1 /* drivers/net/ethernet/freescale/gianfar.c
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
88 #include <linux/net_tstamp.h>
93 #include <asm/mpc85xx.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
110 #define TX_TIMEOUT (5*HZ)
112 const char gfar_driver_version
[] = "2.0";
114 static int gfar_enet_open(struct net_device
*dev
);
115 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
116 static void gfar_reset_task(struct work_struct
*work
);
117 static void gfar_timeout(struct net_device
*dev
);
118 static int gfar_close(struct net_device
*dev
);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q
*rx_queue
,
121 static int gfar_set_mac_address(struct net_device
*dev
);
122 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
123 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
124 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
125 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
126 static void adjust_link(struct net_device
*dev
);
127 static noinline
void gfar_update_link_state(struct gfar_private
*priv
);
128 static int init_phy(struct net_device
*dev
);
129 static int gfar_probe(struct platform_device
*ofdev
);
130 static int gfar_remove(struct platform_device
*ofdev
);
131 static void free_skb_resources(struct gfar_private
*priv
);
132 static void gfar_set_multi(struct net_device
*dev
);
133 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
134 static void gfar_configure_serdes(struct net_device
*dev
);
135 static int gfar_poll_rx(struct napi_struct
*napi
, int budget
);
136 static int gfar_poll_tx(struct napi_struct
*napi
, int budget
);
137 static int gfar_poll_rx_sq(struct napi_struct
*napi
, int budget
);
138 static int gfar_poll_tx_sq(struct napi_struct
*napi
, int budget
);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device
*dev
);
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
144 static void gfar_process_frame(struct net_device
*ndev
, struct sk_buff
*skb
);
145 static void gfar_halt_nodisable(struct gfar_private
*priv
);
146 static void gfar_clear_exact_match(struct net_device
*dev
);
147 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
149 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
160 bdp
->bufPtr
= cpu_to_be32(buf
);
162 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
163 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
164 lstatus
|= BD_LFLAG(RXBD_WRAP
);
168 bdp
->lstatus
= cpu_to_be32(lstatus
);
171 static void gfar_init_bds(struct net_device
*ndev
)
173 struct gfar_private
*priv
= netdev_priv(ndev
);
174 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
175 struct gfar_priv_tx_q
*tx_queue
= NULL
;
176 struct gfar_priv_rx_q
*rx_queue
= NULL
;
181 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
182 tx_queue
= priv
->tx_queue
[i
];
183 /* Initialize some variables in our dev structure */
184 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
185 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
186 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
187 tx_queue
->skb_curtx
= 0;
188 tx_queue
->skb_dirtytx
= 0;
190 /* Initialize Transmit Descriptor Ring */
191 txbdp
= tx_queue
->tx_bd_base
;
192 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
198 /* Set the last descriptor in the ring to indicate wrap */
200 txbdp
->status
= cpu_to_be16(be16_to_cpu(txbdp
->status
) |
204 rfbptr
= ®s
->rfbptr0
;
205 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
206 rx_queue
= priv
->rx_queue
[i
];
208 rx_queue
->next_to_clean
= 0;
209 rx_queue
->next_to_use
= 0;
210 rx_queue
->next_to_alloc
= 0;
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
215 gfar_alloc_rx_buffs(rx_queue
, gfar_rxbd_unused(rx_queue
));
217 rx_queue
->rfbptr
= rfbptr
;
222 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
227 struct gfar_private
*priv
= netdev_priv(ndev
);
228 struct device
*dev
= priv
->dev
;
229 struct gfar_priv_tx_q
*tx_queue
= NULL
;
230 struct gfar_priv_rx_q
*rx_queue
= NULL
;
232 priv
->total_tx_ring_size
= 0;
233 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
234 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
236 priv
->total_rx_ring_size
= 0;
237 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
238 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
240 /* Allocate memory for the buffer descriptors */
241 vaddr
= dma_alloc_coherent(dev
,
242 (priv
->total_tx_ring_size
*
243 sizeof(struct txbd8
)) +
244 (priv
->total_rx_ring_size
*
245 sizeof(struct rxbd8
)),
250 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
251 tx_queue
= priv
->tx_queue
[i
];
252 tx_queue
->tx_bd_base
= vaddr
;
253 tx_queue
->tx_bd_dma_base
= addr
;
254 tx_queue
->dev
= ndev
;
255 /* enet DMA only understands physical addresses */
256 addr
+= sizeof(struct txbd8
) * tx_queue
->tx_ring_size
;
257 vaddr
+= sizeof(struct txbd8
) * tx_queue
->tx_ring_size
;
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
262 rx_queue
= priv
->rx_queue
[i
];
263 rx_queue
->rx_bd_base
= vaddr
;
264 rx_queue
->rx_bd_dma_base
= addr
;
265 rx_queue
->ndev
= ndev
;
267 addr
+= sizeof(struct rxbd8
) * rx_queue
->rx_ring_size
;
268 vaddr
+= sizeof(struct rxbd8
) * rx_queue
->rx_ring_size
;
271 /* Setup the skbuff rings */
272 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
273 tx_queue
= priv
->tx_queue
[i
];
274 tx_queue
->tx_skbuff
=
275 kmalloc_array(tx_queue
->tx_ring_size
,
276 sizeof(*tx_queue
->tx_skbuff
),
278 if (!tx_queue
->tx_skbuff
)
281 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++)
282 tx_queue
->tx_skbuff
[j
] = NULL
;
285 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
286 rx_queue
= priv
->rx_queue
[i
];
287 rx_queue
->rx_buff
= kcalloc(rx_queue
->rx_ring_size
,
288 sizeof(*rx_queue
->rx_buff
),
290 if (!rx_queue
->rx_buff
)
299 free_skb_resources(priv
);
303 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
305 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
309 baddr
= ®s
->tbase0
;
310 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
311 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
315 baddr
= ®s
->rbase0
;
316 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
317 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
322 static void gfar_init_rqprm(struct gfar_private
*priv
)
324 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
328 baddr
= ®s
->rqprm0
;
329 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
330 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_ring_size
|
331 (DEFAULT_RX_LFC_THR
<< FBTHR_SHIFT
));
336 static void gfar_rx_offload_en(struct gfar_private
*priv
)
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv
->uses_rxfcb
= 0;
341 if (priv
->ndev
->features
& (NETIF_F_RXCSUM
| NETIF_F_HW_VLAN_CTAG_RX
))
342 priv
->uses_rxfcb
= 1;
344 if (priv
->hwts_rx_en
|| priv
->rx_filer_enable
)
345 priv
->uses_rxfcb
= 1;
348 static void gfar_mac_rx_config(struct gfar_private
*priv
)
350 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
353 if (priv
->rx_filer_enable
) {
354 rctrl
|= RCTRL_FILREN
| RCTRL_PRSDEP_INIT
;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv
->poll_mode
== GFAR_SQ_POLLING
)
357 gfar_write(®s
->rir0
, DEFAULT_2RXQ_RIR0
);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(®s
->rir0
, DEFAULT_8RXQ_RIR0
);
362 /* Restore PROMISC mode */
363 if (priv
->ndev
->flags
& IFF_PROMISC
)
366 if (priv
->ndev
->features
& NETIF_F_RXCSUM
)
367 rctrl
|= RCTRL_CHECKSUMMING
;
369 if (priv
->extended_hash
)
370 rctrl
|= RCTRL_EXTHASH
| RCTRL_EMEN
;
373 rctrl
&= ~RCTRL_PAL_MASK
;
374 rctrl
|= RCTRL_PADDING(priv
->padding
);
377 /* Enable HW time stamping if requested from user space */
378 if (priv
->hwts_rx_en
)
379 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
;
381 if (priv
->ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
382 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
384 /* Clear the LFC bit */
385 gfar_write(®s
->rctrl
, rctrl
);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv
);
388 gfar_write(®s
->ptv
, DEFAULT_LFC_PTVVAL
);
391 /* Init rctrl based on our settings */
392 gfar_write(®s
->rctrl
, rctrl
);
395 static void gfar_mac_tx_config(struct gfar_private
*priv
)
397 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
400 if (priv
->ndev
->features
& NETIF_F_IP_CSUM
)
401 tctrl
|= TCTRL_INIT_CSUM
;
403 if (priv
->prio_sched_en
)
404 tctrl
|= TCTRL_TXSCHED_PRIO
;
406 tctrl
|= TCTRL_TXSCHED_WRRS
;
407 gfar_write(®s
->tr03wt
, DEFAULT_WRRS_WEIGHT
);
408 gfar_write(®s
->tr47wt
, DEFAULT_WRRS_WEIGHT
);
411 if (priv
->ndev
->features
& NETIF_F_HW_VLAN_CTAG_TX
)
412 tctrl
|= TCTRL_VLINS
;
414 gfar_write(®s
->tctrl
, tctrl
);
417 static void gfar_configure_coalescing(struct gfar_private
*priv
,
418 unsigned long tx_mask
, unsigned long rx_mask
)
420 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
423 if (priv
->mode
== MQ_MG_MODE
) {
426 baddr
= ®s
->txic0
;
427 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
428 gfar_write(baddr
+ i
, 0);
429 if (likely(priv
->tx_queue
[i
]->txcoalescing
))
430 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
433 baddr
= ®s
->rxic0
;
434 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
435 gfar_write(baddr
+ i
, 0);
436 if (likely(priv
->rx_queue
[i
]->rxcoalescing
))
437 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
443 gfar_write(®s
->txic
, 0);
444 if (likely(priv
->tx_queue
[0]->txcoalescing
))
445 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
447 gfar_write(®s
->rxic
, 0);
448 if (unlikely(priv
->rx_queue
[0]->rxcoalescing
))
449 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
453 void gfar_configure_coalescing_all(struct gfar_private
*priv
)
455 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
458 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
460 struct gfar_private
*priv
= netdev_priv(dev
);
461 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
462 unsigned long tx_packets
= 0, tx_bytes
= 0;
465 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
466 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
467 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
468 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
471 dev
->stats
.rx_packets
= rx_packets
;
472 dev
->stats
.rx_bytes
= rx_bytes
;
473 dev
->stats
.rx_dropped
= rx_dropped
;
475 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
476 tx_bytes
+= priv
->tx_queue
[i
]->stats
.tx_bytes
;
477 tx_packets
+= priv
->tx_queue
[i
]->stats
.tx_packets
;
480 dev
->stats
.tx_bytes
= tx_bytes
;
481 dev
->stats
.tx_packets
= tx_packets
;
486 static int gfar_set_mac_addr(struct net_device
*dev
, void *p
)
488 eth_mac_addr(dev
, p
);
490 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
495 static const struct net_device_ops gfar_netdev_ops
= {
496 .ndo_open
= gfar_enet_open
,
497 .ndo_start_xmit
= gfar_start_xmit
,
498 .ndo_stop
= gfar_close
,
499 .ndo_change_mtu
= gfar_change_mtu
,
500 .ndo_set_features
= gfar_set_features
,
501 .ndo_set_rx_mode
= gfar_set_multi
,
502 .ndo_tx_timeout
= gfar_timeout
,
503 .ndo_do_ioctl
= gfar_ioctl
,
504 .ndo_get_stats
= gfar_get_stats
,
505 .ndo_set_mac_address
= gfar_set_mac_addr
,
506 .ndo_validate_addr
= eth_validate_addr
,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller
= gfar_netpoll
,
512 static void gfar_ints_disable(struct gfar_private
*priv
)
515 for (i
= 0; i
< priv
->num_grps
; i
++) {
516 struct gfar __iomem
*regs
= priv
->gfargrp
[i
].regs
;
518 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
520 /* Initialize IMASK */
521 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
525 static void gfar_ints_enable(struct gfar_private
*priv
)
528 for (i
= 0; i
< priv
->num_grps
; i
++) {
529 struct gfar __iomem
*regs
= priv
->gfargrp
[i
].regs
;
530 /* Unmask the interrupts we look for */
531 gfar_write(®s
->imask
, IMASK_DEFAULT
);
535 static int gfar_alloc_tx_queues(struct gfar_private
*priv
)
539 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
540 priv
->tx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_tx_q
),
542 if (!priv
->tx_queue
[i
])
545 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
546 priv
->tx_queue
[i
]->qindex
= i
;
547 priv
->tx_queue
[i
]->dev
= priv
->ndev
;
548 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
553 static int gfar_alloc_rx_queues(struct gfar_private
*priv
)
557 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
558 priv
->rx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_rx_q
),
560 if (!priv
->rx_queue
[i
])
563 priv
->rx_queue
[i
]->qindex
= i
;
564 priv
->rx_queue
[i
]->ndev
= priv
->ndev
;
569 static void gfar_free_tx_queues(struct gfar_private
*priv
)
573 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
574 kfree(priv
->tx_queue
[i
]);
577 static void gfar_free_rx_queues(struct gfar_private
*priv
)
581 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
582 kfree(priv
->rx_queue
[i
]);
585 static void unmap_group_regs(struct gfar_private
*priv
)
589 for (i
= 0; i
< MAXGROUPS
; i
++)
590 if (priv
->gfargrp
[i
].regs
)
591 iounmap(priv
->gfargrp
[i
].regs
);
594 static void free_gfar_dev(struct gfar_private
*priv
)
598 for (i
= 0; i
< priv
->num_grps
; i
++)
599 for (j
= 0; j
< GFAR_NUM_IRQS
; j
++) {
600 kfree(priv
->gfargrp
[i
].irqinfo
[j
]);
601 priv
->gfargrp
[i
].irqinfo
[j
] = NULL
;
604 free_netdev(priv
->ndev
);
607 static void disable_napi(struct gfar_private
*priv
)
611 for (i
= 0; i
< priv
->num_grps
; i
++) {
612 napi_disable(&priv
->gfargrp
[i
].napi_rx
);
613 napi_disable(&priv
->gfargrp
[i
].napi_tx
);
617 static void enable_napi(struct gfar_private
*priv
)
621 for (i
= 0; i
< priv
->num_grps
; i
++) {
622 napi_enable(&priv
->gfargrp
[i
].napi_rx
);
623 napi_enable(&priv
->gfargrp
[i
].napi_tx
);
627 static int gfar_parse_group(struct device_node
*np
,
628 struct gfar_private
*priv
, const char *model
)
630 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[priv
->num_grps
];
633 for (i
= 0; i
< GFAR_NUM_IRQS
; i
++) {
634 grp
->irqinfo
[i
] = kzalloc(sizeof(struct gfar_irqinfo
),
636 if (!grp
->irqinfo
[i
])
640 grp
->regs
= of_iomap(np
, 0);
644 gfar_irq(grp
, TX
)->irq
= irq_of_parse_and_map(np
, 0);
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model
&& strcasecmp(model
, "FEC")) {
648 gfar_irq(grp
, RX
)->irq
= irq_of_parse_and_map(np
, 1);
649 gfar_irq(grp
, ER
)->irq
= irq_of_parse_and_map(np
, 2);
650 if (!gfar_irq(grp
, TX
)->irq
||
651 !gfar_irq(grp
, RX
)->irq
||
652 !gfar_irq(grp
, ER
)->irq
)
657 spin_lock_init(&grp
->grplock
);
658 if (priv
->mode
== MQ_MG_MODE
) {
659 u32 rxq_mask
, txq_mask
;
662 grp
->rx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
663 grp
->tx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
665 ret
= of_property_read_u32(np
, "fsl,rx-bit-map", &rxq_mask
);
667 grp
->rx_bit_map
= rxq_mask
?
668 rxq_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
671 ret
= of_property_read_u32(np
, "fsl,tx-bit-map", &txq_mask
);
673 grp
->tx_bit_map
= txq_mask
?
674 txq_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
677 if (priv
->poll_mode
== GFAR_SQ_POLLING
) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp
->rx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
680 grp
->tx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
683 grp
->rx_bit_map
= 0xFF;
684 grp
->tx_bit_map
= 0xFF;
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
690 grp
->rx_bit_map
= bitrev8(grp
->rx_bit_map
);
691 grp
->tx_bit_map
= bitrev8(grp
->tx_bit_map
);
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
696 for_each_set_bit(i
, &grp
->rx_bit_map
, priv
->num_rx_queues
) {
698 grp
->rx_queue
= priv
->rx_queue
[i
];
699 grp
->num_rx_queues
++;
700 grp
->rstat
|= (RSTAT_CLEAR_RHALT
>> i
);
701 priv
->rqueue
|= ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
702 priv
->rx_queue
[i
]->grp
= grp
;
705 for_each_set_bit(i
, &grp
->tx_bit_map
, priv
->num_tx_queues
) {
707 grp
->tx_queue
= priv
->tx_queue
[i
];
708 grp
->num_tx_queues
++;
709 grp
->tstat
|= (TSTAT_CLEAR_THALT
>> i
);
710 priv
->tqueue
|= (TQUEUE_EN0
>> i
);
711 priv
->tx_queue
[i
]->grp
= grp
;
719 static int gfar_of_group_count(struct device_node
*np
)
721 struct device_node
*child
;
724 for_each_available_child_of_node(np
, child
)
725 if (!of_node_cmp(child
->name
, "queue-group"))
731 static int gfar_of_init(struct platform_device
*ofdev
, struct net_device
**pdev
)
735 const void *mac_addr
;
737 struct net_device
*dev
= NULL
;
738 struct gfar_private
*priv
= NULL
;
739 struct device_node
*np
= ofdev
->dev
.of_node
;
740 struct device_node
*child
= NULL
;
741 struct property
*stash
;
744 unsigned int num_tx_qs
, num_rx_qs
;
745 unsigned short mode
, poll_mode
;
750 if (of_device_is_compatible(np
, "fsl,etsec2")) {
752 poll_mode
= GFAR_SQ_POLLING
;
755 poll_mode
= GFAR_SQ_POLLING
;
758 if (mode
== SQ_SG_MODE
) {
761 } else { /* MQ_MG_MODE */
762 /* get the actual number of supported groups */
763 unsigned int num_grps
= gfar_of_group_count(np
);
765 if (num_grps
== 0 || num_grps
> MAXGROUPS
) {
766 dev_err(&ofdev
->dev
, "Invalid # of int groups(%d)\n",
768 pr_err("Cannot do alloc_etherdev, aborting\n");
772 if (poll_mode
== GFAR_SQ_POLLING
) {
773 num_tx_qs
= num_grps
; /* one txq per int group */
774 num_rx_qs
= num_grps
; /* one rxq per int group */
775 } else { /* GFAR_MQ_POLLING */
776 u32 tx_queues
, rx_queues
;
779 /* parse the num of HW tx and rx queues */
780 ret
= of_property_read_u32(np
, "fsl,num_tx_queues",
782 num_tx_qs
= ret
? 1 : tx_queues
;
784 ret
= of_property_read_u32(np
, "fsl,num_rx_queues",
786 num_rx_qs
= ret
? 1 : rx_queues
;
790 if (num_tx_qs
> MAX_TX_QS
) {
791 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792 num_tx_qs
, MAX_TX_QS
);
793 pr_err("Cannot do alloc_etherdev, aborting\n");
797 if (num_rx_qs
> MAX_RX_QS
) {
798 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799 num_rx_qs
, MAX_RX_QS
);
800 pr_err("Cannot do alloc_etherdev, aborting\n");
804 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
809 priv
= netdev_priv(dev
);
813 priv
->poll_mode
= poll_mode
;
815 priv
->num_tx_queues
= num_tx_qs
;
816 netif_set_real_num_rx_queues(dev
, num_rx_qs
);
817 priv
->num_rx_queues
= num_rx_qs
;
819 err
= gfar_alloc_tx_queues(priv
);
821 goto tx_alloc_failed
;
823 err
= gfar_alloc_rx_queues(priv
);
825 goto rx_alloc_failed
;
827 err
= of_property_read_string(np
, "model", &model
);
829 pr_err("Device model property missing, aborting\n");
830 goto rx_alloc_failed
;
833 /* Init Rx queue filer rule set linked list */
834 INIT_LIST_HEAD(&priv
->rx_list
.list
);
835 priv
->rx_list
.count
= 0;
836 mutex_init(&priv
->rx_queue_access
);
838 for (i
= 0; i
< MAXGROUPS
; i
++)
839 priv
->gfargrp
[i
].regs
= NULL
;
841 /* Parse and initialize group specific information */
842 if (priv
->mode
== MQ_MG_MODE
) {
843 for_each_available_child_of_node(np
, child
) {
844 if (of_node_cmp(child
->name
, "queue-group"))
847 err
= gfar_parse_group(child
, priv
, model
);
851 } else { /* SQ_SG_MODE */
852 err
= gfar_parse_group(np
, priv
, model
);
857 stash
= of_find_property(np
, "bd-stash", NULL
);
860 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
861 priv
->bd_stash_en
= 1;
864 err
= of_property_read_u32(np
, "rx-stash-len", &stash_len
);
867 priv
->rx_stash_size
= stash_len
;
869 err
= of_property_read_u32(np
, "rx-stash-idx", &stash_idx
);
872 priv
->rx_stash_index
= stash_idx
;
874 if (stash_len
|| stash_idx
)
875 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
877 mac_addr
= of_get_mac_address(np
);
880 memcpy(dev
->dev_addr
, mac_addr
, ETH_ALEN
);
882 if (model
&& !strcasecmp(model
, "TSEC"))
883 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_GIGABIT
|
884 FSL_GIANFAR_DEV_HAS_COALESCE
|
885 FSL_GIANFAR_DEV_HAS_RMON
|
886 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
888 if (model
&& !strcasecmp(model
, "eTSEC"))
889 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_GIGABIT
|
890 FSL_GIANFAR_DEV_HAS_COALESCE
|
891 FSL_GIANFAR_DEV_HAS_RMON
|
892 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
893 FSL_GIANFAR_DEV_HAS_CSUM
|
894 FSL_GIANFAR_DEV_HAS_VLAN
|
895 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
896 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
|
897 FSL_GIANFAR_DEV_HAS_TIMER
|
898 FSL_GIANFAR_DEV_HAS_RX_FILER
;
900 err
= of_property_read_string(np
, "phy-connection-type", &ctype
);
902 /* We only care about rgmii-id. The rest are autodetected */
903 if (err
== 0 && !strcmp(ctype
, "rgmii-id"))
904 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
906 priv
->interface
= PHY_INTERFACE_MODE_MII
;
908 if (of_find_property(np
, "fsl,magic-packet", NULL
))
909 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
911 if (of_get_property(np
, "fsl,wake-on-filer", NULL
))
912 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER
;
914 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
916 /* In the case of a fixed PHY, the DT node associated
917 * to the PHY is the Ethernet MAC DT node.
919 if (!priv
->phy_node
&& of_phy_is_fixed_link(np
)) {
920 err
= of_phy_register_fixed_link(np
);
924 priv
->phy_node
= of_node_get(np
);
927 /* Find the TBI PHY. If it's not there, we don't support SGMII */
928 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
933 unmap_group_regs(priv
);
935 gfar_free_rx_queues(priv
);
937 gfar_free_tx_queues(priv
);
942 static int gfar_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
944 struct hwtstamp_config config
;
945 struct gfar_private
*priv
= netdev_priv(netdev
);
947 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
950 /* reserved for future extensions */
954 switch (config
.tx_type
) {
955 case HWTSTAMP_TX_OFF
:
956 priv
->hwts_tx_en
= 0;
959 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
961 priv
->hwts_tx_en
= 1;
967 switch (config
.rx_filter
) {
968 case HWTSTAMP_FILTER_NONE
:
969 if (priv
->hwts_rx_en
) {
970 priv
->hwts_rx_en
= 0;
975 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
977 if (!priv
->hwts_rx_en
) {
978 priv
->hwts_rx_en
= 1;
981 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
985 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
989 static int gfar_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
991 struct hwtstamp_config config
;
992 struct gfar_private
*priv
= netdev_priv(netdev
);
995 config
.tx_type
= priv
->hwts_tx_en
? HWTSTAMP_TX_ON
: HWTSTAMP_TX_OFF
;
996 config
.rx_filter
= (priv
->hwts_rx_en
?
997 HWTSTAMP_FILTER_ALL
: HWTSTAMP_FILTER_NONE
);
999 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
1003 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1005 struct gfar_private
*priv
= netdev_priv(dev
);
1007 if (!netif_running(dev
))
1010 if (cmd
== SIOCSHWTSTAMP
)
1011 return gfar_hwtstamp_set(dev
, rq
);
1012 if (cmd
== SIOCGHWTSTAMP
)
1013 return gfar_hwtstamp_get(dev
, rq
);
1018 return phy_mii_ioctl(priv
->phydev
, rq
, cmd
);
1021 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
1024 u32 rqfpr
= FPR_FILER_MASK
;
1028 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
1029 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1030 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1031 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1034 rqfcr
= RQFCR_CMP_NOMATCH
;
1035 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1036 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1037 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1040 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
1042 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1043 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1044 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1047 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
1049 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1050 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1051 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1056 static void gfar_init_filer_table(struct gfar_private
*priv
)
1059 u32 rqfar
= MAX_FILER_IDX
;
1061 u32 rqfpr
= FPR_FILER_MASK
;
1064 rqfcr
= RQFCR_CMP_MATCH
;
1065 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1066 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1067 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1069 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
1070 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
1071 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
1072 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
1073 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
1074 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
1076 /* cur_filer_idx indicated the first non-masked rule */
1077 priv
->cur_filer_idx
= rqfar
;
1079 /* Rest are masked rules */
1080 rqfcr
= RQFCR_CMP_NOMATCH
;
1081 for (i
= 0; i
< rqfar
; i
++) {
1082 priv
->ftp_rqfcr
[i
] = rqfcr
;
1083 priv
->ftp_rqfpr
[i
] = rqfpr
;
1084 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
1089 static void __gfar_detect_errata_83xx(struct gfar_private
*priv
)
1091 unsigned int pvr
= mfspr(SPRN_PVR
);
1092 unsigned int svr
= mfspr(SPRN_SVR
);
1093 unsigned int mod
= (svr
>> 16) & 0xfff6; /* w/o E suffix */
1094 unsigned int rev
= svr
& 0xffff;
1096 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1097 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
>= 0x0020) ||
1098 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
1099 priv
->errata
|= GFAR_ERRATA_74
;
1101 /* MPC8313 and MPC837x all rev */
1102 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
1103 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
1104 priv
->errata
|= GFAR_ERRATA_76
;
1106 /* MPC8313 Rev < 2.0 */
1107 if (pvr
== 0x80850010 && mod
== 0x80b0 && rev
< 0x0020)
1108 priv
->errata
|= GFAR_ERRATA_12
;
1111 static void __gfar_detect_errata_85xx(struct gfar_private
*priv
)
1113 unsigned int svr
= mfspr(SPRN_SVR
);
1115 if ((SVR_SOC_VER(svr
) == SVR_8548
) && (SVR_REV(svr
) == 0x20))
1116 priv
->errata
|= GFAR_ERRATA_12
;
1117 if (((SVR_SOC_VER(svr
) == SVR_P2020
) && (SVR_REV(svr
) < 0x20)) ||
1118 ((SVR_SOC_VER(svr
) == SVR_P2010
) && (SVR_REV(svr
) < 0x20)))
1119 priv
->errata
|= GFAR_ERRATA_76
; /* aka eTSEC 20 */
1123 static void gfar_detect_errata(struct gfar_private
*priv
)
1125 struct device
*dev
= &priv
->ofdev
->dev
;
1127 /* no plans to fix */
1128 priv
->errata
|= GFAR_ERRATA_A002
;
1131 if (pvr_version_is(PVR_VER_E500V1
) || pvr_version_is(PVR_VER_E500V2
))
1132 __gfar_detect_errata_85xx(priv
);
1133 else /* non-mpc85xx parts, i.e. e300 core based */
1134 __gfar_detect_errata_83xx(priv
);
1138 dev_info(dev
, "enabled errata workarounds, flags: 0x%x\n",
1142 void gfar_mac_reset(struct gfar_private
*priv
)
1144 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1147 /* Reset MAC layer */
1148 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
1150 /* We need to delay at least 3 TX clocks */
1153 /* the soft reset bit is not self-resetting, so we need to
1154 * clear it before resuming normal operation
1156 gfar_write(®s
->maccfg1
, 0);
1160 gfar_rx_offload_en(priv
);
1162 /* Initialize the max receive frame/buffer lengths */
1163 gfar_write(®s
->maxfrm
, GFAR_JUMBO_FRAME_SIZE
);
1164 gfar_write(®s
->mrblr
, GFAR_RXB_SIZE
);
1166 /* Initialize the Minimum Frame Length Register */
1167 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1169 /* Initialize MACCFG2. */
1170 tempval
= MACCFG2_INIT_SETTINGS
;
1172 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1173 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1174 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1176 if (gfar_has_errata(priv
, GFAR_ERRATA_74
))
1177 tempval
|= MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
;
1179 gfar_write(®s
->maccfg2
, tempval
);
1181 /* Clear mac addr hash registers */
1182 gfar_write(®s
->igaddr0
, 0);
1183 gfar_write(®s
->igaddr1
, 0);
1184 gfar_write(®s
->igaddr2
, 0);
1185 gfar_write(®s
->igaddr3
, 0);
1186 gfar_write(®s
->igaddr4
, 0);
1187 gfar_write(®s
->igaddr5
, 0);
1188 gfar_write(®s
->igaddr6
, 0);
1189 gfar_write(®s
->igaddr7
, 0);
1191 gfar_write(®s
->gaddr0
, 0);
1192 gfar_write(®s
->gaddr1
, 0);
1193 gfar_write(®s
->gaddr2
, 0);
1194 gfar_write(®s
->gaddr3
, 0);
1195 gfar_write(®s
->gaddr4
, 0);
1196 gfar_write(®s
->gaddr5
, 0);
1197 gfar_write(®s
->gaddr6
, 0);
1198 gfar_write(®s
->gaddr7
, 0);
1200 if (priv
->extended_hash
)
1201 gfar_clear_exact_match(priv
->ndev
);
1203 gfar_mac_rx_config(priv
);
1205 gfar_mac_tx_config(priv
);
1207 gfar_set_mac_address(priv
->ndev
);
1209 gfar_set_multi(priv
->ndev
);
1211 /* clear ievent and imask before configuring coalescing */
1212 gfar_ints_disable(priv
);
1214 /* Configure the coalescing support */
1215 gfar_configure_coalescing_all(priv
);
1218 static void gfar_hw_init(struct gfar_private
*priv
)
1220 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1223 /* Stop the DMA engine now, in case it was running before
1224 * (The firmware could have used it, and left it running).
1228 gfar_mac_reset(priv
);
1230 /* Zero out the rmon mib registers if it has them */
1231 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1232 memset_io(&(regs
->rmon
), 0, sizeof(struct rmon_mib
));
1234 /* Mask off the CAM interrupts */
1235 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1236 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1239 /* Initialize ECNTRL */
1240 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
1242 /* Set the extraction length and index */
1243 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
1244 ATTRELI_EI(priv
->rx_stash_index
);
1246 gfar_write(®s
->attreli
, attrs
);
1248 /* Start with defaults, and add stashing
1249 * depending on driver parameters
1251 attrs
= ATTR_INIT_SETTINGS
;
1253 if (priv
->bd_stash_en
)
1254 attrs
|= ATTR_BDSTASH
;
1256 if (priv
->rx_stash_size
!= 0)
1257 attrs
|= ATTR_BUFSTASH
;
1259 gfar_write(®s
->attr
, attrs
);
1262 gfar_write(®s
->fifo_tx_thr
, DEFAULT_FIFO_TX_THR
);
1263 gfar_write(®s
->fifo_tx_starve
, DEFAULT_FIFO_TX_STARVE
);
1264 gfar_write(®s
->fifo_tx_starve_shutoff
, DEFAULT_FIFO_TX_STARVE_OFF
);
1266 /* Program the interrupt steering regs, only for MG devices */
1267 if (priv
->num_grps
> 1)
1268 gfar_write_isrg(priv
);
1271 static void gfar_init_addr_hash_table(struct gfar_private
*priv
)
1273 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1275 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
1276 priv
->extended_hash
= 1;
1277 priv
->hash_width
= 9;
1279 priv
->hash_regs
[0] = ®s
->igaddr0
;
1280 priv
->hash_regs
[1] = ®s
->igaddr1
;
1281 priv
->hash_regs
[2] = ®s
->igaddr2
;
1282 priv
->hash_regs
[3] = ®s
->igaddr3
;
1283 priv
->hash_regs
[4] = ®s
->igaddr4
;
1284 priv
->hash_regs
[5] = ®s
->igaddr5
;
1285 priv
->hash_regs
[6] = ®s
->igaddr6
;
1286 priv
->hash_regs
[7] = ®s
->igaddr7
;
1287 priv
->hash_regs
[8] = ®s
->gaddr0
;
1288 priv
->hash_regs
[9] = ®s
->gaddr1
;
1289 priv
->hash_regs
[10] = ®s
->gaddr2
;
1290 priv
->hash_regs
[11] = ®s
->gaddr3
;
1291 priv
->hash_regs
[12] = ®s
->gaddr4
;
1292 priv
->hash_regs
[13] = ®s
->gaddr5
;
1293 priv
->hash_regs
[14] = ®s
->gaddr6
;
1294 priv
->hash_regs
[15] = ®s
->gaddr7
;
1297 priv
->extended_hash
= 0;
1298 priv
->hash_width
= 8;
1300 priv
->hash_regs
[0] = ®s
->gaddr0
;
1301 priv
->hash_regs
[1] = ®s
->gaddr1
;
1302 priv
->hash_regs
[2] = ®s
->gaddr2
;
1303 priv
->hash_regs
[3] = ®s
->gaddr3
;
1304 priv
->hash_regs
[4] = ®s
->gaddr4
;
1305 priv
->hash_regs
[5] = ®s
->gaddr5
;
1306 priv
->hash_regs
[6] = ®s
->gaddr6
;
1307 priv
->hash_regs
[7] = ®s
->gaddr7
;
1311 /* Set up the ethernet device structure, private data,
1312 * and anything else we need before we start
1314 static int gfar_probe(struct platform_device
*ofdev
)
1316 struct net_device
*dev
= NULL
;
1317 struct gfar_private
*priv
= NULL
;
1320 err
= gfar_of_init(ofdev
, &dev
);
1325 priv
= netdev_priv(dev
);
1327 priv
->ofdev
= ofdev
;
1328 priv
->dev
= &ofdev
->dev
;
1329 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
1331 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
1333 platform_set_drvdata(ofdev
, priv
);
1335 gfar_detect_errata(priv
);
1337 /* Set the dev->base_addr to the gfar reg region */
1338 dev
->base_addr
= (unsigned long) priv
->gfargrp
[0].regs
;
1340 /* Fill in the dev structure */
1341 dev
->watchdog_timeo
= TX_TIMEOUT
;
1343 dev
->netdev_ops
= &gfar_netdev_ops
;
1344 dev
->ethtool_ops
= &gfar_ethtool_ops
;
1346 /* Register for napi ...We are registering NAPI for each grp */
1347 for (i
= 0; i
< priv
->num_grps
; i
++) {
1348 if (priv
->poll_mode
== GFAR_SQ_POLLING
) {
1349 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_rx
,
1350 gfar_poll_rx_sq
, GFAR_DEV_WEIGHT
);
1351 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_tx
,
1352 gfar_poll_tx_sq
, 2);
1354 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_rx
,
1355 gfar_poll_rx
, GFAR_DEV_WEIGHT
);
1356 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_tx
,
1361 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
1362 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1364 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1365 NETIF_F_RXCSUM
| NETIF_F_HIGHDMA
;
1368 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
1369 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
|
1370 NETIF_F_HW_VLAN_CTAG_RX
;
1371 dev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
;
1374 dev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
1376 gfar_init_addr_hash_table(priv
);
1378 /* Insert receive time stamps into padding alignment bytes */
1379 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1382 if (dev
->features
& NETIF_F_IP_CSUM
||
1383 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1384 dev
->needed_headroom
= GMAC_FCB_LEN
;
1386 /* Initializing some of the rx/tx queue level parameters */
1387 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1388 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1389 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1390 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1391 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1394 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1395 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1396 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1397 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1400 /* Always enable rx filer if available */
1401 priv
->rx_filer_enable
=
1402 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RX_FILER
) ? 1 : 0;
1403 /* Enable most messages by default */
1404 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1405 /* use pritority h/w tx queue scheduling for single queue devices */
1406 if (priv
->num_tx_queues
== 1)
1407 priv
->prio_sched_en
= 1;
1409 set_bit(GFAR_DOWN
, &priv
->state
);
1413 /* Carrier starts down, phylib will bring it up */
1414 netif_carrier_off(dev
);
1416 err
= register_netdev(dev
);
1419 pr_err("%s: Cannot register net device, aborting\n", dev
->name
);
1423 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
)
1424 priv
->wol_supported
|= GFAR_WOL_MAGIC
;
1426 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER
) &&
1427 priv
->rx_filer_enable
)
1428 priv
->wol_supported
|= GFAR_WOL_FILER_UCAST
;
1430 device_set_wakeup_capable(&ofdev
->dev
, priv
->wol_supported
);
1432 /* fill out IRQ number and name fields */
1433 for (i
= 0; i
< priv
->num_grps
; i
++) {
1434 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
1435 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1436 sprintf(gfar_irq(grp
, TX
)->name
, "%s%s%c%s",
1437 dev
->name
, "_g", '0' + i
, "_tx");
1438 sprintf(gfar_irq(grp
, RX
)->name
, "%s%s%c%s",
1439 dev
->name
, "_g", '0' + i
, "_rx");
1440 sprintf(gfar_irq(grp
, ER
)->name
, "%s%s%c%s",
1441 dev
->name
, "_g", '0' + i
, "_er");
1443 strcpy(gfar_irq(grp
, TX
)->name
, dev
->name
);
1446 /* Initialize the filer table */
1447 gfar_init_filer_table(priv
);
1449 /* Print out the device info */
1450 netdev_info(dev
, "mac: %pM\n", dev
->dev_addr
);
1452 /* Even more device info helps when determining which kernel
1453 * provided which set of benchmarks.
1455 netdev_info(dev
, "Running with NAPI enabled\n");
1456 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1457 netdev_info(dev
, "RX BD ring size for Q[%d]: %d\n",
1458 i
, priv
->rx_queue
[i
]->rx_ring_size
);
1459 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
1460 netdev_info(dev
, "TX BD ring size for Q[%d]: %d\n",
1461 i
, priv
->tx_queue
[i
]->tx_ring_size
);
1466 unmap_group_regs(priv
);
1467 gfar_free_rx_queues(priv
);
1468 gfar_free_tx_queues(priv
);
1469 of_node_put(priv
->phy_node
);
1470 of_node_put(priv
->tbi_node
);
1471 free_gfar_dev(priv
);
1475 static int gfar_remove(struct platform_device
*ofdev
)
1477 struct gfar_private
*priv
= platform_get_drvdata(ofdev
);
1479 of_node_put(priv
->phy_node
);
1480 of_node_put(priv
->tbi_node
);
1482 unregister_netdev(priv
->ndev
);
1483 unmap_group_regs(priv
);
1484 gfar_free_rx_queues(priv
);
1485 gfar_free_tx_queues(priv
);
1486 free_gfar_dev(priv
);
1493 static void __gfar_filer_disable(struct gfar_private
*priv
)
1495 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1498 temp
= gfar_read(®s
->rctrl
);
1499 temp
&= ~(RCTRL_FILREN
| RCTRL_PRSDEP_INIT
);
1500 gfar_write(®s
->rctrl
, temp
);
1503 static void __gfar_filer_enable(struct gfar_private
*priv
)
1505 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1508 temp
= gfar_read(®s
->rctrl
);
1509 temp
|= RCTRL_FILREN
| RCTRL_PRSDEP_INIT
;
1510 gfar_write(®s
->rctrl
, temp
);
1513 /* Filer rules implementing wol capabilities */
1514 static void gfar_filer_config_wol(struct gfar_private
*priv
)
1519 __gfar_filer_disable(priv
);
1521 /* clear the filer table, reject any packet by default */
1522 rqfcr
= RQFCR_RJE
| RQFCR_CMP_MATCH
;
1523 for (i
= 0; i
<= MAX_FILER_IDX
; i
++)
1524 gfar_write_filer(priv
, i
, rqfcr
, 0);
1527 if (priv
->wol_opts
& GFAR_WOL_FILER_UCAST
) {
1528 /* unicast packet, accept it */
1529 struct net_device
*ndev
= priv
->ndev
;
1530 /* get the default rx queue index */
1531 u8 qindex
= (u8
)priv
->gfargrp
[0].rx_queue
->qindex
;
1532 u32 dest_mac_addr
= (ndev
->dev_addr
[0] << 16) |
1533 (ndev
->dev_addr
[1] << 8) |
1536 rqfcr
= (qindex
<< 10) | RQFCR_AND
|
1537 RQFCR_CMP_EXACT
| RQFCR_PID_DAH
;
1539 gfar_write_filer(priv
, i
++, rqfcr
, dest_mac_addr
);
1541 dest_mac_addr
= (ndev
->dev_addr
[3] << 16) |
1542 (ndev
->dev_addr
[4] << 8) |
1544 rqfcr
= (qindex
<< 10) | RQFCR_GPI
|
1545 RQFCR_CMP_EXACT
| RQFCR_PID_DAL
;
1546 gfar_write_filer(priv
, i
++, rqfcr
, dest_mac_addr
);
1549 __gfar_filer_enable(priv
);
1552 static void gfar_filer_restore_table(struct gfar_private
*priv
)
1557 __gfar_filer_disable(priv
);
1559 for (i
= 0; i
<= MAX_FILER_IDX
; i
++) {
1560 rqfcr
= priv
->ftp_rqfcr
[i
];
1561 rqfpr
= priv
->ftp_rqfpr
[i
];
1562 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
1565 __gfar_filer_enable(priv
);
1568 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1569 static void gfar_start_wol_filer(struct gfar_private
*priv
)
1571 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1575 /* Enable Rx hw queues */
1576 gfar_write(®s
->rqueue
, priv
->rqueue
);
1578 /* Initialize DMACTRL to have WWR and WOP */
1579 tempval
= gfar_read(®s
->dmactrl
);
1580 tempval
|= DMACTRL_INIT_SETTINGS
;
1581 gfar_write(®s
->dmactrl
, tempval
);
1583 /* Make sure we aren't stopped */
1584 tempval
= gfar_read(®s
->dmactrl
);
1585 tempval
&= ~DMACTRL_GRS
;
1586 gfar_write(®s
->dmactrl
, tempval
);
1588 for (i
= 0; i
< priv
->num_grps
; i
++) {
1589 regs
= priv
->gfargrp
[i
].regs
;
1590 /* Clear RHLT, so that the DMA starts polling now */
1591 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1592 /* enable the Filer General Purpose Interrupt */
1593 gfar_write(®s
->imask
, IMASK_FGPI
);
1597 tempval
= gfar_read(®s
->maccfg1
);
1598 tempval
|= MACCFG1_RX_EN
;
1599 gfar_write(®s
->maccfg1
, tempval
);
1602 static int gfar_suspend(struct device
*dev
)
1604 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1605 struct net_device
*ndev
= priv
->ndev
;
1606 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1608 u16 wol
= priv
->wol_opts
;
1610 if (!netif_running(ndev
))
1614 netif_tx_lock(ndev
);
1615 netif_device_detach(ndev
);
1616 netif_tx_unlock(ndev
);
1620 if (wol
& GFAR_WOL_MAGIC
) {
1621 /* Enable interrupt on Magic Packet */
1622 gfar_write(®s
->imask
, IMASK_MAG
);
1624 /* Enable Magic Packet mode */
1625 tempval
= gfar_read(®s
->maccfg2
);
1626 tempval
|= MACCFG2_MPEN
;
1627 gfar_write(®s
->maccfg2
, tempval
);
1629 /* re-enable the Rx block */
1630 tempval
= gfar_read(®s
->maccfg1
);
1631 tempval
|= MACCFG1_RX_EN
;
1632 gfar_write(®s
->maccfg1
, tempval
);
1634 } else if (wol
& GFAR_WOL_FILER_UCAST
) {
1635 gfar_filer_config_wol(priv
);
1636 gfar_start_wol_filer(priv
);
1639 phy_stop(priv
->phydev
);
1645 static int gfar_resume(struct device
*dev
)
1647 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1648 struct net_device
*ndev
= priv
->ndev
;
1649 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1651 u16 wol
= priv
->wol_opts
;
1653 if (!netif_running(ndev
))
1656 if (wol
& GFAR_WOL_MAGIC
) {
1657 /* Disable Magic Packet mode */
1658 tempval
= gfar_read(®s
->maccfg2
);
1659 tempval
&= ~MACCFG2_MPEN
;
1660 gfar_write(®s
->maccfg2
, tempval
);
1662 } else if (wol
& GFAR_WOL_FILER_UCAST
) {
1663 /* need to stop rx only, tx is already down */
1665 gfar_filer_restore_table(priv
);
1668 phy_start(priv
->phydev
);
1673 netif_device_attach(ndev
);
1679 static int gfar_restore(struct device
*dev
)
1681 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1682 struct net_device
*ndev
= priv
->ndev
;
1684 if (!netif_running(ndev
)) {
1685 netif_device_attach(ndev
);
1690 gfar_init_bds(ndev
);
1692 gfar_mac_reset(priv
);
1694 gfar_init_tx_rx_base(priv
);
1700 priv
->oldduplex
= -1;
1703 phy_start(priv
->phydev
);
1705 netif_device_attach(ndev
);
1711 static struct dev_pm_ops gfar_pm_ops
= {
1712 .suspend
= gfar_suspend
,
1713 .resume
= gfar_resume
,
1714 .freeze
= gfar_suspend
,
1715 .thaw
= gfar_resume
,
1716 .restore
= gfar_restore
,
1719 #define GFAR_PM_OPS (&gfar_pm_ops)
1723 #define GFAR_PM_OPS NULL
1727 /* Reads the controller's registers to determine what interface
1728 * connects it to the PHY.
1730 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1732 struct gfar_private
*priv
= netdev_priv(dev
);
1733 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1736 ecntrl
= gfar_read(®s
->ecntrl
);
1738 if (ecntrl
& ECNTRL_SGMII_MODE
)
1739 return PHY_INTERFACE_MODE_SGMII
;
1741 if (ecntrl
& ECNTRL_TBI_MODE
) {
1742 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1743 return PHY_INTERFACE_MODE_RTBI
;
1745 return PHY_INTERFACE_MODE_TBI
;
1748 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1749 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
) {
1750 return PHY_INTERFACE_MODE_RMII
;
1753 phy_interface_t interface
= priv
->interface
;
1755 /* This isn't autodetected right now, so it must
1756 * be set by the device tree or platform code.
1758 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1759 return PHY_INTERFACE_MODE_RGMII_ID
;
1761 return PHY_INTERFACE_MODE_RGMII
;
1765 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1766 return PHY_INTERFACE_MODE_GMII
;
1768 return PHY_INTERFACE_MODE_MII
;
1772 /* Initializes driver's PHY state, and attaches to the PHY.
1773 * Returns 0 on success.
1775 static int init_phy(struct net_device
*dev
)
1777 struct gfar_private
*priv
= netdev_priv(dev
);
1778 uint gigabit_support
=
1779 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1780 GFAR_SUPPORTED_GBIT
: 0;
1781 phy_interface_t interface
;
1785 priv
->oldduplex
= -1;
1787 interface
= gfar_get_interface(dev
);
1789 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1791 if (!priv
->phydev
) {
1792 dev_err(&dev
->dev
, "could not attach to PHY\n");
1796 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1797 gfar_configure_serdes(dev
);
1799 /* Remove any features not supported by the controller */
1800 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1801 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1803 /* Add support for flow control, but don't advertise it by default */
1804 priv
->phydev
->supported
|= (SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
1809 /* Initialize TBI PHY interface for communicating with the
1810 * SERDES lynx PHY on the chip. We communicate with this PHY
1811 * through the MDIO bus on each controller, treating it as a
1812 * "normal" PHY at the address found in the TBIPA register. We assume
1813 * that the TBIPA register is valid. Either the MDIO bus code will set
1814 * it to a value that doesn't conflict with other PHYs on the bus, or the
1815 * value doesn't matter, as there are no other PHYs on the bus.
1817 static void gfar_configure_serdes(struct net_device
*dev
)
1819 struct gfar_private
*priv
= netdev_priv(dev
);
1820 struct phy_device
*tbiphy
;
1822 if (!priv
->tbi_node
) {
1823 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1824 "device tree specify a tbi-handle\n");
1828 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1830 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1834 /* If the link is already up, we must already be ok, and don't need to
1835 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1836 * everything for us? Resetting it takes the link down and requires
1837 * several seconds for it to come back.
1839 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
) {
1840 put_device(&tbiphy
->dev
);
1844 /* Single clk mode, mii mode off(for serdes communication) */
1845 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1847 phy_write(tbiphy
, MII_ADVERTISE
,
1848 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1849 ADVERTISE_1000XPSE_ASYM
);
1851 phy_write(tbiphy
, MII_BMCR
,
1852 BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_FULLDPLX
|
1855 put_device(&tbiphy
->dev
);
1858 static int __gfar_is_rx_idle(struct gfar_private
*priv
)
1862 /* Normaly TSEC should not hang on GRS commands, so we should
1863 * actually wait for IEVENT_GRSC flag.
1865 if (!gfar_has_errata(priv
, GFAR_ERRATA_A002
))
1868 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1869 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1870 * and the Rx can be safely reset.
1872 res
= gfar_read((void __iomem
*)priv
->gfargrp
[0].regs
+ 0xd1c);
1874 if ((res
& 0xffff) == (res
>> 16))
1880 /* Halt the receive and transmit queues */
1881 static void gfar_halt_nodisable(struct gfar_private
*priv
)
1883 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1885 unsigned int timeout
;
1888 gfar_ints_disable(priv
);
1890 if (gfar_is_dma_stopped(priv
))
1893 /* Stop the DMA, and wait for it to stop */
1894 tempval
= gfar_read(®s
->dmactrl
);
1895 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1896 gfar_write(®s
->dmactrl
, tempval
);
1900 while (!(stopped
= gfar_is_dma_stopped(priv
)) && timeout
) {
1906 stopped
= gfar_is_dma_stopped(priv
);
1908 if (!stopped
&& !gfar_is_rx_dma_stopped(priv
) &&
1909 !__gfar_is_rx_idle(priv
))
1913 /* Halt the receive and transmit queues */
1914 void gfar_halt(struct gfar_private
*priv
)
1916 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1919 /* Dissable the Rx/Tx hw queues */
1920 gfar_write(®s
->rqueue
, 0);
1921 gfar_write(®s
->tqueue
, 0);
1925 gfar_halt_nodisable(priv
);
1927 /* Disable Rx/Tx DMA */
1928 tempval
= gfar_read(®s
->maccfg1
);
1929 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1930 gfar_write(®s
->maccfg1
, tempval
);
1933 void stop_gfar(struct net_device
*dev
)
1935 struct gfar_private
*priv
= netdev_priv(dev
);
1937 netif_tx_stop_all_queues(dev
);
1939 smp_mb__before_atomic();
1940 set_bit(GFAR_DOWN
, &priv
->state
);
1941 smp_mb__after_atomic();
1945 /* disable ints and gracefully shut down Rx/Tx DMA */
1948 phy_stop(priv
->phydev
);
1950 free_skb_resources(priv
);
1953 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1955 struct txbd8
*txbdp
;
1956 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1959 txbdp
= tx_queue
->tx_bd_base
;
1961 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1962 if (!tx_queue
->tx_skbuff
[i
])
1965 dma_unmap_single(priv
->dev
, be32_to_cpu(txbdp
->bufPtr
),
1966 be16_to_cpu(txbdp
->length
), DMA_TO_DEVICE
);
1968 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1971 dma_unmap_page(priv
->dev
, be32_to_cpu(txbdp
->bufPtr
),
1972 be16_to_cpu(txbdp
->length
),
1976 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1977 tx_queue
->tx_skbuff
[i
] = NULL
;
1979 kfree(tx_queue
->tx_skbuff
);
1980 tx_queue
->tx_skbuff
= NULL
;
1983 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1987 struct rxbd8
*rxbdp
= rx_queue
->rx_bd_base
;
1990 dev_kfree_skb(rx_queue
->skb
);
1992 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1993 struct gfar_rx_buff
*rxb
= &rx_queue
->rx_buff
[i
];
2002 dma_unmap_single(rx_queue
->dev
, rxb
->dma
,
2003 PAGE_SIZE
, DMA_FROM_DEVICE
);
2004 __free_page(rxb
->page
);
2009 kfree(rx_queue
->rx_buff
);
2010 rx_queue
->rx_buff
= NULL
;
2013 /* If there are any tx skbs or rx skbs still around, free them.
2014 * Then free tx_skbuff and rx_skbuff
2016 static void free_skb_resources(struct gfar_private
*priv
)
2018 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2019 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2022 /* Go through all the buffer descriptors and free their data buffers */
2023 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
2024 struct netdev_queue
*txq
;
2026 tx_queue
= priv
->tx_queue
[i
];
2027 txq
= netdev_get_tx_queue(tx_queue
->dev
, tx_queue
->qindex
);
2028 if (tx_queue
->tx_skbuff
)
2029 free_skb_tx_queue(tx_queue
);
2030 netdev_tx_reset_queue(txq
);
2033 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
2034 rx_queue
= priv
->rx_queue
[i
];
2035 if (rx_queue
->rx_buff
)
2036 free_skb_rx_queue(rx_queue
);
2039 dma_free_coherent(priv
->dev
,
2040 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
2041 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
2042 priv
->tx_queue
[0]->tx_bd_base
,
2043 priv
->tx_queue
[0]->tx_bd_dma_base
);
2046 void gfar_start(struct gfar_private
*priv
)
2048 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2052 /* Enable Rx/Tx hw queues */
2053 gfar_write(®s
->rqueue
, priv
->rqueue
);
2054 gfar_write(®s
->tqueue
, priv
->tqueue
);
2056 /* Initialize DMACTRL to have WWR and WOP */
2057 tempval
= gfar_read(®s
->dmactrl
);
2058 tempval
|= DMACTRL_INIT_SETTINGS
;
2059 gfar_write(®s
->dmactrl
, tempval
);
2061 /* Make sure we aren't stopped */
2062 tempval
= gfar_read(®s
->dmactrl
);
2063 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
2064 gfar_write(®s
->dmactrl
, tempval
);
2066 for (i
= 0; i
< priv
->num_grps
; i
++) {
2067 regs
= priv
->gfargrp
[i
].regs
;
2068 /* Clear THLT/RHLT, so that the DMA starts polling now */
2069 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
2070 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
2073 /* Enable Rx/Tx DMA */
2074 tempval
= gfar_read(®s
->maccfg1
);
2075 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
2076 gfar_write(®s
->maccfg1
, tempval
);
2078 gfar_ints_enable(priv
);
2080 priv
->ndev
->trans_start
= jiffies
; /* prevent tx timeout */
2083 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
2085 free_irq(gfar_irq(grp
, TX
)->irq
, grp
);
2086 free_irq(gfar_irq(grp
, RX
)->irq
, grp
);
2087 free_irq(gfar_irq(grp
, ER
)->irq
, grp
);
2090 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
2092 struct gfar_private
*priv
= grp
->priv
;
2093 struct net_device
*dev
= priv
->ndev
;
2096 /* If the device has multiple interrupts, register for
2097 * them. Otherwise, only register for the one
2099 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2100 /* Install our interrupt handlers for Error,
2101 * Transmit, and Receive
2103 err
= request_irq(gfar_irq(grp
, ER
)->irq
, gfar_error
, 0,
2104 gfar_irq(grp
, ER
)->name
, grp
);
2106 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2107 gfar_irq(grp
, ER
)->irq
);
2111 enable_irq_wake(gfar_irq(grp
, ER
)->irq
);
2113 err
= request_irq(gfar_irq(grp
, TX
)->irq
, gfar_transmit
, 0,
2114 gfar_irq(grp
, TX
)->name
, grp
);
2116 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2117 gfar_irq(grp
, TX
)->irq
);
2120 err
= request_irq(gfar_irq(grp
, RX
)->irq
, gfar_receive
, 0,
2121 gfar_irq(grp
, RX
)->name
, grp
);
2123 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2124 gfar_irq(grp
, RX
)->irq
);
2127 enable_irq_wake(gfar_irq(grp
, RX
)->irq
);
2130 err
= request_irq(gfar_irq(grp
, TX
)->irq
, gfar_interrupt
, 0,
2131 gfar_irq(grp
, TX
)->name
, grp
);
2133 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2134 gfar_irq(grp
, TX
)->irq
);
2137 enable_irq_wake(gfar_irq(grp
, TX
)->irq
);
2143 free_irq(gfar_irq(grp
, TX
)->irq
, grp
);
2145 free_irq(gfar_irq(grp
, ER
)->irq
, grp
);
2151 static void gfar_free_irq(struct gfar_private
*priv
)
2156 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2157 for (i
= 0; i
< priv
->num_grps
; i
++)
2158 free_grp_irqs(&priv
->gfargrp
[i
]);
2160 for (i
= 0; i
< priv
->num_grps
; i
++)
2161 free_irq(gfar_irq(&priv
->gfargrp
[i
], TX
)->irq
,
2166 static int gfar_request_irq(struct gfar_private
*priv
)
2170 for (i
= 0; i
< priv
->num_grps
; i
++) {
2171 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
2173 for (j
= 0; j
< i
; j
++)
2174 free_grp_irqs(&priv
->gfargrp
[j
]);
2182 /* Bring the controller up and running */
2183 int startup_gfar(struct net_device
*ndev
)
2185 struct gfar_private
*priv
= netdev_priv(ndev
);
2188 gfar_mac_reset(priv
);
2190 err
= gfar_alloc_skb_resources(ndev
);
2194 gfar_init_tx_rx_base(priv
);
2196 smp_mb__before_atomic();
2197 clear_bit(GFAR_DOWN
, &priv
->state
);
2198 smp_mb__after_atomic();
2200 /* Start Rx/Tx DMA and enable the interrupts */
2203 /* force link state update after mac reset */
2206 priv
->oldduplex
= -1;
2208 phy_start(priv
->phydev
);
2212 netif_tx_wake_all_queues(ndev
);
2217 /* Called when something needs to use the ethernet device
2218 * Returns 0 for success.
2220 static int gfar_enet_open(struct net_device
*dev
)
2222 struct gfar_private
*priv
= netdev_priv(dev
);
2225 err
= init_phy(dev
);
2229 err
= gfar_request_irq(priv
);
2233 err
= startup_gfar(dev
);
2240 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
2242 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
2244 memset(fcb
, 0, GMAC_FCB_LEN
);
2249 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
,
2252 /* If we're here, it's a IP packet with a TCP or UDP
2253 * payload. We set it to checksum, using a pseudo-header
2256 u8 flags
= TXFCB_DEFAULT
;
2258 /* Tell the controller what the protocol is
2259 * And provide the already calculated phcs
2261 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
2263 fcb
->phcs
= (__force __be16
)(udp_hdr(skb
)->check
);
2265 fcb
->phcs
= (__force __be16
)(tcp_hdr(skb
)->check
);
2267 /* l3os is the distance between the start of the
2268 * frame (skb->data) and the start of the IP hdr.
2269 * l4os is the distance between the start of the
2270 * l3 hdr and the l4 hdr
2272 fcb
->l3os
= (u8
)(skb_network_offset(skb
) - fcb_length
);
2273 fcb
->l4os
= skb_network_header_len(skb
);
2278 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
2280 fcb
->flags
|= TXFCB_VLN
;
2281 fcb
->vlctl
= cpu_to_be16(skb_vlan_tag_get(skb
));
2284 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
2285 struct txbd8
*base
, int ring_size
)
2287 struct txbd8
*new_bd
= bdp
+ stride
;
2289 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
2292 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
2295 return skip_txbd(bdp
, 1, base
, ring_size
);
2298 /* eTSEC12: csum generation not supported for some fcb offsets */
2299 static inline bool gfar_csum_errata_12(struct gfar_private
*priv
,
2300 unsigned long fcb_addr
)
2302 return (gfar_has_errata(priv
, GFAR_ERRATA_12
) &&
2303 (fcb_addr
% 0x20) > 0x18);
2306 /* eTSEC76: csum generation for frames larger than 2500 may
2307 * cause excess delays before start of transmission
2309 static inline bool gfar_csum_errata_76(struct gfar_private
*priv
,
2312 return (gfar_has_errata(priv
, GFAR_ERRATA_76
) &&
2316 /* This is called by the kernel when a frame is ready for transmission.
2317 * It is pointed to by the dev->hard_start_xmit function pointer
2319 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2321 struct gfar_private
*priv
= netdev_priv(dev
);
2322 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2323 struct netdev_queue
*txq
;
2324 struct gfar __iomem
*regs
= NULL
;
2325 struct txfcb
*fcb
= NULL
;
2326 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
2329 int do_tstamp
, do_csum
, do_vlan
;
2331 unsigned int nr_frags
, nr_txbds
, bytes_sent
, fcb_len
= 0;
2333 rq
= skb
->queue_mapping
;
2334 tx_queue
= priv
->tx_queue
[rq
];
2335 txq
= netdev_get_tx_queue(dev
, rq
);
2336 base
= tx_queue
->tx_bd_base
;
2337 regs
= tx_queue
->grp
->regs
;
2339 do_csum
= (CHECKSUM_PARTIAL
== skb
->ip_summed
);
2340 do_vlan
= skb_vlan_tag_present(skb
);
2341 do_tstamp
= (skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
2344 if (do_csum
|| do_vlan
)
2345 fcb_len
= GMAC_FCB_LEN
;
2347 /* check if time stamp should be generated */
2348 if (unlikely(do_tstamp
))
2349 fcb_len
= GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
;
2351 /* make space for additional header when fcb is needed */
2352 if (fcb_len
&& unlikely(skb_headroom(skb
) < fcb_len
)) {
2353 struct sk_buff
*skb_new
;
2355 skb_new
= skb_realloc_headroom(skb
, fcb_len
);
2357 dev
->stats
.tx_errors
++;
2358 dev_kfree_skb_any(skb
);
2359 return NETDEV_TX_OK
;
2363 skb_set_owner_w(skb_new
, skb
->sk
);
2364 dev_consume_skb_any(skb
);
2368 /* total number of fragments in the SKB */
2369 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2371 /* calculate the required number of TxBDs for this skb */
2372 if (unlikely(do_tstamp
))
2373 nr_txbds
= nr_frags
+ 2;
2375 nr_txbds
= nr_frags
+ 1;
2377 /* check if there is space to queue this packet */
2378 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2379 /* no space, stop the queue */
2380 netif_tx_stop_queue(txq
);
2381 dev
->stats
.tx_fifo_errors
++;
2382 return NETDEV_TX_BUSY
;
2385 /* Update transmit stats */
2386 bytes_sent
= skb
->len
;
2387 tx_queue
->stats
.tx_bytes
+= bytes_sent
;
2388 /* keep Tx bytes on wire for BQL accounting */
2389 GFAR_CB(skb
)->bytes_sent
= bytes_sent
;
2390 tx_queue
->stats
.tx_packets
++;
2392 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2393 lstatus
= be32_to_cpu(txbdp
->lstatus
);
2395 /* Time stamp insertion requires one additional TxBD */
2396 if (unlikely(do_tstamp
))
2397 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2398 tx_queue
->tx_ring_size
);
2400 if (nr_frags
== 0) {
2401 if (unlikely(do_tstamp
)) {
2402 u32 lstatus_ts
= be32_to_cpu(txbdp_tstamp
->lstatus
);
2404 lstatus_ts
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2405 txbdp_tstamp
->lstatus
= cpu_to_be32(lstatus_ts
);
2407 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2410 /* Place the fragment addresses and lengths into the TxBDs */
2411 for (i
= 0; i
< nr_frags
; i
++) {
2412 unsigned int frag_len
;
2413 /* Point at the next BD, wrapping as needed */
2414 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2416 frag_len
= skb_shinfo(skb
)->frags
[i
].size
;
2418 lstatus
= be32_to_cpu(txbdp
->lstatus
) | frag_len
|
2419 BD_LFLAG(TXBD_READY
);
2421 /* Handle the last BD specially */
2422 if (i
== nr_frags
- 1)
2423 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2425 bufaddr
= skb_frag_dma_map(priv
->dev
,
2426 &skb_shinfo(skb
)->frags
[i
],
2430 if (unlikely(dma_mapping_error(priv
->dev
, bufaddr
)))
2433 /* set the TxBD length and buffer pointer */
2434 txbdp
->bufPtr
= cpu_to_be32(bufaddr
);
2435 txbdp
->lstatus
= cpu_to_be32(lstatus
);
2438 lstatus
= be32_to_cpu(txbdp_start
->lstatus
);
2441 /* Add TxPAL between FCB and frame if required */
2442 if (unlikely(do_tstamp
)) {
2443 skb_push(skb
, GMAC_TXPAL_LEN
);
2444 memset(skb
->data
, 0, GMAC_TXPAL_LEN
);
2447 /* Add TxFCB if required */
2449 fcb
= gfar_add_fcb(skb
);
2450 lstatus
|= BD_LFLAG(TXBD_TOE
);
2453 /* Set up checksumming */
2455 gfar_tx_checksum(skb
, fcb
, fcb_len
);
2457 if (unlikely(gfar_csum_errata_12(priv
, (unsigned long)fcb
)) ||
2458 unlikely(gfar_csum_errata_76(priv
, skb
->len
))) {
2459 __skb_pull(skb
, GMAC_FCB_LEN
);
2460 skb_checksum_help(skb
);
2461 if (do_vlan
|| do_tstamp
) {
2462 /* put back a new fcb for vlan/tstamp TOE */
2463 fcb
= gfar_add_fcb(skb
);
2465 /* Tx TOE not used */
2466 lstatus
&= ~(BD_LFLAG(TXBD_TOE
));
2473 gfar_tx_vlan(skb
, fcb
);
2475 /* Setup tx hardware time stamping if requested */
2476 if (unlikely(do_tstamp
)) {
2477 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2481 bufaddr
= dma_map_single(priv
->dev
, skb
->data
, skb_headlen(skb
),
2483 if (unlikely(dma_mapping_error(priv
->dev
, bufaddr
)))
2486 txbdp_start
->bufPtr
= cpu_to_be32(bufaddr
);
2488 /* If time stamping is requested one additional TxBD must be set up. The
2489 * first TxBD points to the FCB and must have a data length of
2490 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2491 * the full frame length.
2493 if (unlikely(do_tstamp
)) {
2494 u32 lstatus_ts
= be32_to_cpu(txbdp_tstamp
->lstatus
);
2496 bufaddr
= be32_to_cpu(txbdp_start
->bufPtr
);
2498 lstatus_ts
|= BD_LFLAG(TXBD_READY
) |
2499 (skb_headlen(skb
) - fcb_len
);
2501 txbdp_tstamp
->bufPtr
= cpu_to_be32(bufaddr
);
2502 txbdp_tstamp
->lstatus
= cpu_to_be32(lstatus_ts
);
2503 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2505 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2508 netdev_tx_sent_queue(txq
, bytes_sent
);
2512 txbdp_start
->lstatus
= cpu_to_be32(lstatus
);
2514 gfar_wmb(); /* force lstatus write before tx_skbuff */
2516 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2518 /* Update the current skb pointer to the next entry we will use
2519 * (wrapping if necessary)
2521 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2522 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2524 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2526 /* We can work in parallel with gfar_clean_tx_ring(), except
2527 * when modifying num_txbdfree. Note that we didn't grab the lock
2528 * when we were reading the num_txbdfree and checking for available
2529 * space, that's because outside of this function it can only grow.
2531 spin_lock_bh(&tx_queue
->txlock
);
2532 /* reduce TxBD free count */
2533 tx_queue
->num_txbdfree
-= (nr_txbds
);
2534 spin_unlock_bh(&tx_queue
->txlock
);
2536 /* If the next BD still needs to be cleaned up, then the bds
2537 * are full. We need to tell the kernel to stop sending us stuff.
2539 if (!tx_queue
->num_txbdfree
) {
2540 netif_tx_stop_queue(txq
);
2542 dev
->stats
.tx_fifo_errors
++;
2545 /* Tell the DMA to go go go */
2546 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2548 return NETDEV_TX_OK
;
2551 txbdp
= next_txbd(txbdp_start
, base
, tx_queue
->tx_ring_size
);
2553 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2554 for (i
= 0; i
< nr_frags
; i
++) {
2555 lstatus
= be32_to_cpu(txbdp
->lstatus
);
2556 if (!(lstatus
& BD_LFLAG(TXBD_READY
)))
2559 lstatus
&= ~BD_LFLAG(TXBD_READY
);
2560 txbdp
->lstatus
= cpu_to_be32(lstatus
);
2561 bufaddr
= be32_to_cpu(txbdp
->bufPtr
);
2562 dma_unmap_page(priv
->dev
, bufaddr
, be16_to_cpu(txbdp
->length
),
2564 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2567 dev_kfree_skb_any(skb
);
2568 return NETDEV_TX_OK
;
2571 /* Stops the kernel queue, and halts the controller */
2572 static int gfar_close(struct net_device
*dev
)
2574 struct gfar_private
*priv
= netdev_priv(dev
);
2576 cancel_work_sync(&priv
->reset_task
);
2579 /* Disconnect from the PHY */
2580 phy_disconnect(priv
->phydev
);
2581 priv
->phydev
= NULL
;
2583 gfar_free_irq(priv
);
2588 /* Changes the mac address if the controller is not running. */
2589 static int gfar_set_mac_address(struct net_device
*dev
)
2591 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2596 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2598 struct gfar_private
*priv
= netdev_priv(dev
);
2599 int frame_size
= new_mtu
+ ETH_HLEN
;
2601 if ((frame_size
< 64) || (frame_size
> GFAR_JUMBO_FRAME_SIZE
)) {
2602 netif_err(priv
, drv
, dev
, "Invalid MTU setting\n");
2606 while (test_and_set_bit_lock(GFAR_RESETTING
, &priv
->state
))
2609 if (dev
->flags
& IFF_UP
)
2614 if (dev
->flags
& IFF_UP
)
2617 clear_bit_unlock(GFAR_RESETTING
, &priv
->state
);
2622 void reset_gfar(struct net_device
*ndev
)
2624 struct gfar_private
*priv
= netdev_priv(ndev
);
2626 while (test_and_set_bit_lock(GFAR_RESETTING
, &priv
->state
))
2632 clear_bit_unlock(GFAR_RESETTING
, &priv
->state
);
2635 /* gfar_reset_task gets scheduled when a packet has not been
2636 * transmitted after a set amount of time.
2637 * For now, assume that clearing out all the structures, and
2638 * starting over will fix the problem.
2640 static void gfar_reset_task(struct work_struct
*work
)
2642 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2644 reset_gfar(priv
->ndev
);
2647 static void gfar_timeout(struct net_device
*dev
)
2649 struct gfar_private
*priv
= netdev_priv(dev
);
2651 dev
->stats
.tx_errors
++;
2652 schedule_work(&priv
->reset_task
);
2655 /* Interrupt Handler for Transmit complete */
2656 static void gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2658 struct net_device
*dev
= tx_queue
->dev
;
2659 struct netdev_queue
*txq
;
2660 struct gfar_private
*priv
= netdev_priv(dev
);
2661 struct txbd8
*bdp
, *next
= NULL
;
2662 struct txbd8
*lbdp
= NULL
;
2663 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2664 struct sk_buff
*skb
;
2666 int tx_ring_size
= tx_queue
->tx_ring_size
;
2667 int frags
= 0, nr_txbds
= 0;
2670 int tqi
= tx_queue
->qindex
;
2671 unsigned int bytes_sent
= 0;
2675 txq
= netdev_get_tx_queue(dev
, tqi
);
2676 bdp
= tx_queue
->dirty_tx
;
2677 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2679 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2681 frags
= skb_shinfo(skb
)->nr_frags
;
2683 /* When time stamping, one additional TxBD must be freed.
2684 * Also, we need to dma_unmap_single() the TxPAL.
2686 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2687 nr_txbds
= frags
+ 2;
2689 nr_txbds
= frags
+ 1;
2691 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2693 lstatus
= be32_to_cpu(lbdp
->lstatus
);
2695 /* Only clean completed frames */
2696 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2697 (lstatus
& BD_LENGTH_MASK
))
2700 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2701 next
= next_txbd(bdp
, base
, tx_ring_size
);
2702 buflen
= be16_to_cpu(next
->length
) +
2703 GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
;
2705 buflen
= be16_to_cpu(bdp
->length
);
2707 dma_unmap_single(priv
->dev
, be32_to_cpu(bdp
->bufPtr
),
2708 buflen
, DMA_TO_DEVICE
);
2710 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2711 struct skb_shared_hwtstamps shhwtstamps
;
2712 u64
*ns
= (u64
*)(((uintptr_t)skb
->data
+ 0x10) &
2715 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2716 shhwtstamps
.hwtstamp
= ns_to_ktime(*ns
);
2717 skb_pull(skb
, GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
);
2718 skb_tstamp_tx(skb
, &shhwtstamps
);
2719 gfar_clear_txbd_status(bdp
);
2723 gfar_clear_txbd_status(bdp
);
2724 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2726 for (i
= 0; i
< frags
; i
++) {
2727 dma_unmap_page(priv
->dev
, be32_to_cpu(bdp
->bufPtr
),
2728 be16_to_cpu(bdp
->length
),
2730 gfar_clear_txbd_status(bdp
);
2731 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2734 bytes_sent
+= GFAR_CB(skb
)->bytes_sent
;
2736 dev_kfree_skb_any(skb
);
2738 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2740 skb_dirtytx
= (skb_dirtytx
+ 1) &
2741 TX_RING_MOD_MASK(tx_ring_size
);
2744 spin_lock(&tx_queue
->txlock
);
2745 tx_queue
->num_txbdfree
+= nr_txbds
;
2746 spin_unlock(&tx_queue
->txlock
);
2749 /* If we freed a buffer, we can restart transmission, if necessary */
2750 if (tx_queue
->num_txbdfree
&&
2751 netif_tx_queue_stopped(txq
) &&
2752 !(test_bit(GFAR_DOWN
, &priv
->state
)))
2753 netif_wake_subqueue(priv
->ndev
, tqi
);
2755 /* Update dirty indicators */
2756 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2757 tx_queue
->dirty_tx
= bdp
;
2759 netdev_tx_completed_queue(txq
, howmany
, bytes_sent
);
2762 static bool gfar_new_page(struct gfar_priv_rx_q
*rxq
, struct gfar_rx_buff
*rxb
)
2767 page
= dev_alloc_page();
2768 if (unlikely(!page
))
2771 addr
= dma_map_page(rxq
->dev
, page
, 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
2772 if (unlikely(dma_mapping_error(rxq
->dev
, addr
))) {
2780 rxb
->page_offset
= 0;
2785 static void gfar_rx_alloc_err(struct gfar_priv_rx_q
*rx_queue
)
2787 struct gfar_private
*priv
= netdev_priv(rx_queue
->ndev
);
2788 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2790 netdev_err(rx_queue
->ndev
, "Can't alloc RX buffers\n");
2791 atomic64_inc(&estats
->rx_alloc_err
);
2794 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q
*rx_queue
,
2798 struct gfar_rx_buff
*rxb
;
2801 i
= rx_queue
->next_to_use
;
2802 bdp
= &rx_queue
->rx_bd_base
[i
];
2803 rxb
= &rx_queue
->rx_buff
[i
];
2805 while (alloc_cnt
--) {
2806 /* try reuse page */
2807 if (unlikely(!rxb
->page
)) {
2808 if (unlikely(!gfar_new_page(rx_queue
, rxb
))) {
2809 gfar_rx_alloc_err(rx_queue
);
2814 /* Setup the new RxBD */
2815 gfar_init_rxbdp(rx_queue
, bdp
,
2816 rxb
->dma
+ rxb
->page_offset
+ RXBUF_ALIGNMENT
);
2818 /* Update to the next pointer */
2822 if (unlikely(++i
== rx_queue
->rx_ring_size
)) {
2824 bdp
= rx_queue
->rx_bd_base
;
2825 rxb
= rx_queue
->rx_buff
;
2829 rx_queue
->next_to_use
= i
;
2830 rx_queue
->next_to_alloc
= i
;
2833 static void count_errors(u32 lstatus
, struct net_device
*ndev
)
2835 struct gfar_private
*priv
= netdev_priv(ndev
);
2836 struct net_device_stats
*stats
= &ndev
->stats
;
2837 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2839 /* If the packet was truncated, none of the other errors matter */
2840 if (lstatus
& BD_LFLAG(RXBD_TRUNCATED
)) {
2841 stats
->rx_length_errors
++;
2843 atomic64_inc(&estats
->rx_trunc
);
2847 /* Count the errors, if there were any */
2848 if (lstatus
& BD_LFLAG(RXBD_LARGE
| RXBD_SHORT
)) {
2849 stats
->rx_length_errors
++;
2851 if (lstatus
& BD_LFLAG(RXBD_LARGE
))
2852 atomic64_inc(&estats
->rx_large
);
2854 atomic64_inc(&estats
->rx_short
);
2856 if (lstatus
& BD_LFLAG(RXBD_NONOCTET
)) {
2857 stats
->rx_frame_errors
++;
2858 atomic64_inc(&estats
->rx_nonoctet
);
2860 if (lstatus
& BD_LFLAG(RXBD_CRCERR
)) {
2861 atomic64_inc(&estats
->rx_crcerr
);
2862 stats
->rx_crc_errors
++;
2864 if (lstatus
& BD_LFLAG(RXBD_OVERRUN
)) {
2865 atomic64_inc(&estats
->rx_overrun
);
2866 stats
->rx_over_errors
++;
2870 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2872 struct gfar_priv_grp
*grp
= (struct gfar_priv_grp
*)grp_id
;
2873 unsigned long flags
;
2876 ievent
= gfar_read(&grp
->regs
->ievent
);
2878 if (unlikely(ievent
& IEVENT_FGPI
)) {
2879 gfar_write(&grp
->regs
->ievent
, IEVENT_FGPI
);
2883 if (likely(napi_schedule_prep(&grp
->napi_rx
))) {
2884 spin_lock_irqsave(&grp
->grplock
, flags
);
2885 imask
= gfar_read(&grp
->regs
->imask
);
2886 imask
&= IMASK_RX_DISABLED
;
2887 gfar_write(&grp
->regs
->imask
, imask
);
2888 spin_unlock_irqrestore(&grp
->grplock
, flags
);
2889 __napi_schedule(&grp
->napi_rx
);
2891 /* Clear IEVENT, so interrupts aren't called again
2892 * because of the packets that have already arrived.
2894 gfar_write(&grp
->regs
->ievent
, IEVENT_RX_MASK
);
2900 /* Interrupt Handler for Transmit complete */
2901 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2903 struct gfar_priv_grp
*grp
= (struct gfar_priv_grp
*)grp_id
;
2904 unsigned long flags
;
2907 if (likely(napi_schedule_prep(&grp
->napi_tx
))) {
2908 spin_lock_irqsave(&grp
->grplock
, flags
);
2909 imask
= gfar_read(&grp
->regs
->imask
);
2910 imask
&= IMASK_TX_DISABLED
;
2911 gfar_write(&grp
->regs
->imask
, imask
);
2912 spin_unlock_irqrestore(&grp
->grplock
, flags
);
2913 __napi_schedule(&grp
->napi_tx
);
2915 /* Clear IEVENT, so interrupts aren't called again
2916 * because of the packets that have already arrived.
2918 gfar_write(&grp
->regs
->ievent
, IEVENT_TX_MASK
);
2924 static bool gfar_add_rx_frag(struct gfar_rx_buff
*rxb
, u32 lstatus
,
2925 struct sk_buff
*skb
, bool first
)
2927 unsigned int size
= lstatus
& BD_LENGTH_MASK
;
2928 struct page
*page
= rxb
->page
;
2930 /* Remove the FCS from the packet length */
2931 if (likely(lstatus
& BD_LFLAG(RXBD_LAST
)))
2932 size
-= ETH_FCS_LEN
;
2937 skb_add_rx_frag(skb
, skb_shinfo(skb
)->nr_frags
, page
,
2938 rxb
->page_offset
+ RXBUF_ALIGNMENT
,
2939 size
, GFAR_RXB_TRUESIZE
);
2941 /* try reuse page */
2942 if (unlikely(page_count(page
) != 1))
2945 /* change offset to the other half */
2946 rxb
->page_offset
^= GFAR_RXB_TRUESIZE
;
2948 atomic_inc(&page
->_count
);
2953 static void gfar_reuse_rx_page(struct gfar_priv_rx_q
*rxq
,
2954 struct gfar_rx_buff
*old_rxb
)
2956 struct gfar_rx_buff
*new_rxb
;
2957 u16 nta
= rxq
->next_to_alloc
;
2959 new_rxb
= &rxq
->rx_buff
[nta
];
2961 /* find next buf that can reuse a page */
2963 rxq
->next_to_alloc
= (nta
< rxq
->rx_ring_size
) ? nta
: 0;
2965 /* copy page reference */
2966 *new_rxb
= *old_rxb
;
2968 /* sync for use by the device */
2969 dma_sync_single_range_for_device(rxq
->dev
, old_rxb
->dma
,
2970 old_rxb
->page_offset
,
2971 GFAR_RXB_TRUESIZE
, DMA_FROM_DEVICE
);
2974 static struct sk_buff
*gfar_get_next_rxbuff(struct gfar_priv_rx_q
*rx_queue
,
2975 u32 lstatus
, struct sk_buff
*skb
)
2977 struct gfar_rx_buff
*rxb
= &rx_queue
->rx_buff
[rx_queue
->next_to_clean
];
2978 struct page
*page
= rxb
->page
;
2982 void *buff_addr
= page_address(page
) + rxb
->page_offset
;
2984 skb
= build_skb(buff_addr
, GFAR_SKBFRAG_SIZE
);
2985 if (unlikely(!skb
)) {
2986 gfar_rx_alloc_err(rx_queue
);
2989 skb_reserve(skb
, RXBUF_ALIGNMENT
);
2993 dma_sync_single_range_for_cpu(rx_queue
->dev
, rxb
->dma
, rxb
->page_offset
,
2994 GFAR_RXB_TRUESIZE
, DMA_FROM_DEVICE
);
2996 if (gfar_add_rx_frag(rxb
, lstatus
, skb
, first
)) {
2997 /* reuse the free half of the page */
2998 gfar_reuse_rx_page(rx_queue
, rxb
);
3000 /* page cannot be reused, unmap it */
3001 dma_unmap_page(rx_queue
->dev
, rxb
->dma
,
3002 PAGE_SIZE
, DMA_FROM_DEVICE
);
3005 /* clear rxb content */
3011 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
3013 /* If valid headers were found, and valid sums
3014 * were verified, then we tell the kernel that no
3015 * checksumming is necessary. Otherwise, it is [FIXME]
3017 if ((be16_to_cpu(fcb
->flags
) & RXFCB_CSUM_MASK
) ==
3018 (RXFCB_CIP
| RXFCB_CTU
))
3019 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3021 skb_checksum_none_assert(skb
);
3024 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3025 static void gfar_process_frame(struct net_device
*ndev
, struct sk_buff
*skb
)
3027 struct gfar_private
*priv
= netdev_priv(ndev
);
3028 struct rxfcb
*fcb
= NULL
;
3030 /* fcb is at the beginning if exists */
3031 fcb
= (struct rxfcb
*)skb
->data
;
3033 /* Remove the FCB from the skb
3034 * Remove the padded bytes, if there are any
3036 if (priv
->uses_rxfcb
)
3037 skb_pull(skb
, GMAC_FCB_LEN
);
3039 /* Get receive timestamp from the skb */
3040 if (priv
->hwts_rx_en
) {
3041 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
3042 u64
*ns
= (u64
*) skb
->data
;
3044 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
3045 shhwtstamps
->hwtstamp
= ns_to_ktime(*ns
);
3049 skb_pull(skb
, priv
->padding
);
3051 if (ndev
->features
& NETIF_F_RXCSUM
)
3052 gfar_rx_checksum(skb
, fcb
);
3054 /* Tell the skb what kind of packet this is */
3055 skb
->protocol
= eth_type_trans(skb
, ndev
);
3057 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3058 * Even if vlan rx accel is disabled, on some chips
3059 * RXFCB_VLN is pseudo randomly set.
3061 if (ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
&&
3062 be16_to_cpu(fcb
->flags
) & RXFCB_VLN
)
3063 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
3064 be16_to_cpu(fcb
->vlctl
));
3067 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3068 * until the budget/quota has been reached. Returns the number
3071 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
3073 struct net_device
*ndev
= rx_queue
->ndev
;
3074 struct gfar_private
*priv
= netdev_priv(ndev
);
3077 struct sk_buff
*skb
= rx_queue
->skb
;
3078 int cleaned_cnt
= gfar_rxbd_unused(rx_queue
);
3079 unsigned int total_bytes
= 0, total_pkts
= 0;
3081 /* Get the first full descriptor */
3082 i
= rx_queue
->next_to_clean
;
3084 while (rx_work_limit
--) {
3087 if (cleaned_cnt
>= GFAR_RX_BUFF_ALLOC
) {
3088 gfar_alloc_rx_buffs(rx_queue
, cleaned_cnt
);
3092 bdp
= &rx_queue
->rx_bd_base
[i
];
3093 lstatus
= be32_to_cpu(bdp
->lstatus
);
3094 if (lstatus
& BD_LFLAG(RXBD_EMPTY
))
3097 /* order rx buffer descriptor reads */
3100 /* fetch next to clean buffer from the ring */
3101 skb
= gfar_get_next_rxbuff(rx_queue
, lstatus
, skb
);
3108 if (unlikely(++i
== rx_queue
->rx_ring_size
))
3111 rx_queue
->next_to_clean
= i
;
3113 /* fetch next buffer if not the last in frame */
3114 if (!(lstatus
& BD_LFLAG(RXBD_LAST
)))
3117 if (unlikely(lstatus
& BD_LFLAG(RXBD_ERR
))) {
3118 count_errors(lstatus
, ndev
);
3120 /* discard faulty buffer */
3123 rx_queue
->stats
.rx_dropped
++;
3127 /* Increment the number of packets */
3129 total_bytes
+= skb
->len
;
3131 skb_record_rx_queue(skb
, rx_queue
->qindex
);
3133 gfar_process_frame(ndev
, skb
);
3135 /* Send the packet up the stack */
3136 napi_gro_receive(&rx_queue
->grp
->napi_rx
, skb
);
3141 /* Store incomplete frames for completion */
3142 rx_queue
->skb
= skb
;
3144 rx_queue
->stats
.rx_packets
+= total_pkts
;
3145 rx_queue
->stats
.rx_bytes
+= total_bytes
;
3148 gfar_alloc_rx_buffs(rx_queue
, cleaned_cnt
);
3150 /* Update Last Free RxBD pointer for LFC */
3151 if (unlikely(priv
->tx_actual_en
)) {
3152 u32 bdp_dma
= gfar_rxbd_dma_lastfree(rx_queue
);
3154 gfar_write(rx_queue
->rfbptr
, bdp_dma
);
3160 static int gfar_poll_rx_sq(struct napi_struct
*napi
, int budget
)
3162 struct gfar_priv_grp
*gfargrp
=
3163 container_of(napi
, struct gfar_priv_grp
, napi_rx
);
3164 struct gfar __iomem
*regs
= gfargrp
->regs
;
3165 struct gfar_priv_rx_q
*rx_queue
= gfargrp
->rx_queue
;
3168 /* Clear IEVENT, so interrupts aren't called again
3169 * because of the packets that have already arrived
3171 gfar_write(®s
->ievent
, IEVENT_RX_MASK
);
3173 work_done
= gfar_clean_rx_ring(rx_queue
, budget
);
3175 if (work_done
< budget
) {
3177 napi_complete(napi
);
3178 /* Clear the halt bit in RSTAT */
3179 gfar_write(®s
->rstat
, gfargrp
->rstat
);
3181 spin_lock_irq(&gfargrp
->grplock
);
3182 imask
= gfar_read(®s
->imask
);
3183 imask
|= IMASK_RX_DEFAULT
;
3184 gfar_write(®s
->imask
, imask
);
3185 spin_unlock_irq(&gfargrp
->grplock
);
3191 static int gfar_poll_tx_sq(struct napi_struct
*napi
, int budget
)
3193 struct gfar_priv_grp
*gfargrp
=
3194 container_of(napi
, struct gfar_priv_grp
, napi_tx
);
3195 struct gfar __iomem
*regs
= gfargrp
->regs
;
3196 struct gfar_priv_tx_q
*tx_queue
= gfargrp
->tx_queue
;
3199 /* Clear IEVENT, so interrupts aren't called again
3200 * because of the packets that have already arrived
3202 gfar_write(®s
->ievent
, IEVENT_TX_MASK
);
3204 /* run Tx cleanup to completion */
3205 if (tx_queue
->tx_skbuff
[tx_queue
->skb_dirtytx
])
3206 gfar_clean_tx_ring(tx_queue
);
3208 napi_complete(napi
);
3210 spin_lock_irq(&gfargrp
->grplock
);
3211 imask
= gfar_read(®s
->imask
);
3212 imask
|= IMASK_TX_DEFAULT
;
3213 gfar_write(®s
->imask
, imask
);
3214 spin_unlock_irq(&gfargrp
->grplock
);
3219 static int gfar_poll_rx(struct napi_struct
*napi
, int budget
)
3221 struct gfar_priv_grp
*gfargrp
=
3222 container_of(napi
, struct gfar_priv_grp
, napi_rx
);
3223 struct gfar_private
*priv
= gfargrp
->priv
;
3224 struct gfar __iomem
*regs
= gfargrp
->regs
;
3225 struct gfar_priv_rx_q
*rx_queue
= NULL
;
3226 int work_done
= 0, work_done_per_q
= 0;
3227 int i
, budget_per_q
= 0;
3228 unsigned long rstat_rxf
;
3231 /* Clear IEVENT, so interrupts aren't called again
3232 * because of the packets that have already arrived
3234 gfar_write(®s
->ievent
, IEVENT_RX_MASK
);
3236 rstat_rxf
= gfar_read(®s
->rstat
) & RSTAT_RXF_MASK
;
3238 num_act_queues
= bitmap_weight(&rstat_rxf
, MAX_RX_QS
);
3240 budget_per_q
= budget
/num_act_queues
;
3242 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
3243 /* skip queue if not active */
3244 if (!(rstat_rxf
& (RSTAT_CLEAR_RXF0
>> i
)))
3247 rx_queue
= priv
->rx_queue
[i
];
3249 gfar_clean_rx_ring(rx_queue
, budget_per_q
);
3250 work_done
+= work_done_per_q
;
3252 /* finished processing this queue */
3253 if (work_done_per_q
< budget_per_q
) {
3254 /* clear active queue hw indication */
3255 gfar_write(®s
->rstat
,
3256 RSTAT_CLEAR_RXF0
>> i
);
3259 if (!num_act_queues
)
3264 if (!num_act_queues
) {
3266 napi_complete(napi
);
3268 /* Clear the halt bit in RSTAT */
3269 gfar_write(®s
->rstat
, gfargrp
->rstat
);
3271 spin_lock_irq(&gfargrp
->grplock
);
3272 imask
= gfar_read(®s
->imask
);
3273 imask
|= IMASK_RX_DEFAULT
;
3274 gfar_write(®s
->imask
, imask
);
3275 spin_unlock_irq(&gfargrp
->grplock
);
3281 static int gfar_poll_tx(struct napi_struct
*napi
, int budget
)
3283 struct gfar_priv_grp
*gfargrp
=
3284 container_of(napi
, struct gfar_priv_grp
, napi_tx
);
3285 struct gfar_private
*priv
= gfargrp
->priv
;
3286 struct gfar __iomem
*regs
= gfargrp
->regs
;
3287 struct gfar_priv_tx_q
*tx_queue
= NULL
;
3288 int has_tx_work
= 0;
3291 /* Clear IEVENT, so interrupts aren't called again
3292 * because of the packets that have already arrived
3294 gfar_write(®s
->ievent
, IEVENT_TX_MASK
);
3296 for_each_set_bit(i
, &gfargrp
->tx_bit_map
, priv
->num_tx_queues
) {
3297 tx_queue
= priv
->tx_queue
[i
];
3298 /* run Tx cleanup to completion */
3299 if (tx_queue
->tx_skbuff
[tx_queue
->skb_dirtytx
]) {
3300 gfar_clean_tx_ring(tx_queue
);
3307 napi_complete(napi
);
3309 spin_lock_irq(&gfargrp
->grplock
);
3310 imask
= gfar_read(®s
->imask
);
3311 imask
|= IMASK_TX_DEFAULT
;
3312 gfar_write(®s
->imask
, imask
);
3313 spin_unlock_irq(&gfargrp
->grplock
);
3320 #ifdef CONFIG_NET_POLL_CONTROLLER
3321 /* Polling 'interrupt' - used by things like netconsole to send skbs
3322 * without having to re-enable interrupts. It's not called while
3323 * the interrupt routine is executing.
3325 static void gfar_netpoll(struct net_device
*dev
)
3327 struct gfar_private
*priv
= netdev_priv(dev
);
3330 /* If the device has multiple interrupts, run tx/rx */
3331 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
3332 for (i
= 0; i
< priv
->num_grps
; i
++) {
3333 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
3335 disable_irq(gfar_irq(grp
, TX
)->irq
);
3336 disable_irq(gfar_irq(grp
, RX
)->irq
);
3337 disable_irq(gfar_irq(grp
, ER
)->irq
);
3338 gfar_interrupt(gfar_irq(grp
, TX
)->irq
, grp
);
3339 enable_irq(gfar_irq(grp
, ER
)->irq
);
3340 enable_irq(gfar_irq(grp
, RX
)->irq
);
3341 enable_irq(gfar_irq(grp
, TX
)->irq
);
3344 for (i
= 0; i
< priv
->num_grps
; i
++) {
3345 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
3347 disable_irq(gfar_irq(grp
, TX
)->irq
);
3348 gfar_interrupt(gfar_irq(grp
, TX
)->irq
, grp
);
3349 enable_irq(gfar_irq(grp
, TX
)->irq
);
3355 /* The interrupt handler for devices with one interrupt */
3356 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
3358 struct gfar_priv_grp
*gfargrp
= grp_id
;
3360 /* Save ievent for future reference */
3361 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
3363 /* Check for reception */
3364 if (events
& IEVENT_RX_MASK
)
3365 gfar_receive(irq
, grp_id
);
3367 /* Check for transmit completion */
3368 if (events
& IEVENT_TX_MASK
)
3369 gfar_transmit(irq
, grp_id
);
3371 /* Check for errors */
3372 if (events
& IEVENT_ERR_MASK
)
3373 gfar_error(irq
, grp_id
);
3378 /* Called every time the controller might need to be made
3379 * aware of new link state. The PHY code conveys this
3380 * information through variables in the phydev structure, and this
3381 * function converts those variables into the appropriate
3382 * register values, and can bring down the device if needed.
3384 static void adjust_link(struct net_device
*dev
)
3386 struct gfar_private
*priv
= netdev_priv(dev
);
3387 struct phy_device
*phydev
= priv
->phydev
;
3389 if (unlikely(phydev
->link
!= priv
->oldlink
||
3390 (phydev
->link
&& (phydev
->duplex
!= priv
->oldduplex
||
3391 phydev
->speed
!= priv
->oldspeed
))))
3392 gfar_update_link_state(priv
);
3395 /* Update the hash table based on the current list of multicast
3396 * addresses we subscribe to. Also, change the promiscuity of
3397 * the device based on the flags (this function is called
3398 * whenever dev->flags is changed
3400 static void gfar_set_multi(struct net_device
*dev
)
3402 struct netdev_hw_addr
*ha
;
3403 struct gfar_private
*priv
= netdev_priv(dev
);
3404 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3407 if (dev
->flags
& IFF_PROMISC
) {
3408 /* Set RCTRL to PROM */
3409 tempval
= gfar_read(®s
->rctrl
);
3410 tempval
|= RCTRL_PROM
;
3411 gfar_write(®s
->rctrl
, tempval
);
3413 /* Set RCTRL to not PROM */
3414 tempval
= gfar_read(®s
->rctrl
);
3415 tempval
&= ~(RCTRL_PROM
);
3416 gfar_write(®s
->rctrl
, tempval
);
3419 if (dev
->flags
& IFF_ALLMULTI
) {
3420 /* Set the hash to rx all multicast frames */
3421 gfar_write(®s
->igaddr0
, 0xffffffff);
3422 gfar_write(®s
->igaddr1
, 0xffffffff);
3423 gfar_write(®s
->igaddr2
, 0xffffffff);
3424 gfar_write(®s
->igaddr3
, 0xffffffff);
3425 gfar_write(®s
->igaddr4
, 0xffffffff);
3426 gfar_write(®s
->igaddr5
, 0xffffffff);
3427 gfar_write(®s
->igaddr6
, 0xffffffff);
3428 gfar_write(®s
->igaddr7
, 0xffffffff);
3429 gfar_write(®s
->gaddr0
, 0xffffffff);
3430 gfar_write(®s
->gaddr1
, 0xffffffff);
3431 gfar_write(®s
->gaddr2
, 0xffffffff);
3432 gfar_write(®s
->gaddr3
, 0xffffffff);
3433 gfar_write(®s
->gaddr4
, 0xffffffff);
3434 gfar_write(®s
->gaddr5
, 0xffffffff);
3435 gfar_write(®s
->gaddr6
, 0xffffffff);
3436 gfar_write(®s
->gaddr7
, 0xffffffff);
3441 /* zero out the hash */
3442 gfar_write(®s
->igaddr0
, 0x0);
3443 gfar_write(®s
->igaddr1
, 0x0);
3444 gfar_write(®s
->igaddr2
, 0x0);
3445 gfar_write(®s
->igaddr3
, 0x0);
3446 gfar_write(®s
->igaddr4
, 0x0);
3447 gfar_write(®s
->igaddr5
, 0x0);
3448 gfar_write(®s
->igaddr6
, 0x0);
3449 gfar_write(®s
->igaddr7
, 0x0);
3450 gfar_write(®s
->gaddr0
, 0x0);
3451 gfar_write(®s
->gaddr1
, 0x0);
3452 gfar_write(®s
->gaddr2
, 0x0);
3453 gfar_write(®s
->gaddr3
, 0x0);
3454 gfar_write(®s
->gaddr4
, 0x0);
3455 gfar_write(®s
->gaddr5
, 0x0);
3456 gfar_write(®s
->gaddr6
, 0x0);
3457 gfar_write(®s
->gaddr7
, 0x0);
3459 /* If we have extended hash tables, we need to
3460 * clear the exact match registers to prepare for
3463 if (priv
->extended_hash
) {
3464 em_num
= GFAR_EM_NUM
+ 1;
3465 gfar_clear_exact_match(dev
);
3472 if (netdev_mc_empty(dev
))
3475 /* Parse the list, and set the appropriate bits */
3476 netdev_for_each_mc_addr(ha
, dev
) {
3478 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
3481 gfar_set_hash_for_addr(dev
, ha
->addr
);
3487 /* Clears each of the exact match registers to zero, so they
3488 * don't interfere with normal reception
3490 static void gfar_clear_exact_match(struct net_device
*dev
)
3493 static const u8 zero_arr
[ETH_ALEN
] = {0, 0, 0, 0, 0, 0};
3495 for (idx
= 1; idx
< GFAR_EM_NUM
+ 1; idx
++)
3496 gfar_set_mac_for_addr(dev
, idx
, zero_arr
);
3499 /* Set the appropriate hash bit for the given addr */
3500 /* The algorithm works like so:
3501 * 1) Take the Destination Address (ie the multicast address), and
3502 * do a CRC on it (little endian), and reverse the bits of the
3504 * 2) Use the 8 most significant bits as a hash into a 256-entry
3505 * table. The table is controlled through 8 32-bit registers:
3506 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3507 * gaddr7. This means that the 3 most significant bits in the
3508 * hash index which gaddr register to use, and the 5 other bits
3509 * indicate which bit (assuming an IBM numbering scheme, which
3510 * for PowerPC (tm) is usually the case) in the register holds
3513 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3516 struct gfar_private
*priv
= netdev_priv(dev
);
3517 u32 result
= ether_crc(ETH_ALEN
, addr
);
3518 int width
= priv
->hash_width
;
3519 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3520 u8 whichreg
= result
>> (32 - width
+ 5);
3521 u32 value
= (1 << (31-whichbit
));
3523 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3525 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3529 /* There are multiple MAC Address register pairs on some controllers
3530 * This function sets the numth pair to a given address
3532 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
3535 struct gfar_private
*priv
= netdev_priv(dev
);
3536 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3538 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3542 /* For a station address of 0x12345678ABCD in transmission
3543 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3544 * MACnADDR2 is set to 0x34120000.
3546 tempval
= (addr
[5] << 24) | (addr
[4] << 16) |
3547 (addr
[3] << 8) | addr
[2];
3549 gfar_write(macptr
, tempval
);
3551 tempval
= (addr
[1] << 24) | (addr
[0] << 16);
3553 gfar_write(macptr
+1, tempval
);
3556 /* GFAR error interrupt handler */
3557 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3559 struct gfar_priv_grp
*gfargrp
= grp_id
;
3560 struct gfar __iomem
*regs
= gfargrp
->regs
;
3561 struct gfar_private
*priv
= gfargrp
->priv
;
3562 struct net_device
*dev
= priv
->ndev
;
3564 /* Save ievent for future reference */
3565 u32 events
= gfar_read(®s
->ievent
);
3568 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3570 /* Magic Packet is not an error. */
3571 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3572 (events
& IEVENT_MAG
))
3573 events
&= ~IEVENT_MAG
;
3576 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3578 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3579 events
, gfar_read(®s
->imask
));
3581 /* Update the error counters */
3582 if (events
& IEVENT_TXE
) {
3583 dev
->stats
.tx_errors
++;
3585 if (events
& IEVENT_LC
)
3586 dev
->stats
.tx_window_errors
++;
3587 if (events
& IEVENT_CRL
)
3588 dev
->stats
.tx_aborted_errors
++;
3589 if (events
& IEVENT_XFUN
) {
3590 netif_dbg(priv
, tx_err
, dev
,
3591 "TX FIFO underrun, packet dropped\n");
3592 dev
->stats
.tx_dropped
++;
3593 atomic64_inc(&priv
->extra_stats
.tx_underrun
);
3595 schedule_work(&priv
->reset_task
);
3597 netif_dbg(priv
, tx_err
, dev
, "Transmit Error\n");
3599 if (events
& IEVENT_BSY
) {
3600 dev
->stats
.rx_over_errors
++;
3601 atomic64_inc(&priv
->extra_stats
.rx_bsy
);
3603 netif_dbg(priv
, rx_err
, dev
, "busy error (rstat: %x)\n",
3604 gfar_read(®s
->rstat
));
3606 if (events
& IEVENT_BABR
) {
3607 dev
->stats
.rx_errors
++;
3608 atomic64_inc(&priv
->extra_stats
.rx_babr
);
3610 netif_dbg(priv
, rx_err
, dev
, "babbling RX error\n");
3612 if (events
& IEVENT_EBERR
) {
3613 atomic64_inc(&priv
->extra_stats
.eberr
);
3614 netif_dbg(priv
, rx_err
, dev
, "bus error\n");
3616 if (events
& IEVENT_RXC
)
3617 netif_dbg(priv
, rx_status
, dev
, "control frame\n");
3619 if (events
& IEVENT_BABT
) {
3620 atomic64_inc(&priv
->extra_stats
.tx_babt
);
3621 netif_dbg(priv
, tx_err
, dev
, "babbling TX error\n");
3626 static u32
gfar_get_flowctrl_cfg(struct gfar_private
*priv
)
3628 struct phy_device
*phydev
= priv
->phydev
;
3631 if (!phydev
->duplex
)
3634 if (!priv
->pause_aneg_en
) {
3635 if (priv
->tx_pause_en
)
3636 val
|= MACCFG1_TX_FLOW
;
3637 if (priv
->rx_pause_en
)
3638 val
|= MACCFG1_RX_FLOW
;
3640 u16 lcl_adv
, rmt_adv
;
3642 /* get link partner capabilities */
3645 rmt_adv
= LPA_PAUSE_CAP
;
3646 if (phydev
->asym_pause
)
3647 rmt_adv
|= LPA_PAUSE_ASYM
;
3650 if (phydev
->advertising
& ADVERTISED_Pause
)
3651 lcl_adv
|= ADVERTISE_PAUSE_CAP
;
3652 if (phydev
->advertising
& ADVERTISED_Asym_Pause
)
3653 lcl_adv
|= ADVERTISE_PAUSE_ASYM
;
3655 flowctrl
= mii_resolve_flowctrl_fdx(lcl_adv
, rmt_adv
);
3656 if (flowctrl
& FLOW_CTRL_TX
)
3657 val
|= MACCFG1_TX_FLOW
;
3658 if (flowctrl
& FLOW_CTRL_RX
)
3659 val
|= MACCFG1_RX_FLOW
;
3665 static noinline
void gfar_update_link_state(struct gfar_private
*priv
)
3667 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3668 struct phy_device
*phydev
= priv
->phydev
;
3669 struct gfar_priv_rx_q
*rx_queue
= NULL
;
3672 if (unlikely(test_bit(GFAR_RESETTING
, &priv
->state
)))
3676 u32 tempval1
= gfar_read(®s
->maccfg1
);
3677 u32 tempval
= gfar_read(®s
->maccfg2
);
3678 u32 ecntrl
= gfar_read(®s
->ecntrl
);
3679 u32 tx_flow_oldval
= (tempval
& MACCFG1_TX_FLOW
);
3681 if (phydev
->duplex
!= priv
->oldduplex
) {
3682 if (!(phydev
->duplex
))
3683 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
3685 tempval
|= MACCFG2_FULL_DUPLEX
;
3687 priv
->oldduplex
= phydev
->duplex
;
3690 if (phydev
->speed
!= priv
->oldspeed
) {
3691 switch (phydev
->speed
) {
3694 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
3696 ecntrl
&= ~(ECNTRL_R100
);
3701 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
3703 /* Reduced mode distinguishes
3704 * between 10 and 100
3706 if (phydev
->speed
== SPEED_100
)
3707 ecntrl
|= ECNTRL_R100
;
3709 ecntrl
&= ~(ECNTRL_R100
);
3712 netif_warn(priv
, link
, priv
->ndev
,
3713 "Ack! Speed (%d) is not 10/100/1000!\n",
3718 priv
->oldspeed
= phydev
->speed
;
3721 tempval1
&= ~(MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
3722 tempval1
|= gfar_get_flowctrl_cfg(priv
);
3724 /* Turn last free buffer recording on */
3725 if ((tempval1
& MACCFG1_TX_FLOW
) && !tx_flow_oldval
) {
3726 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
3729 rx_queue
= priv
->rx_queue
[i
];
3730 bdp_dma
= gfar_rxbd_dma_lastfree(rx_queue
);
3731 gfar_write(rx_queue
->rfbptr
, bdp_dma
);
3734 priv
->tx_actual_en
= 1;
3737 if (unlikely(!(tempval1
& MACCFG1_TX_FLOW
) && tx_flow_oldval
))
3738 priv
->tx_actual_en
= 0;
3740 gfar_write(®s
->maccfg1
, tempval1
);
3741 gfar_write(®s
->maccfg2
, tempval
);
3742 gfar_write(®s
->ecntrl
, ecntrl
);
3747 } else if (priv
->oldlink
) {
3750 priv
->oldduplex
= -1;
3753 if (netif_msg_link(priv
))
3754 phy_print_status(phydev
);
3757 static const struct of_device_id gfar_match
[] =
3761 .compatible
= "gianfar",
3764 .compatible
= "fsl,etsec2",
3768 MODULE_DEVICE_TABLE(of
, gfar_match
);
3770 /* Structure for a device driver */
3771 static struct platform_driver gfar_driver
= {
3773 .name
= "fsl-gianfar",
3775 .of_match_table
= gfar_match
,
3777 .probe
= gfar_probe
,
3778 .remove
= gfar_remove
,
3781 module_platform_driver(gfar_driver
);