
= TX_RING_SIZE
;
2741 fep
->total_tx_ring_size
+= fep
->tx_queue
[i
]->tx_ring_size
;
2743 txq
->tx_stop_threshold
= FEC_MAX_SKB_DESCS
;
2744 txq
->tx_wake_threshold
=
2745 (txq
->tx_ring_size
- txq
->tx_stop_threshold
) / 2;
2747 txq
->tso_hdrs
= dma_alloc_coherent(NULL
,
2748 txq
->tx_ring_size
* TSO_HEADER_SIZE
,
2751 if (!txq
->tso_hdrs
) {
2757 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
2758 fep
->rx_queue
[i
] = kzalloc(sizeof(*fep
->rx_queue
[i
]),
2760 if (!fep
->rx_queue
[i
]) {
2765 fep
->rx_queue
[i
]->rx_ring_size
= RX_RING_SIZE
;
2766 fep
->total_rx_ring_size
+= fep
->rx_queue
[i
]->rx_ring_size
;
2771 fec_enet_free_queue(ndev
);
2776 fec_enet_alloc_rxq_buffers(struct net_device
*ndev
, unsigned int queue
)
2778 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2780 struct sk_buff
*skb
;
2781 struct bufdesc
*bdp
;
2782 struct fec_enet_priv_rx_q
*rxq
;
2784 rxq
= fep
->rx_queue
[queue
];
2785 bdp
= rxq
->rx_bd_base
;
2786 for (i
= 0; i
< rxq
->rx_ring_size
; i
++) {
2787 skb
= netdev_alloc_skb(ndev
, FEC_ENET_RX_FRSIZE
);
2791 if (fec_enet_new_rxbdp(ndev
, bdp
, skb
)) {
2796 rxq
->rx_skbuff
[i
] = skb
;
2797 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2799 if (fep
->bufdesc_ex
) {
2800 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
2801 ebdp
->cbd_esc
= BD_ENET_RX_INT
;
2804 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue
);
2807 /* Set the last buffer to wrap. */
2808 bdp
= fec_enet_get_prevdesc(bdp
, fep
, queue
);
2809 bdp
->cbd_sc
|= BD_SC_WRAP
;
2813 fec_enet_free_buffers(ndev
);
2818 fec_enet_alloc_txq_buffers(struct net_device
*ndev
, unsigned int queue
)
2820 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2822 struct bufdesc
*bdp
;
2823 struct fec_enet_priv_tx_q
*txq
;
2825 txq
= fep
->tx_queue
[queue
];
2826 bdp
= txq
->tx_bd_base
;
2827 for (i
= 0; i
< txq
->tx_ring_size
; i
++) {
2828 txq
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
2829 if (!txq
->tx_bounce
[i
])
2833 bdp
->cbd_bufaddr
= 0;
2835 if (fep
->bufdesc_ex
) {
2836 struct bufdesc_ex
*ebdp
= (struct bufdesc_ex
*)bdp
;
2837 ebdp
->cbd_esc
= BD_ENET_TX_INT
;
2840 bdp
= fec_enet_get_nextdesc(bdp
, fep
, queue
);
2843 /* Set the last buffer to wrap. */
2844 bdp
= fec_enet_get_prevdesc(bdp
, fep
, queue
);
2845 bdp
->cbd_sc
|= BD_SC_WRAP
;
2850 fec_enet_free_buffers(ndev
);
2854 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
2856 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2859 for (i
= 0; i
< fep
->num_rx_queues
; i
++)
2860 if (fec_enet_alloc_rxq_buffers(ndev
, i
))
2863 for (i
= 0; i
< fep
->num_tx_queues
; i
++)
2864 if (fec_enet_alloc_txq_buffers(ndev
, i
))
2870 fec_enet_open(struct net_device
*ndev
)
2872 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2875 ret
= pm_runtime_get_sync(&fep
->pdev
->dev
);
2879 pinctrl_pm_select_default_state(&fep
->pdev
->dev
);
2880 ret
= fec_enet_clk_enable(ndev
, true);
2884 /* I should reset the ring buffers here, but I don't yet know
2885 * a simple way to do that.
2888 ret
= fec_enet_alloc_buffers(ndev
);
2890 goto err_enet_alloc
;
2892 /* Init MAC prior to mii bus probe */
2895 /* Probe and connect to PHY when open the interface */
2896 ret
= fec_enet_mii_probe(ndev
);
2898 goto err_enet_mii_probe
;
2900 napi_enable(&fep
->napi
);
2901 phy_start(fep
->phy_dev
);
2902 netif_tx_start_all_queues(ndev
);
2904 device_set_wakeup_enable(&ndev
->dev
, fep
->wol_flag
&
2905 FEC_WOL_FLAG_ENABLE
);
2910 fec_enet_free_buffers(ndev
);
2912 fec_enet_clk_enable(ndev
, false);
2914 pm_runtime_mark_last_busy(&fep
->pdev
->dev
);
2915 pm_runtime_put_autosuspend(&fep
->pdev
->dev
);
2916 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
2921 fec_enet_close(struct net_device
*ndev
)
2923 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2925 phy_stop(fep
->phy_dev
);
2927 if (netif_device_present(ndev
)) {
2928 napi_disable(&fep
->napi
);
2929 netif_tx_disable(ndev
);
2933 phy_disconnect(fep
->phy_dev
);
2934 fep
->phy_dev
= NULL
;
2936 fec_enet_clk_enable(ndev
, false);
2937 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
2938 pm_runtime_mark_last_busy(&fep
->pdev
->dev
);
2939 pm_runtime_put_autosuspend(&fep
->pdev
->dev
);
2941 fec_enet_free_buffers(ndev
);
2946 /* Set or clear the multicast filter for this adaptor.
2947 * Skeleton taken from sunlance driver.
2948 * The CPM Ethernet implementation allows Multicast as well as individual
2949 * MAC address filtering. Some of the drivers check to make sure it is
2950 * a group multicast address, and discard those that are not. I guess I
2951 * will do the same for now, but just remove the test if you want
2952 * individual filtering as well (do the upper net layers want or support
2953 * this kind of feature?).
2956 #define HASH_BITS 6 /* #bits in hash */
2957 #define CRC32_POLY 0xEDB88320
2959 static void set_multicast_list(struct net_device
*ndev
)
2961 struct fec_enet_private
*fep
= netdev_priv(ndev
);
2962 struct netdev_hw_addr
*ha
;
2963 unsigned int i
, bit
, data
, crc
, tmp
;
2966 if (ndev
->flags
& IFF_PROMISC
) {
2967 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
2969 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
2973 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
2975 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
2977 if (ndev
->flags
& IFF_ALLMULTI
) {
2978 /* Catch all multicast addresses, so set the
2981 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2982 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2987 /* Clear filter and add the addresses in hash register
2989 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
2990 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
2992 netdev_for_each_mc_addr(ha
, ndev
) {
2993 /* calculate crc32 value of mac address */
2996 for (i
= 0; i
< ndev
->addr_len
; i
++) {
2998 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
3000 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
3004 /* only upper 6 bits (HASH_BITS) are used
3005 * which point to specific bit in he hash registers
3007 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
3010 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
3011 tmp
|= 1 << (hash
- 32);
3012 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
3014 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
3016 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
3021 /* Set a MAC change in hardware. */
3023 fec_set_mac_address(struct net_device
*ndev
, void *p
)
3025 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3026 struct sockaddr
*addr
= p
;
3029 if (!is_valid_ether_addr(addr
->sa_data
))
3030 return -EADDRNOTAVAIL
;
3031 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
3034 /* Add netif status check here to avoid system hang in below case:
3035 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3036 * After ethx down, fec all clocks are gated off and then register
3037 * access causes system hang.
3039 if (!netif_running(ndev
))
3042 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
3043 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
3044 fep
->hwp
+ FEC_ADDR_LOW
);
3045 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
3046 fep
->hwp
+ FEC_ADDR_HIGH
);
3050 #ifdef CONFIG_NET_POLL_CONTROLLER
3052 * fec_poll_controller - FEC Poll controller function
3053 * @dev: The FEC network adapter
3055 * Polled functionality used by netconsole and others in non interrupt mode
3058 static void fec_poll_controller(struct net_device
*dev
)
3061 struct fec_enet_private
*fep
= netdev_priv(dev
);
3063 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
3064 if (fep
->irq
[i
] > 0) {
3065 disable_irq(fep
->irq
[i
]);
3066 fec_enet_interrupt(fep
->irq
[i
], dev
);
3067 enable_irq(fep
->irq
[i
]);
3073 static inline void fec_enet_set_netdev_features(struct net_device
*netdev
,
3074 netdev_features_t features
)
3076 struct fec_enet_private
*fep
= netdev_priv(netdev
);
3077 netdev_features_t changed
= features
^ netdev
->features
;
3079 netdev
->features
= features
;
3081 /* Receive checksum has been changed */
3082 if (changed
& NETIF_F_RXCSUM
) {
3083 if (features
& NETIF_F_RXCSUM
)
3084 fep
->csum_flags
|= FLAG_RX_CSUM_ENABLED
;
3086 fep
->csum_flags
&= ~FLAG_RX_CSUM_ENABLED
;
3090 static int fec_set_features(struct net_device
*netdev
,
3091 netdev_features_t features
)
3093 struct fec_enet_private
*fep
= netdev_priv(netdev
);
3094 netdev_features_t changed
= features
^ netdev
->features
;
3096 if (netif_running(netdev
) && changed
& NETIF_F_RXCSUM
) {
3097 napi_disable(&fep
->napi
);
3098 netif_tx_lock_bh(netdev
);
3100 fec_enet_set_netdev_features(netdev
, features
);
3101 fec_restart(netdev
);
3102 netif_tx_wake_all_queues(netdev
);
3103 netif_tx_unlock_bh(netdev
);
3104 napi_enable(&fep
->napi
);
3106 fec_enet_set_netdev_features(netdev
, features
);
3112 static const struct net_device_ops fec_netdev_ops
= {
3113 .ndo_open
= fec_enet_open
,
3114 .ndo_stop
= fec_enet_close
,
3115 .ndo_start_xmit
= fec_enet_start_xmit
,
3116 .ndo_set_rx_mode
= set_multicast_list
,
3117 .ndo_change_mtu
= eth_change_mtu
,
3118 .ndo_validate_addr
= eth_validate_addr
,
3119 .ndo_tx_timeout
= fec_timeout
,
3120 .ndo_set_mac_address
= fec_set_mac_address
,
3121 .ndo_do_ioctl
= fec_enet_ioctl
,
3122 #ifdef CONFIG_NET_POLL_CONTROLLER
3123 .ndo_poll_controller
= fec_poll_controller
,
3125 .ndo_set_features
= fec_set_features
,
3129 * XXX: We need to clean up on failure exits here.
3132 static int fec_enet_init(struct net_device
*ndev
)
3134 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3135 struct fec_enet_priv_tx_q
*txq
;
3136 struct fec_enet_priv_rx_q
*rxq
;
3137 struct bufdesc
*cbd_base
;
3142 #if defined(CONFIG_ARM)
3143 fep
->rx_align
= 0xf;
3144 fep
->tx_align
= 0xf;
3146 fep
->rx_align
= 0x3;
3147 fep
->tx_align
= 0x3;
3150 fec_enet_alloc_queue(ndev
);
3152 if (fep
->bufdesc_ex
)
3153 fep
->bufdesc_size
= sizeof(struct bufdesc_ex
);
3155 fep
->bufdesc_size
= sizeof(struct bufdesc
);
3156 bd_size
= (fep
->total_tx_ring_size
+ fep
->total_rx_ring_size
) *
3159 /* Allocate memory for buffer descriptors. */
3160 cbd_base
= dmam_alloc_coherent(&fep
->pdev
->dev
, bd_size
, &bd_dma
,
3166 memset(cbd_base
, 0, bd_size
);
3168 /* Get the Ethernet address */
3170 /* make sure MAC we just acquired is programmed into the hw */
3171 fec_set_mac_address(ndev
, NULL
);
3173 /* Set receive and transmit descriptor base. */
3174 for (i
= 0; i
< fep
->num_rx_queues
; i
++) {
3175 rxq
= fep
->rx_queue
[i
];
3177 rxq
->rx_bd_base
= (struct bufdesc
*)cbd_base
;
3178 rxq
->bd_dma
= bd_dma
;
3179 if (fep
->bufdesc_ex
) {
3180 bd_dma
+= sizeof(struct bufdesc_ex
) * rxq
->rx_ring_size
;
3181 cbd_base
= (struct bufdesc
*)
3182 (((struct bufdesc_ex
*)cbd_base
) + rxq
->rx_ring_size
);
3184 bd_dma
+= sizeof(struct bufdesc
) * rxq
->rx_ring_size
;
3185 cbd_base
+= rxq
->rx_ring_size
;
3189 for (i
= 0; i
< fep
->num_tx_queues
; i
++) {
3190 txq
= fep
->tx_queue
[i
];
3192 txq
->tx_bd_base
= (struct bufdesc
*)cbd_base
;
3193 txq
->bd_dma
= bd_dma
;
3194 if (fep
->bufdesc_ex
) {
3195 bd_dma
+= sizeof(struct bufdesc_ex
) * txq
->tx_ring_size
;
3196 cbd_base
= (struct bufdesc
*)
3197 (((struct bufdesc_ex
*)cbd_base
) + txq
->tx_ring_size
);
3199 bd_dma
+= sizeof(struct bufdesc
) * txq
->tx_ring_size
;
3200 cbd_base
+= txq
->tx_ring_size
;
3205 /* The FEC Ethernet specific entries in the device structure */
3206 ndev
->watchdog_timeo
= TX_TIMEOUT
;
3207 ndev
->netdev_ops
= &fec_netdev_ops
;
3208 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
3210 writel(FEC_RX_DISABLED_IMASK
, fep
->hwp
+ FEC_IMASK
);
3211 netif_napi_add(ndev
, &fep
->napi
, fec_enet_rx_napi
, NAPI_POLL_WEIGHT
);
3213 if (fep
->quirks
& FEC_QUIRK_HAS_VLAN
)
3214 /* enable hw VLAN support */
3215 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
;
3217 if (fep
->quirks
& FEC_QUIRK_HAS_CSUM
) {
3218 ndev
->gso_max_segs
= FEC_MAX_TSO_SEGS
;
3220 /* enable hw accelerator */
3221 ndev
->features
|= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
3222 | NETIF_F_RXCSUM
| NETIF_F_SG
| NETIF_F_TSO
);
3223 fep
->csum_flags
|= FLAG_RX_CSUM_ENABLED
;
3226 if (fep
->quirks
& FEC_QUIRK_HAS_AVB
) {
3228 fep
->rx_align
= 0x3f;
3231 ndev
->hw_features
= ndev
->features
;
3239 static void fec_reset_phy(struct platform_device
*pdev
)
3243 struct device_node
*np
= pdev
->dev
.of_node
;
3248 of_property_read_u32(np
, "phy-reset-duration", &msec
);
3249 /* A sane reset duration should not be longer than 1s */
3253 phy_reset
= of_get_named_gpio(np
, "phy-reset-gpios", 0);
3254 if (!gpio_is_valid(phy_reset
))
3257 err
= devm_gpio_request_one(&pdev
->dev
, phy_reset
,
3258 GPIOF_OUT_INIT_LOW
, "phy-reset");
3260 dev_err(&pdev
->dev
, "failed to get phy-reset-gpios: %d\n", err
);
3264 gpio_set_value_cansleep(phy_reset
, 1);
3266 #else /* CONFIG_OF */
3267 static void fec_reset_phy(struct platform_device
*pdev
)
3270 * In case of platform probe, the reset has been done
3274 #endif /* CONFIG_OF */
3277 fec_enet_get_queue_num(struct platform_device
*pdev
, int *num_tx
, int *num_rx
)
3279 struct device_node
*np
= pdev
->dev
.of_node
;
3282 *num_tx
= *num_rx
= 1;
3284 if (!np
|| !of_device_is_available(np
))
3287 /* parse the num of tx and rx queues */
3288 err
= of_property_read_u32(np
, "fsl,num-tx-queues", num_tx
);
3292 err
= of_property_read_u32(np
, "fsl,num-rx-queues", num_rx
);
3296 if (*num_tx
< 1 || *num_tx
> FEC_ENET_MAX_TX_QS
) {
3297 dev_warn(&pdev
->dev
, "Invalid num_tx(=%d), fall back to 1\n",
3303 if (*num_rx
< 1 || *num_rx
> FEC_ENET_MAX_RX_QS
) {
3304 dev_warn(&pdev
->dev
, "Invalid num_rx(=%d), fall back to 1\n",
3313 fec_probe(struct platform_device
*pdev
)
3315 struct fec_enet_private
*fep
;
3316 struct fec_platform_data
*pdata
;
3317 struct net_device
*ndev
;
3318 int i
, irq
, ret
= 0;
3320 const struct of_device_id
*of_id
;
3322 struct device_node
*np
= pdev
->dev
.of_node
, *phy_node
;
3326 fec_enet_get_queue_num(pdev
, &num_tx_qs
, &num_rx_qs
);
3328 /* Init network device */
3329 ndev
= alloc_etherdev_mqs(sizeof(struct fec_enet_private
),
3330 num_tx_qs
, num_rx_qs
);
3334 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
3336 /* setup board info structure */
3337 fep
= netdev_priv(ndev
);
3339 of_id
= of_match_device(fec_dt_ids
, &pdev
->dev
);
3341 pdev
->id_entry
= of_id
->data
;
3342 fep
->quirks
= pdev
->id_entry
->driver_data
;
3345 fep
->num_rx_queues
= num_rx_qs
;
3346 fep
->num_tx_queues
= num_tx_qs
;
3348 #if !defined(CONFIG_M5272)
3349 /* default enable pause frame auto negotiation */
3350 if (fep
->quirks
& FEC_QUIRK_HAS_GBIT
)
3351 fep
->pause_flag
|= FEC_PAUSE_FLAG_AUTONEG
;
3354 /* Select default pin state */
3355 pinctrl_pm_select_default_state(&pdev
->dev
);
3357 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3358 fep
->hwp
= devm_ioremap_resource(&pdev
->dev
, r
);
3359 if (IS_ERR(fep
->hwp
)) {
3360 ret
= PTR_ERR(fep
->hwp
);
3361 goto failed_ioremap
;
3365 fep
->dev_id
= dev_id
++;
3367 platform_set_drvdata(pdev
, ndev
);
3369 if (of_get_property(np
, "fsl,magic-packet", NULL
))
3370 fep
->wol_flag
|= FEC_WOL_HAS_MAGIC_PACKET
;
3372 phy_node
= of_parse_phandle(np
, "phy-handle", 0);
3373 if (!phy_node
&& of_phy_is_fixed_link(np
)) {
3374 ret
= of_phy_register_fixed_link(np
);
3377 "broken fixed-link specification\n");
3380 phy_node
= of_node_get(np
);
3382 fep
->phy_node
= phy_node
;
3384 ret
= of_get_phy_mode(pdev
->dev
.of_node
);
3386 pdata
= dev_get_platdata(&pdev
->dev
);
3388 fep
->phy_interface
= pdata
->phy
;
3390 fep
->phy_interface
= PHY_INTERFACE_MODE_MII
;
3392 fep
->phy_interface
= ret
;
3395 fep
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
3396 if (IS_ERR(fep
->clk_ipg
)) {
3397 ret
= PTR_ERR(fep
->clk_ipg
);
3401 fep
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
3402 if (IS_ERR(fep
->clk_ahb
)) {
3403 ret
= PTR_ERR(fep
->clk_ahb
);
3407 fep
->itr_clk_rate
= clk_get_rate(fep
->clk_ahb
);
3409 /* enet_out is optional, depends on board */
3410 fep
->clk_enet_out
= devm_clk_get(&pdev
->dev
, "enet_out");
3411 if (IS_ERR(fep
->clk_enet_out
))
3412 fep
->clk_enet_out
= NULL
;
3414 fep
->ptp_clk_on
= false;
3415 mutex_init(&fep
->ptp_clk_mutex
);
3417 /* clk_ref is optional, depends on board */
3418 fep
->clk_ref
= devm_clk_get(&pdev
->dev
, "enet_clk_ref");
3419 if (IS_ERR(fep
->clk_ref
))
3420 fep
->clk_ref
= NULL
;
3422 fep
->bufdesc_ex
= fep
->quirks
& FEC_QUIRK_HAS_BUFDESC_EX
;
3423 fep
->clk_ptp
= devm_clk_get(&pdev
->dev
, "ptp");
3424 if (IS_ERR(fep
->clk_ptp
)) {
3425 fep
->clk_ptp
= NULL
;
3426 fep
->bufdesc_ex
= false;
3429 ret
= fec_enet_clk_enable(ndev
, true);
3433 ret
= clk_prepare_enable(fep
->clk_ipg
);
3435 goto failed_clk_ipg
;
3437 fep
->reg_phy
= devm_regulator_get(&pdev
->dev
, "phy");
3438 if (!IS_ERR(fep
->reg_phy
)) {
3439 ret
= regulator_enable(fep
->reg_phy
);
3442 "Failed to enable phy regulator: %d\n", ret
);
3443 goto failed_regulator
;
3446 fep
->reg_phy
= NULL
;
3449 pm_runtime_set_autosuspend_delay(&pdev
->dev
, FEC_MDIO_PM_TIMEOUT
);
3450 pm_runtime_use_autosuspend(&pdev
->dev
);
3451 pm_runtime_get_noresume(&pdev
->dev
);
3452 pm_runtime_set_active(&pdev
->dev
);
3453 pm_runtime_enable(&pdev
->dev
);
3455 fec_reset_phy(pdev
);
3457 if (fep
->bufdesc_ex
)
3460 ret
= fec_enet_init(ndev
);
3464 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
3465 irq
= platform_get_irq(pdev
, i
);
3472 ret
= devm_request_irq(&pdev
->dev
, irq
, fec_enet_interrupt
,
3473 0, pdev
->name
, ndev
);
3480 init_completion(&fep
->mdio_done
);
3481 ret
= fec_enet_mii_init(pdev
);
3483 goto failed_mii_init
;
3485 /* Carrier starts down, phylib will bring it up */
3486 netif_carrier_off(ndev
);
3487 fec_enet_clk_enable(ndev
, false);
3488 pinctrl_pm_select_sleep_state(&pdev
->dev
);
3490 ret
= register_netdev(ndev
);
3492 goto failed_register
;
3494 device_init_wakeup(&ndev
->dev
, fep
->wol_flag
&
3495 FEC_WOL_HAS_MAGIC_PACKET
);
3497 if (fep
->bufdesc_ex
&& fep
->ptp_clock
)
3498 netdev_info(ndev
, "registered PHC device %d\n", fep
->dev_id
);
3500 fep
->rx_copybreak
= COPYBREAK_DEFAULT
;
3501 INIT_WORK(&fep
->tx_timeout_work
, fec_enet_timeout_work
);
3503 pm_runtime_mark_last_busy(&pdev
->dev
);
3504 pm_runtime_put_autosuspend(&pdev
->dev
);
3509 fec_enet_mii_remove(fep
);
3515 regulator_disable(fep
->reg_phy
);
3517 clk_disable_unprepare(fep
->clk_ipg
);
3519 fec_enet_clk_enable(ndev
, false);
3522 of_node_put(phy_node
);
3530 fec_drv_remove(struct platform_device
*pdev
)
3532 struct net_device
*ndev
= platform_get_drvdata(pdev
);
3533 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3535 cancel_work_sync(&fep
->tx_timeout_work
);
3537 unregister_netdev(ndev
);
3538 fec_enet_mii_remove(fep
);
3540 regulator_disable(fep
->reg_phy
);
3541 of_node_put(fep
->phy_node
);
3547 static int __maybe_unused
fec_suspend(struct device
*dev
)
3549 struct net_device
*ndev
= dev_get_drvdata(dev
);
3550 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3553 if (netif_running(ndev
)) {
3554 if (fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
)
3555 fep
->wol_flag
|= FEC_WOL_FLAG_SLEEP_ON
;
3556 phy_stop(fep
->phy_dev
);
3557 napi_disable(&fep
->napi
);
3558 netif_tx_lock_bh(ndev
);
3559 netif_device_detach(ndev
);
3560 netif_tx_unlock_bh(ndev
);
3562 fec_enet_clk_enable(ndev
, false);
3563 if (!(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
))
3564 pinctrl_pm_select_sleep_state(&fep
->pdev
->dev
);
3568 if (fep
->reg_phy
&& !(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
))
3569 regulator_disable(fep
->reg_phy
);
3571 /* SOC supply clock to phy, when clock is disabled, phy link down
3572 * SOC control phy regulator, when regulator is disabled, phy link down
3574 if (fep
->clk_enet_out
|| fep
->reg_phy
)
3580 static int __maybe_unused
fec_resume(struct device
*dev
)
3582 struct net_device
*ndev
= dev_get_drvdata(dev
);
3583 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3584 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
3588 if (fep
->reg_phy
&& !(fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
)) {
3589 ret
= regulator_enable(fep
->reg_phy
);
3595 if (netif_running(ndev
)) {
3596 ret
= fec_enet_clk_enable(ndev
, true);
3601 if (fep
->wol_flag
& FEC_WOL_FLAG_ENABLE
) {
3602 if (pdata
&& pdata
->sleep_mode_enable
)
3603 pdata
->sleep_mode_enable(false);
3604 val
= readl(fep
->hwp
+ FEC_ECNTRL
);
3605 val
&= ~(FEC_ECR_MAGICEN
| FEC_ECR_SLEEP
);
3606 writel(val
, fep
->hwp
+ FEC_ECNTRL
);
3607 fep
->wol_flag
&= ~FEC_WOL_FLAG_SLEEP_ON
;
3609 pinctrl_pm_select_default_state(&fep
->pdev
->dev
);
3612 netif_tx_lock_bh(ndev
);
3613 netif_device_attach(ndev
);
3614 netif_tx_unlock_bh(ndev
);
3615 napi_enable(&fep
->napi
);
3616 phy_start(fep
->phy_dev
);
3624 regulator_disable(fep
->reg_phy
);
3628 static int __maybe_unused
fec_runtime_suspend(struct device
*dev
)
3630 struct net_device
*ndev
= dev_get_drvdata(dev
);
3631 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3633 clk_disable_unprepare(fep
->clk_ipg
);
3638 static int __maybe_unused
fec_runtime_resume(struct device
*dev
)
3640 struct net_device
*ndev
= dev_get_drvdata(dev
);
3641 struct fec_enet_private
*fep
= netdev_priv(ndev
);
3643 return clk_prepare_enable(fep
->clk_ipg
);
3646 static const struct dev_pm_ops fec_pm_ops
= {
3647 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend
, fec_resume
)
3648 SET_RUNTIME_PM_OPS(fec_runtime_suspend
, fec_runtime_resume
, NULL
)
3651 static struct platform_driver fec_driver
= {
3653 .name
= DRIVER_NAME
,
3655 .of_match_table
= fec_dt_ids
,
3657 .id_table
= fec_devtype
,
3659 .remove
= fec_drv_remove
,
3662 module_platform_driver(fec_driver
);
3664 MODULE_ALIAS("platform:"DRIVER_NAME
);
3665 MODULE_LICENSE("GPL");