Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / gianfar.c
blob3e233d924cce3b8bbf6bf5901b61455c5c0cd2dc
1 /* drivers/net/ethernet/freescale/gianfar.c
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
108 #include "gianfar.h"
110 #define TX_TIMEOUT (5*HZ)
112 const char gfar_driver_version[] = "2.0";
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
158 u32 lstatus;
160 bdp->bufPtr = cpu_to_be32(buf);
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
166 gfar_wmb();
168 bdp->lstatus = cpu_to_be32(lstatus);
171 static void gfar_init_bds(struct net_device *ndev)
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
204 rfbptr = &regs->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
294 gfar_init_bds(ndev);
296 return 0;
298 cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
309 baddr = &regs->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
315 baddr = &regs->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
322 static void gfar_init_rqprm(struct gfar_private *priv)
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
328 baddr = &regs->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
336 static void gfar_rx_offload_en(struct gfar_private *priv)
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
344 if (priv->hwts_rx_en || priv->rx_filer_enable)
345 priv->uses_rxfcb = 1;
348 static void gfar_mac_rx_config(struct gfar_private *priv)
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
384 /* Clear the LFC bit */
385 gfar_write(&regs->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
391 /* Init rctrl based on our settings */
392 gfar_write(&regs->rctrl, rctrl);
395 static void gfar_mac_tx_config(struct gfar_private *priv)
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
414 gfar_write(&regs->tctrl, tctrl);
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
426 baddr = &regs->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
433 baddr = &regs->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
443 gfar_write(&regs->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
447 gfar_write(&regs->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
483 return &dev->stats;
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
488 eth_mac_addr(dev, p);
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
492 return 0;
495 static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509 #endif
512 static void gfar_ints_disable(struct gfar_private *priv)
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
520 /* Initialize IMASK */
521 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
525 static void gfar_ints_enable(struct gfar_private *priv)
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(&regs->imask, IMASK_DEFAULT);
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
537 int i;
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
550 return 0;
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
555 int i;
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
566 return 0;
569 static void gfar_free_tx_queues(struct gfar_private *priv)
571 int i;
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
577 static void gfar_free_rx_queues(struct gfar_private *priv)
579 int i;
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
585 static void unmap_group_regs(struct gfar_private *priv)
587 int i;
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
594 static void free_gfar_dev(struct gfar_private *priv)
596 int i, j;
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
604 free_netdev(priv->ndev);
607 static void disable_napi(struct gfar_private *priv)
609 int i;
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
617 static void enable_napi(struct gfar_private *priv)
619 int i;
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
627 static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (!gfar_irq(grp, TX)->irq ||
651 !gfar_irq(grp, RX)->irq ||
652 !gfar_irq(grp, ER)->irq)
653 return -EINVAL;
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
714 priv->num_grps++;
716 return 0;
719 static int gfar_of_group_count(struct device_node *np)
721 struct device_node *child;
722 int num = 0;
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
728 return num;
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 struct property *stash;
742 u32 stash_len = 0;
743 u32 stash_idx = 0;
744 unsigned int num_tx_qs, num_rx_qs;
745 unsigned short mode, poll_mode;
747 if (!np)
748 return -ENODEV;
750 if (of_device_is_compatible(np, "fsl,etsec2")) {
751 mode = MQ_MG_MODE;
752 poll_mode = GFAR_SQ_POLLING;
753 } else {
754 mode = SQ_SG_MODE;
755 poll_mode = GFAR_SQ_POLLING;
758 if (mode == SQ_SG_MODE) {
759 num_tx_qs = 1;
760 num_rx_qs = 1;
761 } else { /* MQ_MG_MODE */
762 /* get the actual number of supported groups */
763 unsigned int num_grps = gfar_of_group_count(np);
765 if (num_grps == 0 || num_grps > MAXGROUPS) {
766 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767 num_grps);
768 pr_err("Cannot do alloc_etherdev, aborting\n");
769 return -EINVAL;
772 if (poll_mode == GFAR_SQ_POLLING) {
773 num_tx_qs = num_grps; /* one txq per int group */
774 num_rx_qs = num_grps; /* one rxq per int group */
775 } else { /* GFAR_MQ_POLLING */
776 u32 tx_queues, rx_queues;
777 int ret;
779 /* parse the num of HW tx and rx queues */
780 ret = of_property_read_u32(np, "fsl,num_tx_queues",
781 &tx_queues);
782 num_tx_qs = ret ? 1 : tx_queues;
784 ret = of_property_read_u32(np, "fsl,num_rx_queues",
785 &rx_queues);
786 num_rx_qs = ret ? 1 : rx_queues;
790 if (num_tx_qs > MAX_TX_QS) {
791 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792 num_tx_qs, MAX_TX_QS);
793 pr_err("Cannot do alloc_etherdev, aborting\n");
794 return -EINVAL;
797 if (num_rx_qs > MAX_RX_QS) {
798 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799 num_rx_qs, MAX_RX_QS);
800 pr_err("Cannot do alloc_etherdev, aborting\n");
801 return -EINVAL;
804 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
805 dev = *pdev;
806 if (NULL == dev)
807 return -ENOMEM;
809 priv = netdev_priv(dev);
810 priv->ndev = dev;
812 priv->mode = mode;
813 priv->poll_mode = poll_mode;
815 priv->num_tx_queues = num_tx_qs;
816 netif_set_real_num_rx_queues(dev, num_rx_qs);
817 priv->num_rx_queues = num_rx_qs;
819 err = gfar_alloc_tx_queues(priv);
820 if (err)
821 goto tx_alloc_failed;
823 err = gfar_alloc_rx_queues(priv);
824 if (err)
825 goto rx_alloc_failed;
827 err = of_property_read_string(np, "model", &model);
828 if (err) {
829 pr_err("Device model property missing, aborting\n");
830 goto rx_alloc_failed;
833 /* Init Rx queue filer rule set linked list */
834 INIT_LIST_HEAD(&priv->rx_list.list);
835 priv->rx_list.count = 0;
836 mutex_init(&priv->rx_queue_access);
838 for (i = 0; i < MAXGROUPS; i++)
839 priv->gfargrp[i].regs = NULL;
841 /* Parse and initialize group specific information */
842 if (priv->mode == MQ_MG_MODE) {
843 for_each_available_child_of_node(np, child) {
844 if (of_node_cmp(child->name, "queue-group"))
845 continue;
847 err = gfar_parse_group(child, priv, model);
848 if (err)
849 goto err_grp_init;
851 } else { /* SQ_SG_MODE */
852 err = gfar_parse_group(np, priv, model);
853 if (err)
854 goto err_grp_init;
857 stash = of_find_property(np, "bd-stash", NULL);
859 if (stash) {
860 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
861 priv->bd_stash_en = 1;
864 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
866 if (err == 0)
867 priv->rx_stash_size = stash_len;
869 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
871 if (err == 0)
872 priv->rx_stash_index = stash_idx;
874 if (stash_len || stash_idx)
875 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
877 mac_addr = of_get_mac_address(np);
879 if (mac_addr)
880 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
882 if (model && !strcasecmp(model, "TSEC"))
883 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
884 FSL_GIANFAR_DEV_HAS_COALESCE |
885 FSL_GIANFAR_DEV_HAS_RMON |
886 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
888 if (model && !strcasecmp(model, "eTSEC"))
889 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890 FSL_GIANFAR_DEV_HAS_COALESCE |
891 FSL_GIANFAR_DEV_HAS_RMON |
892 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
893 FSL_GIANFAR_DEV_HAS_CSUM |
894 FSL_GIANFAR_DEV_HAS_VLAN |
895 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
896 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
897 FSL_GIANFAR_DEV_HAS_TIMER |
898 FSL_GIANFAR_DEV_HAS_RX_FILER;
900 err = of_property_read_string(np, "phy-connection-type", &ctype);
902 /* We only care about rgmii-id. The rest are autodetected */
903 if (err == 0 && !strcmp(ctype, "rgmii-id"))
904 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
905 else
906 priv->interface = PHY_INTERFACE_MODE_MII;
908 if (of_find_property(np, "fsl,magic-packet", NULL))
909 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
911 if (of_get_property(np, "fsl,wake-on-filer", NULL))
912 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
914 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
916 /* In the case of a fixed PHY, the DT node associated
917 * to the PHY is the Ethernet MAC DT node.
919 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
920 err = of_phy_register_fixed_link(np);
921 if (err)
922 goto err_grp_init;
924 priv->phy_node = of_node_get(np);
927 /* Find the TBI PHY. If it's not there, we don't support SGMII */
928 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
930 return 0;
932 err_grp_init:
933 unmap_group_regs(priv);
934 rx_alloc_failed:
935 gfar_free_rx_queues(priv);
936 tx_alloc_failed:
937 gfar_free_tx_queues(priv);
938 free_gfar_dev(priv);
939 return err;
942 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
944 struct hwtstamp_config config;
945 struct gfar_private *priv = netdev_priv(netdev);
947 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
948 return -EFAULT;
950 /* reserved for future extensions */
951 if (config.flags)
952 return -EINVAL;
954 switch (config.tx_type) {
955 case HWTSTAMP_TX_OFF:
956 priv->hwts_tx_en = 0;
957 break;
958 case HWTSTAMP_TX_ON:
959 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
960 return -ERANGE;
961 priv->hwts_tx_en = 1;
962 break;
963 default:
964 return -ERANGE;
967 switch (config.rx_filter) {
968 case HWTSTAMP_FILTER_NONE:
969 if (priv->hwts_rx_en) {
970 priv->hwts_rx_en = 0;
971 reset_gfar(netdev);
973 break;
974 default:
975 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
976 return -ERANGE;
977 if (!priv->hwts_rx_en) {
978 priv->hwts_rx_en = 1;
979 reset_gfar(netdev);
981 config.rx_filter = HWTSTAMP_FILTER_ALL;
982 break;
985 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
986 -EFAULT : 0;
989 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
991 struct hwtstamp_config config;
992 struct gfar_private *priv = netdev_priv(netdev);
994 config.flags = 0;
995 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
996 config.rx_filter = (priv->hwts_rx_en ?
997 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
999 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1000 -EFAULT : 0;
1003 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1005 struct gfar_private *priv = netdev_priv(dev);
1007 if (!netif_running(dev))
1008 return -EINVAL;
1010 if (cmd == SIOCSHWTSTAMP)
1011 return gfar_hwtstamp_set(dev, rq);
1012 if (cmd == SIOCGHWTSTAMP)
1013 return gfar_hwtstamp_get(dev, rq);
1015 if (!priv->phydev)
1016 return -ENODEV;
1018 return phy_mii_ioctl(priv->phydev, rq, cmd);
1021 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1022 u32 class)
1024 u32 rqfpr = FPR_FILER_MASK;
1025 u32 rqfcr = 0x0;
1027 rqfar--;
1028 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1029 priv->ftp_rqfpr[rqfar] = rqfpr;
1030 priv->ftp_rqfcr[rqfar] = rqfcr;
1031 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1033 rqfar--;
1034 rqfcr = RQFCR_CMP_NOMATCH;
1035 priv->ftp_rqfpr[rqfar] = rqfpr;
1036 priv->ftp_rqfcr[rqfar] = rqfcr;
1037 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1039 rqfar--;
1040 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1041 rqfpr = class;
1042 priv->ftp_rqfcr[rqfar] = rqfcr;
1043 priv->ftp_rqfpr[rqfar] = rqfpr;
1044 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1046 rqfar--;
1047 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1048 rqfpr = class;
1049 priv->ftp_rqfcr[rqfar] = rqfcr;
1050 priv->ftp_rqfpr[rqfar] = rqfpr;
1051 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1053 return rqfar;
1056 static void gfar_init_filer_table(struct gfar_private *priv)
1058 int i = 0x0;
1059 u32 rqfar = MAX_FILER_IDX;
1060 u32 rqfcr = 0x0;
1061 u32 rqfpr = FPR_FILER_MASK;
1063 /* Default rule */
1064 rqfcr = RQFCR_CMP_MATCH;
1065 priv->ftp_rqfcr[rqfar] = rqfcr;
1066 priv->ftp_rqfpr[rqfar] = rqfpr;
1067 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1071 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1072 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1073 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1074 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1076 /* cur_filer_idx indicated the first non-masked rule */
1077 priv->cur_filer_idx = rqfar;
1079 /* Rest are masked rules */
1080 rqfcr = RQFCR_CMP_NOMATCH;
1081 for (i = 0; i < rqfar; i++) {
1082 priv->ftp_rqfcr[i] = rqfcr;
1083 priv->ftp_rqfpr[i] = rqfpr;
1084 gfar_write_filer(priv, i, rqfcr, rqfpr);
1088 #ifdef CONFIG_PPC
1089 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1091 unsigned int pvr = mfspr(SPRN_PVR);
1092 unsigned int svr = mfspr(SPRN_SVR);
1093 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1094 unsigned int rev = svr & 0xffff;
1096 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1097 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1098 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1099 priv->errata |= GFAR_ERRATA_74;
1101 /* MPC8313 and MPC837x all rev */
1102 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1103 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1104 priv->errata |= GFAR_ERRATA_76;
1106 /* MPC8313 Rev < 2.0 */
1107 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1108 priv->errata |= GFAR_ERRATA_12;
1111 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1113 unsigned int svr = mfspr(SPRN_SVR);
1115 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1116 priv->errata |= GFAR_ERRATA_12;
1117 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1118 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1119 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1121 #endif
1123 static void gfar_detect_errata(struct gfar_private *priv)
1125 struct device *dev = &priv->ofdev->dev;
1127 /* no plans to fix */
1128 priv->errata |= GFAR_ERRATA_A002;
1130 #ifdef CONFIG_PPC
1131 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1132 __gfar_detect_errata_85xx(priv);
1133 else /* non-mpc85xx parts, i.e. e300 core based */
1134 __gfar_detect_errata_83xx(priv);
1135 #endif
1137 if (priv->errata)
1138 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1139 priv->errata);
1142 void gfar_mac_reset(struct gfar_private *priv)
1144 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1145 u32 tempval;
1147 /* Reset MAC layer */
1148 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1150 /* We need to delay at least 3 TX clocks */
1151 udelay(3);
1153 /* the soft reset bit is not self-resetting, so we need to
1154 * clear it before resuming normal operation
1156 gfar_write(&regs->maccfg1, 0);
1158 udelay(3);
1160 gfar_rx_offload_en(priv);
1162 /* Initialize the max receive frame/buffer lengths */
1163 gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1164 gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1166 /* Initialize the Minimum Frame Length Register */
1167 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1169 /* Initialize MACCFG2. */
1170 tempval = MACCFG2_INIT_SETTINGS;
1172 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1173 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1174 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1176 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1177 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1179 gfar_write(&regs->maccfg2, tempval);
1181 /* Clear mac addr hash registers */
1182 gfar_write(&regs->igaddr0, 0);
1183 gfar_write(&regs->igaddr1, 0);
1184 gfar_write(&regs->igaddr2, 0);
1185 gfar_write(&regs->igaddr3, 0);
1186 gfar_write(&regs->igaddr4, 0);
1187 gfar_write(&regs->igaddr5, 0);
1188 gfar_write(&regs->igaddr6, 0);
1189 gfar_write(&regs->igaddr7, 0);
1191 gfar_write(&regs->gaddr0, 0);
1192 gfar_write(&regs->gaddr1, 0);
1193 gfar_write(&regs->gaddr2, 0);
1194 gfar_write(&regs->gaddr3, 0);
1195 gfar_write(&regs->gaddr4, 0);
1196 gfar_write(&regs->gaddr5, 0);
1197 gfar_write(&regs->gaddr6, 0);
1198 gfar_write(&regs->gaddr7, 0);
1200 if (priv->extended_hash)
1201 gfar_clear_exact_match(priv->ndev);
1203 gfar_mac_rx_config(priv);
1205 gfar_mac_tx_config(priv);
1207 gfar_set_mac_address(priv->ndev);
1209 gfar_set_multi(priv->ndev);
1211 /* clear ievent and imask before configuring coalescing */
1212 gfar_ints_disable(priv);
1214 /* Configure the coalescing support */
1215 gfar_configure_coalescing_all(priv);
1218 static void gfar_hw_init(struct gfar_private *priv)
1220 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1221 u32 attrs;
1223 /* Stop the DMA engine now, in case it was running before
1224 * (The firmware could have used it, and left it running).
1226 gfar_halt(priv);
1228 gfar_mac_reset(priv);
1230 /* Zero out the rmon mib registers if it has them */
1231 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1232 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1234 /* Mask off the CAM interrupts */
1235 gfar_write(&regs->rmon.cam1, 0xffffffff);
1236 gfar_write(&regs->rmon.cam2, 0xffffffff);
1239 /* Initialize ECNTRL */
1240 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1242 /* Set the extraction length and index */
1243 attrs = ATTRELI_EL(priv->rx_stash_size) |
1244 ATTRELI_EI(priv->rx_stash_index);
1246 gfar_write(&regs->attreli, attrs);
1248 /* Start with defaults, and add stashing
1249 * depending on driver parameters
1251 attrs = ATTR_INIT_SETTINGS;
1253 if (priv->bd_stash_en)
1254 attrs |= ATTR_BDSTASH;
1256 if (priv->rx_stash_size != 0)
1257 attrs |= ATTR_BUFSTASH;
1259 gfar_write(&regs->attr, attrs);
1261 /* FIFO configs */
1262 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1263 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1264 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1266 /* Program the interrupt steering regs, only for MG devices */
1267 if (priv->num_grps > 1)
1268 gfar_write_isrg(priv);
1271 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1273 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1275 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1276 priv->extended_hash = 1;
1277 priv->hash_width = 9;
1279 priv->hash_regs[0] = &regs->igaddr0;
1280 priv->hash_regs[1] = &regs->igaddr1;
1281 priv->hash_regs[2] = &regs->igaddr2;
1282 priv->hash_regs[3] = &regs->igaddr3;
1283 priv->hash_regs[4] = &regs->igaddr4;
1284 priv->hash_regs[5] = &regs->igaddr5;
1285 priv->hash_regs[6] = &regs->igaddr6;
1286 priv->hash_regs[7] = &regs->igaddr7;
1287 priv->hash_regs[8] = &regs->gaddr0;
1288 priv->hash_regs[9] = &regs->gaddr1;
1289 priv->hash_regs[10] = &regs->gaddr2;
1290 priv->hash_regs[11] = &regs->gaddr3;
1291 priv->hash_regs[12] = &regs->gaddr4;
1292 priv->hash_regs[13] = &regs->gaddr5;
1293 priv->hash_regs[14] = &regs->gaddr6;
1294 priv->hash_regs[15] = &regs->gaddr7;
1296 } else {
1297 priv->extended_hash = 0;
1298 priv->hash_width = 8;
1300 priv->hash_regs[0] = &regs->gaddr0;
1301 priv->hash_regs[1] = &regs->gaddr1;
1302 priv->hash_regs[2] = &regs->gaddr2;
1303 priv->hash_regs[3] = &regs->gaddr3;
1304 priv->hash_regs[4] = &regs->gaddr4;
1305 priv->hash_regs[5] = &regs->gaddr5;
1306 priv->hash_regs[6] = &regs->gaddr6;
1307 priv->hash_regs[7] = &regs->gaddr7;
1311 /* Set up the ethernet device structure, private data,
1312 * and anything else we need before we start
1314 static int gfar_probe(struct platform_device *ofdev)
1316 struct net_device *dev = NULL;
1317 struct gfar_private *priv = NULL;
1318 int err = 0, i;
1320 err = gfar_of_init(ofdev, &dev);
1322 if (err)
1323 return err;
1325 priv = netdev_priv(dev);
1326 priv->ndev = dev;
1327 priv->ofdev = ofdev;
1328 priv->dev = &ofdev->dev;
1329 SET_NETDEV_DEV(dev, &ofdev->dev);
1331 INIT_WORK(&priv->reset_task, gfar_reset_task);
1333 platform_set_drvdata(ofdev, priv);
1335 gfar_detect_errata(priv);
1337 /* Set the dev->base_addr to the gfar reg region */
1338 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1340 /* Fill in the dev structure */
1341 dev->watchdog_timeo = TX_TIMEOUT;
1342 dev->mtu = 1500;
1343 dev->netdev_ops = &gfar_netdev_ops;
1344 dev->ethtool_ops = &gfar_ethtool_ops;
1346 /* Register for napi ...We are registering NAPI for each grp */
1347 for (i = 0; i < priv->num_grps; i++) {
1348 if (priv->poll_mode == GFAR_SQ_POLLING) {
1349 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1350 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1351 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1352 gfar_poll_tx_sq, 2);
1353 } else {
1354 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1355 gfar_poll_rx, GFAR_DEV_WEIGHT);
1356 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1357 gfar_poll_tx, 2);
1361 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1362 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1363 NETIF_F_RXCSUM;
1364 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1365 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1368 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1369 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1370 NETIF_F_HW_VLAN_CTAG_RX;
1371 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1374 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1376 gfar_init_addr_hash_table(priv);
1378 /* Insert receive time stamps into padding alignment bytes */
1379 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 priv->padding = 8;
1382 if (dev->features & NETIF_F_IP_CSUM ||
1383 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1384 dev->needed_headroom = GMAC_FCB_LEN;
1386 /* Initializing some of the rx/tx queue level parameters */
1387 for (i = 0; i < priv->num_tx_queues; i++) {
1388 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1389 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1390 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1391 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1394 for (i = 0; i < priv->num_rx_queues; i++) {
1395 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1396 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1397 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1400 /* Always enable rx filer if available */
1401 priv->rx_filer_enable =
1402 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1403 /* Enable most messages by default */
1404 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1405 /* use pritority h/w tx queue scheduling for single queue devices */
1406 if (priv->num_tx_queues == 1)
1407 priv->prio_sched_en = 1;
1409 set_bit(GFAR_DOWN, &priv->state);
1411 gfar_hw_init(priv);
1413 /* Carrier starts down, phylib will bring it up */
1414 netif_carrier_off(dev);
1416 err = register_netdev(dev);
1418 if (err) {
1419 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1420 goto register_fail;
1423 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1424 priv->wol_supported |= GFAR_WOL_MAGIC;
1426 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1427 priv->rx_filer_enable)
1428 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1430 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1432 /* fill out IRQ number and name fields */
1433 for (i = 0; i < priv->num_grps; i++) {
1434 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1435 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1436 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1437 dev->name, "_g", '0' + i, "_tx");
1438 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1439 dev->name, "_g", '0' + i, "_rx");
1440 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1441 dev->name, "_g", '0' + i, "_er");
1442 } else
1443 strcpy(gfar_irq(grp, TX)->name, dev->name);
1446 /* Initialize the filer table */
1447 gfar_init_filer_table(priv);
1449 /* Print out the device info */
1450 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1452 /* Even more device info helps when determining which kernel
1453 * provided which set of benchmarks.
1455 netdev_info(dev, "Running with NAPI enabled\n");
1456 for (i = 0; i < priv->num_rx_queues; i++)
1457 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1458 i, priv->rx_queue[i]->rx_ring_size);
1459 for (i = 0; i < priv->num_tx_queues; i++)
1460 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1461 i, priv->tx_queue[i]->tx_ring_size);
1463 return 0;
1465 register_fail:
1466 unmap_group_regs(priv);
1467 gfar_free_rx_queues(priv);
1468 gfar_free_tx_queues(priv);
1469 of_node_put(priv->phy_node);
1470 of_node_put(priv->tbi_node);
1471 free_gfar_dev(priv);
1472 return err;
1475 static int gfar_remove(struct platform_device *ofdev)
1477 struct gfar_private *priv = platform_get_drvdata(ofdev);
1479 of_node_put(priv->phy_node);
1480 of_node_put(priv->tbi_node);
1482 unregister_netdev(priv->ndev);
1483 unmap_group_regs(priv);
1484 gfar_free_rx_queues(priv);
1485 gfar_free_tx_queues(priv);
1486 free_gfar_dev(priv);
1488 return 0;
1491 #ifdef CONFIG_PM
1493 static void __gfar_filer_disable(struct gfar_private *priv)
1495 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1496 u32 temp;
1498 temp = gfar_read(&regs->rctrl);
1499 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1500 gfar_write(&regs->rctrl, temp);
1503 static void __gfar_filer_enable(struct gfar_private *priv)
1505 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1506 u32 temp;
1508 temp = gfar_read(&regs->rctrl);
1509 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1510 gfar_write(&regs->rctrl, temp);
1513 /* Filer rules implementing wol capabilities */
1514 static void gfar_filer_config_wol(struct gfar_private *priv)
1516 unsigned int i;
1517 u32 rqfcr;
1519 __gfar_filer_disable(priv);
1521 /* clear the filer table, reject any packet by default */
1522 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1523 for (i = 0; i <= MAX_FILER_IDX; i++)
1524 gfar_write_filer(priv, i, rqfcr, 0);
1526 i = 0;
1527 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1528 /* unicast packet, accept it */
1529 struct net_device *ndev = priv->ndev;
1530 /* get the default rx queue index */
1531 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1532 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1533 (ndev->dev_addr[1] << 8) |
1534 ndev->dev_addr[2];
1536 rqfcr = (qindex << 10) | RQFCR_AND |
1537 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1539 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1541 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1542 (ndev->dev_addr[4] << 8) |
1543 ndev->dev_addr[5];
1544 rqfcr = (qindex << 10) | RQFCR_GPI |
1545 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1546 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1549 __gfar_filer_enable(priv);
1552 static void gfar_filer_restore_table(struct gfar_private *priv)
1554 u32 rqfcr, rqfpr;
1555 unsigned int i;
1557 __gfar_filer_disable(priv);
1559 for (i = 0; i <= MAX_FILER_IDX; i++) {
1560 rqfcr = priv->ftp_rqfcr[i];
1561 rqfpr = priv->ftp_rqfpr[i];
1562 gfar_write_filer(priv, i, rqfcr, rqfpr);
1565 __gfar_filer_enable(priv);
1568 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1569 static void gfar_start_wol_filer(struct gfar_private *priv)
1571 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1572 u32 tempval;
1573 int i = 0;
1575 /* Enable Rx hw queues */
1576 gfar_write(&regs->rqueue, priv->rqueue);
1578 /* Initialize DMACTRL to have WWR and WOP */
1579 tempval = gfar_read(&regs->dmactrl);
1580 tempval |= DMACTRL_INIT_SETTINGS;
1581 gfar_write(&regs->dmactrl, tempval);
1583 /* Make sure we aren't stopped */
1584 tempval = gfar_read(&regs->dmactrl);
1585 tempval &= ~DMACTRL_GRS;
1586 gfar_write(&regs->dmactrl, tempval);
1588 for (i = 0; i < priv->num_grps; i++) {
1589 regs = priv->gfargrp[i].regs;
1590 /* Clear RHLT, so that the DMA starts polling now */
1591 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1592 /* enable the Filer General Purpose Interrupt */
1593 gfar_write(&regs->imask, IMASK_FGPI);
1596 /* Enable Rx DMA */
1597 tempval = gfar_read(&regs->maccfg1);
1598 tempval |= MACCFG1_RX_EN;
1599 gfar_write(&regs->maccfg1, tempval);
1602 static int gfar_suspend(struct device *dev)
1604 struct gfar_private *priv = dev_get_drvdata(dev);
1605 struct net_device *ndev = priv->ndev;
1606 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1607 u32 tempval;
1608 u16 wol = priv->wol_opts;
1610 if (!netif_running(ndev))
1611 return 0;
1613 disable_napi(priv);
1614 netif_tx_lock(ndev);
1615 netif_device_detach(ndev);
1616 netif_tx_unlock(ndev);
1618 gfar_halt(priv);
1620 if (wol & GFAR_WOL_MAGIC) {
1621 /* Enable interrupt on Magic Packet */
1622 gfar_write(&regs->imask, IMASK_MAG);
1624 /* Enable Magic Packet mode */
1625 tempval = gfar_read(&regs->maccfg2);
1626 tempval |= MACCFG2_MPEN;
1627 gfar_write(&regs->maccfg2, tempval);
1629 /* re-enable the Rx block */
1630 tempval = gfar_read(&regs->maccfg1);
1631 tempval |= MACCFG1_RX_EN;
1632 gfar_write(&regs->maccfg1, tempval);
1634 } else if (wol & GFAR_WOL_FILER_UCAST) {
1635 gfar_filer_config_wol(priv);
1636 gfar_start_wol_filer(priv);
1638 } else {
1639 phy_stop(priv->phydev);
1642 return 0;
1645 static int gfar_resume(struct device *dev)
1647 struct gfar_private *priv = dev_get_drvdata(dev);
1648 struct net_device *ndev = priv->ndev;
1649 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1650 u32 tempval;
1651 u16 wol = priv->wol_opts;
1653 if (!netif_running(ndev))
1654 return 0;
1656 if (wol & GFAR_WOL_MAGIC) {
1657 /* Disable Magic Packet mode */
1658 tempval = gfar_read(&regs->maccfg2);
1659 tempval &= ~MACCFG2_MPEN;
1660 gfar_write(&regs->maccfg2, tempval);
1662 } else if (wol & GFAR_WOL_FILER_UCAST) {
1663 /* need to stop rx only, tx is already down */
1664 gfar_halt(priv);
1665 gfar_filer_restore_table(priv);
1667 } else {
1668 phy_start(priv->phydev);
1671 gfar_start(priv);
1673 netif_device_attach(ndev);
1674 enable_napi(priv);
1676 return 0;
1679 static int gfar_restore(struct device *dev)
1681 struct gfar_private *priv = dev_get_drvdata(dev);
1682 struct net_device *ndev = priv->ndev;
1684 if (!netif_running(ndev)) {
1685 netif_device_attach(ndev);
1687 return 0;
1690 gfar_init_bds(ndev);
1692 gfar_mac_reset(priv);
1694 gfar_init_tx_rx_base(priv);
1696 gfar_start(priv);
1698 priv->oldlink = 0;
1699 priv->oldspeed = 0;
1700 priv->oldduplex = -1;
1702 if (priv->phydev)
1703 phy_start(priv->phydev);
1705 netif_device_attach(ndev);
1706 enable_napi(priv);
1708 return 0;
1711 static struct dev_pm_ops gfar_pm_ops = {
1712 .suspend = gfar_suspend,
1713 .resume = gfar_resume,
1714 .freeze = gfar_suspend,
1715 .thaw = gfar_resume,
1716 .restore = gfar_restore,
1719 #define GFAR_PM_OPS (&gfar_pm_ops)
1721 #else
1723 #define GFAR_PM_OPS NULL
1725 #endif
1727 /* Reads the controller's registers to determine what interface
1728 * connects it to the PHY.
1730 static phy_interface_t gfar_get_interface(struct net_device *dev)
1732 struct gfar_private *priv = netdev_priv(dev);
1733 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1734 u32 ecntrl;
1736 ecntrl = gfar_read(&regs->ecntrl);
1738 if (ecntrl & ECNTRL_SGMII_MODE)
1739 return PHY_INTERFACE_MODE_SGMII;
1741 if (ecntrl & ECNTRL_TBI_MODE) {
1742 if (ecntrl & ECNTRL_REDUCED_MODE)
1743 return PHY_INTERFACE_MODE_RTBI;
1744 else
1745 return PHY_INTERFACE_MODE_TBI;
1748 if (ecntrl & ECNTRL_REDUCED_MODE) {
1749 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1750 return PHY_INTERFACE_MODE_RMII;
1752 else {
1753 phy_interface_t interface = priv->interface;
1755 /* This isn't autodetected right now, so it must
1756 * be set by the device tree or platform code.
1758 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1759 return PHY_INTERFACE_MODE_RGMII_ID;
1761 return PHY_INTERFACE_MODE_RGMII;
1765 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1766 return PHY_INTERFACE_MODE_GMII;
1768 return PHY_INTERFACE_MODE_MII;
1772 /* Initializes driver's PHY state, and attaches to the PHY.
1773 * Returns 0 on success.
1775 static int init_phy(struct net_device *dev)
1777 struct gfar_private *priv = netdev_priv(dev);
1778 uint gigabit_support =
1779 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1780 GFAR_SUPPORTED_GBIT : 0;
1781 phy_interface_t interface;
1783 priv->oldlink = 0;
1784 priv->oldspeed = 0;
1785 priv->oldduplex = -1;
1787 interface = gfar_get_interface(dev);
1789 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1790 interface);
1791 if (!priv->phydev) {
1792 dev_err(&dev->dev, "could not attach to PHY\n");
1793 return -ENODEV;
1796 if (interface == PHY_INTERFACE_MODE_SGMII)
1797 gfar_configure_serdes(dev);
1799 /* Remove any features not supported by the controller */
1800 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1801 priv->phydev->advertising = priv->phydev->supported;
1803 /* Add support for flow control, but don't advertise it by default */
1804 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1806 return 0;
1809 /* Initialize TBI PHY interface for communicating with the
1810 * SERDES lynx PHY on the chip. We communicate with this PHY
1811 * through the MDIO bus on each controller, treating it as a
1812 * "normal" PHY at the address found in the TBIPA register. We assume
1813 * that the TBIPA register is valid. Either the MDIO bus code will set
1814 * it to a value that doesn't conflict with other PHYs on the bus, or the
1815 * value doesn't matter, as there are no other PHYs on the bus.
1817 static void gfar_configure_serdes(struct net_device *dev)
1819 struct gfar_private *priv = netdev_priv(dev);
1820 struct phy_device *tbiphy;
1822 if (!priv->tbi_node) {
1823 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1824 "device tree specify a tbi-handle\n");
1825 return;
1828 tbiphy = of_phy_find_device(priv->tbi_node);
1829 if (!tbiphy) {
1830 dev_err(&dev->dev, "error: Could not get TBI device\n");
1831 return;
1834 /* If the link is already up, we must already be ok, and don't need to
1835 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1836 * everything for us? Resetting it takes the link down and requires
1837 * several seconds for it to come back.
1839 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1840 put_device(&tbiphy->dev);
1841 return;
1844 /* Single clk mode, mii mode off(for serdes communication) */
1845 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1847 phy_write(tbiphy, MII_ADVERTISE,
1848 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1849 ADVERTISE_1000XPSE_ASYM);
1851 phy_write(tbiphy, MII_BMCR,
1852 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1853 BMCR_SPEED1000);
1855 put_device(&tbiphy->dev);
1858 static int __gfar_is_rx_idle(struct gfar_private *priv)
1860 u32 res;
1862 /* Normaly TSEC should not hang on GRS commands, so we should
1863 * actually wait for IEVENT_GRSC flag.
1865 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1866 return 0;
1868 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1869 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1870 * and the Rx can be safely reset.
1872 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1873 res &= 0x7f807f80;
1874 if ((res & 0xffff) == (res >> 16))
1875 return 1;
1877 return 0;
1880 /* Halt the receive and transmit queues */
1881 static void gfar_halt_nodisable(struct gfar_private *priv)
1883 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1884 u32 tempval;
1885 unsigned int timeout;
1886 int stopped;
1888 gfar_ints_disable(priv);
1890 if (gfar_is_dma_stopped(priv))
1891 return;
1893 /* Stop the DMA, and wait for it to stop */
1894 tempval = gfar_read(&regs->dmactrl);
1895 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1896 gfar_write(&regs->dmactrl, tempval);
1898 retry:
1899 timeout = 1000;
1900 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1901 cpu_relax();
1902 timeout--;
1905 if (!timeout)
1906 stopped = gfar_is_dma_stopped(priv);
1908 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1909 !__gfar_is_rx_idle(priv))
1910 goto retry;
1913 /* Halt the receive and transmit queues */
1914 void gfar_halt(struct gfar_private *priv)
1916 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1917 u32 tempval;
1919 /* Dissable the Rx/Tx hw queues */
1920 gfar_write(&regs->rqueue, 0);
1921 gfar_write(&regs->tqueue, 0);
1923 mdelay(10);
1925 gfar_halt_nodisable(priv);
1927 /* Disable Rx/Tx DMA */
1928 tempval = gfar_read(&regs->maccfg1);
1929 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1930 gfar_write(&regs->maccfg1, tempval);
1933 void stop_gfar(struct net_device *dev)
1935 struct gfar_private *priv = netdev_priv(dev);
1937 netif_tx_stop_all_queues(dev);
1939 smp_mb__before_atomic();
1940 set_bit(GFAR_DOWN, &priv->state);
1941 smp_mb__after_atomic();
1943 disable_napi(priv);
1945 /* disable ints and gracefully shut down Rx/Tx DMA */
1946 gfar_halt(priv);
1948 phy_stop(priv->phydev);
1950 free_skb_resources(priv);
1953 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1955 struct txbd8 *txbdp;
1956 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1957 int i, j;
1959 txbdp = tx_queue->tx_bd_base;
1961 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1962 if (!tx_queue->tx_skbuff[i])
1963 continue;
1965 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1966 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1967 txbdp->lstatus = 0;
1968 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1969 j++) {
1970 txbdp++;
1971 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1972 be16_to_cpu(txbdp->length),
1973 DMA_TO_DEVICE);
1975 txbdp++;
1976 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1977 tx_queue->tx_skbuff[i] = NULL;
1979 kfree(tx_queue->tx_skbuff);
1980 tx_queue->tx_skbuff = NULL;
1983 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1985 int i;
1987 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1989 if (rx_queue->skb)
1990 dev_kfree_skb(rx_queue->skb);
1992 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1993 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1995 rxbdp->lstatus = 0;
1996 rxbdp->bufPtr = 0;
1997 rxbdp++;
1999 if (!rxb->page)
2000 continue;
2002 dma_unmap_single(rx_queue->dev, rxb->dma,
2003 PAGE_SIZE, DMA_FROM_DEVICE);
2004 __free_page(rxb->page);
2006 rxb->page = NULL;
2009 kfree(rx_queue->rx_buff);
2010 rx_queue->rx_buff = NULL;
2013 /* If there are any tx skbs or rx skbs still around, free them.
2014 * Then free tx_skbuff and rx_skbuff
2016 static void free_skb_resources(struct gfar_private *priv)
2018 struct gfar_priv_tx_q *tx_queue = NULL;
2019 struct gfar_priv_rx_q *rx_queue = NULL;
2020 int i;
2022 /* Go through all the buffer descriptors and free their data buffers */
2023 for (i = 0; i < priv->num_tx_queues; i++) {
2024 struct netdev_queue *txq;
2026 tx_queue = priv->tx_queue[i];
2027 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2028 if (tx_queue->tx_skbuff)
2029 free_skb_tx_queue(tx_queue);
2030 netdev_tx_reset_queue(txq);
2033 for (i = 0; i < priv->num_rx_queues; i++) {
2034 rx_queue = priv->rx_queue[i];
2035 if (rx_queue->rx_buff)
2036 free_skb_rx_queue(rx_queue);
2039 dma_free_coherent(priv->dev,
2040 sizeof(struct txbd8) * priv->total_tx_ring_size +
2041 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2042 priv->tx_queue[0]->tx_bd_base,
2043 priv->tx_queue[0]->tx_bd_dma_base);
2046 void gfar_start(struct gfar_private *priv)
2048 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2049 u32 tempval;
2050 int i = 0;
2052 /* Enable Rx/Tx hw queues */
2053 gfar_write(&regs->rqueue, priv->rqueue);
2054 gfar_write(&regs->tqueue, priv->tqueue);
2056 /* Initialize DMACTRL to have WWR and WOP */
2057 tempval = gfar_read(&regs->dmactrl);
2058 tempval |= DMACTRL_INIT_SETTINGS;
2059 gfar_write(&regs->dmactrl, tempval);
2061 /* Make sure we aren't stopped */
2062 tempval = gfar_read(&regs->dmactrl);
2063 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2064 gfar_write(&regs->dmactrl, tempval);
2066 for (i = 0; i < priv->num_grps; i++) {
2067 regs = priv->gfargrp[i].regs;
2068 /* Clear THLT/RHLT, so that the DMA starts polling now */
2069 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2070 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2073 /* Enable Rx/Tx DMA */
2074 tempval = gfar_read(&regs->maccfg1);
2075 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2076 gfar_write(&regs->maccfg1, tempval);
2078 gfar_ints_enable(priv);
2080 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2083 static void free_grp_irqs(struct gfar_priv_grp *grp)
2085 free_irq(gfar_irq(grp, TX)->irq, grp);
2086 free_irq(gfar_irq(grp, RX)->irq, grp);
2087 free_irq(gfar_irq(grp, ER)->irq, grp);
2090 static int register_grp_irqs(struct gfar_priv_grp *grp)
2092 struct gfar_private *priv = grp->priv;
2093 struct net_device *dev = priv->ndev;
2094 int err;
2096 /* If the device has multiple interrupts, register for
2097 * them. Otherwise, only register for the one
2099 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2100 /* Install our interrupt handlers for Error,
2101 * Transmit, and Receive
2103 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2104 gfar_irq(grp, ER)->name, grp);
2105 if (err < 0) {
2106 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2107 gfar_irq(grp, ER)->irq);
2109 goto err_irq_fail;
2111 enable_irq_wake(gfar_irq(grp, ER)->irq);
2113 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2114 gfar_irq(grp, TX)->name, grp);
2115 if (err < 0) {
2116 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2117 gfar_irq(grp, TX)->irq);
2118 goto tx_irq_fail;
2120 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2121 gfar_irq(grp, RX)->name, grp);
2122 if (err < 0) {
2123 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2124 gfar_irq(grp, RX)->irq);
2125 goto rx_irq_fail;
2127 enable_irq_wake(gfar_irq(grp, RX)->irq);
2129 } else {
2130 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2131 gfar_irq(grp, TX)->name, grp);
2132 if (err < 0) {
2133 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2134 gfar_irq(grp, TX)->irq);
2135 goto err_irq_fail;
2137 enable_irq_wake(gfar_irq(grp, TX)->irq);
2140 return 0;
2142 rx_irq_fail:
2143 free_irq(gfar_irq(grp, TX)->irq, grp);
2144 tx_irq_fail:
2145 free_irq(gfar_irq(grp, ER)->irq, grp);
2146 err_irq_fail:
2147 return err;
2151 static void gfar_free_irq(struct gfar_private *priv)
2153 int i;
2155 /* Free the IRQs */
2156 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2157 for (i = 0; i < priv->num_grps; i++)
2158 free_grp_irqs(&priv->gfargrp[i]);
2159 } else {
2160 for (i = 0; i < priv->num_grps; i++)
2161 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2162 &priv->gfargrp[i]);
2166 static int gfar_request_irq(struct gfar_private *priv)
2168 int err, i, j;
2170 for (i = 0; i < priv->num_grps; i++) {
2171 err = register_grp_irqs(&priv->gfargrp[i]);
2172 if (err) {
2173 for (j = 0; j < i; j++)
2174 free_grp_irqs(&priv->gfargrp[j]);
2175 return err;
2179 return 0;
2182 /* Bring the controller up and running */
2183 int startup_gfar(struct net_device *ndev)
2185 struct gfar_private *priv = netdev_priv(ndev);
2186 int err;
2188 gfar_mac_reset(priv);
2190 err = gfar_alloc_skb_resources(ndev);
2191 if (err)
2192 return err;
2194 gfar_init_tx_rx_base(priv);
2196 smp_mb__before_atomic();
2197 clear_bit(GFAR_DOWN, &priv->state);
2198 smp_mb__after_atomic();
2200 /* Start Rx/Tx DMA and enable the interrupts */
2201 gfar_start(priv);
2203 /* force link state update after mac reset */
2204 priv->oldlink = 0;
2205 priv->oldspeed = 0;
2206 priv->oldduplex = -1;
2208 phy_start(priv->phydev);
2210 enable_napi(priv);
2212 netif_tx_wake_all_queues(ndev);
2214 return 0;
2217 /* Called when something needs to use the ethernet device
2218 * Returns 0 for success.
2220 static int gfar_enet_open(struct net_device *dev)
2222 struct gfar_private *priv = netdev_priv(dev);
2223 int err;
2225 err = init_phy(dev);
2226 if (err)
2227 return err;
2229 err = gfar_request_irq(priv);
2230 if (err)
2231 return err;
2233 err = startup_gfar(dev);
2234 if (err)
2235 return err;
2237 return err;
2240 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2242 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2244 memset(fcb, 0, GMAC_FCB_LEN);
2246 return fcb;
2249 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2250 int fcb_length)
2252 /* If we're here, it's a IP packet with a TCP or UDP
2253 * payload. We set it to checksum, using a pseudo-header
2254 * we provide
2256 u8 flags = TXFCB_DEFAULT;
2258 /* Tell the controller what the protocol is
2259 * And provide the already calculated phcs
2261 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2262 flags |= TXFCB_UDP;
2263 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2264 } else
2265 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2267 /* l3os is the distance between the start of the
2268 * frame (skb->data) and the start of the IP hdr.
2269 * l4os is the distance between the start of the
2270 * l3 hdr and the l4 hdr
2272 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2273 fcb->l4os = skb_network_header_len(skb);
2275 fcb->flags = flags;
2278 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2280 fcb->flags |= TXFCB_VLN;
2281 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2284 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2285 struct txbd8 *base, int ring_size)
2287 struct txbd8 *new_bd = bdp + stride;
2289 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2292 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2293 int ring_size)
2295 return skip_txbd(bdp, 1, base, ring_size);
2298 /* eTSEC12: csum generation not supported for some fcb offsets */
2299 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2300 unsigned long fcb_addr)
2302 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2303 (fcb_addr % 0x20) > 0x18);
2306 /* eTSEC76: csum generation for frames larger than 2500 may
2307 * cause excess delays before start of transmission
2309 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2310 unsigned int len)
2312 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2313 (len > 2500));
2316 /* This is called by the kernel when a frame is ready for transmission.
2317 * It is pointed to by the dev->hard_start_xmit function pointer
2319 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2321 struct gfar_private *priv = netdev_priv(dev);
2322 struct gfar_priv_tx_q *tx_queue = NULL;
2323 struct netdev_queue *txq;
2324 struct gfar __iomem *regs = NULL;
2325 struct txfcb *fcb = NULL;
2326 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2327 u32 lstatus;
2328 int i, rq = 0;
2329 int do_tstamp, do_csum, do_vlan;
2330 u32 bufaddr;
2331 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2333 rq = skb->queue_mapping;
2334 tx_queue = priv->tx_queue[rq];
2335 txq = netdev_get_tx_queue(dev, rq);
2336 base = tx_queue->tx_bd_base;
2337 regs = tx_queue->grp->regs;
2339 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2340 do_vlan = skb_vlan_tag_present(skb);
2341 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2342 priv->hwts_tx_en;
2344 if (do_csum || do_vlan)
2345 fcb_len = GMAC_FCB_LEN;
2347 /* check if time stamp should be generated */
2348 if (unlikely(do_tstamp))
2349 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2351 /* make space for additional header when fcb is needed */
2352 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2353 struct sk_buff *skb_new;
2355 skb_new = skb_realloc_headroom(skb, fcb_len);
2356 if (!skb_new) {
2357 dev->stats.tx_errors++;
2358 dev_kfree_skb_any(skb);
2359 return NETDEV_TX_OK;
2362 if (skb->sk)
2363 skb_set_owner_w(skb_new, skb->sk);
2364 dev_consume_skb_any(skb);
2365 skb = skb_new;
2368 /* total number of fragments in the SKB */
2369 nr_frags = skb_shinfo(skb)->nr_frags;
2371 /* calculate the required number of TxBDs for this skb */
2372 if (unlikely(do_tstamp))
2373 nr_txbds = nr_frags + 2;
2374 else
2375 nr_txbds = nr_frags + 1;
2377 /* check if there is space to queue this packet */
2378 if (nr_txbds > tx_queue->num_txbdfree) {
2379 /* no space, stop the queue */
2380 netif_tx_stop_queue(txq);
2381 dev->stats.tx_fifo_errors++;
2382 return NETDEV_TX_BUSY;
2385 /* Update transmit stats */
2386 bytes_sent = skb->len;
2387 tx_queue->stats.tx_bytes += bytes_sent;
2388 /* keep Tx bytes on wire for BQL accounting */
2389 GFAR_CB(skb)->bytes_sent = bytes_sent;
2390 tx_queue->stats.tx_packets++;
2392 txbdp = txbdp_start = tx_queue->cur_tx;
2393 lstatus = be32_to_cpu(txbdp->lstatus);
2395 /* Time stamp insertion requires one additional TxBD */
2396 if (unlikely(do_tstamp))
2397 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2398 tx_queue->tx_ring_size);
2400 if (nr_frags == 0) {
2401 if (unlikely(do_tstamp)) {
2402 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2404 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2405 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2406 } else {
2407 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2409 } else {
2410 /* Place the fragment addresses and lengths into the TxBDs */
2411 for (i = 0; i < nr_frags; i++) {
2412 unsigned int frag_len;
2413 /* Point at the next BD, wrapping as needed */
2414 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2416 frag_len = skb_shinfo(skb)->frags[i].size;
2418 lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2419 BD_LFLAG(TXBD_READY);
2421 /* Handle the last BD specially */
2422 if (i == nr_frags - 1)
2423 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2425 bufaddr = skb_frag_dma_map(priv->dev,
2426 &skb_shinfo(skb)->frags[i],
2428 frag_len,
2429 DMA_TO_DEVICE);
2430 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2431 goto dma_map_err;
2433 /* set the TxBD length and buffer pointer */
2434 txbdp->bufPtr = cpu_to_be32(bufaddr);
2435 txbdp->lstatus = cpu_to_be32(lstatus);
2438 lstatus = be32_to_cpu(txbdp_start->lstatus);
2441 /* Add TxPAL between FCB and frame if required */
2442 if (unlikely(do_tstamp)) {
2443 skb_push(skb, GMAC_TXPAL_LEN);
2444 memset(skb->data, 0, GMAC_TXPAL_LEN);
2447 /* Add TxFCB if required */
2448 if (fcb_len) {
2449 fcb = gfar_add_fcb(skb);
2450 lstatus |= BD_LFLAG(TXBD_TOE);
2453 /* Set up checksumming */
2454 if (do_csum) {
2455 gfar_tx_checksum(skb, fcb, fcb_len);
2457 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2458 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2459 __skb_pull(skb, GMAC_FCB_LEN);
2460 skb_checksum_help(skb);
2461 if (do_vlan || do_tstamp) {
2462 /* put back a new fcb for vlan/tstamp TOE */
2463 fcb = gfar_add_fcb(skb);
2464 } else {
2465 /* Tx TOE not used */
2466 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2467 fcb = NULL;
2472 if (do_vlan)
2473 gfar_tx_vlan(skb, fcb);
2475 /* Setup tx hardware time stamping if requested */
2476 if (unlikely(do_tstamp)) {
2477 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2478 fcb->ptp = 1;
2481 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2482 DMA_TO_DEVICE);
2483 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2484 goto dma_map_err;
2486 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2488 /* If time stamping is requested one additional TxBD must be set up. The
2489 * first TxBD points to the FCB and must have a data length of
2490 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2491 * the full frame length.
2493 if (unlikely(do_tstamp)) {
2494 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2496 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2497 bufaddr += fcb_len;
2498 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2499 (skb_headlen(skb) - fcb_len);
2501 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2502 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2503 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2504 } else {
2505 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2508 netdev_tx_sent_queue(txq, bytes_sent);
2510 gfar_wmb();
2512 txbdp_start->lstatus = cpu_to_be32(lstatus);
2514 gfar_wmb(); /* force lstatus write before tx_skbuff */
2516 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2518 /* Update the current skb pointer to the next entry we will use
2519 * (wrapping if necessary)
2521 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2522 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2524 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2526 /* We can work in parallel with gfar_clean_tx_ring(), except
2527 * when modifying num_txbdfree. Note that we didn't grab the lock
2528 * when we were reading the num_txbdfree and checking for available
2529 * space, that's because outside of this function it can only grow.
2531 spin_lock_bh(&tx_queue->txlock);
2532 /* reduce TxBD free count */
2533 tx_queue->num_txbdfree -= (nr_txbds);
2534 spin_unlock_bh(&tx_queue->txlock);
2536 /* If the next BD still needs to be cleaned up, then the bds
2537 * are full. We need to tell the kernel to stop sending us stuff.
2539 if (!tx_queue->num_txbdfree) {
2540 netif_tx_stop_queue(txq);
2542 dev->stats.tx_fifo_errors++;
2545 /* Tell the DMA to go go go */
2546 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2548 return NETDEV_TX_OK;
2550 dma_map_err:
2551 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2552 if (do_tstamp)
2553 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2554 for (i = 0; i < nr_frags; i++) {
2555 lstatus = be32_to_cpu(txbdp->lstatus);
2556 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2557 break;
2559 lstatus &= ~BD_LFLAG(TXBD_READY);
2560 txbdp->lstatus = cpu_to_be32(lstatus);
2561 bufaddr = be32_to_cpu(txbdp->bufPtr);
2562 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2563 DMA_TO_DEVICE);
2564 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2566 gfar_wmb();
2567 dev_kfree_skb_any(skb);
2568 return NETDEV_TX_OK;
2571 /* Stops the kernel queue, and halts the controller */
2572 static int gfar_close(struct net_device *dev)
2574 struct gfar_private *priv = netdev_priv(dev);
2576 cancel_work_sync(&priv->reset_task);
2577 stop_gfar(dev);
2579 /* Disconnect from the PHY */
2580 phy_disconnect(priv->phydev);
2581 priv->phydev = NULL;
2583 gfar_free_irq(priv);
2585 return 0;
2588 /* Changes the mac address if the controller is not running. */
2589 static int gfar_set_mac_address(struct net_device *dev)
2591 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2593 return 0;
2596 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2598 struct gfar_private *priv = netdev_priv(dev);
2599 int frame_size = new_mtu + ETH_HLEN;
2601 if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2602 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2603 return -EINVAL;
2606 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2607 cpu_relax();
2609 if (dev->flags & IFF_UP)
2610 stop_gfar(dev);
2612 dev->mtu = new_mtu;
2614 if (dev->flags & IFF_UP)
2615 startup_gfar(dev);
2617 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2619 return 0;
2622 void reset_gfar(struct net_device *ndev)
2624 struct gfar_private *priv = netdev_priv(ndev);
2626 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2627 cpu_relax();
2629 stop_gfar(ndev);
2630 startup_gfar(ndev);
2632 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2635 /* gfar_reset_task gets scheduled when a packet has not been
2636 * transmitted after a set amount of time.
2637 * For now, assume that clearing out all the structures, and
2638 * starting over will fix the problem.
2640 static void gfar_reset_task(struct work_struct *work)
2642 struct gfar_private *priv = container_of(work, struct gfar_private,
2643 reset_task);
2644 reset_gfar(priv->ndev);
2647 static void gfar_timeout(struct net_device *dev)
2649 struct gfar_private *priv = netdev_priv(dev);
2651 dev->stats.tx_errors++;
2652 schedule_work(&priv->reset_task);
2655 /* Interrupt Handler for Transmit complete */
2656 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2658 struct net_device *dev = tx_queue->dev;
2659 struct netdev_queue *txq;
2660 struct gfar_private *priv = netdev_priv(dev);
2661 struct txbd8 *bdp, *next = NULL;
2662 struct txbd8 *lbdp = NULL;
2663 struct txbd8 *base = tx_queue->tx_bd_base;
2664 struct sk_buff *skb;
2665 int skb_dirtytx;
2666 int tx_ring_size = tx_queue->tx_ring_size;
2667 int frags = 0, nr_txbds = 0;
2668 int i;
2669 int howmany = 0;
2670 int tqi = tx_queue->qindex;
2671 unsigned int bytes_sent = 0;
2672 u32 lstatus;
2673 size_t buflen;
2675 txq = netdev_get_tx_queue(dev, tqi);
2676 bdp = tx_queue->dirty_tx;
2677 skb_dirtytx = tx_queue->skb_dirtytx;
2679 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2681 frags = skb_shinfo(skb)->nr_frags;
2683 /* When time stamping, one additional TxBD must be freed.
2684 * Also, we need to dma_unmap_single() the TxPAL.
2686 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2687 nr_txbds = frags + 2;
2688 else
2689 nr_txbds = frags + 1;
2691 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2693 lstatus = be32_to_cpu(lbdp->lstatus);
2695 /* Only clean completed frames */
2696 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2697 (lstatus & BD_LENGTH_MASK))
2698 break;
2700 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2701 next = next_txbd(bdp, base, tx_ring_size);
2702 buflen = be16_to_cpu(next->length) +
2703 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2704 } else
2705 buflen = be16_to_cpu(bdp->length);
2707 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2708 buflen, DMA_TO_DEVICE);
2710 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2711 struct skb_shared_hwtstamps shhwtstamps;
2712 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2713 ~0x7UL);
2715 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2716 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2717 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2718 skb_tstamp_tx(skb, &shhwtstamps);
2719 gfar_clear_txbd_status(bdp);
2720 bdp = next;
2723 gfar_clear_txbd_status(bdp);
2724 bdp = next_txbd(bdp, base, tx_ring_size);
2726 for (i = 0; i < frags; i++) {
2727 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2728 be16_to_cpu(bdp->length),
2729 DMA_TO_DEVICE);
2730 gfar_clear_txbd_status(bdp);
2731 bdp = next_txbd(bdp, base, tx_ring_size);
2734 bytes_sent += GFAR_CB(skb)->bytes_sent;
2736 dev_kfree_skb_any(skb);
2738 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2740 skb_dirtytx = (skb_dirtytx + 1) &
2741 TX_RING_MOD_MASK(tx_ring_size);
2743 howmany++;
2744 spin_lock(&tx_queue->txlock);
2745 tx_queue->num_txbdfree += nr_txbds;
2746 spin_unlock(&tx_queue->txlock);
2749 /* If we freed a buffer, we can restart transmission, if necessary */
2750 if (tx_queue->num_txbdfree &&
2751 netif_tx_queue_stopped(txq) &&
2752 !(test_bit(GFAR_DOWN, &priv->state)))
2753 netif_wake_subqueue(priv->ndev, tqi);
2755 /* Update dirty indicators */
2756 tx_queue->skb_dirtytx = skb_dirtytx;
2757 tx_queue->dirty_tx = bdp;
2759 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2762 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2764 struct page *page;
2765 dma_addr_t addr;
2767 page = dev_alloc_page();
2768 if (unlikely(!page))
2769 return false;
2771 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2772 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2773 __free_page(page);
2775 return false;
2778 rxb->dma = addr;
2779 rxb->page = page;
2780 rxb->page_offset = 0;
2782 return true;
2785 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2787 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2788 struct gfar_extra_stats *estats = &priv->extra_stats;
2790 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2791 atomic64_inc(&estats->rx_alloc_err);
2794 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2795 int alloc_cnt)
2797 struct rxbd8 *bdp;
2798 struct gfar_rx_buff *rxb;
2799 int i;
2801 i = rx_queue->next_to_use;
2802 bdp = &rx_queue->rx_bd_base[i];
2803 rxb = &rx_queue->rx_buff[i];
2805 while (alloc_cnt--) {
2806 /* try reuse page */
2807 if (unlikely(!rxb->page)) {
2808 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2809 gfar_rx_alloc_err(rx_queue);
2810 break;
2814 /* Setup the new RxBD */
2815 gfar_init_rxbdp(rx_queue, bdp,
2816 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2818 /* Update to the next pointer */
2819 bdp++;
2820 rxb++;
2822 if (unlikely(++i == rx_queue->rx_ring_size)) {
2823 i = 0;
2824 bdp = rx_queue->rx_bd_base;
2825 rxb = rx_queue->rx_buff;
2829 rx_queue->next_to_use = i;
2830 rx_queue->next_to_alloc = i;
2833 static void count_errors(u32 lstatus, struct net_device *ndev)
2835 struct gfar_private *priv = netdev_priv(ndev);
2836 struct net_device_stats *stats = &ndev->stats;
2837 struct gfar_extra_stats *estats = &priv->extra_stats;
2839 /* If the packet was truncated, none of the other errors matter */
2840 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2841 stats->rx_length_errors++;
2843 atomic64_inc(&estats->rx_trunc);
2845 return;
2847 /* Count the errors, if there were any */
2848 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2849 stats->rx_length_errors++;
2851 if (lstatus & BD_LFLAG(RXBD_LARGE))
2852 atomic64_inc(&estats->rx_large);
2853 else
2854 atomic64_inc(&estats->rx_short);
2856 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2857 stats->rx_frame_errors++;
2858 atomic64_inc(&estats->rx_nonoctet);
2860 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2861 atomic64_inc(&estats->rx_crcerr);
2862 stats->rx_crc_errors++;
2864 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2865 atomic64_inc(&estats->rx_overrun);
2866 stats->rx_over_errors++;
2870 irqreturn_t gfar_receive(int irq, void *grp_id)
2872 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2873 unsigned long flags;
2874 u32 imask, ievent;
2876 ievent = gfar_read(&grp->regs->ievent);
2878 if (unlikely(ievent & IEVENT_FGPI)) {
2879 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2880 return IRQ_HANDLED;
2883 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2884 spin_lock_irqsave(&grp->grplock, flags);
2885 imask = gfar_read(&grp->regs->imask);
2886 imask &= IMASK_RX_DISABLED;
2887 gfar_write(&grp->regs->imask, imask);
2888 spin_unlock_irqrestore(&grp->grplock, flags);
2889 __napi_schedule(&grp->napi_rx);
2890 } else {
2891 /* Clear IEVENT, so interrupts aren't called again
2892 * because of the packets that have already arrived.
2894 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2897 return IRQ_HANDLED;
2900 /* Interrupt Handler for Transmit complete */
2901 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2903 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2904 unsigned long flags;
2905 u32 imask;
2907 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2908 spin_lock_irqsave(&grp->grplock, flags);
2909 imask = gfar_read(&grp->regs->imask);
2910 imask &= IMASK_TX_DISABLED;
2911 gfar_write(&grp->regs->imask, imask);
2912 spin_unlock_irqrestore(&grp->grplock, flags);
2913 __napi_schedule(&grp->napi_tx);
2914 } else {
2915 /* Clear IEVENT, so interrupts aren't called again
2916 * because of the packets that have already arrived.
2918 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2921 return IRQ_HANDLED;
2924 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2925 struct sk_buff *skb, bool first)
2927 unsigned int size = lstatus & BD_LENGTH_MASK;
2928 struct page *page = rxb->page;
2930 /* Remove the FCS from the packet length */
2931 if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2932 size -= ETH_FCS_LEN;
2934 if (likely(first))
2935 skb_put(skb, size);
2936 else
2937 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2938 rxb->page_offset + RXBUF_ALIGNMENT,
2939 size, GFAR_RXB_TRUESIZE);
2941 /* try reuse page */
2942 if (unlikely(page_count(page) != 1))
2943 return false;
2945 /* change offset to the other half */
2946 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2948 atomic_inc(&page->_count);
2950 return true;
2953 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2954 struct gfar_rx_buff *old_rxb)
2956 struct gfar_rx_buff *new_rxb;
2957 u16 nta = rxq->next_to_alloc;
2959 new_rxb = &rxq->rx_buff[nta];
2961 /* find next buf that can reuse a page */
2962 nta++;
2963 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2965 /* copy page reference */
2966 *new_rxb = *old_rxb;
2968 /* sync for use by the device */
2969 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2970 old_rxb->page_offset,
2971 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2974 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2975 u32 lstatus, struct sk_buff *skb)
2977 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2978 struct page *page = rxb->page;
2979 bool first = false;
2981 if (likely(!skb)) {
2982 void *buff_addr = page_address(page) + rxb->page_offset;
2984 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2985 if (unlikely(!skb)) {
2986 gfar_rx_alloc_err(rx_queue);
2987 return NULL;
2989 skb_reserve(skb, RXBUF_ALIGNMENT);
2990 first = true;
2993 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2994 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2996 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2997 /* reuse the free half of the page */
2998 gfar_reuse_rx_page(rx_queue, rxb);
2999 } else {
3000 /* page cannot be reused, unmap it */
3001 dma_unmap_page(rx_queue->dev, rxb->dma,
3002 PAGE_SIZE, DMA_FROM_DEVICE);
3005 /* clear rxb content */
3006 rxb->page = NULL;
3008 return skb;
3011 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3013 /* If valid headers were found, and valid sums
3014 * were verified, then we tell the kernel that no
3015 * checksumming is necessary. Otherwise, it is [FIXME]
3017 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3018 (RXFCB_CIP | RXFCB_CTU))
3019 skb->ip_summed = CHECKSUM_UNNECESSARY;
3020 else
3021 skb_checksum_none_assert(skb);
3024 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3025 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3027 struct gfar_private *priv = netdev_priv(ndev);
3028 struct rxfcb *fcb = NULL;
3030 /* fcb is at the beginning if exists */
3031 fcb = (struct rxfcb *)skb->data;
3033 /* Remove the FCB from the skb
3034 * Remove the padded bytes, if there are any
3036 if (priv->uses_rxfcb)
3037 skb_pull(skb, GMAC_FCB_LEN);
3039 /* Get receive timestamp from the skb */
3040 if (priv->hwts_rx_en) {
3041 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3042 u64 *ns = (u64 *) skb->data;
3044 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3045 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
3048 if (priv->padding)
3049 skb_pull(skb, priv->padding);
3051 if (ndev->features & NETIF_F_RXCSUM)
3052 gfar_rx_checksum(skb, fcb);
3054 /* Tell the skb what kind of packet this is */
3055 skb->protocol = eth_type_trans(skb, ndev);
3057 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3058 * Even if vlan rx accel is disabled, on some chips
3059 * RXFCB_VLN is pseudo randomly set.
3061 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3062 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3063 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3064 be16_to_cpu(fcb->vlctl));
3067 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3068 * until the budget/quota has been reached. Returns the number
3069 * of frames handled
3071 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3073 struct net_device *ndev = rx_queue->ndev;
3074 struct gfar_private *priv = netdev_priv(ndev);
3075 struct rxbd8 *bdp;
3076 int i, howmany = 0;
3077 struct sk_buff *skb = rx_queue->skb;
3078 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3079 unsigned int total_bytes = 0, total_pkts = 0;
3081 /* Get the first full descriptor */
3082 i = rx_queue->next_to_clean;
3084 while (rx_work_limit--) {
3085 u32 lstatus;
3087 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3088 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3089 cleaned_cnt = 0;
3092 bdp = &rx_queue->rx_bd_base[i];
3093 lstatus = be32_to_cpu(bdp->lstatus);
3094 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3095 break;
3097 /* order rx buffer descriptor reads */
3098 rmb();
3100 /* fetch next to clean buffer from the ring */
3101 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3102 if (unlikely(!skb))
3103 break;
3105 cleaned_cnt++;
3106 howmany++;
3108 if (unlikely(++i == rx_queue->rx_ring_size))
3109 i = 0;
3111 rx_queue->next_to_clean = i;
3113 /* fetch next buffer if not the last in frame */
3114 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3115 continue;
3117 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3118 count_errors(lstatus, ndev);
3120 /* discard faulty buffer */
3121 dev_kfree_skb(skb);
3122 skb = NULL;
3123 rx_queue->stats.rx_dropped++;
3124 continue;
3127 /* Increment the number of packets */
3128 total_pkts++;
3129 total_bytes += skb->len;
3131 skb_record_rx_queue(skb, rx_queue->qindex);
3133 gfar_process_frame(ndev, skb);
3135 /* Send the packet up the stack */
3136 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3138 skb = NULL;
3141 /* Store incomplete frames for completion */
3142 rx_queue->skb = skb;
3144 rx_queue->stats.rx_packets += total_pkts;
3145 rx_queue->stats.rx_bytes += total_bytes;
3147 if (cleaned_cnt)
3148 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3150 /* Update Last Free RxBD pointer for LFC */
3151 if (unlikely(priv->tx_actual_en)) {
3152 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3154 gfar_write(rx_queue->rfbptr, bdp_dma);
3157 return howmany;
3160 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3162 struct gfar_priv_grp *gfargrp =
3163 container_of(napi, struct gfar_priv_grp, napi_rx);
3164 struct gfar __iomem *regs = gfargrp->regs;
3165 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3166 int work_done = 0;
3168 /* Clear IEVENT, so interrupts aren't called again
3169 * because of the packets that have already arrived
3171 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3173 work_done = gfar_clean_rx_ring(rx_queue, budget);
3175 if (work_done < budget) {
3176 u32 imask;
3177 napi_complete(napi);
3178 /* Clear the halt bit in RSTAT */
3179 gfar_write(&regs->rstat, gfargrp->rstat);
3181 spin_lock_irq(&gfargrp->grplock);
3182 imask = gfar_read(&regs->imask);
3183 imask |= IMASK_RX_DEFAULT;
3184 gfar_write(&regs->imask, imask);
3185 spin_unlock_irq(&gfargrp->grplock);
3188 return work_done;
3191 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3193 struct gfar_priv_grp *gfargrp =
3194 container_of(napi, struct gfar_priv_grp, napi_tx);
3195 struct gfar __iomem *regs = gfargrp->regs;
3196 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3197 u32 imask;
3199 /* Clear IEVENT, so interrupts aren't called again
3200 * because of the packets that have already arrived
3202 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3204 /* run Tx cleanup to completion */
3205 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3206 gfar_clean_tx_ring(tx_queue);
3208 napi_complete(napi);
3210 spin_lock_irq(&gfargrp->grplock);
3211 imask = gfar_read(&regs->imask);
3212 imask |= IMASK_TX_DEFAULT;
3213 gfar_write(&regs->imask, imask);
3214 spin_unlock_irq(&gfargrp->grplock);
3216 return 0;
3219 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3221 struct gfar_priv_grp *gfargrp =
3222 container_of(napi, struct gfar_priv_grp, napi_rx);
3223 struct gfar_private *priv = gfargrp->priv;
3224 struct gfar __iomem *regs = gfargrp->regs;
3225 struct gfar_priv_rx_q *rx_queue = NULL;
3226 int work_done = 0, work_done_per_q = 0;
3227 int i, budget_per_q = 0;
3228 unsigned long rstat_rxf;
3229 int num_act_queues;
3231 /* Clear IEVENT, so interrupts aren't called again
3232 * because of the packets that have already arrived
3234 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3236 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3238 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3239 if (num_act_queues)
3240 budget_per_q = budget/num_act_queues;
3242 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3243 /* skip queue if not active */
3244 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3245 continue;
3247 rx_queue = priv->rx_queue[i];
3248 work_done_per_q =
3249 gfar_clean_rx_ring(rx_queue, budget_per_q);
3250 work_done += work_done_per_q;
3252 /* finished processing this queue */
3253 if (work_done_per_q < budget_per_q) {
3254 /* clear active queue hw indication */
3255 gfar_write(&regs->rstat,
3256 RSTAT_CLEAR_RXF0 >> i);
3257 num_act_queues--;
3259 if (!num_act_queues)
3260 break;
3264 if (!num_act_queues) {
3265 u32 imask;
3266 napi_complete(napi);
3268 /* Clear the halt bit in RSTAT */
3269 gfar_write(&regs->rstat, gfargrp->rstat);
3271 spin_lock_irq(&gfargrp->grplock);
3272 imask = gfar_read(&regs->imask);
3273 imask |= IMASK_RX_DEFAULT;
3274 gfar_write(&regs->imask, imask);
3275 spin_unlock_irq(&gfargrp->grplock);
3278 return work_done;
3281 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3283 struct gfar_priv_grp *gfargrp =
3284 container_of(napi, struct gfar_priv_grp, napi_tx);
3285 struct gfar_private *priv = gfargrp->priv;
3286 struct gfar __iomem *regs = gfargrp->regs;
3287 struct gfar_priv_tx_q *tx_queue = NULL;
3288 int has_tx_work = 0;
3289 int i;
3291 /* Clear IEVENT, so interrupts aren't called again
3292 * because of the packets that have already arrived
3294 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3296 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3297 tx_queue = priv->tx_queue[i];
3298 /* run Tx cleanup to completion */
3299 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3300 gfar_clean_tx_ring(tx_queue);
3301 has_tx_work = 1;
3305 if (!has_tx_work) {
3306 u32 imask;
3307 napi_complete(napi);
3309 spin_lock_irq(&gfargrp->grplock);
3310 imask = gfar_read(&regs->imask);
3311 imask |= IMASK_TX_DEFAULT;
3312 gfar_write(&regs->imask, imask);
3313 spin_unlock_irq(&gfargrp->grplock);
3316 return 0;
3320 #ifdef CONFIG_NET_POLL_CONTROLLER
3321 /* Polling 'interrupt' - used by things like netconsole to send skbs
3322 * without having to re-enable interrupts. It's not called while
3323 * the interrupt routine is executing.
3325 static void gfar_netpoll(struct net_device *dev)
3327 struct gfar_private *priv = netdev_priv(dev);
3328 int i;
3330 /* If the device has multiple interrupts, run tx/rx */
3331 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3332 for (i = 0; i < priv->num_grps; i++) {
3333 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3335 disable_irq(gfar_irq(grp, TX)->irq);
3336 disable_irq(gfar_irq(grp, RX)->irq);
3337 disable_irq(gfar_irq(grp, ER)->irq);
3338 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3339 enable_irq(gfar_irq(grp, ER)->irq);
3340 enable_irq(gfar_irq(grp, RX)->irq);
3341 enable_irq(gfar_irq(grp, TX)->irq);
3343 } else {
3344 for (i = 0; i < priv->num_grps; i++) {
3345 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3347 disable_irq(gfar_irq(grp, TX)->irq);
3348 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3349 enable_irq(gfar_irq(grp, TX)->irq);
3353 #endif
3355 /* The interrupt handler for devices with one interrupt */
3356 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3358 struct gfar_priv_grp *gfargrp = grp_id;
3360 /* Save ievent for future reference */
3361 u32 events = gfar_read(&gfargrp->regs->ievent);
3363 /* Check for reception */
3364 if (events & IEVENT_RX_MASK)
3365 gfar_receive(irq, grp_id);
3367 /* Check for transmit completion */
3368 if (events & IEVENT_TX_MASK)
3369 gfar_transmit(irq, grp_id);
3371 /* Check for errors */
3372 if (events & IEVENT_ERR_MASK)
3373 gfar_error(irq, grp_id);
3375 return IRQ_HANDLED;
3378 /* Called every time the controller might need to be made
3379 * aware of new link state. The PHY code conveys this
3380 * information through variables in the phydev structure, and this
3381 * function converts those variables into the appropriate
3382 * register values, and can bring down the device if needed.
3384 static void adjust_link(struct net_device *dev)
3386 struct gfar_private *priv = netdev_priv(dev);
3387 struct phy_device *phydev = priv->phydev;
3389 if (unlikely(phydev->link != priv->oldlink ||
3390 (phydev->link && (phydev->duplex != priv->oldduplex ||
3391 phydev->speed != priv->oldspeed))))
3392 gfar_update_link_state(priv);
3395 /* Update the hash table based on the current list of multicast
3396 * addresses we subscribe to. Also, change the promiscuity of
3397 * the device based on the flags (this function is called
3398 * whenever dev->flags is changed
3400 static void gfar_set_multi(struct net_device *dev)
3402 struct netdev_hw_addr *ha;
3403 struct gfar_private *priv = netdev_priv(dev);
3404 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3405 u32 tempval;
3407 if (dev->flags & IFF_PROMISC) {
3408 /* Set RCTRL to PROM */
3409 tempval = gfar_read(&regs->rctrl);
3410 tempval |= RCTRL_PROM;
3411 gfar_write(&regs->rctrl, tempval);
3412 } else {
3413 /* Set RCTRL to not PROM */
3414 tempval = gfar_read(&regs->rctrl);
3415 tempval &= ~(RCTRL_PROM);
3416 gfar_write(&regs->rctrl, tempval);
3419 if (dev->flags & IFF_ALLMULTI) {
3420 /* Set the hash to rx all multicast frames */
3421 gfar_write(&regs->igaddr0, 0xffffffff);
3422 gfar_write(&regs->igaddr1, 0xffffffff);
3423 gfar_write(&regs->igaddr2, 0xffffffff);
3424 gfar_write(&regs->igaddr3, 0xffffffff);
3425 gfar_write(&regs->igaddr4, 0xffffffff);
3426 gfar_write(&regs->igaddr5, 0xffffffff);
3427 gfar_write(&regs->igaddr6, 0xffffffff);
3428 gfar_write(&regs->igaddr7, 0xffffffff);
3429 gfar_write(&regs->gaddr0, 0xffffffff);
3430 gfar_write(&regs->gaddr1, 0xffffffff);
3431 gfar_write(&regs->gaddr2, 0xffffffff);
3432 gfar_write(&regs->gaddr3, 0xffffffff);
3433 gfar_write(&regs->gaddr4, 0xffffffff);
3434 gfar_write(&regs->gaddr5, 0xffffffff);
3435 gfar_write(&regs->gaddr6, 0xffffffff);
3436 gfar_write(&regs->gaddr7, 0xffffffff);
3437 } else {
3438 int em_num;
3439 int idx;
3441 /* zero out the hash */
3442 gfar_write(&regs->igaddr0, 0x0);
3443 gfar_write(&regs->igaddr1, 0x0);
3444 gfar_write(&regs->igaddr2, 0x0);
3445 gfar_write(&regs->igaddr3, 0x0);
3446 gfar_write(&regs->igaddr4, 0x0);
3447 gfar_write(&regs->igaddr5, 0x0);
3448 gfar_write(&regs->igaddr6, 0x0);
3449 gfar_write(&regs->igaddr7, 0x0);
3450 gfar_write(&regs->gaddr0, 0x0);
3451 gfar_write(&regs->gaddr1, 0x0);
3452 gfar_write(&regs->gaddr2, 0x0);
3453 gfar_write(&regs->gaddr3, 0x0);
3454 gfar_write(&regs->gaddr4, 0x0);
3455 gfar_write(&regs->gaddr5, 0x0);
3456 gfar_write(&regs->gaddr6, 0x0);
3457 gfar_write(&regs->gaddr7, 0x0);
3459 /* If we have extended hash tables, we need to
3460 * clear the exact match registers to prepare for
3461 * setting them
3463 if (priv->extended_hash) {
3464 em_num = GFAR_EM_NUM + 1;
3465 gfar_clear_exact_match(dev);
3466 idx = 1;
3467 } else {
3468 idx = 0;
3469 em_num = 0;
3472 if (netdev_mc_empty(dev))
3473 return;
3475 /* Parse the list, and set the appropriate bits */
3476 netdev_for_each_mc_addr(ha, dev) {
3477 if (idx < em_num) {
3478 gfar_set_mac_for_addr(dev, idx, ha->addr);
3479 idx++;
3480 } else
3481 gfar_set_hash_for_addr(dev, ha->addr);
3487 /* Clears each of the exact match registers to zero, so they
3488 * don't interfere with normal reception
3490 static void gfar_clear_exact_match(struct net_device *dev)
3492 int idx;
3493 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3495 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3496 gfar_set_mac_for_addr(dev, idx, zero_arr);
3499 /* Set the appropriate hash bit for the given addr */
3500 /* The algorithm works like so:
3501 * 1) Take the Destination Address (ie the multicast address), and
3502 * do a CRC on it (little endian), and reverse the bits of the
3503 * result.
3504 * 2) Use the 8 most significant bits as a hash into a 256-entry
3505 * table. The table is controlled through 8 32-bit registers:
3506 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3507 * gaddr7. This means that the 3 most significant bits in the
3508 * hash index which gaddr register to use, and the 5 other bits
3509 * indicate which bit (assuming an IBM numbering scheme, which
3510 * for PowerPC (tm) is usually the case) in the register holds
3511 * the entry.
3513 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3515 u32 tempval;
3516 struct gfar_private *priv = netdev_priv(dev);
3517 u32 result = ether_crc(ETH_ALEN, addr);
3518 int width = priv->hash_width;
3519 u8 whichbit = (result >> (32 - width)) & 0x1f;
3520 u8 whichreg = result >> (32 - width + 5);
3521 u32 value = (1 << (31-whichbit));
3523 tempval = gfar_read(priv->hash_regs[whichreg]);
3524 tempval |= value;
3525 gfar_write(priv->hash_regs[whichreg], tempval);
3529 /* There are multiple MAC Address register pairs on some controllers
3530 * This function sets the numth pair to a given address
3532 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3533 const u8 *addr)
3535 struct gfar_private *priv = netdev_priv(dev);
3536 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3537 u32 tempval;
3538 u32 __iomem *macptr = &regs->macstnaddr1;
3540 macptr += num*2;
3542 /* For a station address of 0x12345678ABCD in transmission
3543 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3544 * MACnADDR2 is set to 0x34120000.
3546 tempval = (addr[5] << 24) | (addr[4] << 16) |
3547 (addr[3] << 8) | addr[2];
3549 gfar_write(macptr, tempval);
3551 tempval = (addr[1] << 24) | (addr[0] << 16);
3553 gfar_write(macptr+1, tempval);
3556 /* GFAR error interrupt handler */
3557 static irqreturn_t gfar_error(int irq, void *grp_id)
3559 struct gfar_priv_grp *gfargrp = grp_id;
3560 struct gfar __iomem *regs = gfargrp->regs;
3561 struct gfar_private *priv= gfargrp->priv;
3562 struct net_device *dev = priv->ndev;
3564 /* Save ievent for future reference */
3565 u32 events = gfar_read(&regs->ievent);
3567 /* Clear IEVENT */
3568 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3570 /* Magic Packet is not an error. */
3571 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3572 (events & IEVENT_MAG))
3573 events &= ~IEVENT_MAG;
3575 /* Hmm... */
3576 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3577 netdev_dbg(dev,
3578 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3579 events, gfar_read(&regs->imask));
3581 /* Update the error counters */
3582 if (events & IEVENT_TXE) {
3583 dev->stats.tx_errors++;
3585 if (events & IEVENT_LC)
3586 dev->stats.tx_window_errors++;
3587 if (events & IEVENT_CRL)
3588 dev->stats.tx_aborted_errors++;
3589 if (events & IEVENT_XFUN) {
3590 netif_dbg(priv, tx_err, dev,
3591 "TX FIFO underrun, packet dropped\n");
3592 dev->stats.tx_dropped++;
3593 atomic64_inc(&priv->extra_stats.tx_underrun);
3595 schedule_work(&priv->reset_task);
3597 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3599 if (events & IEVENT_BSY) {
3600 dev->stats.rx_over_errors++;
3601 atomic64_inc(&priv->extra_stats.rx_bsy);
3603 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3604 gfar_read(&regs->rstat));
3606 if (events & IEVENT_BABR) {
3607 dev->stats.rx_errors++;
3608 atomic64_inc(&priv->extra_stats.rx_babr);
3610 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3612 if (events & IEVENT_EBERR) {
3613 atomic64_inc(&priv->extra_stats.eberr);
3614 netif_dbg(priv, rx_err, dev, "bus error\n");
3616 if (events & IEVENT_RXC)
3617 netif_dbg(priv, rx_status, dev, "control frame\n");
3619 if (events & IEVENT_BABT) {
3620 atomic64_inc(&priv->extra_stats.tx_babt);
3621 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3623 return IRQ_HANDLED;
3626 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3628 struct phy_device *phydev = priv->phydev;
3629 u32 val = 0;
3631 if (!phydev->duplex)
3632 return val;
3634 if (!priv->pause_aneg_en) {
3635 if (priv->tx_pause_en)
3636 val |= MACCFG1_TX_FLOW;
3637 if (priv->rx_pause_en)
3638 val |= MACCFG1_RX_FLOW;
3639 } else {
3640 u16 lcl_adv, rmt_adv;
3641 u8 flowctrl;
3642 /* get link partner capabilities */
3643 rmt_adv = 0;
3644 if (phydev->pause)
3645 rmt_adv = LPA_PAUSE_CAP;
3646 if (phydev->asym_pause)
3647 rmt_adv |= LPA_PAUSE_ASYM;
3649 lcl_adv = 0;
3650 if (phydev->advertising & ADVERTISED_Pause)
3651 lcl_adv |= ADVERTISE_PAUSE_CAP;
3652 if (phydev->advertising & ADVERTISED_Asym_Pause)
3653 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3655 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3656 if (flowctrl & FLOW_CTRL_TX)
3657 val |= MACCFG1_TX_FLOW;
3658 if (flowctrl & FLOW_CTRL_RX)
3659 val |= MACCFG1_RX_FLOW;
3662 return val;
3665 static noinline void gfar_update_link_state(struct gfar_private *priv)
3667 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3668 struct phy_device *phydev = priv->phydev;
3669 struct gfar_priv_rx_q *rx_queue = NULL;
3670 int i;
3672 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3673 return;
3675 if (phydev->link) {
3676 u32 tempval1 = gfar_read(&regs->maccfg1);
3677 u32 tempval = gfar_read(&regs->maccfg2);
3678 u32 ecntrl = gfar_read(&regs->ecntrl);
3679 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3681 if (phydev->duplex != priv->oldduplex) {
3682 if (!(phydev->duplex))
3683 tempval &= ~(MACCFG2_FULL_DUPLEX);
3684 else
3685 tempval |= MACCFG2_FULL_DUPLEX;
3687 priv->oldduplex = phydev->duplex;
3690 if (phydev->speed != priv->oldspeed) {
3691 switch (phydev->speed) {
3692 case 1000:
3693 tempval =
3694 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3696 ecntrl &= ~(ECNTRL_R100);
3697 break;
3698 case 100:
3699 case 10:
3700 tempval =
3701 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3703 /* Reduced mode distinguishes
3704 * between 10 and 100
3706 if (phydev->speed == SPEED_100)
3707 ecntrl |= ECNTRL_R100;
3708 else
3709 ecntrl &= ~(ECNTRL_R100);
3710 break;
3711 default:
3712 netif_warn(priv, link, priv->ndev,
3713 "Ack! Speed (%d) is not 10/100/1000!\n",
3714 phydev->speed);
3715 break;
3718 priv->oldspeed = phydev->speed;
3721 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3722 tempval1 |= gfar_get_flowctrl_cfg(priv);
3724 /* Turn last free buffer recording on */
3725 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3726 for (i = 0; i < priv->num_rx_queues; i++) {
3727 u32 bdp_dma;
3729 rx_queue = priv->rx_queue[i];
3730 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3731 gfar_write(rx_queue->rfbptr, bdp_dma);
3734 priv->tx_actual_en = 1;
3737 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3738 priv->tx_actual_en = 0;
3740 gfar_write(&regs->maccfg1, tempval1);
3741 gfar_write(&regs->maccfg2, tempval);
3742 gfar_write(&regs->ecntrl, ecntrl);
3744 if (!priv->oldlink)
3745 priv->oldlink = 1;
3747 } else if (priv->oldlink) {
3748 priv->oldlink = 0;
3749 priv->oldspeed = 0;
3750 priv->oldduplex = -1;
3753 if (netif_msg_link(priv))
3754 phy_print_status(phydev);
3757 static const struct of_device_id gfar_match[] =
3760 .type = "network",
3761 .compatible = "gianfar",
3764 .compatible = "fsl,etsec2",
3768 MODULE_DEVICE_TABLE(of, gfar_match);
3770 /* Structure for a device driver */
3771 static struct platform_driver gfar_driver = {
3772 .driver = {
3773 .name = "fsl-gianfar",
3774 .pm = GFAR_PM_OPS,
3775 .of_match_table = gfar_match,
3777 .probe = gfar_probe,
3778 .remove = gfar_remove,
3781 module_platform_driver(gfar_driver);